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ABSTRACT 

The Multiview Onboard Computational Imager (MOCI) is a 3U cube satellite designed to convert high resolution 
imagery, 4K images at 8m Ground Sample Distance (GSD), into useful end data products in near real time. The 
primary data products that MOCI seeks to provide are a 3D terrain models of the surface of Earth that can be directly 
compared to the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) v3 global Digital 
Elevation Model (DEM). MOCI utilizes a Nvidia TX2 Graphic Processing Unit (GPU)/System on a Chip (SoC) to 
perform the complex calculations required for such a task. The reconstruction problem, which MOCI can solve, 
contains many complex computer vision subroutines that can be used in less complicated computer vision pipelines. 

INTRODUCTION 

This paper does not seek to describe the entire satellite 
system; it seeks to describe, in detail, the complex 
computation system that MOCI will utilize to generate 
scientific data on orbit. An overview of the satellite 
system and optical system are provided for clarity and 
context. A detailed explanation of the subroutines in 
MOCI’s primary computer vision pipeline are described 
in detail over the course of this paper.  

System Overview 

The MOCI satellite primarily uses Commercial Off the 
Shelf (COTS) hardware so that the focus can be on 
payload development. The MAI-401 with a star-tracker 
is utilized to achieve the necessary pointing 
requirements. The GomSpace BP4 P60 Electrical Power 
System (EPS) is used. The F’Sati Ultra High Frequency 
(UHF) transceiver and F’Sati S-Band transmitter are 
used for communications of commands, telemetry, and 
science data. A Clyde Space On Board Computer (OBC) 
is used as the main flight computer. The payload uses the 
Nvidia TX2 SoC as the high-performance computation 
unit and a custom optical system developed by Ruda-
Cardinal that produces 4K images from at 8m GSD from 
a 400km orbit.  

Surface Reconstruction Pipeline 

In our case, a computer vision pipeline, sometimes 
referred to as a workflow1, consists of a set of chained 
computer vision subroutines where the output of the 
previous is the input to the next. Subroutines are often 

referred to as stages in this sense1. MOCI implements a 
Surface Reconstruction Pipeline with the initial inputs 
being a set of images, the position of the spacecraft per 
image, and the orientation of the spacecraft per image. 
The first stage in the pipeline is the feature detection 
stage.  

Figure 1: Multiview Reconstruction2

The feature detection stage identifies regions within each 
image that should be considered for feature description. 
This stage produces a set of points at location (𝑥, 𝑦), 
scale 𝑠, and rotation q. The feature description stage 
takes this set and encodes the information from local 
regions into a feature vector 𝑓. The next stage is the 
feature matching stage, which seeks to find the best 
correspondence, or minimum difference, between the set 
of points in the images. Once points have been matched 
in the image they need to be placed into ℝ) from ℝ*. for 
reprojection. Vectors are made at the position of each 
matched point and used to calculate the point of 
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minimum distance between all projected lines, which is 
the calculated point of intersection. The output of the 
reprojection is a set of points in ℝ). After the initial 
reprojection a Bundle Adjustment is performed as the 
next stage in the pipeline. This takes the sets of points 
and uses camera data to estimate the reprojection error 
and remove it from the generated points. The result after 
the Bundle Adjustment is a more accurate point cloud. 
The next stage is the final stage, which is a surface 
reconstruction. First normal are calculated for the set of 
points to make an oriented point set. The oriented point 
set is then used for a Poisson Surface reconstruction to 
make the final data product. Any additional computer 
vision subroutines discussed here are not part of MOCI’s 
primary pipeline. 

RELATED WORK 

The techniques relayed here are not new, but are built 
from well understood algorithms and computer vision 
subroutines. The implementations of these well 
understood principals are built from previous work that 
the University of Georgia (UGA) Small Satellite 
Research Laboratory (SSRL) has done. The adaptation 
of structure from motion and real time mapping for aerial 
based photogrammetry and autonomous robotics is 
commonplace.   

Multiview Reconstruction 

GPU accelerated mechanics Structure from Motion have 
been implemented on many occasions. Chang Chang 
Wu’s research to develop an incremental approach to 
Structure from Motion demonstrated that it was possible 
to solve the reconstruction problem in 𝑂(𝑛) rather than 
𝑂(𝑛-), greatly improving efficiency and speed3. 
Additional research has shown that the triangulation 
problem can be achieve a 40x speed up4 when utilizing 
Compute Unified Device Architecture (CUDA) capable 
Nvidia GPUs. Additionally, multicore GPU Bundle 
Adjustment has been shown to achieve a 30x speed up 
over previous implementations. GPU accelerated feature 
detectors and descriptors are now commonplace. This 
can typically lead to the identification and extraction of 
features within a few milliseconds5, which allows the 
near real time extraction of input information into the 
pipeline. A standard Poisson Reconstruction, 
fundamentally limited by the octree data structure, can 
run two orders of magnitude6 faster when implemented 
on a CUDA capable GPU. 

Surface Normal Calculation 

A key problem in a surface reconstruction or structure 
from motion pipeline is the generation of an oriented 
point set. Recent research, testing the feasibility of 
generating oriented point sets from cube satellites, has 
claimed that normal estimation is only accurate between 

5o and 29o when utilizing 2m GSD imagery7. 
Additionally, new techniques have recently been 
demonstrated showing that a Randomized Hough 
Transform can preserve sharp features, improving the 
accuracy of point normal while being almost an order of 
magnitude faster8. It is expected the more efficient point 
normalization methods will improve the accuracy of the 
3D models generated by MOCI. 

Cloud Height and Planetary Modeling 

With previous studies, we have shown that image data 
from the International Space Station (ISS) High 
Definition Earth-Viewing System (HDEV) can produce 
accurate cloud height models within 5.926 – 7.012 km9. 
Additionally, available structure from motion pipelines 
and surface reconstruction, in conjunction with the 
SSRL’s custom simulation software, have been used to 
demonstrate that a 3D surfaces of mountain ranges can 
be reconstructed. The SSRL has demonstrated, that the 
proposed pipeline can generate 3D models of large 
geographic features within 68.2% accuracy of ASTER 
v3 global DEM data10, resulting in an approximately 
10m resolution surface model.   

PAYLOAD SYSTEM OVERVIEW 

A simple overview of the system is provided in this 
section to make later sections about scientific 
computations more clear. The payload sits at the top of 
the electronics stack of the MOCI system and contains 
the Nvidia TX2, an optical assembly, an e-con systems 
See3CAM_CU135 with an AR1335 image sensor from 
ON Semiconductor, Core GPU Interface (CORGI) 
Board to connect all the subsystems together and allow 
them to communicate over a standard PC104+ bus.  

 

Figure 2: Payload Electronics 
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Data Interfacing and Power 

The Nvidia TX2 is interfaced to the CORGI Board via a 
400 pinout connector. The CORGI Board connected to 
the See3CAM_CU135 interface board via a Universal 
Serial Bus type C connector (USB-C) allowing for 4K 
image data to be streamed to the GPU. The CORGI also 
routes an Inter-Integrated Circuit (I2C) bus, Ethernet, and 
a Serial Peripheral Interface (SPI) into the satellite’s 
PC104+ bus. The TX2’s maximum power draw is 7W, 
but current computations are only running at 
approximately 4.5W. 

Thermal Properties 

For a worst case, thermal analysis, an unrealistic power 
draw of 14W is used. Additionally, a system with 0% 
efficiency was also assumed as a worst-case scenario. A 
maximum temperature of approximately 51o C was 
simulated with these conditions. The TX2 is attached to 
a Thermal Transfer Plate and simulations have shown 
that the max operating temperature is sustainable for the 
system. Further, more detailed, research will soon be 
published on how we have managed these thermal 
conditions. 

Optical System 

The SSRL is partnering with Ruda-Cardinal to make a 
custom optical assembly capable of generating images at 
a resolution of at most 8m GSD. The optical system has 
a 4.5o Field of View (FOV) and an effective focal length 
of 120mm.  

 

Figure 3: MOCI Optical Assembly 

 
GPU SYSTEM OVERVIEW 

The GPU (Nvidia TX2) is a complete SoC, capable of 
running GNU/Linux on an ARM v8 CPU with a Tegra 
GPU running the Pascal Architecture. The TX2 is has 
256 CUDA cores, 8 GB of 128 bit LPDDR4, and 32 GB 
of eMMC.  

Radiation Mitigation 

The primary concerns in LEO are Single Event Upsets 
(SEU), Single Event Functional Interrupts (SEFI), and 

Single Event Latchups (SEL)11. These are certainly 
concerns for a dense SoC like the TX2. Thus, MOCI will 
utilize aluminized capton as a thin layer of protection for 
the payload. Software mitigation is also implemented. 
The Clyde Space OBC contains hardware-encoded ECC 
and could flash a new image onto the TX2 if necessary. 
The TX2 also utilizes a custom implementation of 
software-encoded error correction coding (ECC). 
Further, more detailed, research will soon be published 
on how we have managed and characterized these 
radiation conditions.  

Compute Unified Device Architecture 

Currently the TX2 utilizes CUDA 9.0. CUDA capable 
GPUs can parallelize tasks, leading to computational 
speeds orders of magnitude higher than those of a CPU 
system performing the same operations. CUDA’s 
computational parallel model is comprised of a grid that 
contains blocks made up of threads. The TX2 can handle 
up to 65535 blocks per dimension, leading to a potential 
total of 2.81 x 1014 blocks each containing a maximum 
of 1024 threads. The potential for parallelization here is 
substantial, and is the key to developing a near real time 
computer vision system. 

GPU Accelerated Linear Algebra 

In Hartley’s survey paper on optimal algorithms in 
Multiview Geometry, every algorithm he identifies 
benefits greatly from hyper optimized matrix operations 
that are made possible by the massive parallelization that 
CUDA enables12. Furthermore, widely available linear 
algebra libraries, such as the Basic Linear Algebra 
Subsystem (BLAS) have been accelerated with CUDA13. 
These modified libraries, such as cuBLAS and 
cuSOLVER are critical to the improving the functions 
needed in complex computer vision pipelines. 

FEATURE DETECTION AND DESCRIPTION 

After images have been acquired from the payload 
system, the first step in the pipeline is feature detection. 
Typically, feature detection attempts to identifies regions 
within an image that should be considered for feature 
description14. Feature descriptions are only given to 
candidate regions/points that meet the requirements of 
the algorithm. For our purposes, we utilize the Scale 
Invariant Feature Transform (SIFT) developed by Lowe. 
The SIFT algorithm, which contains several standard 
subroutines, has become a standard in computer vision  

Detection of Scale Space Extrema 

To detect feature that are scale-invariant, the SIFT 
algorithm uses a Difference of Gaussians (DoG) to 
identify local extrema in scale-space. The Laplacian of 
Gaussians (LoG) is often used to detect stable features in 
scale-space14. The convolution of an image with a 
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Gaussian kernel is defined by a function 𝐿(𝑥, 𝑦, 𝜎), 
which is produced by the convolution of a scale space 
Gaussian15, 𝐺(𝑥, 𝑦, 𝜎), and input image, 𝐼(𝑥, 𝑦) and ∗ is 
a convolution operation between functions: 

𝐿 𝑥, 𝑦, 𝜎 = 	𝐺 𝑥, 𝑦, 𝜎 ∗ 	𝐼(𝑥, 𝑦)  (1)
  

An efficient way to calculate the DoG function, 
𝐷(𝑥, 𝑦, 𝜎) is to simply compute the difference two 
nearby scales with a separation of 𝑘. 

𝐷 𝑥, 𝑦, 𝜎 = 𝐺 𝑥, 𝑦, 𝑘𝜎 − 𝐺 𝑥, 𝑦, 𝜎 ∗ 𝐼 𝑥, 𝑦  (2)	
𝐷 𝑥, 𝑦, 𝜎 = 𝐿 𝑥, 𝑦, 𝑘𝜎 − 𝐿 𝑥, 𝑦, 𝜎  (3) 

The Gaussian kernel is convolved with the input image 
to form a Gaussian Scale Pyramid.  

 

Figure 4: The DoG in Scale-Space15 

To detect the local minima and maxima of the DoG 
function, the candidate point is compared to the 8 local 
neighbors of its current scale, the 9 neighbors above its 
scale, and the 9 neighbors below its scale in the DoG 
pyramid. For ease of computation, the scale separation 
of 𝑘 is chosen to be represented as 𝑘 = 	29/; . where 𝑠 is 
chosen to be an integer number such that a doubling of 𝑠 
results in a division of the scale space 𝜎 in the next 
octave15. 

Keypoint Localization and Filtering 

Given a set of candidate points, given by the detection of 
scale-space extrema from the DoG, the challenge is to 
localize the point by determining the ratio of principal 
curvature. A method proposed by Brown uses a Taylor 
expansion of the scale-space function, 𝐷(𝑥, 𝑦, 𝜎), where 
the origin is at the center of the sample point16: 

𝐷 𝑥 = 	𝐷 +	
𝜕𝐷>

𝜕𝑥
𝑥 +	

1
2
𝑥>
𝜕*𝐷
𝜕𝑥*

𝑥																															(4) 

The derivatives are located at the center of the sample 
point and the offset from the sample point is defined as 
𝑥 = (𝑥, 𝑦, 𝜎)>. The local extreme 𝑥 is given by taking 

the derivative of the function with respect to 𝑥	and 
setting it equal to zero: 

𝑥 = 	−
𝜕*𝐷A9

𝜕𝑥*
	
𝜕𝐷
𝜕𝑥
																																																													(5) 

Often additional calculations are preformed to eliminate 
unstable extrema and edge responses. To eliminate 
strong edge responses, which a DoG will often produce, 
the principal curvature is computed from a Hessian 
matrix containing the partial derivatives of the DoG 
function, 𝐷(𝑥, 𝑦, 𝜎): 

𝐻 = 	
𝐷DD 𝐷DE
𝐷DE 𝐷EE

                 (6) 

Harris and Stephens have shown that we only need be 
concerned with the ratios of eigenvalues17. We let 𝛼 
represent be the eigenvalue with the largest magnitude 
and 𝛽 be the smaller magnitude. Then we compute the 
trace of 𝐻 and the determinate.  

𝑇𝑟 𝐻 = 	𝐷DD + 	𝐷EE = 	𝛼 + 	𝛽		               (7) 

𝐷𝑒𝑡 𝐻 = 	𝐷DD𝐷EE − (𝐷DD
*) = 	𝛼𝛽                (8) 

We then let 𝑟 be the ratio of the between the largest and 
smallest eigenvalues such that 𝛼 = 𝑟𝛽. Then we 
discover: 

𝑇𝑟(𝐻)*

𝐷𝑒𝑡(𝐻)
= 	
(𝛼 + 	𝛽)*

𝛼𝛽
= 	
(𝑟𝛽 + 	𝛽)*

𝑟𝛽*
= 	
(𝑟 + 1)*

𝑟
					(9) 

We can then use this ratio as a cut off for undesired 
edge points. Typically, a value of 𝑟 = 	10 is used15 to 
eliminate principal curvatures greater than 𝑟. 

Orientation and Magnitude Assignment 

To achieve rotation invariance, so that we can identify 
the same keypoints from any rotation, we must assign an 
orientation to the keypoints from the previous step. We 
want these computation to occur in a scale invariant 
manner as well, so we select the Gaussian smoothed 
image 𝐿(𝑥, 𝑦) at scale 𝜎 where the extrema was detected. 
We can use pixel differences to compute the gradient 
magnitude, 𝑚(𝑥, 𝑦), and orientation, 𝜃 𝑥, 𝑦 , to assign: 

𝑚 𝑥, 𝑦 = 	
(𝐿 𝑥 + 1, 𝑦 − 𝐿(𝑥 − 1, 𝑦))*
+(𝐿 𝑥, 𝑦 + 1 − 𝐿(𝑥, 𝑦 − 1))*               (10) 

𝜃 𝑥, 𝑦 = 	 𝑡𝑎𝑛A9
𝐿 𝑥, 𝑦 + 1 − 𝐿 𝑥, 𝑦 − 1
𝐿 𝑥 + 1, 𝑦 − 	𝐿(𝑥 − 1, 𝑦)

											(11) 



Adams 5 32nd Annual AIAA/USU 
  Conference on Small Satellites 

Feature Description 

For each keypoint, the SIFT algorithm will start by 
calculating the image gradient magnitudes and in a 16 × 
16 region around each keypoint using its scale to select 
the level of Gaussian blur for the image. A set of oriented 
histograms is created for each 4 × 4 region of the image 
gradient window15.  

A Gaussian weighting function with 𝜎 equal to half the 
region size assigns weights to each sample point. Given 
that there are 4 × 4 and 8 possible orientations, the length 
of the generated feature vector is 128. In other words, 
there are 128 elements describing each point in the final 
output of the SIFT algorithm.  

 

Figure 5: A SIFT Feature Descriptor15 

 
FEATURE MATCHING 

Feature matching can be thought of as a simple problem 
of Euclidean distance. First, sets of points are eliminated 
that do not fit within a radius 𝑟, a set of close points is 
generated with the simple Euclidean distance 𝑑, where 
each feature has a coordinate (𝑥, 𝑦) on the image. 

𝑑 = 	 (𝑦* − 𝑦9) + 	(𝑥* − 𝑥9)	              (12) 

We iterate through each point in image one, 𝐼9, and 
image two, 𝐼*, and accumulate potential matches where 
𝑑	 < 	𝑟.  

 

Figure 6: SIFT feature matching 

For each value in the feature vector, 𝑓, we find the 
minimum 128 dimensional Euclidean distance, 𝑚. 

𝑚 = 	 (𝑓S9 − 	𝑓S9)
9*T

U

																																																				(13) 

The resulting “matched” points should also be checked 
against some maximum threshold. If the minimum 
Euclidean distance is more than that threshold, the match 
should be discarded. 

MULTIVIEW RECONSTRUCTION 

Once the features have been identified for each image 
and the features between images have been matched, the 
image planes must be placed into ℝ). The matched 
keypoints and camera information must be used to 
triangulate the location of the identified feature in ℝ). 

Moving into 3D space 

The first step to moving a key point into ℝ). is to place 
it onto a plane in ℝ*. The coordinates (𝑥′, 𝑦′) in ℝ* 
require the size of a pixel 𝑑𝑝𝑖𝑥, the location of the 
keypoint (𝑥, 𝑦), and the resolution of the image 
(𝑥𝑟𝑒𝑠, 𝑦𝑟𝑒𝑠) to yield: 

𝑥Z = 	𝑑𝑝𝑖𝑥	 𝑥 −
𝑥𝑟𝑒𝑠
2

																																																	(14) 

𝑦Z = 	𝑑𝑝𝑖𝑥	
𝑦𝑟𝑒𝑠
2

− 𝑦 																																																	(15) 

This is repeated for the other matching keypoint. The 
coordinate (𝑥′, 𝑦′, 𝑧′)	in ℝ) of the keypoint (𝑥′, 𝑦′) in ℝ* 
is given by three rotation matrices and one translation 
matrix. First we treat (𝑥′, 𝑦′) in ℝ* as a homogenous 
vector in ℝ) to yield (𝑥′, 𝑦′, 1). Given a unit vector 
representing the camera, in our case the spacecraft’s 
camera’s, orientation (𝑟D, 𝑟E, 𝑟\) we find the angle to 
rotate in each axis (𝜃D, 𝜃E, 𝜃\). In a simple case, we find 
the angle in the 𝑥𝑦 plane with: 

𝜃\ = 	 cosA9
1	0	0 ∙ [𝑟D	𝑟E	𝑟\]
[𝑟D	𝑟E	𝑟\] ∙ [𝑟D	𝑟E	𝑟\]	

																														(16) 

Rotations for all planes are generated in an identical way. 
Now, given a rotation in each plane (𝜃D, 𝜃E, 𝜃\) we 
calculate the homogeneous coordinate (𝑟D, 𝑟E, 𝑟\, 1) in ℝ) 
using linear transformations. The values (𝑇D, 𝑇E, 𝑇\)  
represent a translation in ℝ- and use camera position 
coordinates 𝐶D, 𝐶E, 𝐶\ , the camera unit vectors 
representing orientation 𝑢D, 𝑢E, 𝑢\ , and focal length 𝑓:  
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1
0
0
0

	

0
cos 𝜃D	
sin 𝜃D
0

0
− sin 𝜃D	
cos 𝜃D
0

0
0
0
1

cos 𝜃E
0

− sin 𝜃E
0

	

0
1
0
0

	

sin 𝜃E
0

cos 𝜃E
0

	

0
0
0
1

														  

cos 𝜃\
sin 𝜃D
0
0

	

− sin 𝜃\
cos 𝜃\	
0
0

	

0
0
1
0

	

0
0
0
1

𝑥
𝑦
𝑧
1

=

𝑥′
𝑦′
𝑧′
1

																																	(17) 

	

𝐶D − (𝑥i + 𝑓 ∗ 𝑢D)
𝐶E − (𝑦i + 𝑓 ∗ 𝑢E)
𝐶\ − (𝑧i + 𝑓 ∗ 𝑢\)

1

	

𝑥i
𝑦i
𝑧i
1

= 	

𝑇D
𝑇E
𝑇\
1

																											(18) 

1
0
0
0

	

0
1
0
0

	

0
0
1
0

	

𝑇D
𝑇E
𝑇\
1

	

𝑥i
𝑦i
𝑧i
1

=

𝑥′
𝑦′
𝑧′
1

																																																		(19) 

Point and Vector format 

The resulting transformation in equations 17 and 19 
should be performed for all matched points. This should 
result in 𝑛 homogeneous points of the form 
(𝑥k, 𝑦k, 𝑧k, 1). Each point has a corresponding camera, 
which is already known by the camera coordinate, 
(𝐶Dk, 𝐶Ek, 𝐶\k, 1). From this find a vector 𝑉k from the 
camera position: 

𝑉k = 𝐶Dk	 − 𝑥k 𝐶Ek	 − 𝑦k 𝐶\k	 − 𝑧k 																			(20)  

𝑉k should then be normalized so that it is a unit vector.  

N-view Reprojection 

Now the point cloud can finally be generated. To do such 
a thing, the goal of the n-view reprojection is to find the 
point, 𝐵, that best fits a set of lines. Traa shows we can 
start with the distance function, 𝐷, between our ideal 
point, 𝐵, and a parameterized line with vector, 𝑉, and 
point, 𝑃. We can think of distance function as a projector 
onto the orthocomplement of 𝑉, giving18: 

𝐷 𝐵; 𝑃, 𝑉 = 	𝐼 − 𝑉𝑉>																																																			(21) 

Equation 21 should be thought of as a projecting vectors 
𝐵 and 𝑃onto the space orthogonal to 𝑉. The challenge is 
solving this least squares problem given only matching 
sets of points 𝑃k and their vectors 𝑉k. Let the set of 
matched points/vectors be represented by the set 𝐿 =
{ 𝑃U, 𝑉U , … , 𝑃k, 𝑉k }. We can view this set 𝐿 as a set of 
parameterized lines. We should minimum the sum of 
squared differences with the equation: 

𝐷 𝐵; 𝑃, 𝑉 = 	 𝐷 𝐵; 𝑃s, 𝑉s

t

suU

																																					(22) 

To produce the point 𝑏, the equation to minimize is: 

𝑏 = min
x
(𝐷 𝐵; 𝑃k, 𝑉k )																																																		(23) 

Taking both derivatives with respect 𝐵 to we receive: 

𝜕𝐷
𝜕𝐵

	= 	 −2	 𝐼 − 𝑉s𝑉s> (𝑃s − 𝐵)
t

suU

= 0																				(24)	 

We then obtain a linear of the form 𝑅𝑝 = 𝑞, where: 

𝑅 = 	 𝐼 − 𝑉s𝑉s>
t

suU

,			𝑞 = 𝐼 − 𝑉s𝑉s>
t

suU

𝑃s													(25) 

Traa shows that we can either solve the system directly 
or apply the Moore-Penrose pseudoinverse: 

𝑏 = 	𝑅{𝑞																																																																												(26) 

The resulting 𝑏 is the point of best fit for the members of 
set 𝐿. Once 𝑏 is calculated, the next set of point/vector 
matches is loaded. The computation is repeated until all 
points best fit points 𝑏 have been calculated. At the end 
of this stage in the pipeline, the point cloud has been 
generated. 

Bundle Adjustment 

All the calculations to this point have been in preparation 
for a reprojection, which is a simple triangulation. The 
Bundle Adjustment is used to calibrate the position of 
features in ℝ) based on a camera calibration matrix and 
minimize the projection error19. The camera calibration 
matrix, 𝐾, is stored by the spacecraft at the time of image 
acquisition. Given the location of an observes feature is 
(𝑥, 𝑦) and the real location of the feature (𝑥, 𝑦) then the 
reprojection error, 𝑟, for that feature is given by: 

𝑟 = 𝑥 − 𝑥, 𝑦 − 𝑦 																																																										(27) 

The camera parameters include the focal lengths (𝑓D, 𝑓E), 
the center pixel (𝐶D, 𝐶E), and coefficients (𝑘9, 𝑘*) that 
represent the first and second order radial distortion of 
the lens system. The vector 𝑆 contains those 6 camera 
parameters, the feature’s position in ℝ)given in equation 
19 as (𝑥Z, 𝑦Z, 𝑧′), and the camera’s position and 
orientation represented by 𝐶D, 𝐶E, 𝐶\ 	and  𝑢D, 𝑢E, 𝑢\ , 
as previously equation 18. The goal is to minimize the 
function of vector 𝑆: 

min 𝑓(𝑆) = 	
1
2
𝑟(𝑆)>𝑟 𝑆 																																														(28) 

MOCI’s system will supply a pre-estimation of camera 
data from sensors onboard, allowing for a bound 
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constrained bundle adjustment that will greatly improve 
the speed of the computation. Levenberg-Marquardt 
(LM) algorithm is utilized to by iteratively solving a 
sequence of linear least squares and minimize he 
problem. A constrained multicore implementation of the 
bundle adjustment would only be a slight modification 
of the parallel algorithm proposed and described by 
Wu19. This is the last step of the point cloud generation 
process, when the reprojection error is minimized the 
point cloud computation is considered done. Additional 
research is necessary to determine if MOCI needs to 
perform a bundle rather than a real time custom 
calibration step before a standard n-view reprojection. 

POINT CLOUD NORMALIZATION 

Once the point set has been generated it must be oriented 
so that a more accurate surface reconstruction can take 
place. 

Finding the Normals of a Point Set 

The coordinates of the points in the point cloud and the 
camera position 𝑪𝒙, 𝑪𝒚, 𝑪𝒛 	 which generated each 
point. The problem of determining the normal to a point 
on the surface is approximated by estimating the tangent 
plane of the point and then taking the normal vector to 
the plane. However, the correct orientation of the normal 
vector cannot directly be inferred mathematically, so an 
additional subroutine is needed to orient each normal 
vector. Let the points in the point cloud be members of 
the set 𝑃 = {𝑝U, 𝑝9, … , 𝑝k} where 𝑝k = (𝑥k, 𝑦k, 𝑧k). The 
normal vector of 𝑝k is 𝑛k = (𝑥k, 𝑦k, 𝑧k), which we want 
to compute for all 𝑝k ∈ 𝑃. Lastly, the camera position 
corresponding to	𝑝kis denoted, in vector form,  𝐶k =
𝑪𝒏𝒙, 𝑪𝒏𝒚, 𝑪𝒏𝒛 .  

An octree data structure is used to search for the nearest 
neighbors of point 𝒑𝒏. The 𝑘 nearest neighbors are 
defined by the set 𝑄 = {𝑞U, 𝑞9, … , 𝑞�}. The centroid of 𝑄 
is calculated by:  

𝒎	 = 	
𝟏
𝒌
	 𝒒
𝒒	∈𝑸

																																																																(29) 

Let A be a k × 3 matrix as follows: 

𝐴 =

𝑞U
𝑞9
⋮
𝑞�

																																																																								(30)			 

Now we factor matrix 𝐴 using singular value 
decomposition (SVD) into 𝐴	 = 𝑈𝑉>. Where 𝑈 is a (k × 
k) orthogonal matrix, 𝑉> is a (3 × 3) orthogonal matrix, 
and is a (k × 3) diagonal matrix, where the elements on 
the diagonal, called the “singular values” of 𝐴, appear in 

descending order. Note that the covariance matrix, 𝐴𝑇𝐴, 
can be easily diagonalized using our singular value 
decomposition: 

𝑨𝑻𝑨 = 𝑽𝚺𝑻𝑼𝑻 𝑼𝚺𝑽𝑻 = 𝑽 𝚺𝑻𝚺 𝑽𝑻																		(31) 

The eigenvectors for the covariance matrix are the 
columns of vector 𝑉. The eigenvalues of the covariance 
matrix are the elements on the diagonal of Σ>Σ, and they 
are exactly the squares of the singular values of matrix 
𝐴. In this formula, both 𝑉 and Σ>Σ are (3 × 3) matrices, 
just like the covariance matrix 𝐴>𝐴. For randomly 
ordered diagonal elements (𝜎�)* ∈ 	 Σ>Σ we keep only 
the maximum 𝑟 many of them, along with their 
corresponding eigenvectors in matrix 𝑉. To produce the 
best approximation of a plane in ℝ) we would take the 
two eigenvectors, (𝑣9, 𝑣*), of the covariance matrix with 
the highest corresponding eigenvalues. Thus, the normal 
vector 𝑛k is simply the cross product of these 
eigenvectors, 𝑛k = 	𝑣9×	𝑣*. 

Orienting a Point Set 

    Orientation of all the normals begins once we have 
computed the normal for every point 𝒑𝒏 ∈ 𝑷. We also 
want the normals of neighboring points to be consistently 
oriented. For the simple case where only a single 
viewpoint 𝐶′ is used to generate a point cloud, we can 
simply orient our normal vector such that the following 
equation holds: 

𝐶Z − 	𝑝k ∙ 	𝑛k < 0																																																(32) 

If the equation does not hold for a computed normal 
vector, we simply “flip” the normal vector by taking 
−𝑛k = (−𝒙𝒏, −𝒚𝒏, −𝒛𝒏). If the dot product between the 
two vectors is exactly 0, then additional methods need to 
be applied. We need to account for the fact that multiple 
camera positions may apply to each point in the point 
cloud. Let 𝐶 = 	 {𝐶�U, 𝐶�9, … , 𝐶�k} be the set of all 𝑁 many 
camera position vectors for point 𝒑𝒏.  

We define 𝑛k to be an “ambiguous normal” if: 

1. There exists a 𝐶�k 	 ∈ 𝐶 such that 𝐶�k − 	𝑝k ∙
	𝑛k > 0 AND 

2. There exists a 𝐶�k 	 ∈ 𝐶 such that 𝐶�k − 	𝑝k ∙
	𝑛k < 0  

Normals are assigned to all points that do not generate 
ambiguous normals. The way to make sure all normals 
are consistently correctly is to orient all the non-
ambiguous normals, adding them to a list of finished 
normals, while placing all ambiguous normals into a 
queue. We then use the queue of ambiguous normals and 
try to determine the orientation by looking at the 
neighboring points of pi. If the neighboring points of pi 
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have already finished normals, we orient 𝑛k consistently 
with the neighboring normals 𝑚k by setting 𝑛k𝑚k > 0. 
If the neighboring points do not have already finished 
normals, move 𝑛k to the back of the queue, and continue 
until all normals are finalized. 

The point normal generation process needs significant 
improvements and can be aided greatly by the 
implementation of an octree data structure in CUDA6. 

SURFACE RECONSTRUCTION 

MOCI implements a Poisson Surface Reconstruction 
algorithm that is parallelized with CUDA. The input to 
this algorithm is an oriented set of points and the output 
is a 3D modeled surface. This surface is the final end-
product of MOCI’s computer vision pipeline and is 
stored in the Stanford PLY format. 

Poisson Surface Reconstruction 

Thanks to Kazhdan, Bolitho, and Hoppe, an 
implementation of Poisson surface reconstruction on any 
GPU has become feasible20. A Poisson surface 
reconstruction takes in a set of oriented points, 𝑉, and 
generates a surface.  

 

Figure 7: Stages of Poisson Reconstruction in 2D 

Poisson computes an indicator gradient for the oriented 
points set by first finding the function 𝜒 that best 
approximates the vector field 𝑉. When the divergence 
operator is applied the it becomes a Poisson problem 
where the goal is to compute the scalar function 𝜒 whose 
Lapacian equals the divergence of vector field vector 
field 𝑉: 

Δ𝜒 ≡ ∇ ∙ ∇𝜒 = ∇𝑉																																																									(33) 

CONCLUSION AND INITIAL RESULTS  

Comparison to ASTER data 

When compared with ASTER data MOCI is already 
meeting minimum mission success: MOCI can generate 
Digital Elevation Models within one sigma of accuracy 
relative to ASTER models. 

Accuracy is calculated by a percent pixel difference. A 
simple program is used to project the 3D surface onto a 

plane, essentially rasterization. This plots a histogram of 
how likely it is that a given elevation is off. The percent 
difference is calculated from the minimum and 
maximum elevations. In other words, the percent pixel 
difference is the inverse of the magnitude of the 
elevation error. 

 

Figure 8: A comparison of mount a simulated 
Mount Everest from MOCI with ASTER data 

MOCI’s accuracy is likely to increase as better methods 
are implemented in the computer vision pipeline. 

2-view Reconstruction 

A simple 2-view projection has been fully implemented 
and is often used to test the point cloud reconstruction 
portion of the pipeline. When supplied with near perfect 
keypoint pairs, the algorithm can reconstruct a point 
cloud with 86% accuracy. Accuracy is calculated by a 
percent pixel difference, which plots a histogram of how 
likely a given elevation is to be a given distance off.  

A CPU implementation of 2-view reconstruction runs on 
a 50,000 point set in approximately 25 minutes. It is 
expected that this stage, when optimized for the GPU, 
will take less than 90 seconds19.  
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Figure 9: A point cloud of Mount Everest generated 
from a simulation of a 2-view reconstruction 

Simulation of Data Acquisition 

The simple blender workflow that was demonstrated in 
the initial feasibility study has been expanded, improved, 
and is now included in a custom simulation package10. 
This simulation package has the capability to simulate a 
satellite with variable imaging payloads. This was so the 
SSRL could discover the optical lens systems, GSD, 
focal length, and sensor for the mission requirements. 
The simulation software allows the user to edit these as 
parameters - GSD is calculated. The simulation also 
allows for variable orbits, variation of ground targets, 
custom target objects, and more. A list of generated and 
input variables, seen to the left as a json file, shows some 
of the current capabilities of the simulation. The SSRL is 
currently working on porting these simulations to the 
supercomputing cluster available at UGA. Once the user 
has created a json file with the variables and environment 
that they would like to simulate, they can run the image 
acquisition simulation in a terminal10. 

 

Figure 10: A point cloud of Mount Everest 
generated from a simulated orbit over the region. 

Simulated data acquisition can be piped into 
reconstruction any algorithm. The position and 
orientation of the camera, as well as the image set, are all 
part of the standard output.  

FUTURE WORK 

Testing and Simulation 

While initial results are promising and terrestrial 
technologies have shown that MOCI’s computer vision 
pipeline is successful, more tests are needed to 
understand the limitations and capabilities of MOCI’s 
computer vision system. 

N-view Reconstruction vs. Bundle Adjustment 

It is unclear if a full Bundle Adjustment is necessary 
given MOCI’s knowledge of its camera parameters. It 
may be possible to calibrate the first and second order 
radial distortion of the lens system once for all images 
and feature matches instead of calculating it every time 
a reprojection occurs. It may also be the case that, despite 
somewhat accurate knowledge of camera parameters, 
MOCI’s multi-view reconstruction stage will benefit 
from improved accuracy with a bound constrained 
Bundle Adjustment. 

IMPLICATIONS 

The complex computation system on the MOCI cube 
satellite may show that it is worth performing more 
complex computations in space rather than on the 
ground. In MOCI’s case, it is beneficial because the 40 
or more 4K images that it takes to generate a 3D model 
contain much more data than the final 3D model. This 
could also be the cause for real time data analysis, with 
a GPU accelerated system it may be possible to analyze 
data onboard a spacecraft to determine which data is the 
most useful and prioritize the downlink of that data. This 
has clear applications for autonomous space system or 
deep space missions. During a deep space mission, it 
would be possible to implement an AI to decide what 
data is worth sending back to Earth. In general, it’s likely 
that Neural Networks will be easily implemented for 
space based applications on the TX2, or a system like 
MOCI’s.  
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