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In this paper, the drainage and subsequent rebound of a liquid column in a cylindrical tube is examined
experimentally and theoretically. When liquid is drawn up into a capillary and then released under
gravity, inertia allows the meniscus to overshoot the equilibrium capillary rise height. The meniscus
then rebounds up the tube, again overshooting the equilibrium height and undergoes oscillation. By
varying both the immersion depth and radius of the tube, one can observe rich dynamical behavior,
with the most dramatic being the formation of a fast liquid jet, barely visible to the naked eye but easily
captured with high-speed video. In addition to the flow separation caused by the sudden expansion at
the end of the tube, this jet serves as a mechanism of energy dissipation. Some qualitative differences
between the works of Quere et al. [“Rebounds in a capillary tube,” Langmuir 15, 3679–3682 (1999)]
and Lorenceau et al. [“Gravitational oscillations of a liquid column in a pipe,” Phys. Fluids 14(6),
1985–1992 (2002)] and the present experiment are observed and discussed. A critical condition for
oscillatory behavior is derived theoretically and matches well with the experimental observation. Once
in the oscillatory regime, both the maximum depth below and the maximum rebound height above the
equilibrium level are investigated by performing a systematic sweep through the relevant parameter
space, incorporating the initial meniscus height, immersion depth, tube radius, and fluid properties.
Lastly, the characteristic period of oscillation, tp, is assessed and found to be largely independent of
fluid viscosity, and could be reasonably well-collapsed by a single curve whereby tp ∼

√
hi, where hi

is the tube immersion depth. Published by AIP Publishing. https://doi.org/10.1063/1.5038662

I. INTRODUCTION

The drainage of water in plastic straws is possibly one
of the most easily accessible and reproducible fluid dynamics
experiments and can be performed by scientists of all ages in
any restaurant across the world. By immersing the straw in
water, placing a finger tip over the top end and pulling the
straw up, a column of water can be held in place and released
at will by removing your finger tip. By carefully watching the
ensuing motion, even the most novice of experimenters can
observe that the water level will bounce a few times before set-
tling. An overview of this rich dynamical process is presented
in Fig. 1 for water in a glass tube of diameter 6 mm. The liquid
column is observed to drain steadily until it approaches its max-
imum depth below the equilibrium height and then rebounds
up the tube and begins an oscillatory phase converging to the
equilibrium height, marked by the red arrow.

The experiment reported herein is in some sense related to
the dynamical capillary rise experiment, whereby a capillary
tube dipped into water will draw liquid up, which is routinely
used in undergraduate fluid mechanics to introduce surface
tension. In this phenomenon, the balance of surface tension
forces, Fσ = 2πRσ cos θ, and the weight of the liquid column,
Fg = πR2ρheg, yields the equilibrium capillary rise height

he =
2σ cos θ
ρRg

, (1)

a)Electronic mail: jeremy.marston@ttu.edu

where σ is the surface tension, θ is the contact angle between
the tube interior and the meniscus, ρ is the liquid density, R is
the tube radius, and g is acceleration due to gravity. As a first
approximation, the dynamics of attaining this equilibrium for
an incompressible fluid in a long cylindrical pipe could be
described by Newton’s second law (e.g., Ref. 14) involving
surface tension, viscous and gravitational forces as

ρ
d
dt

(hḣ) =
2σ cos θ

R
−

8µ

R2
hḣ − ρgh, (2)

and, for a tube dipped into liquid, is subject to the initial
conditions h(0) = 0 and ḣ(0) = 0, where the dot denotes a
time-derivative. We note that this ODE does not explicitly deal
with oscillatory motion and assumes Poiseuille flow through-
out the tube. The dynamics of this situation have been studied,
among others, by Refs. 6, 14, 5, 9, 3, 2, and 13, and can essen-
tially be characterized by three asymptotic regimes: (i) pure
acceleration with h ∼ t2, (ii) linear regime with h ∼ t, and
(iii) quasi-steady regime with h ∼ t1/2. Note that in regime
(iii), the Lucas-Washburn equation is recovered, which has
the short-time asymptotic solution

h(t) =

√
Rσ cos θ

2µ
t, (3)

which can be readily compared to experimental data, but has
been subject to scrutiny for the fact that there is a singular-
ity in velocity as t → 0 (Ref. 14). However, it is in regime
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FIG. 1. A water meniscus falling and rebounding in a partially submerged
glass tube with inner diameter of 6 mm. The immersion depth is 23 mm and
the initial fill height above the free surface was 97 mm. The red arrow indicates
the location of the equilibrium capillary rise for this configuration. See also
video 1 of the supplementary material accompanying this figure.

(i) with the modified initial condition of h(0) , 0 that per-
haps the most interesting behavior associated with this phe-
nomenon occurs—namely—bouncing or oscillation, which
was reported in experiments by Quere10 and Lorenceau et al.7

In their experiments, a tube filled with air was submerged
in liquid and the meniscus motion up the tube was initiated
by the hydrostatic pressure. The meniscus was observed to
overshoot its equilibrium and to undergo multiple oscillations
before becoming quiescent. Theoretical treatment of the prob-
lem by Refs. 10 and 7 involved energy considerations resulting
in a cubic equation for the height of the meniscus, which com-
pared favorably to experimental data. The oscillatory behavior
was also neatly explained by Zhmud et al.14 by considering
the solution to Eq. (2) in the limit of negligible viscous effects
with a modification to allow for both upward and downward
motion. If one considers the initial meniscus height, h(0) , he

due to the filling of the tube as a perturbation from the equi-
librium height, then the height can be described by h(t) = he

+ ε(t). Upon substitution into (2), it can then be shown that
the perturbation ε(t) is described by a harmonic motion with
frequency

√
g/he.

The numerical investigation by Masoodi et al.9 solved the
governing equation with an emphasis on the oscillatory behav-
ior; by non-dimensionalization of Eq. (2), a dimensionless
parameter, ω, was introduced with

ω =
ρ2gR4

64µ2he
≡

1
128 cos θ

(
Bo
Oh

)2

, (4)

where Bo = ρgR2

σ is the Bond number and Oh = µ
√
ρRσ

is
the Ohnesorge number. It was tentatively concluded that this
parameter governs oscillatory behavior, whereby oscillation
occurred only forω >ω∗ ≈ 0.25. The model of Masoodi et al.9

was also able to correctly describe the oscillatory behavior that
was observed experimentally by Quere et al.10 and Lorenceau
et al.7

To the authors’ knowledge, however, there is only one
study of the inverse experiment (Ref. 12) to that of Quere
et al.10 and Lorenceau et al.,7 i.e., where the meniscus begins
far above the equilibrium height (h(0) � he). In that work,
experimental results for two tube diameters (6.2 and 25.4 mm)
compared favorably to numerical solutions of the governing
equations, however, the influence of fluid viscosity and criti-
cal conditions for oscillations were not assessed. In addition,
there have not been any experimental studies which have sys-
tematically studied the oscillation period and amplitude as
a function of the governing parameter, ω. Furthermore, no

experimental validation ofω∗ exists. These three observations
thus form the focal points of the present study, with the princi-
pal result being validation ofω∗ for the case where h(0)� he.
We begin in Sec. II by recapitulating the theoretical model
(e.g., Refs. 10 and 9), which captures the oscillatory behavior;
Sec. III presents an overview of the experimental setup and
methods; Sec. IV presents the experimental data and compari-
son to theory, whilst in Sec. V we show some interesting local
features of the phenomena such as wave focusing and jetting.
Finally, we conclude the paper in Sec. VI with a discussion of
the present study and suggestions for further work.

II. THEORY

We start with Eq. (1), and follow the analysis of Quere
et al.,10 Zhmud et al.,14 and Masoodi et al.9 to account for
upward and downward motion. Essentially this entails modifi-
cation of the momentum term on the left-hand side of Eq. (2),
and we refer the reader to those papers for discussion thereof.
We then non-dimensionalise such that heights are made dimen-
sionless with respect to he =

2σ
ρgR and times are scaled with

τ =
8µhe

ρgR2 =
8µ ·2σ
ρ2g2R3 , then we have (similar to Ref. 9) the

following dimensionless equation:

ω

(
HḦ +

1
2

(
Ḣ2 + Ḣ ���Ḣ

���
))
= 1 + α − H − HḢ, (5)

where ω, defined in Eq. (4) can be written as ω = ρ3g2R5

128σµ2 ,
H = h/he, and α = hi/he where hi is the immersion depth of the
tube [as defined in Fig. 2(a)]. The second term on the left-hand
side, Ḣ2 + Ḣ ���Ḣ

���, deals with the upward and downward motion,
whereby this quantity is obviously zero for negative velocity.
Note also that τ =

√
g/he
√
ω.

For our case, we consider H = (1 + α) + εz with ε � 1.
When we substitute this into Eq. (5) we have

ωz̈ + ż +
1

(1 + α)
z = εF(z, ż). (6)

If we consider only leading order terms (i.e., ignore the right
hand side above), then we have the following second order
ordinary differential equation (ODE):

ωz̈ + ż +
1

(1 + α)
z = 0, (7)

FIG. 2. (a) Schematic representation of the experimental configuration. (b)
Photograph of the equilibrium capillary rise of water in a R = 2 mm tube.

ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-30-015808
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which has the solution

z = exp*.
,
−

T
2ω
±

T
2ω

√
1 −

4ω
(1 + α)

+/
-
. (8)

In order to have oscillations we require the term in the square
root to be negative, which imposes the following inequality:

ω >
(1 + α)

4
.

When ω satisfies this condition we have

z = exp

(
−

T
2ω

)
cos*.

,

T
2ω

√
4ω

(1 + α)
− 1+/

-
, (9)

from which it is obvious that the motion is periodic but decays
over time. Thus the half-period of oscillation (as defined in the
experiments—see Sec. IV) is given by

T =
2πω
√

(1 + α)
√

4ω − (1 + α)
. (10)

In dimensional terms this is given by

tp =
2πω
√

he(1 + α)
√

gω
√

4ω − (1 + α)
. (11)

Using an example from Fig. 4 for a tube with inner diameter
2 mm, an immersion depth of hi = 46 mm, ρ ≈ 103 kg/m3,
R = 1 mm, θ ∼ 0 and σ = 0.072 N/m, we have α ≈ 4. In this
case we have ω ≈ 10.8. We note that ω is indeed greater than
(1 + α)/4 = 1.25 required for oscillations to take place. Also in
this realization we calculate the half-period of oscillation to be

tp =
2 ∗ 3.14 ∗ 10.8 ∗

√
0.014 ∗ 5

√
9.8 ∗ 10.8

√
43.2 − 5

= 0.282 s.

This is in good quantitative agreement with the experimen-
tally determined values, in Figs. 6 and 7, discussed later. To
quantitatively compare the above analysis to the experiments,
we solve Eqs. (5) and (11) using the experimental parameters.
The results of this approach are discussed in Sec. IV.

III. EXPERIMENTS

The experiment consists of a glass tube which is immersed
in liquid to a depth of 120 mm and then retracted to achieve
a specified initial meniscus height, hf , and immersion depth,
hi = 120− hf . We used several immersion depths in increments
of ∆hi ≈ 10 mm to achieve a range of fill-to-immersion ratios
hf /hi ≈ 0.8 − 25. The glass tubes have circular cross-sections
with inner diameters D = 2R = 2, 4, 6, 8 and 10 mm and length
of 30 cm.

The tank into which the tubes are immersed has a cross-
section 20 × 20 cm2 and the water level was kept constant at
12 cm. Thus the cross-sectional ratio between the tubes and the
tank was small in all cases. In particular, The distance between
the tube and the tank wall was at least 7.8 tube diameters.
The glass tubes were clamped into position using an optical
rail and adapters and a flexible hose was connected to the top
of each glass tube in order to achieve an easy and repeatable
release of the liquid column. A schematic representation of the
setup is shown in Fig. 2(a). The majority of the experiments
were performed with the tubes oriented vertically [α = 90◦ in

TABLE I. Physical properties of the liquids used in the experiments. The
glycerol mixtures are stated as concentration by volume.

Viscosity, Density, Surface tension,
Liquid µ (mPa s) ρl (kg/m3) σ (mN/m)

Pure water 1.0 996 72.1
2%w/w SDS 1.0 996 38.0
25% glycerol 2.3 1074 71.0
50% glycerol 8.1 1146 69
60% glycerol 14.2 1169 68.5
70% glycerol 30.54 1194 67.8

Fig. 2(a)], but some trials were performed at angles α = 30◦

and 45◦.
The entire drainage, rebound and oscillation for each trial

were captured in a single video recording using a high-speed
video camera (Phantom Miro 310, Vision Research Inc. or
Fastcam Mini UX-100, Photron Ltd.) with a manual trigger.
Backlighting rendered silhouette-type imaging which yielded
good contrast between the background and the meniscus, thus
enabling facile tracking of the water-air interface (i.e., menis-
cus) using commercial tracking software (Photron Fastcam
Analysis). Frame rates between 500 fps and 10 000 fps were
used to capture the dynamics with sufficient temporal reso-
lution. A 55 mm Nikon micro-Nikkor lens yielded effective
pixel sizes down to 47 µm per pixel. Thus our uncertainty in
the location of the meniscus is ±47 µm.

The fluids tested comprised pure water, water-glycerol
mixtures and a surfactant solution (Sodium Dodecyl Sulfate),
whose concentrations and physical properties are tabulated in
Table I.

Still images of the undisturbed capillary rise height,
denoted herein as he, were taken for reference [see for example
Fig. 2(b)] and we assume the sign convention of positive for
heights above this level and negative for heights below this.
Note that in many cases, the first overshoot is actually below
the free-surface of the liquid in the tank and below the end of
the tube. In this case, jetting can arise from the collapse of the
air cavity that protrudes into the tank, which is discussed in
Sec. V.

IV. OSCILLATIONS

As a qualitative overview of the influence of both tube
radius and immersion depth, we present to the reader Figs. 3
and 4. The image sequences shown in these figures are repre-
sentative of typical video recordings from which we can extract
quantitative measurements—namely—the meniscus location,
h(t), and the time between successive maxima and minima
(i.e., the half-period of oscillation, tp). The images in these
sequences are taken from approximately the same reference
time so one can visually gauge the effect of changing the tube
radius (Fig. 3) and immersion depth (Fig. 4). From a simple
comparison of these two figures, one could say that varying
the immersion depth (for fixed radius) has a stronger effect
than varying the tube radius (for fixed immersion depth), fluid
properties notwithstanding. However, we should keep in mind
that the interaction of these two parameters comes into play,
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FIG. 3. Image sequences from high-speed video recordings of the first
rebounds of a water meniscus in tubes of radii R = 5, 4, 3, 2 and 1 mm.
The immersion depth in each case was hi = 36 mm and the fill height above
the free-surface, hf = 84 mm. The frames are each separated by dt = 20 ms.
The corresponding values of ω and α are: ω ≈ 32 632, 10 692, 2537, 334,
and 10.4; α ≈ 12.3, 9.81, 7.36, 4.91, 2.45.

which is evident if we consider Eq. (5), which contains the
non-dimensional parameter α, which is related to the product
of these two factors, i.e., α = hi/he ∼ hiR.

A. Initial acceleration

The initial acceleration of the meniscus immediately after
release is shown in Fig. 5(a) for a range of tube diameters,
all from an initial height of hf = 82 ± 2 mm above the
free-surface (hf /hi = 2.16). The black dash-dot line indicates
the pure free-fall trajectory of a particle under gravity, i.e.,
z(t) = 1

2 gt2, thus indicating that viscous and capillary forces
play some role in the initial drainage of the tube, even for diam-
eters larger than the capillary length, lc =

√
σ/(ρg)≈ 2.7 mm.

Clearly, the largest deviation from free-fall is with the small-
est capillary diameter, R = 1 mm, where 2R < lc. We expect
that the dynamics will be most affected by capillarity for
tube diameters smaller than the capillary length, whereas for
the larger tubes with R ≥ 2 mm, we expect this influence
to diminish. As per Eq. (2), we see that the magnitude of
the viscous term scales with radius as ∼1/R2, whilst surface
tension scales with ∼1/R so that both contributions become
increasingly significant as the tube radius decreases. The

FIG. 4. Image sequences from high-speed video recordings of the first
rebounds of a water meniscus in a tube of radius R = 2 mm, giving
ω = 334. The immersion depths are hi = 6, 16, 36, 56, and 66 mm and the fill
heights above the free-surface, hf = 114, 104, 84, 64, and 54 mm. The frames
are each separated by dt = 20 ms. The corresponding values of α ≈ 0.82, 2.18,
4.91, 7.63 and 8.99.

initial motion is important to keep in mind when discern-
ing between trials in the oscillating regime because the speed
of the meniscus as it passes through equilibrium essentially
determines the magnitude of the “overshoot,” as discussed
below.

A comparison between experiment and theory, based on
numerical integration of Eq. (5) is shown in Fig. 5(b). For
clarity, we focus only on the largest and smallest tube radii;
There is reasonable agreement in both cases, however, we note
that the fit for R = 5 mm is better than that for R = 1 mm. Again,
this highlights the significance of capillary effects. In Eq. (5),
capillarity is captured by both the coefficient ω and the term
α = hi/he, yet it appears that the model slightly underestimates
the true magnitude of the effect.

B. Influence of immersion depth

An example of the raw data extracted from the video
sequences is presented in Fig. 6(a) for R = 1 mm. The plot-
ted lines represent the location of the meniscus relative to the
equilibrium height, h(t) − he. For conciseness, we plot only
the region in the vicinity of the equilibrium, i.e., he ± 15 mm,
which encompasses the maximum penetration and rebound for
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FIG. 5. (a) Displacement-time curves at the beginning of motion of a water mensicus in tubes of R = 1, 2, 3, 4 and 5 mm. The colored data points are the
experimental data whilst the black dash-dot line represents the pure free-fall solution, z(t) = 1

2 gt2. (b) Comparison between experiment (open symbols) and
numerical solution (solid lines) to Eq. (5); The solution free-fall equation is shown by the black dash-dot line.

all the different immersion depths for this tube. Although such
oscillations can continue for some time (t > 60 s in Ref. 7), the
amplitudes diminish significantly for our experimental config-
uration after approximately 2 s to within 1 mm of he. From the
trajectories in Fig. 5, it is clear that the early meniscus velocity
is a function of the tube radius. However, we also observe that
it is a function of the fill-to-immersion ratio. For example, with
reference to Fig. 6(a), if we extract the approximate velocity
of the meniscus as it first passes the equilibrium height, he, we
find a monotonic increase in velocity V |he : 0.16 → 0.48 m/s
as hf /hi: 0.82→ 17.4.

Interestingly, the minimum height below the equilibrium,
i.e., the first local minima in the curves during exhibits a non-
monotonic dependence upon the initial fill height, or equiva-
lently, on the velocity V |he . In particular, we observe that the
miminum height reached for hf /hi = 17.4 is almost the same as
that for hf /hi = 0.82, around −10 mm. However, for interme-
diate values, the meniscus penetrates deeper with the deepest
penetration around −15 mm for hf /hi = 2.3. This implies that
there is an optimum fill-to-immersion ratio which yields the
maximum amplitude of oscillation (i.e., deepest penetration
and highest rebound), given by an intricate balance of the
energies and loss mechanisms. In other words, the maximum
amplitude is a trade-off between the momentum of the liquid
in the tube, ∼ d

dt (hḣ), and the energy loss due to the sudden
expansion at the end of the tube, which one expects to scale as
∼ḣ2, capillary and viscous forces notwithstanding.

In Fig. 6(b), we plot the numerical solution of Eq. (5) for
the same cases as in Fig. 6(a). The main plot shows the full
motion from the moment of release, whilst the inset graphic
shows the zoomed region around the first few oscillations.
We find that the salient features of the phenomena are well-
described by the theory. In particular, the qualitative trend
of a maximum penetration depth for intermediate immersion
depths is captured. At a quantitative level, the maximum depths
slightly over-predict the experimental values, with the largest
discrepancy observed for hi = 6 mm.

For a direct comparison of experiment and theory,
Fig. 7 shows four specific cases from the data of Fig. 6 for
hi = 66, 46, 27, and 6 mm. To enable the comparison, the
theory curves have been shifted to account for the fact that
the experimental data starts from the first frame the meniscus
enters the field-of-view. One clear trend is that as the immer-
sion depth decreases, the theory over-predicts the meniscus
penetration. Overall, however, the comparison is very favor-
able and indicates that the theory describes the data very well
and captures the salient features of the phenomena.

C. Maximum penetration, PIV analysis
and energy loss

The maximum penetration and maximum rebound
observed in Fig. 6 was found to be a consistent feature across
the range of tube radii used herein and is best visualized
by plotting the absolute maximum depth or rebound height
against the fill-to-height ratio, hf /hi. This data is presented in
Fig. 8(a) for water, where the data points shown are relative to
the equilibrium level. It is clear that all data sets follow a non-
monotonic trend, i.e., they all exhibit a distinct local minima in
the minimum depth (squares), which occurs at hf /hi = 2.3 for
R = 1 mm, but for all other diameters, occurs at approximately
hf /hi ≈ 1.5 ± 0.2. This trend is mirrored in the data for the
maximum rebound height (circles), which all exhibit a local
maxima at the same value of hf /hi, as one would expect given
the greater overshoot from equilibrium. Figure 8(b) shows the
specific case for water with R = 5 mm using a finer resolution
sweep through the parameter space of immersion depth; This
plot reveals the true maximum penetration of −32 mm, which
occurs at hf /hi = 1.67. Similar qualitative trends are observed
for the other liquids, and we can rationalize these observations
by considering the energy loss and vortex structure as fluid
exits the straw.

Performing particle image velocimetry (PIV) measure-
ments at the exit of the different straws show that the largest
portion of flow field dissipation occurs during the first rebound.
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FIG. 6. (a) Time-resolved location of the meniscus apex plotted relative to
the equilibrium height, he, for water in a tube with R = 1 mm (ω ≈ 18). The
legend indicates the immersion depths of the tube, hi. (b) Numerical solution
to Eq. (5) for water for the same cases shown in (a). The main plot indicates
the full motion from the moment of release, whilst the inset shows the zoomed
region around the first few oscillations.

Rebound vortices occurring after the first instance show very
little vorticity and indicate that a large portion of the flow
energy dissipates during the first rebound. Figure 9 shows PIV
data for four different cases. Each of the cases was analyzed
using a multipass PIV algorithm in exactly the same way with
a 64 × 64 pixel and then a 32 × 32 pixel window with 50%
overlap. The arrows in the figure represent the velocity vec-
tors where 1 m/s is 10 pixels. Colors represent the z-vorticity
(1/s) in the flow field as shown in the colorbar. The mask
at the top (red box) represents where the straw was in the
flow field and the masks are 84 pixels across or 4 mm outside
diameter.

Each of the tubes were filled to 120 mm and then sub-
merged to the depths revealed in the caption. The maximum
vorticity occurs shortly after the release of the fluid, when
the maximum displacement has occurred for all cases. The
first vortex released contains the majority of the energy from
the motion of the rebounding fluid, while the second vortex

is similar and much smaller for all cases (as confirmed by
Fig. 10). The deeper the immersion depth the longer the dura-
tion between vortex shedding. This makes sense as the deeper
immersion depths means there is a larger hydrostatic pressure
force opposing the rebound. At these small tube radii the sec-
ond rebound is nearly at the end of the rebounds, but even then
it is clear that the second vortex release is on the same order
of magnitude for all the immersion depths.

To futher assess the energy loss at successive rebounds,
we present to the reader Fig. 10, which plots the percentage
energy loss, calculated from the change in potential energy
from successive maxima in the meniscus height, i.e., ∆Ei ,%

= 100 × (1 − hmax ,i+1/hmax ,i). In agreement with the PIV
observations, we clearly see the largest energy loss at the first
rebound, and that this energy loss is inversely related to the
immersion depth. The loss at the first rebound, ∆E1 ranges
from 50% to 80%, whereas the range for successive rebounds
diminishes rapidly, whereby ∆E3 ≈ 5%, and ∆E4 ≈ 1%− 2%.
These observations are easily understood from established
fluid mechanics of head loss at reentrant pipe inlets/exits, from
which we can establish the energy loss dependence as∆E ∝ ḣ2,
which therefore explains the higher energy loss for smaller
immersion depths (ḣ ∼

√
120 − hi). It is also noteworthy to

mention that the loss coefficient is higher when the meniscus
falls as opposed to rising, meaning that most of the energy
dissipated due to kinetic energy occurs during the meniscus
fall.

D. Critical value of ω

Previously, Masoodi et al.9 stated the critical criterion
for oscillations in terms of the non-dimensional parameter,
ω >ω∗, whereω is as defined in Eq. (4). They found the critical
valueω∗ = 0.25, which we note pertains to the case of h(0) = 0
in our analysis. However, for our specific experiment, we have
h(0) = hf � 0. In this case, following the analysis in Sec. II,
and in particular Eq. (8), the inequality for oscillatory behav-
ior becomes ω > (1 + α)/4, with α = hi/he. Figure 11 plots
all of our experimental conditions in dimensionless form of
(1 + α)/4 versus ω, indicating where oscillations are observed
or not.

Taking the example of 70% glycerol with R = 2 mm and
experimental immersion depths hi = 10 up to 70 mm, then
(1 + α)/4 = 0.89 − 4.73, with the corresponding value of ω
= 0.96. As such, we would not expect any oscillations except
for the smallest immersion, which is indeed the case—as indi-
cated by the data set highlighted by the red rectangle in Fig. 11.
Additional cases where we do not observe oscillations are
for 50%, 60% and 70% glycerol, with the 2 mm tube, for
which the corresponding values ofω are 0.53, 0.17, and 0.032,
respectively.

Clearly, we are limited by the spatial resolution of the
optical system, which means that if any oscillations were
present for any of these conditions, they would have to be
on the lengthscale of 50 µm or below. As such, for our sys-
tem, we find that the critical condition, ω > ω∗ = (1 + α)/4,
identified by the theory in Sec. II accurately describes the phys-
ical phenomenon. To our knowledge, this represents the first
systematic verification of a critical parameter for meniscus
oscillations.
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FIG. 7. Comparison between experi-
ment and theory for select cases from
Fig. 6 with (a) hi = 66 mm, (b)
hi = 46 mm, (c) hi = 27 mm, and (d)
hi = 6 mm.

E. Period of oscillation

In the oscillatory regime, i.e., ω > (1 + α)/4, the phe-
nomenon is best characterized by the half-period of oscillation,
tp, which is an easily measurable feature across the entire
parameter space. Empirically, we find tp can be reasonably well
collapsed in terms of either the immersion depth, hi, below the
free-surface or in terms of the fill-to-immersion ratio, hf /hi.
Figure 12 plots the period of oscillation (for water) versus
the tube depth where the data points represent the mean value

across the video duration and several repeat trials. Note that
the period is defined as the time between consecutive local
minimums and maximums, as indicated by the inset graphic.
The error bars in this data are formed by averaging across both
multiple trials and the duration of our observation [i.e., O(1-
10 s)] which, given their small size, indicates that the period
does not decay as the meniscus converges to the equilibrium.
However, the data does show that tp increases gradually as hi

increases; For R ≥ 2 mm, we find that tp is virtually indepen-
dent of R and that tp ≈ 0.1 s for hi ≈ 6 mm and tp ≈ 0.3 s for

FIG. 8. (a) Maximum meniscus penetration and maximum rebound heights (relative to he) for different tube diameters and fill-to-immersion ratios. Data shown
is for water with R = 1, 2, 3, 4, and 5 mm, ω ≈ 18, 402, 2483, 10 062, 38 320. (b) Maximum penetration depth for water with R = 5 mm, revealing the true local
maxima at hf /hi = 1.67.
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FIG. 9. Vorticity field sequences from PIV recordings of the first rebounds of a water meniscus in a tube of radius R = 1.25 mm. The immersion depths are
hi = 10, 30, 50, and 70 mm and the fill heights above the free-surface, hf = 110, 90, 70, and 50 mm. Frames are separated by dt = 20 ms. The corresponding
values of α = 0.85, 2.55, 4.26, and 5.96. Arrows represent the velocity vectors where 1 m/s is 10 pixels. Colors represent the z-vorticity (1/s). The mask (red
box) at the top of each image represents where the straw was in the flow field and the masks are 84 pixels across or 4 mm outside diameter.

hi ≈ 65 mm. For R = 1 mm, the equivalent increase in tp is
from approximately 0.15 to 0.35 s.

Before proceeding to examine the remaining data, how-
ever, one clear observation to note is that the period of oscil-
lation is consistently higher for the smallest tube with inner
diameter of 2 mm than the other tube diameters. Again,
we believe this is due to the fact that the tube diameter is
smaller than the capillary length lc =

√
σ/(ρg) = 2.7 mm

for water; thus both surface tension forces and viscous
forces play an increasingly significant role, where the sur-
face tension and viscous terms in Eq. (2) scale as ∼1/R and
∼1/R2, respectively. We can only expect viscous dissipation
(due to wall effects) to be negligible for timescales signif-
icantly smaller than τµ = ρR2/µ, which is not the case for

R = 1 mm, where τµ = 1 s. Therefore, the failure of the
complete collapse of the data for oscillation period is an indi-
cation that surface tension and viscous forces are at play for
2R < lc.

The trends observed in the experimental data are qualita-
tively well-described by the theory, i.e., Eq. (11). The solution
to this equation is represented by the dashed lines in Fig. 12.
The largest absolute discrepancy between theory and exper-
iment is found for the smallest radius. In particular, we find
that the solution for R = 1 mm underestimates the data sub-
stantially for the deepest immersion depths, for example the
discrepancy between the experiment and Eq. (11) is approxi-
mately 25% for hi = 65 mm, but this difference diminishes as
hi decreases, so that the theory overlaps the lower error bar at



082103-9 Marston et al. Phys. Fluids 30, 082103 (2018)

FIG. 10. Percentage energy loss at successive rebounds. The data shows
the case for water in a R = 1 mm tube, which corresponds to the data in
Fig. 6.

hi = 6 mm. For the larger tube diameters, the discrepancy is
significantly smaller and the theory provides a good quantita-
tive match of the period of oscillation, again indicating that our
analytical model in Sec. II is capable of capturing the salient
features of this phenomenon.

One striking observation across the entire span of our
data is the lack of dependence on viscosity, which can be
seen in Fig. 13. This can be partly rationalized by consid-
ering Eq. (11), which gives the period of oscillation in terms
of ω, he and α. In the limit of large ω, we have for the demon-
imator

√
gω
√

4ω − (1 + α) ∼ 2ω
√

g, therefore we can give
tp ≈ π

√
(he + hi)/g, which for small he means that tp ∼

√
hi.

Combining all data with ω & O(10), we find that indeed this
square-root dependence on the immersion depth is valid, as
shown in Fig. 13.

FIG. 11. Plot of all 210 experimental conditions in the dimensionless form
of (1 + α)/4 versus ω. The thick black line indicates parity, with the data
points to the right satisfyingω > (1 + α)/4. The open symbols indicate where
oscillations were observed and solid symbols indicate where no oscillations
occurred. The data in the red rectangle are for 70% glycerol with R = 2 mm,
discussed in the main text.

FIG. 12. Half-eriod of oscillation, tp, versus immersion depth, hi, for all tube
radii for water corresponding to values of ω ≈ 18 402, 2483, 10 062, 38 320.
The inset graphic depicts the measurement of the period. The dashed lines
represent the solution to equation 2.7 for the different tube radii (colors match
the experimental data symbols).

FIG. 13. Period of oscillation versus immersion depth for all fluids and tube
sizes. Each data point represents the mean value of several repeat trials. The
dashed line indicates the best fit to the data with tp ∝

√
hi (r2 = 0.89).

V. JET FORMATION

A striking feature during the very first rebound is the for-
mation of a jet when the meniscus reaches its minimum depth
below the equilibrium level. In some cases, for shallow immer-
sion, the meniscus drops below the end of the tube and creates
an air cavity, as shown in Fig. 14(a). In this particular case,
hydrostatic pressure acts to pinch the air cavity, which appears
qualitatively reminiscent of the air cavity formed by a plung-
ing disk (Ref. 1). When the pinch-off occurs (between images
6 and 7 in this sequence), an air bubble is created along with
two jets - one that shoots up into the tube and one into the
bubble itself (seen in image 8). The initial speed of the jet in
this instance is 4.2 m/s. As the immersion depth is increased
[Figs. 14(b)–14(d)], the jet speed changes. In Fig. 14(b), the
meniscus protrudes slightly from the tip of the tube but no
pinch-off or bubble occurs, instead we observe an intricate
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FIG. 14. Meniscus evolution near the maximum penetration depth for (a) hf
= 115 mm, hi = 5 mm, (b) hf = 103 mm, hi = 17 mm, (c) hf = 93 mm,
hi = 27 mm, (d) hf = 82 mm, hi = 38 mm. The times relative to pinch-off/jet
start are (a) t = −16.3, −12.7, −9, −5.2, −1.5, −0.25, 1, 3.5 ms; (b) t = −15,
−11.4, −7.6, −3.8, −0.12, 0.5, 2.8, 3.6 ms; (c) t = −17.1, −9.6, −2.1, 1.6, 5.4,
12.8, 20.4, 27.8 ms; (d) t = −18.75, −12.5, −6.25, 0, 6.25, 12.5, 18.75, 25 ms.

wave focusing process that leads to a faster jet with an initial
tip speed of V jet ≈ 10.68 m/s in this realization. As the immer-
sion depth increases past hi = 23 mm, the meniscus no longer
escapes the end of the tube and the jet speed is dramatically
reduced to V jet ≈ 0.96 m/s and 0.54 m/s in Figs. 14(c) and
14(d), respectively. The jet becomes notably thicker in such
cases and further increasing the immersion depth leads to com-
plete suppression of the jet. The immersion depth at which the
jet is completely suppressed coincides precisely with the max-
imum penetration depth (relative to the equilibrium capillary
rise height) and the maximum rebound height. This is quite
intuitive from an energy perspective and also helps to explain
discrepancies between the theoretical solution and the experi-
ments since energy dissipation due to jetting is not accounted
for in the model.

The details of the wave focusing process for Fig. 14(b)
are shown in Figs. 15(a)–15(c). The fact that multiple waves
are present at the tip leads to an interesting observation—
namely—a dual structure jet formation, shown by the image
sequence in Fig. 15(c). Here, we can clearly observe a high-
speed and slender tip which precedes a thicker base. This
dual-structure jet formation has been reported previously for
jets created by the collapse of voids in granular beds (Refs. 8
and 11). In the present study, the dual-structure jet appears
to be a consequence of the wave focusing; The fine tip is
the product of the inertial focusing of the pointed end in
image 8 in Fig. 15(b), then as the fluid is channeled into
the jet, a sudden expansion occurs when the crest of the

FIG. 15. Jet formation near the maximum penetration depth for water in a
tube with radius R = 5 mm. hf = 103 mm, hi = 17 mm corresponding to the
same realisation as Fig. 14(b). (a) Overview of the meniscus penetration and
rebound below the end of the tube, (b) Close-ups of the wave focusing between
frames 4 and 6 in panel (a). The red arrows correspond to the frames just prior
to direction reversal and first jet motions, respectively. The scale bar is 5 mm
long. (c) Close-ups of the dual-structure appearance of the jet. The scale bar
is 10 mm long. In (a), the times relative to reversal are t = −15, −11.4, −7.6,
−3.8, −0.12, 0.5, 2.8, 3.6 ms; In (b), the frames are separated by dt = 125 µs;
In (c) the frames are separated by dt = 1.25 ms. See also video 2 of the
supplementary material accompanying this figure.

next wave is met, as indicated by the red arrow in image
10 of this sequence. The fine tip breaks up into droplets and
leaves just the thicker jet to proceed up into the tube, as shown
in Fig. 15(c).

By calculating the jet speed over a number of realizations,
we observe that there is a distinct peak in the jet speed, V j,
which varies as a function of immersion depth, hi. The quali-
tative trend is similar for all fluids where the jet is observed—
namely—an increase in jet speed as the immersion depth
increases for hi/R . 2.5, after which a dramatic drop in jet
speed occurs. The maximum jet speeds observed were V jet ,max

= 13.66 m/s for SDS (at hi/R = 2.36), V jet ,max = 12.9 m/s for
water (at hi/R = 2.26) and V jet ,max = 5.4 m/s for 25% glycerol
(at hi/R = 1.06).

The overall trend is best captured across the entire parame-
ter space by plotting the normalized jet speed, Vj/

√
ghi against

the normalized immersion depth, hi/R, as shown in Fig. 16. The
quantity

√
ghi physically represents the gravitational-inertial

velocity, which was used previously to scale jet speeds aris-
ing from free-surface collapse (e.g., Ref. 4). We find that for
hi/R . 2.5, the normalized jet speed is virtually independent

ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-30-015808
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FIG. 16. Normalized jet speed, Vj/
√

ghi, plotted against the non-dimensional
immersion depth of the tube, hi/R. The vertical dashed line indicates hi/R
≈ 2.5, after which a dramatic drop in in jet speed occurs. Data for all observed
jets is included.

of the immersion depth, but for hi/R & 2.5, there is a sharp
decrease until the jet is completely suppressed, which could
be approximated by the relation Vj/

√
ghi ∼ (hi/R)−2.

The high-speed jets for hi/R . 2.5 are due to the cav-
ity pinch-off, driven by hydrostatic pressure, whilst the dra-
matic reduction in speed is explained by the suppression of
the air cavity pinch-off. Furthermore, as the immersion depth
increases, the meniscus fails to protrude from the end of the
tube (see Fig. 9), isolating it from the bulk liquid and hydro-
static effects. Eventually, the jet is completely suppressed,
which occurs earlier (lower values of hi/R) in narrow tubes
and for more viscous fluids; for example with 25% glycerol,
the jet ceases for hi/R & 7, whilst for water and 2% SDS, the
jet does not disappear until after hi/R & 10. In contrast, we did
not observe jets for 50, 60 or 70% with the current parameter
space.

VI. CONCLUSIONS

In conclusion, we have conducted a thorough and system-
atic study of the motion of a falling column of liquid, bounded
in a glass tube. The column started at a height above the equilib-
rium capillary rise height and, depending on the tube radius and
fluid properties, the meniscus either decayed to the equilibrium
or entered an oscillatory regime. The principal experimental
measurement taken was the location of the meniscus, which
was easily tracked from high-speed video recordings and con-
verted into characteristics such as energy loss and period of
oscillation.

Our simple analytical model of this phenomenon stemmed
from a force balance, including capillary and viscous effects,
previously considered by Refs. 9 and 7, with the principal
difference being that the column starts from far above equi-
librium. The two non-dimensional parameters in this model
were the scaled immersion depth, α = hi/he, and a parameter

incorporating fluid properties and tube radius, ω = ρ3g2R5

128σµ2 .
From an approximate analytical solution to the main equation
identified, we identified a critical condition for the oscillatory

regime, given as ω > (1 + α)/4, which agreed very well with
the experimental observations. This key result differs from pre-
vious works on capillary rise dynamics since our framework
includes the non-zero initial height.

The oscillatory regime was characterized by the half-
period of oscillation (between consecutive maxima and min-
ima), which was measured and found to be a function of
the immersion depth (and initial height of the meniscus),
but independent of fluid viscosity. The independence of this
period on fluid properties could be explained by consider-
ing the theoretically-derived period of oscillation, which gave
tp ≈ π

√
(he + hi)/g.

One striking local feature in this phenomenon was the
formation of a jet, which occurred during the first rebound,
but only for the lowest viscosity fluids with µ < 2.3 mPa s.
The highest jets speeds, up to ∼13 m/s, were observed for the
case when the meniscus actually protruded from the end of the
tube. In such cases, the jet is produced from the hydrostatically-
driven pinch-off of the air cavity. In contrast, when the menis-
cus did not protrude from the tube, the jet speed was sig-
nificantly lower. In either case, this jet serves as an energy
dissipation mechanism that is not currently accounted for in
the theory.

Future extensions of this work might consider a liquid-
liquid system, which would add additional damping effects
and complex contact line dynamics at the meniscus.

SUPPLEMENTARY MATERIAL

See supplementary material for videos 1 and 2.
Video 1 (Fig. 1): This video shows the motion of a water

meniscus in a glass tube with inner diameter of 6 mm. The
initial height above the surface was 97 mm and the immersion
depth of the tube is 23 mm. The original video was captured
at 500 fps, whilst the playback speed is 30 fps.

Video 2 (Fig. 15): This video shows the fine wave-
focusing process that leads to the formation of a fast liquid
jet. Note that the meniscus actually falls below the end of the
tube, creating an air cavity prior to the reversal of direction. The
original video was captured at 8000 fps, whilst the playback
speed is 30 fps.
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