

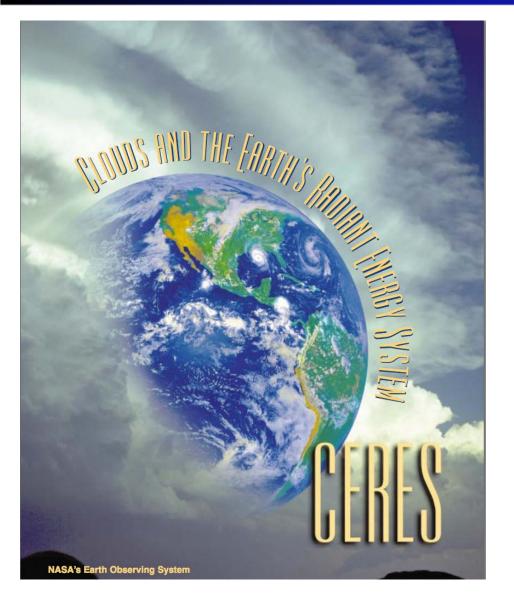
Clouds and the Earth's Radiant Energy System

Production of a Multi-decadal Earth Radiation Budget Climate Data Record: Balancing Accuracy, Precision, and Data Availability to Meet the Needs of the Community

Kory Priestley

Johnathon Gleason, Kathleen Moore, Anum Ashraf

NASA Langley Research Center


CalCon 2018 Utah State University June 19, 2018

Discussion Topics

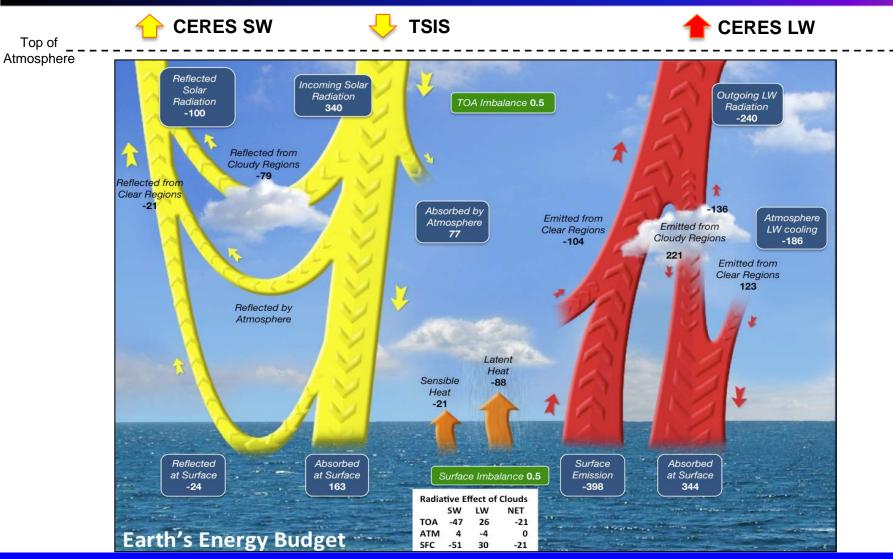
- ERB Overview
 - Introduction
 - Science
 - Production Streams
 - Products
 - Dependencies
- Summary
 - Cheap Electronics Really Expensive Software

NASA's Earth Radiation Budget Science Team, ERB-ST, (CERES Science Team) has the responsibility for governance of the nation's multi-decadal Earth Radiation Budget Climate Data Record (ERB CDR).

- Processing System is highly complex, producing Level 1 through 4 products.
- The system ingests data from 16 unique instruments on 9 different spacecraft (5 GEO and 4 LEO) as well as other ancillary information, producing 25 + different products with consistent TOA, Surface, and atmospheric radiative fluxes, cloud and aerosol properties on multiple spatial and temporal scales.
- Spatial scales vary from instantaneous/pixel (25 km), 1-deg grid, zonal, regional and global means
- Temporal scales vary across instantaneous, hourly, 3 hourly to monthly scales.
- Accuracy and precision values vary across the various spatial and temporal scales, with the long-term goal of measuring decadal trends of better than 0.3 W/m² per decade.

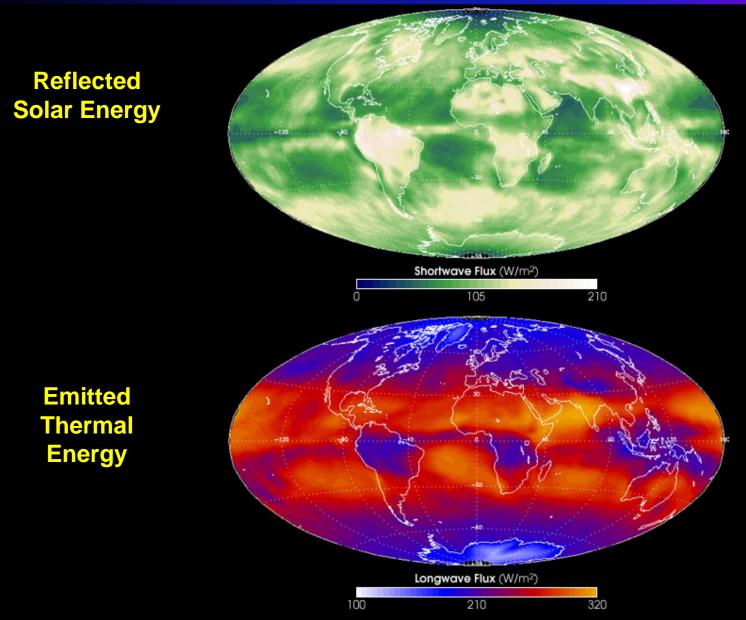
- Many considerations drive the decision to reprocess including but not limited to:
 - Removal of instrument artifacts (cal/val)
 - Validation and instantiation of new Scientific algorithms (Science Evolves)
 - Outside teams reprocessing the products we ingest
 - Launch of new instrumentation to sustain observations at EOL
 - Updates to processing hardware and programming languages
 - Resource availability
 - User community desires new data product formats
- Current re-processing capability of 30X once all inputs are available and staged

These all need to be managed in order to provide the global community products of sufficient accuracy and precision on a time-scale which allows continued advancement and discovery of key scientific questions such that policy makers may make informed decisions.


- <u>Accurate</u> observation-based data products for climate model evaluation and improvement.
- <u>Precise</u> observations to enable improved understanding of the variability in Earth's radiation budget over multiple decades.
- <u>Continuous</u> long-term global Earth radiation budget observations at the top-of-atmosphere, within-atmosphere and surface together with coincident cloud, aerosol and meteorological data.

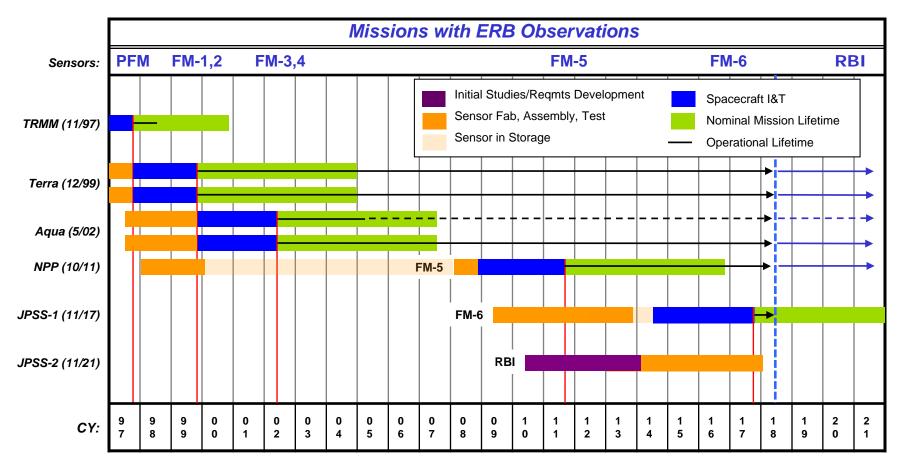
Earth's Energy Budget

Clouds and the Earth's Radiant Energy System



The radiative imbalance between the surface and atmosphere determines how much energy is available to drive the hydrological cycle and the exchange of sensible heat between the surface and atmosphere.

Primary CERES Climate Data Records

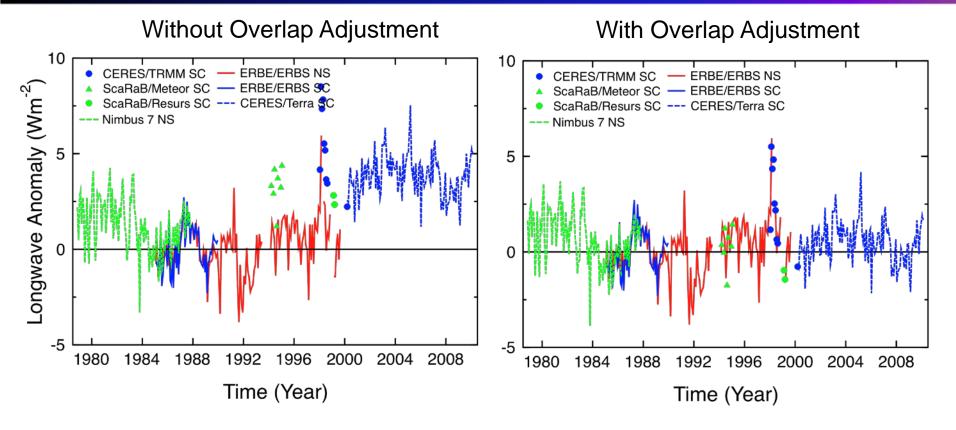


CERES Flight Schedule

We now have over 51 years of flight experience with the CERES instruments and simulators

CERES is defined as a class 'B' Instrument 5-year design Lifetime

Spectral Regions	Reflected Solar		Emitted	Atmospheric Window	
Wavelengths	0.3 - 5.0 μm		5.0 - 2	5.0 - 200 μm	
Scene levels	<100 w/m²-sr	>100 w/m²-sr	<100 w/m²-sr	>100 w/m²-sr	All Levels
Accuracy Requirements	0.8 w/m²-sr	1.0 %	0.8 w/m²-sr	0.5 %	0.3 w/m²-sr
SOW Stability Requirements		< 0.14%/yr		< 0.1%/yr	
Climate Stability Goals		< 0.6 w/m²/dec < 0.03 %/yr		< 0.2 w/m²/dec < 0.02%/yr	


- Requirements for CERES are more stringent than ERBE's by a factor of 2
- Requirements per Ohring et. al. are more stringent than CERES by a factor of 3-5

Calibrate, Calibrate, Calibrate....

Evolve Observational Strategies via FSW Modifications

- Instrument-to-instrument absolute calibration differences are 1 to 4 Wm⁻²
 - \Rightarrow Absolute accuracy alone is insufficient to detect climate change at required accuracy
- Overlapping observations allows use of instrument stability instead of absolute accuracy to constrain decadal climate change.

- Does CERES measure Climate Data Records directly?
 - No, CERES measures instantaneous TOA broadband radiances
 - SW channel Reflected Solar
 - TOT channel Reflected Solar + Emitted Thermal
 - LW channel Emitted Thermal

• How do we get CDR's from instantaneous Radiance measurements?

<u>Thermal Energy \rightarrow Electrical Signal \rightarrow Radiance \rightarrow TOA flux \rightarrow Surface and Atmospheric Flux \rightarrow Gridding \rightarrow Spatially Averaged \rightarrow Temporal Interpolation \rightarrow Temporal Averaging</u>

• In addition to CERES instrument data, this process requires:

- Cloud Imager Data
- Aerosol Optical Depth
- Atmospheric State Data
- Surface Temperatures
- Geostationary imager data for diurnal interpolation

High level of data fusion; up to 16 instruments on 9 spacecraft all integrated to obtain climate accuracy in TOA to surface fluxes ~8-dimensional radiative assimilation

Why is CERES Climate Quality Trend Detection so Difficult?

Clouds and the Earth's Radiant Energy System

A question of time scales, experience and balancing accuracy

with providing data products to the community.

- Calibrated Radiances have been released on ~6 month centers
- 6 months is just a blink of an eye when analyzing decadal trends...

Same time scale as phenomena which influence instrument response

- Beta Angle
- Solar Zenith Angle
- Earth Sun Distance
- Solar Cycle
- Orbital shifts
- Instrument Operational modes (e.g. RAPS vs. Xtrack)

Design weaknesses and anticipated failures in onboard calibration hardware

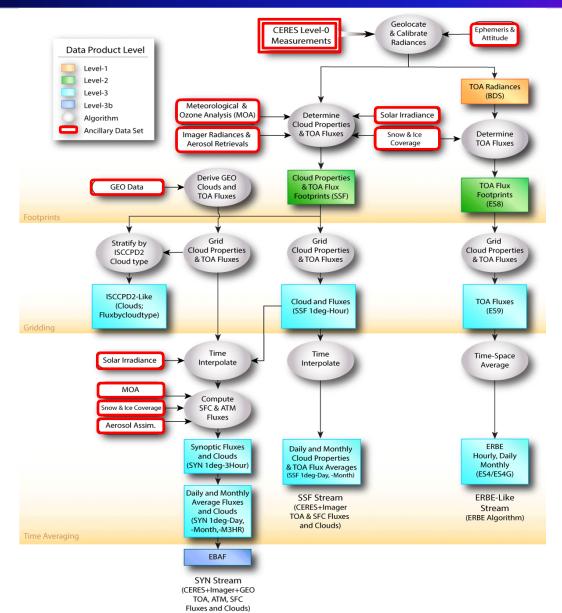
- full spectral range of observations not covered by cal subsystems

Complicates separation of instrument 'artifacts' from natural variability.

Level 0: Raw digitized instrument data for all engineering and science data streams in Consultative Committee for Space Data Systems (CCSDS) packet format.

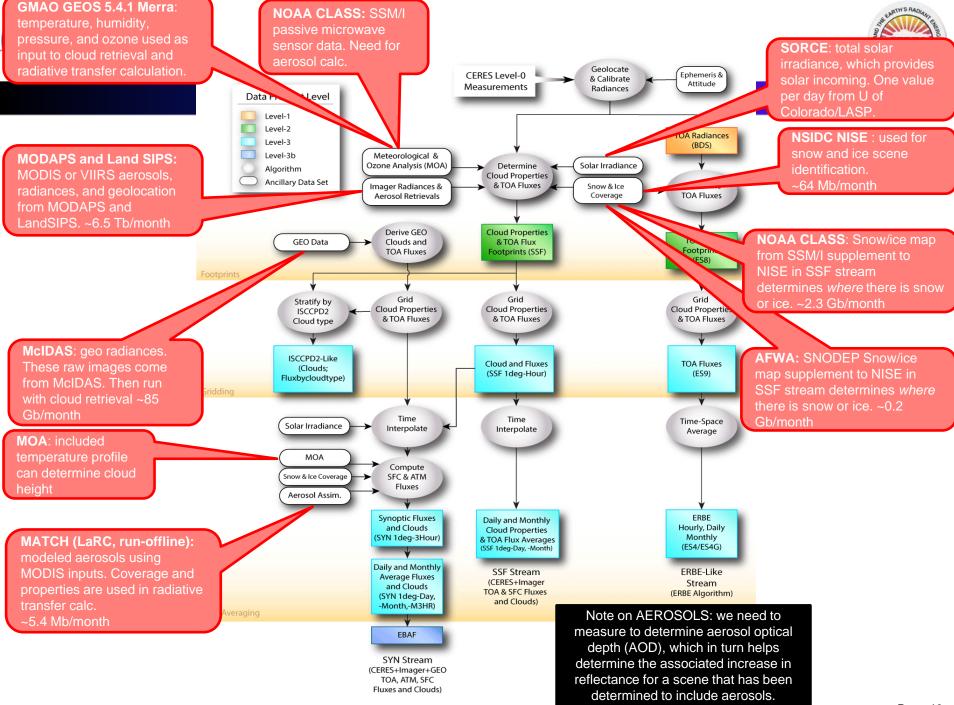
Level 1B: Instantaneous filtered broadband **radiances** at the CERES **footprint** resolution, geolocation and viewing geometry, solar geometry, satellite position and velocity, and all raw engineering and instrument status data.

Level 2: Instantaneous geophysical variables at the CERES **footprint** resolution. Includes some Level 1B parameters and retrieved or computed geophysical variables. (e.g., filtered and unfiltered radiances, viewing geometry, radiative fluxes, imager cloud and aerosol properties).


Level 3: Radiative fluxes and cloud properties **spatially averaged** onto a **uniform grid**. Includes either **instantaneous** averages sorted by local/GMT hour (e.g., SSF1deg–Hour) or **temporally interpolated** averages at 3–hourly, daily, monthly or monthly hourly intervals (e.g., SSF1deg–Month).

Level 4: Level 3 data products adjusted within their range of uncertainty to satisfy known constraints (e.g., consistency between average global net TOA flux imbalance and ocean heating rate from in-situ ocean measurements like Argo).

CERES Processing Streams



	Product	TOA Fluxes	Surface Fluxes	In-Atmospheric Fluxes	Cloud Properties	Aerosols	Atmosphere	
Level	Level 3B: Consistency between TOA global net flux and ocean heat storage.							
	EBAF-TOA	CERES/GEO net balanced						
	EBAF-Surface		Computed					
Level	3: Spatial and tempo	orally (daily, monthly, etc) averaged fl	uxes and cloud properties.					
	SYN1deg	CERES/GEO & Computed	Computed	Computed	MODIS & GEO	MODIS & MATCH	GMAO GEOS	
1	SSF1deg	CERES	Parameterized		MODIS	MODIS	GMAO GEOS	
	<u>AVG</u>	CERES/GEO & Computed	Computed	Computed	MODIS & GEO	MODIS & MATCH	GMAO GEOS	
	ZAVG	CERES/GEO & Computed	Computed	Computed	MODIS & GEO	MODIS & MATCH	GMAO GEOS	
	<u>SYN</u>	CERES/GEO & Computed	Computed	Computed	MODIS & GEO	MODIS & MATCH	GMAO GEOS	
	SRBAVG	CERES	Parameterized		MODIS & GEO		GMAO GEOS	
	<u>SFC</u>	CERES	Parameterized		MODIS	MODIS	GMAO GEOS	
	FSW	CERES & Computed	Computed	Computed	MODIS	MODIS	GMAO GEOS	
	ISCCP-D2like				MODIS & GEO			
	FLASH_TISA	CERES	Parameterized		MODIS		GMAO GEOS	
	ES4/ES9	CERES-ERBElike						
Level	2: CERES instantan	eous footprint level fluxes and cloud p	properties.					
	CRS	CERES & Computed	Computed & Parameterized	Computed	MODIS	MODIS	GMAO GEOS	
	FLASH_SSF	CERES	Parameterized		MODIS	MODIS	GMAO GEOS	
	SSF	CERES	Parameterized		MODIS	MODIS	GMAO GEOS	
	<u>ES8</u>	CERES-ERBElike						
Level	2: CERES instantan	eous footprint level fluxes and cloud p	properties.					
	BDS	CERES filtered radiances						

Monthly Data Product Volume ~400GB

Data Ingest Sources

Clouds and the Earth's Radiant Energy System

CERES Input Data Sources

Edition3 | Edition4

2000-2005 | 2006-2011 | 2012-2017 | 2018-2023

Input Sources		2012 j f m a m j j a s o n d	2013 j f m a m j j a s o n a	2014 jfmamjjasoria	2015 jfmamjjasona	2016 jfmamjjasona	2017 jfmamjjasona
	FM1						
Terra	FM2						
A	FM3						
Aqua	FM4						
S-NPP (Ed1)	FM5						
Atmosphere	GOES-5.4.1						
MODIS	Collection5		1				Mat
WODIS	Collection6						*
VIIRS	03110						10
VIIRS	001						Ju
NSIDC - snow a	nd ice cover						
MATCH aerosol	Collection5						Wat
constituents	Collection6						F

r		2012	2013	2014	2015	2016	2017
Input Sources		j [f [m a m j j a s o n d	j f m a m j j a s o n d	j f m a m j j a s o n d	j f m a m j j a s o n d j	j f m a m j j a s o n d	j f m a m j j a s o n d
Geostationary	Sources	Derived flu	xes and clouds		L L		
	MET-7		Jul2-8	Dec3	-7 Nov16-17	13	
GEO at 0°	MET-8			15-20	NOVIG-17	Oct15-17	
	MET-9		-	h			
	MET-10						
	MET-5 (57°)						
GEO at 63°	MET-7 (63°)						4eb
	MET-8 (41°)						N
	GMS-5 (140°)		ec 26 Dec Oct23	c 18			
	GOES-9 (160°)	Doo			Blut		
GEO at 140°	MTSAT-1R (140°)	Oct18					
	MTSAT-2 (145°)	00018					
	Himawari-8 (140°)						
	GOES-10						
GEO at -135°	GOES-11						
	GOES-15						
GEO at -75°	GOES-8						
	GOES-12	Oct17	Jun9				
	GOES-13	 					
	GOES-14	Sep24	May23				,

INTERFACES & DEPENDENCIES

CERES Instrument Data from EDOS

Product	Granule Size (MB)	Number of Granules Per Day	Average Volume per Month (MB)
Terra Level 0	88.00	2 (FM1 and FM2)	5,354
Terra Ephemeris	0.46	12	168
Terra Attitude	0.88	12	321
Aqua Level 0	88.00	2 (FM3 and FM4)	5,354
Aqua Ephemeris	5.30	1	161
Aqua Attitude	0.46	12	168
NPP Level 0	88.00	1	2,677
NPP Ephemeris and Attitude	0.50	12	178
JPSS-1 Level 0	88.00	1	2,677
JPSS-1 Ephemeris and Attitude	0.50	12	178
		Total :	17,236

MODIS & VIIRS Data

Source	Product	Granule Size (MB)	Number of Granules Per Day	Average Volume per Month (MB)
MODAPS	MOD02_SS	12 - 65	288	340,300
MODAPS	MOD03	28	288	245,150
MODAPS	MOD04	1.5	130	6,000
MODAPS	MYD02_SS	12 - 65	288	340,300
MODAPS	MYD03	28	288	245,150
MODAPS	MYD04	1.5	130	6,000
Land SIPS	VIMD_SS	160 - 360	288	2,141,000
Land SIPS	VAOT_L2	0.8	288	7,000
Land SIPS	VNP0203IMD_S S	300 - 415	240	2,736,000
Atmosphere SIPS	VAERDT*	38	130	150,000
Atmosphere SIPS	VAERDB*	15	130	59,280
			Total:	6,276,180

Other Ancillary Data

Source	Product	Granule Size (MB)	Number of Granules Per Day	Average Volume per Month (MB)
NSIDC	NISE	2.1	1	64
CLASS	1/8 th mesh Snow/Ice (DMSP EDR)	9.6	8 (NH and SH)	2,335
AFWA	1/16 th mesh Snow/Ice (SNODEP)	2.3	2 (NH and SH)	140
GMAO	GEOS 5.4.1 Met- Reanalysis		8 files / day	~83,000
U. of Wisc SSEC	Geostationary Weather Satellite (area files) (from McIDAS)	5 – 37	120 (5 GEO)	~84,000
SSAI	MATCH Model Aerosols		2 files / day	5.3
			Total :	169,544

- Many considerations drive the decision to reprocess including but not limited to:
 - Removal of instrument artifacts (cal/val)
 - Validation and instantiation of new Scientific algorithms <u>(Science Evolves)</u>
 - Outside teams reprocessing the products we ingest
 - Launch of new instrumentation to sustain observations at EOL
 - Updates to processing hardware and programming languages
 - Resource availability
 - User community desires new data product formats

These all need to be managed effectively....

Cheap Electronics Really Expensive Software