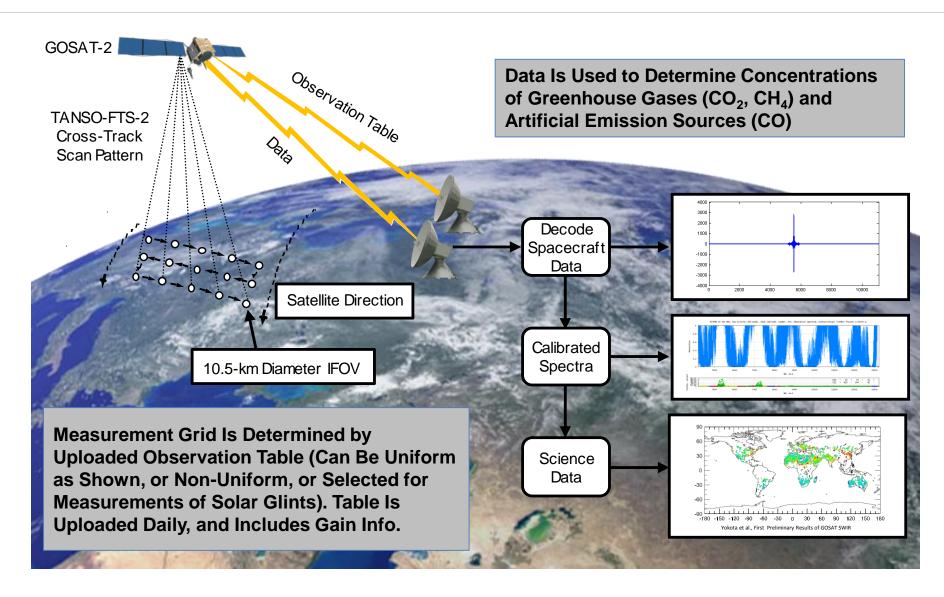


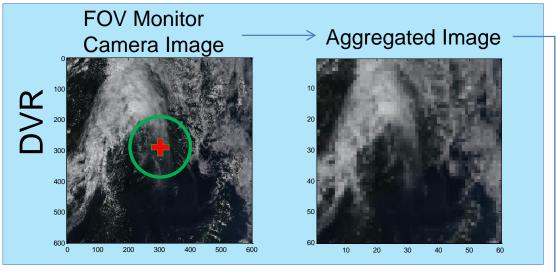
TESTING, VERIFICATION AND CALIBRATION OF THE THERMAL AND NEAR INFRARED SENSOR FOR CARBON OBSERVATION FOURIER TRANSFORM SPECTROMETER (TANSO-FTS-2) SENSOR

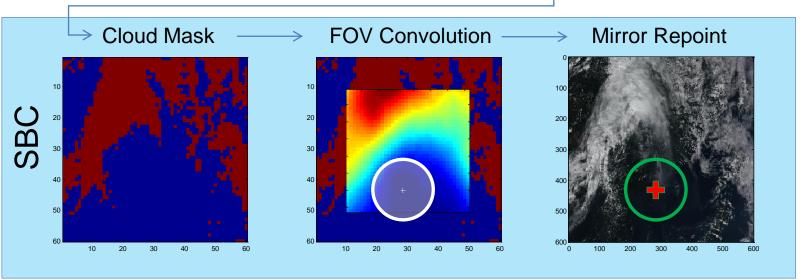
LAWRENCE SUWINSKI, RONALD GLUMB, CHRISTOPHER ELLSWORTH, ERIC BEAUBIEN, JOHN HOLDER, MASAKATSU NAKAJIMA, HIROSHI SUTO AND YUKIE YAJIMA

CALCON TECHNICAL MEETING, 6-20-2018

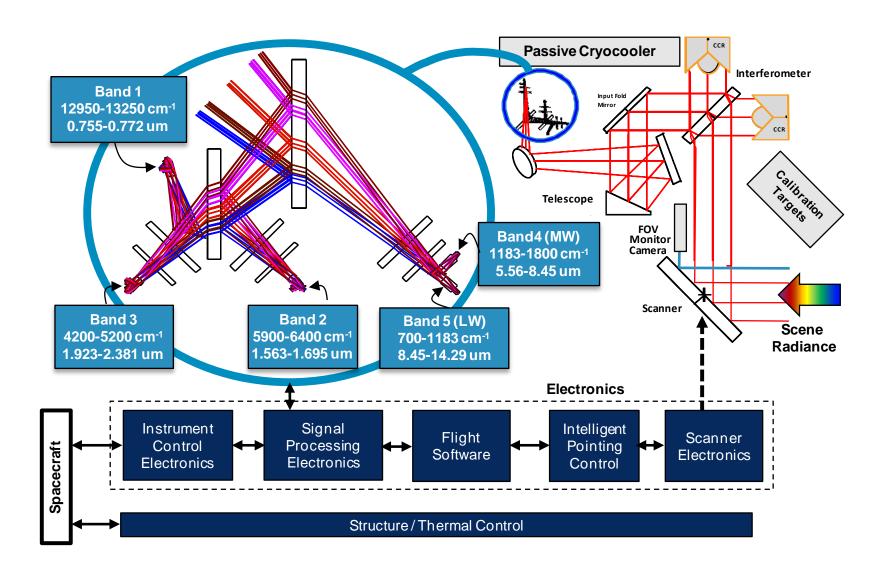


FTS-2 OVERVIEW

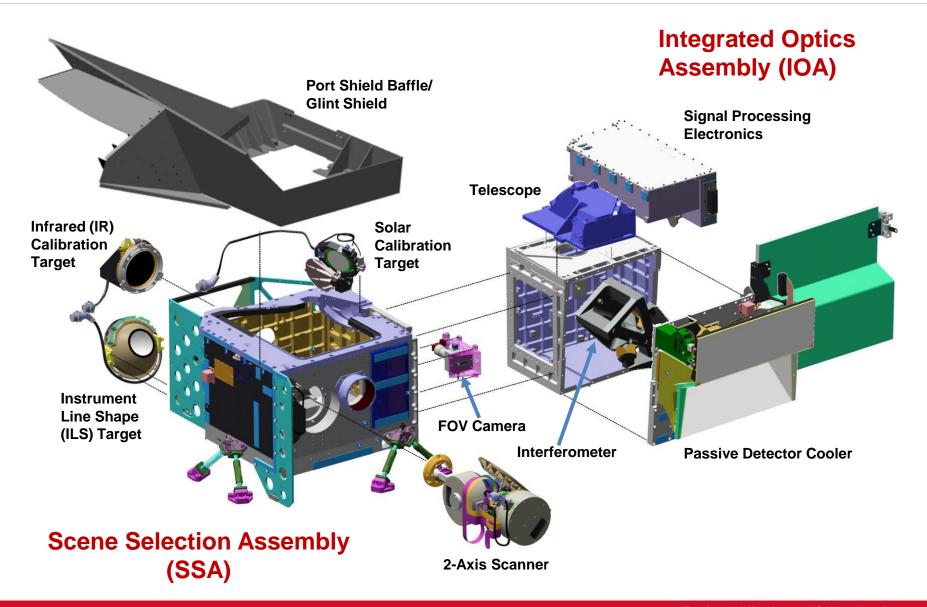

TANSO-FTS-2 Mission Overview



Intelligent Pointing Increases the Number of Usable Cloud-Free Observations

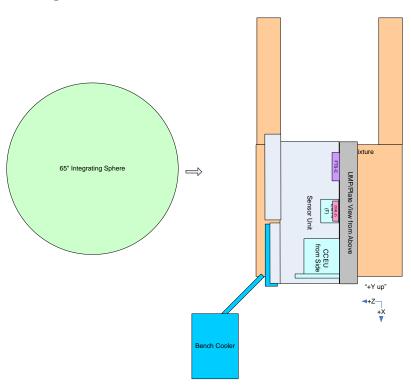


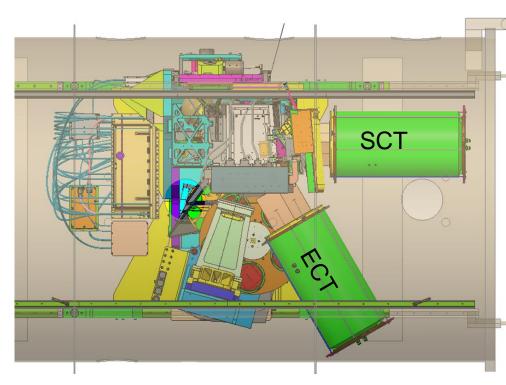
- Scanner takes large step to nominal location per table
- FOV monitor camera takes a 50x30km image in 3 colors
- Image is aggregated, cloud mask determined, convolution finds best cloud-free region
- Scanner takes small step, 4-sec interferogram is collected


TANSO-FTS-2 Provides Five Hyperspectral Bands Optimized for Greenhouse Gas Measurement Mission

FTS-2 Design Consists of Two Main Modules

FTS-2 VERIFICATION AND CALIBRATION




SWIR and TIR Band Radiometric Performance Assessed Independently

SWIR Bands (Bands 1-3) evaluated using integrating sphere at ambient conditions

TIR Bands (4/5) evaluated using blackbody targets in TVAC chamber

Further Details on Next Slide

Accurate Radiometric Calibration Highly Important to FTS-2 Mission

Bands 1-3: Radiometric performance assessed via NIST-traceable integrating sphere

- Sphere output at multiple levels used to assess nonlinearity, noise and polarization performance
- Sphere also used to characterize Spectralon solar diffusers
 - "Routine" (viewed every other orbit) and "Reference" (viewed monthly) Spectralon diffusers available to monitor instrument response on-orbit

Bands 4-5: Radiometric performance assessed via NIST-traceable blackbody targets

- Internal sensor ICT used as calibration reference
 - ICT PRT calibration is NIST-traceable
- External Calibration Target (ECT) blackbody used at multiple temperatures to assess nonlinearity and noise performance
 - Performance verified by NIST TXR in 2015
- Very similar to JPSS Cross-Track Infrared Sounder (CrIS) calibration and test methodology

Sensor SNR Performance Is Very Good

Band	Regulation Wavenumber [cm ⁻¹]		Scene Radiance Spec [mW/m²/sr/cm⁻¹]		Measured Side 1		Measured Side 2						
	[6]	C1	C2	C3	C1	C2	C3	C1	C2	C3	C1	C2	C3
18	13050	5.5	18	1.8	400	650	200	561	998	250	545	942	259
1P	13050	5.5	18	1.8	400	650	200	462	763	192	431	700	203
2\$	6200	5.2	17	1.7	300	500	150	459	799	256	540	900	255
2P	6200	5.2	17	1.7	300	500	150	390	674	202	445	734	197
3\$	5000	3.8	13	1.3	300	500	150	326	505	151	321	552	151
3P	5000	3.8	13	1.3	300	500	150	252	412	110	247	469	114
3\$	4250	3	10	1	250	500	150	257	440	119	261	431	118
3P	4250	3	10	1	250	500	150	303	518	129	291	531	134

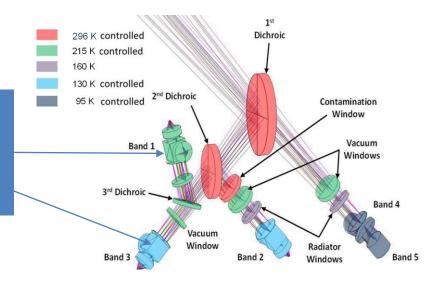
Band	Wavenumber	Side 1	Side 2	Spec
4	1300	1512	1534	300
5	700	941	961	300

FTS-2 Meets Mission Needs for Linear Radiometric Response

Channel	Requirement	Spec + Meas Uncertainty	Max Residual (%)
B1P	≤ 0.1% (TBR)	0.7	0.5
B1S	≤ 0.1% (TBR)	0.7	0.4
B2P	≤ 0.1% (TBR)	0.7	0.5
B2S	≤ 0.1% (TBR)	0.7	0.4
B3P(5000 cm ⁻¹)	≤ 0.1% (TBR)	0.7	0.5
B3S(5000 cm ⁻¹)	≤ 0.1% (TBR)	0.7	0.5
B3P(4250 cm ⁻¹)	≤ 0.1% (TBR)	0.7	0.6
B3S(4250 cm ⁻¹)	≤ 0.1% (TBR)	0.7	0.6
B4	≤ 0.1% (TBR)	N/A	0.07
B5	≤ 0.1% (TBR)	N/A	0.1

All Channels Except for Band 5 Meet Requirement Without **Ground Processing Nonlinearity Correction**

FTS-2 Polarization Performance Is Outstanding


Instrument Induced Polarization is Low

Channel	Polarization Requirement	Polarization Measured (%)
B1P	≤ 34%	15
B1S	≤ 34%	15
B2P	≤ 38%	7
B2S	≤ 38%	7
ВЗР	≤ 38%	8
B3S	≤ 38%	8

Polarization Extinction Ratios <u>Are High</u>

Channel	Polarization Requirement	Polarization Measured
B1P	≥ 33	49
B1S	≥ 33	72
B2P	≥ 33	216
B2S	≥ 33	64
ВЗР	≥ 33	117
B3S	≥ 33	103

Bands 1-3 Contain
Polarizing Beamsplitters
to Separate S and P
Components

Calibration Accuracy Assessed Via Component Measurements and Analysis Roll-Up

Calibration Error Sources, Bands 1-3

	Error Term	Basis
	Signal Error	Determined by analysis
	Solar Irradiance Error	World Radiometric Reference uncertainty combined with instrument attitude uncertainty
Random Errors	Diffuser Characterization Error	Determined by analysis
	Mirror Characterization Error	Determined by analysis using vendor measurements of the prescribed coating
	Earth Shield Characterization Error	Determined by analysis of baffle dimensions
	Solar Irradiance Change	RMS of ACRIM composite data
	Diffuser BRDF Drift Error	Estimated from GOSAT 1 data
Drift Errors	Solar Vector to Diffuser Error	Calculated from instrument alignment error allocation, expected spacecraft attitude uncertainty, and diameter of the solar disc
	Earth Irradiance Error	Determined by analysis using measured Antarctic snow BRDF
	Port Baffle Scatter	Engineering Estimate

Calibration Errors

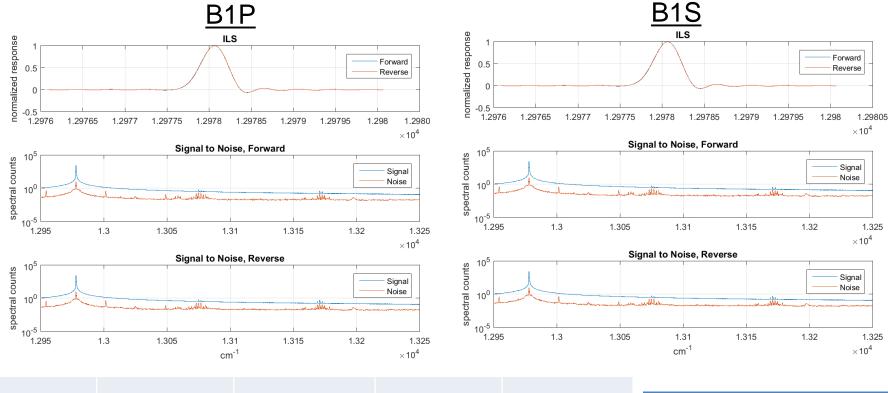
				Case	
Band	cm ⁻¹	Spec	1	2	3
1	13050	<3%	2.48	2.54	2.47
2	6200	<3%	2.21	2.26	2.21
3S	5000	<3%	2.21	2.27	2.22
3L	4250	<3%	2.24	2.34	2.23

Error Sources Rolled Up to Assess Compliance; Solar Irradiance Error is Dominant Term for Bands 1-3

Bands 4 and 5 Calibration Is Highly Accurate

Calibration Error Sources

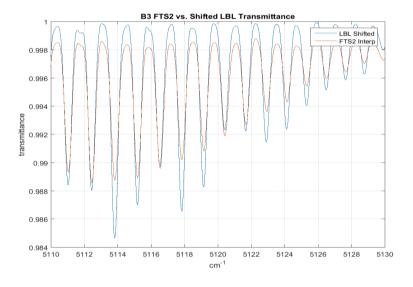
Error Term	Basis
Patch temperature drift	Determined by Thermal model analysis
Modulation Efficiency Drift	Determined by interferometer vendor
OMA temperature drift	Determined by Thermal model analysis
Scan Mirror Temperature Gradient	Determined by Thermal model analysis
Scan Mirror Temperature Drift	Determined by Thermal model analysis
Electronics Gain	Electronic design tolerance analysis
Polarization Sensitivity	Determined by analysis
Nonlinearity	Determined by analysis
Channel Spectra	Optical design analysis
ICT temperature	ICT temperature uncertainty analysis
ICT Paint reflectance	Reflectance measurements uncertainty
Signal Radiance Scan Angle Correction	Determined by analysis using vendor measurements of the prescribed coating
Background Radiance Scan Angle Correction	Determined by analysis using vendor measurements of the prescribed coating
ICT Signal Error	Analysis using system noise, from minimum of SNR spec and CBE from SNR model
Spacelook Signal Error	Analysis using system noise, from minimum of SNR spec and CBE from SNR model


Calibration Errors

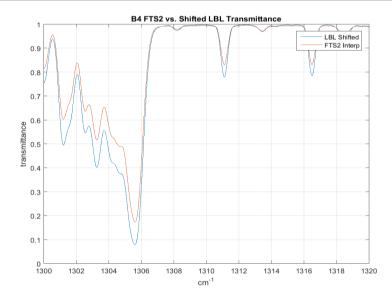
Band	cm ⁻¹	Spec	Error
4	1300	<0.3K	0.161K
5	700	<0.3K	0.223K

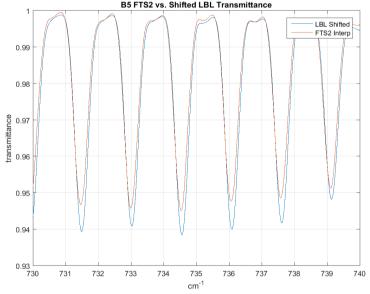
ICT Temperature Uncertainty Is Driving Error Source for Bands 4-5

Band 1 and 2 Performance Using Internal ILS Laser Target Is Excellent

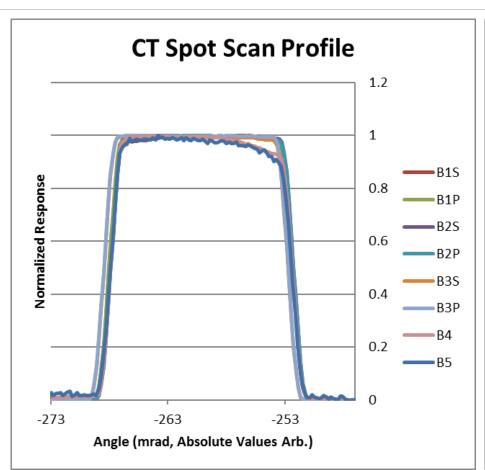

Band	FWHM	Spec FWHM	SNR	Spec SNR
1P	0.363	<0.4	38125	>300
1S	0.364	<0.4	41507	>300
2P	0.262	< 0.27	45207	>300
2S	0.262	< 0.27	51530	>300

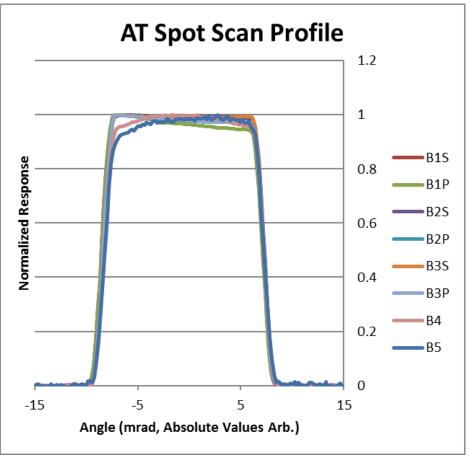
FTS-2 ILS Target
Contains Laser Diodes
to Trend FWHM in
Bands 1 and 2


Bands 3-5 FWHM Confirmed Through Gas Cell Testing

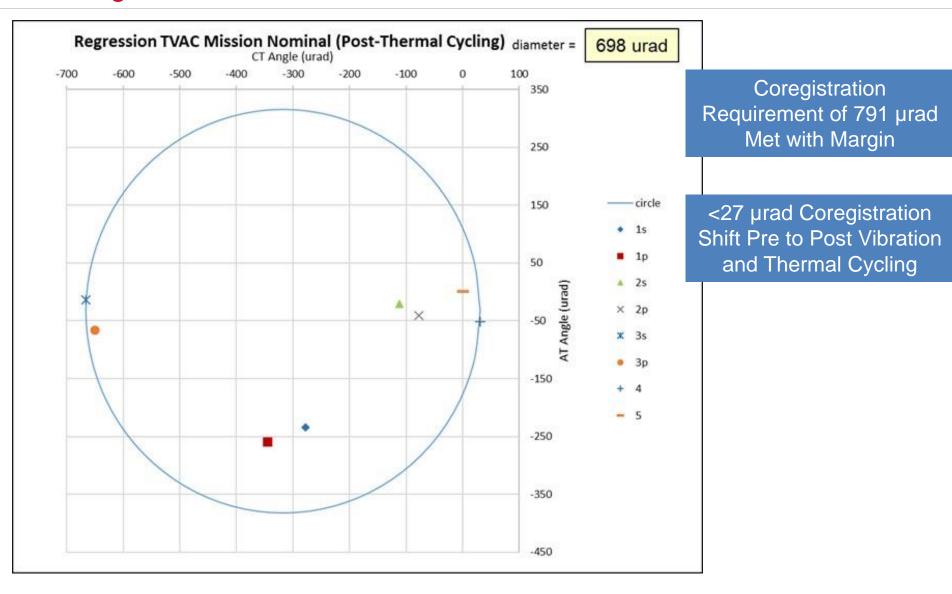


Band	FWHM	Specification
3	0.258	<0.27
4	0.244	<0.27
5	0.243	<0.27

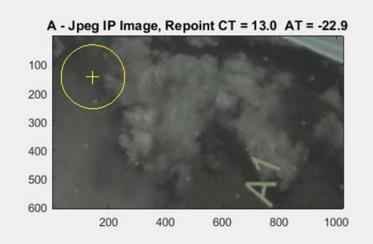

CO₂, CO and CH₄ Used to Assess FWHM Uncertainty for Bands 3-5

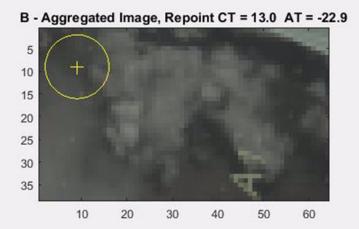


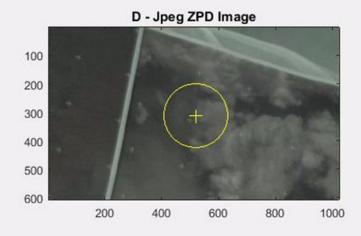
FTS-2 Spot Scans Confirm Expected FOV Shape

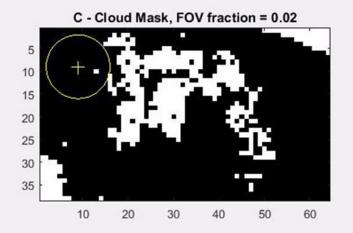


50%/80% Response Widths and Out of Field Responses Meet Specifications with Margin


TVAC Slit Scan Tests Indicate Compliant and Stable Coregistration Performance






Intelligent Pointing Testing was Successful; Re-Point Working as Expected

Intelligent Pointing Functionality Expected to Provide 2x Increase in Cloud-Free Data Yield On-Orbit

Overall FTS-2 Test Performance Is Excellent

SNR performance is very good

ILS FWHM is well within specification

GOSAT-2 Launch Planned for JFY 2018

Linearity performance meets mission needs

Calibration accuracy is very good

FOV shapes meet specification

Channel coregistration is compliant and stable following vibration and thermal cycling

Intelligent pointing verification successful