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ABSTRACT
Motivated by questions in biology, we investigate the stability of
equilibria of the dynamical system x′ = P(t)∇f (x) which arise as
critical points of f, under the assumption that P(t) is positive semi-
definite. It is shown that the condition

∫ ∞
λ1(P(t)) dt = ∞, where

λ1(P(t)) is the smallest eigenvalue of P(t), plays a key role in guaran-
teeing uniform asymptotic stability and in providing information on
the basis of attraction of those equilibria.
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1. Introduction

The evolution of continuous phenotypes, for example height, by means of natural selec-
tion is a central theme in evolutionary biology. The breeder’s equation (R = h2s) was first
introduced by Lush in 1937 [19] to predict the change in phenotype (R) with respect to
the heritability (h2) and strength of natural selection (s). In a seminal series of papers,
the breeder’s equation was updated to the so-called multivariate breeder’s equation by
Lande [13, 14] and Lande and Arnold [16]. The (multivariate) breeder’s equation is often
presented in varying forms such as �z̄(t) = h2σ 2∂ ln(W̄)/∂ z̄(t) [13], �z̄ = G∇ ln(W̄)

[14], �z̄ = GP−1s [16], and �z̄ = Gβ [4], as well as continuous-time counterparts (i.e.
dz̄/dt; [9, 13, 15]). In these equations, several equivalences exist: the heritability (h2) of
a trait is the ratio of the additive genetic variance (g2) to the phenotypic variance (σ 2),
thus h2σ 2 = (g2/σ 2)σ 2 = g2; the natural selection gradient (β) is the product of the
inverse of the phenotypic variance–covariance matrix (P−1) and the selection differen-
tial (s) which is also equivalent to gradient of the logarithm of the average fitness function
(∇ ln(W̄) ), i.e. β = P−1s = ∇ ln(W̄); finally, the diagonal elements of the additive genetic
variance–covariance matrix G = g2i,i and similarly the diagonal elements of phenotypic
variance–covariancematrixP = σ 2

i,i. All of the forms of themultivariate breeder’s equation
reduce to the concept that the change inmean phenotype (z̄) over time is given by the prod-
uct of a genetic variance–covariance matrix (G) and the gradient of the logarithm of the
average fitness function (∇ ln(W̄)). As of December 2015, Web of Science indicates that
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the papers by Lande [13, 14] and Lande and Arnold [16] have garnered at least 791, 1442,
and 2852 citations, respectively, which gives some idea of the impact these works have had
on evolutionary biology and related fields.

One of the critical assumptions inmuch of this research is that the so-calledG-matrix is
constant. AWeb of Science search indicates at least 175 papers on the constancy and form
of theG-matrix with 66 of those published since January 2010 (a broader search on ‘genetic
constraints’ reveals many more relevant publications). The principal concern is that the
G-matrix limits how traits evolve and approach their evolutionary optima [1, 3, 14]. For
example, Dickerson [8] studied a special case of co-linear traits which produces aG-matrix
with a zero eigenvalue, thus preventing evolution along some trajectories. Furthermore,
Pease and Bull [23] examined ‘ill-conditioned’ G-matrices where the ratio of the largest
to the smallest eigenvalue is large and concluded that the speed of evolution towards an
optimum is greatly reduced. Other work has suggested that the number of dimensions in
the system affects stability [7]. However, formal criteria for when and how an evolutionary
system will converge upon an equilibrium are lacking. While most research considersG to
be constant, it is widely recognized that G itself is expected to evolve over time [1, 2, 16,
17]. ConsideringG to be time-varying furthermuddies the waters of whether such systems
approach and are stable at existing equilibria and lacks formal mathematical treatment.

Similarly, considerable interest has been paid to rugged fitness landscapes where the
average fitness function has multiple peaks (optima) [5, 21, 22, 24]. Exploration of fitness
landscapes, in other words movement between different optima, is a key part of Wright’s
shifting balance theory [25]. Despite interest in which evolutionary optimum the popula-
tion mean phenotype will evolve towards, conventional wisdom that the nearest optimum
is favoured or numerical methods are relied upon. In fact, some research has shown that
the nearest optimum is not always the one favoured by evolution [5]. As in the case of sta-
bility analyses, no rigorous analysis of whether or not a particular optimumwill be evolved
towards has been performed.

The contributions of this paper are threefold. First, we rigorously analyse the modified-
gradient system used to model the evolution of continuous traits for the existence and
stability of equilibria. Second, by doing so, we show that the smallest eigenvalue of the G-
matrix – which is allowed to vary in time – plays a key role in establishing the stability
of equilibria. Finally, we determine sets which are guaranteed to be part of the basin of
attraction of a given equilibrium. Taken together these contributions greatly enhance our
ability to analyse and understand multivariate phenotypic evolution.

2. Existence and stability of equilibria

With the goal of making this paper as self-contained as possible, in this section we include
some definitions, mathematical preliminaries, and proofs that are rather standard. Let
x = (x1, x2, . . . , xn) denote a point in R

n, and let x = [x1 x2 · · · xn]T be the corre-
sponding n × 1 vector equivalent. (Note that we are using the variable x to represent the
traditional phenotype variable z found in evolutionary biology.) We use the Euclidean
norm as a measure of distance and we let Bδ(x̄) = {x : |x − x̄| < δ} denote the open ball of
radius δ centred at x̄. By a domain inR

n, we mean an open connected set. A point x̄ of a set
S is an isolated point of that set if there exists a positive radius δ such that x̄ is the only point
of the set S lying inside the ball Bδ(x̄).We let t be a scalar variable representing time and use



JOURNAL OF BIOLOGICAL DYNAMICS 41

primes to denote derivatives with respect to t (hence, x′ = x′(t) = dx/dt). The object is to
determine the stability of equilibrium solutions of the n-dimensional modified-gradient
system

x′ = P(t)∇f (x). (E)

Note that the continuous-time multivariate breeder’s equation is of this form with P(t)
being the time-dependent G-matrix, and f being ln W̄. It is important to notice that the
right-hand side of (E) has a dependence on t thus making the equation non-autonomous.
Thus, time-translates of solutions are no longer solutions (as they are in the autonomous
case), standard theorems do not apply and – importantly – the smallest eigenvalue of P(t)
plays a key role inwhat follows.We assume throughout that the following hypothesis holds:

H0: D is a domain in Rn, f is a real-valued C1 (i.e. continuous with continuous partials) func-
tion defined on D, t is nonnegative, the gradient of f denoted by ∇f has components which
are C1 on D, and P(t) is an n × nmatrix-valued function with C1-entries that is defined and
positive semi-definite for t ≥ 0.

H0 guarantees that, for any t0 ≥ 0 and any x0 in D, there is a unique solution of (E) sat-
isfying the initial condition x(t0) = x0. The assumption that P(t) is positive semi-definite
is consistent with biological applications because the G-matrix is a variance–covariance
matrix, and variance–covariance matrices are always symmetric, positive semi-definite
matrices.

If f has an isolated maximum value at a point x = x̄ of D, then we know from calculus
that∇f (x̄) = 0 so x = x̄ is an equilibrium (i.e. constant in time) solution of (E). We inves-
tigate the stability of such equilibria. Although a translation always allows one to assume
the equilibrium point is at x = 0, we will continue to assume, because of our interest in
evolutionary applications, that x = x̄ is the equilibrium solution.

We let λ1(P(t)) denote the smallest eigenvalue of P(t) and introduce the eigenvalue
condition ∫ ∞

0
λ1(P(t)) dt = ∞. (EC)

This condition will play an important role in what follows.
Stability of an equilibrium solution x̄ essentially means that we can guarantee that solu-

tions stay near x̄ provided that they start within a prescribed distance of x̄, while asymptotic
stabilitymeans that solutions actually approach x̄ as t → ∞ provided that they start within
a prescribed distance of x̄. More precisely, an equilibrium solution x = x̄ of (E) is said to
be stable if for any ε > 0, there exists a δε > 0 and a tε ≥ 0 such that any solution x = x(t)
of (E) satisfying the initial condition |x(t0) − x̄| < δε for some t0 ≥ tε also exists and satis-
fies |x(t) − x̄| < ε for all t ≥ t0. If, in addition, x(t) → x̄ as t → ∞, then the equilibrium
x = x̄ is said to be asymptotically stable. Furthermore, uniform stability and uniform asym-
potic stability occur when tε can be taken to be zero. Here, we are following the definitions
as given on p. 40 of Hartman [11]. We note the uniformity is in the choice of starting
time and differs from that of some authors (see, e.g. p. 173 of Miller and Michel [20])
where uniform asympotic stability also involves the rate at which the different solutions
tend to x̄.

Several other basic mathematical facts will be of use. From advanced calculus, a set in
R
n is compact if it is closed and bounded; furthermore, any function that is defined and
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continuous on a compact set in R
n assumes both a maximum and a minimum value on

that set. From topology, any open set in R
n consists of countably many disjoint open and

connected components such that any point in the set lies in one and only one of those
components. From linear algebra, x · y = xTy denotes the inner (or dot) product of vectors
x and y. Especially important to us will be that an n × n symmetric matrix S is positive
definite (positive semi-definite, respectively) if and only if the quadratic form – defined
by xTSx – is positive definite (positive semi-definite, respectively); that is, if and only if
x · Sx >0 (x · Sx ≥0, respectively) for all x �= 0. Additionally, a symmetric matrix S has
real eigenvalues and is positive definite ( semi-definite, respectively) if and only if all its
eigenvalues are positive (non-negative, respectively). We let λ1(S) ≤ λ2(S) ≤ · · · ≤ λn(S)
be the eigenvalues of a symmetric matrix S listed in increasing order. In our proof, we will
focus on the smallest eigenvalue of P(t), i.e ., λ1(P(t)). In particular, we will use the fact
that x · (P(t)x) ≥ λ1(P(t))(x · x) for any x in R

n.
As a final preliminary, Lyapunov functions will play an important role in our proofs.

A real-valued function g that is defined and continuous near a point x = x̄ in R
n is said

to be positive definite (positive semi-definite, respectively) at x̄ if g(x̄) = 0 and g(x) > 0
(g(x) ≥ 0, respectively) for all x �= x̄ in some ball Br(x̄) centred at x̄ with positive radius
r. Any real-valued function V defined on the domain Dmay be composed with a solution
x = x(t) of (E) to form a real-valued functionVx(t) = V(x(t)) of the real variable t. IfV is
differentiable, then Vx is as well; in this case, the so-called trajectory derivative is given by

V ′
x(t) = ∂V

∂x1
(x(t))x′

1(t) + ∂V
∂x2

(x(t))x′
2(t) + · · · + ∂V

∂xn
(x(t))x′

n(t)

= x′(t) · ∇V(x(t)) = −(P(t)∇f (x(t))) · ∇f (x(t)).

If x = x̄ is an equilibrium solution of (E), then a Lyapunov function at x̄ is any real-valued
function V that (1) is defined and continuously differentiable on D, (2) is positive definite
at x̄, and (3) has trajectory derivatives satisfying V ′

x(t) ≤ 0 for t ≥ 0.
Given the preceding preliminaries, now consider the following hypotheses:

H1: f has an isolated local maximum value at the point x̄ ∈ D;
H2: x̄ is an isolated critical point of f ; and
H3: eigenvalue condition (EC) holds.

Note thatH1 �=⇒ H2 andH2 �=⇒ H1 onD. Our stability results are contained in the
following theorem.

Theorem 2.1 (Stability and Asymptotic Stability):

(i) If H0 and H1 hold, then x = x̄ is a uniformly stable equilibrium solution of (E).
(ii) IfH0,H1,H2 andH3 all hold, then x = x̄ is a uniformly asymptotically stable equilibrium

solution of (E).

Proof: (i) follows from standard Lyapunov theorems (see, for example, Theorem 8.3, p.
40 in Hartman [11]); however, we include a proof here in the interest of making this paper
self-contained and because it leads into the proof of (ii). SupposeH0 andH1 hold. Let ε > 0
be given. LetM = f (x̄). Choose r>0 with r < ε and such that f (x) ≤ M for |x − x̄| < r.
Since f has an isolated maximum value at x̄, we may also assume that f (x) < M when
0 < |x − x̄| ≤ r.
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Let V be defined on D by V(x) = M − f (x). Then V is a Lyapunov function at x̄ since
V is positive definite at x̄ and the trajectory derivative

V ′
x(t) = −∇f (x(t)) · x′(t) = −∇f (x(t)) · P(t)∇f (x(t)), (TD)

is nonpositive since P(t) is positive semi-definite. On the closed and bounded set S = {x :
|x − x̄| = r}, V is positive and continuous and hence has a minimum value, call it m
withm>0. Because V is continuous and V(x̄) = 0, we choose δ > 0 such that V(x) < m
for |x − x̄| < δ. Consider any trajectory x(t) of (E) that satisfies |x(t0) − x̄| < δ for some
t0 ≥ 0. Then Vx(t0) = V(x(t0)) < m. Because Vx is nonincreasing for t ≥ t0, the trajec-
tory x(t) can never reach the set S where we would have V(x(t)) ≥ m. Therefore, (see, e.g.
Theorem 3.1, pp. 12–13 of Hartman [11]) we see that x(t) exists for all t ≥ t0; hence, x(t)
stays in Br(x̄) and therefore in Bε(x̄). This proves (i).

Now assume H0, H1, H2, and H3 all hold. Let M and V be defined as in the proof of
(i). Suppose ε > 0. Because x̄ is an interior point of D (i.e. it is not on the boundary of
D) and since H1 and H2 hold, we can restrict ε to be so small that x ∈ D, f (x) < M and
∇f (x) �= 0 for 0 < |x − x̄| ≤ ε. Since we have uniform stability by Part (i), we find δ > 0
with δ < ε such that any solution x(t) satisfying |x(t0) − x̄| < δ at some time t0 ≥ 0 also
satisfies |x(t) − x̄| < ε for all t ≥ t0.

Let x(t) be any solution with |x(t0) − x̄| < δ at some time t0 ≥ 0. To complete the
proof of Part (ii), we need to show that limt→∞ x(t) = x̄. Since we have uniqueness of
solutions to initial value problems, we can assume x(t) �= x̄ for t ≥ t0. Also, for t ≥ t0,
P(t) is positive semi-definite and |x(t) − x̄| < ε so we have Vx(t) = M − f (x(t)) > 0 and
V ′
x(t) = −(P(t)∇f (x(t))) · ∇f (x(t)) ≤ 0. Therefore, c ≡ limt→∞ Vx(t) exists with c ≥ 0.

We prove that c=0. Suppose not, then c>0. SinceV(x̄) = 0, we use the continuity ofV to
choose δ1 with 0 < δ1 < δ so thatV(x) < c for |x − x̄| < δ1. BecauseVx(t) = V(x(t)) > c
for all t ≥ t0, the trajectory x(t) stays in the region {x : δ1 ≤ |x − x̄| ≤ ε} for all t ≥ t0. On
this compact region, the continuous function∇f (x) · ∇f (x) is positive and hence assumes
a positive minimum valuem1 at some point in the set. Hence, for t ≥ t0, we get that

V ′
x(t) ≤ −λ1(P(t))∇f (x(t)) · ∇f (x(t)) ≤ −m1λ1(P(t)).

Consequently,

Vx(t) = Vx(t0) +
∫ t

t0
V ′
x(s) ds ≤ Vx(t0) −

∫ t

t0
m1λ1(P(s)) ds,

for t ≥ t0. But then (EC) implies that Vx(t) → −∞ as t → ∞ contradicting that Vx(t)
stays positive. This proves that limt→∞ Vx(t) = 0.

Finally, we prove that limt→∞ x(t) = x̄. Suppose not. Then there exists ε1 with 0 < ε1 <

ε and arbitrarily large values of t where |x(t) − x̄| ≥ ε1. For such t, Vx(t) = V(x(t)) ≥ m2
wherem2 is defined to be the minimum value ofV(x) on the compact set {x : ε1 ≤ x ≤ ε}.
Becausem2 > 0, this contradicts limt→∞ Vx(t) = 0 completing the proof. �

Example 2.1: Asymptotic Stability requires Eigenvalue Condition. The following example
illustrates that an eigenvalue condition, such as we have given in (EC), is necessary in order
to obtain asymptotic stability; that is, if the eigenvalues are too small, then asymptotic
stability may not occur.
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Let P(t) =
[

(t+1)−2 0
0 (t+1)−1

]
and f (x1, x2) = 4 − (x1 − 1)2 − (x2 − 1)2 and consider

the system

x′ =
[
x′
1

x′
2

]
= P(t)∇f (x) =

[−2(x1 − 1)(t + 1)−2

−2(x2 − 1)(t + 1)−1

]
, for t ≥ 0.

Then λ1(P(t)) = (t + 1)−2 and λ2(P(t)) = (t + 1)−1 so
∫ ∞
0 λ1(P(t)) dt < ∞ while∫ ∞

0 λ2(P(t)) dt = ∞. Hence, Theorem 2.1(i) applies to show that the equilibrium solu-
tion x1(t) ≡ 1, x2(t) ≡ 1 where the maximum value of f occurs is a uniformly stable
equilibrium solution, but Theorem 2.1(ii) does not apply to give that the equilibrium
solution is asymptotically stable. In fact, the system is uncoupled and is easy to solve
in closed form to get that the general solution is given by x1(t) = 1 + c1 exp(2/(t + 1)),
x2(t) = 1 + c2(t + 1)−2 where constants c1 and c2 depend upon the initial conditions. We
see that the x1-component of a solution starting at a point where x1 �= 1 does not tend to 1
as t → ∞, rather it approaches 1 + c1; hence the equilibrium solution is not asymptotically
stable. Of course, we do obtain limt→∞ x2(t) = 1 since the one-dimensional differential
equation for x2 involves only the eigenvalue λ2(P(t)) and

∫ ∞
0 λ2(P(t)) dt = ∞.

Next, we produce an example which shows that the hypothesisH2 is essential to the con-
clusion that x =x̄ is asymptotically stable when P(t) satisfies (EC) as in Theorem 2.1(ii).
More specifically, if f has an isolated local maximum at x̄ but x̄ is not an isolated critical
point, then we can only conclude stability, not asymptotic stability. Even for gradient sys-
tems (that is, the case where P(t) is the constant identity matrix), the necessity of adding
the assumption that the point where the isolated local extremum occurs is also an isolated
critical point seems to have been missed by some authors – see Part 3 of the theorem on
page 205 of Hirsch et al. [12] as an example.

Example 2.2: Asymptotic Stability requires Isolated Critical Point. The goal is to produce
a radially symmetric function f (r, θ) using polar coordinates that is continuously differ-
entiable on the unit circle r ≤ 1, that has an absolute maximum value at the origin, that
decreases as r increases, and is such that there is a sequence of concentric circles r = ri
with ri decreasing to zero as i → ∞ and with each r = ri consisting entirely of critical
points of f. We again let P(t) be the 2 × 2 identity matrix, thus satisfying (EC). The sys-
tem x′ = P(t)∇f will then have the properties we seek, namely, we no longer have isolated
critical points of f.

We first define sequences xn and zn by xn = −2−n and zn = (1 − 4−n)/3 for n =
0, 1, 2, . . .. Let In be the interval [xn, xn+1]. The union of the intervals In is then the interval
[−1, 0). We define a function p(x) on the interval [−1, 0)which is restricted to the interval
In is a cubic polynomial pn(x). Furthermore, we require each pn(x) to satisfy

pn(xn) = zn, p′
n(xn) = 0, pn(xn+1) = zn+1, p′

n(xn+1) = 0. (1)

Letting pn(x) = α(x − xn)3 + β(x − xn)2 + γ (x − xn) + δ and using the requirements
in (1), we find after some algebra and calculus that α = −2n+2, β = 3, γ = 0 and δ =
(1 − 4−n)/3. We then find, again using calculus, that p′

n(x) > 0 for x in the open interval
(xn, xn+1) and the maximum value of p′

n on the interval In is 3/2n+2. We then extend p(x)
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Figure 1. Graph of the bivariate polynomial spline used in Example 2.2 and the associated phase por-
trait. The dotted lines in the phase portrait indicate the locations the critical points given by concentric
circles of radius ri = 2−n (only n= 0,1,2,3,4 are shown). The vector field clearly shows asymptotic stabil-
ity will not occur because a trajectory starting outside r = ri is ‘trapped’ away from x̄ by the circle r = ri
and cannot approach x̄ as t → ∞. The smaller vectors indicate the diminished magnitude of change in
the vicinity of critical points.

to the closed interval [−1, 0] by defining p(0) = 1/3. This makes p continuous on [−1, 0].
Considering difference quotients, it is easy to see that the left-hand derivative of p at x=0
exists and has value zero.We symmetrically extend the definition of p to the interval [−1, 1]
by letting p(x) = p(−x) for 0 < x ≤ 1. Taking into account the way the cubic polynomials
were pieced together at the endpoints and the fact that the maximum value of p′(x) on the
interval In approaches zero as n → ∞, we see that p has a continuous derivative on the
interval [−1, 1].

Finally, we define the radially symmetric f (r, θ) = f (r) by taking f (r) = p(r) for 0 ≤
r ≤ 1, 0 ≤ θ ≤ 2π . Clearly, at any point on a circle r = |xn|, we have fr = fθ = 0 since
p′(xn) = 0 and f is independent of θ . Hence, all points on r = |xn| are critical points of f
and yield equilibrium solutions of x′ = ∇f . Even though f has an isolated maximum value
at the origin, x = (0, 0) is not an asymptotically stable equilibrium solution since solu-
tions starting at t=0 between two concentric circles r = |xn| and r = |xn+1| are trapped
in that region and cannot approach the origin as t → ∞. Of course, Theorem 2.1(i) still
applies to give that x = (0, 0) is a stable equilibrium. Figure 1 shows the graph of the radially
symmetric cubic spline f and the associated phase portrait for this system.

Some general remarks can be made regarding when (EC) might be satisfied. From a
mathematical perspective, as long as λ1(P(t)) decreases at a slow enough rate, then the
integral will diverge to infinity. Thus, for example, if λ1(P(t)) is decreasing at a rate pro-
portional to 1/t, then (EC) will be met. However, if λ1(P(t)) is decreasing at a much faster
rate proportional to 1/t2, then the integral will converge and (EC) is not satisfied. From a
biological perspective, little is known about how P(t) evolves. Typically, P(t) is assumed to
be constant, though this has been a subject of debate. As long as a zero eigenvalue does not
exist, (EC) will be satisfied under the assumption of constancy. Zero eigenvalues are rarely
(if ever) found in empirical studies of P(t).



46 B. J. RIDENHOUR AND J. R. RIDENHOUR

3. Basin of attraction

Given a uniformly asymptotically stable equilibrium x̄ of (E), it is of interest to know the
set of points x0 such that the trajectory starting at point x0 at some time t0 exists for all
t ≥ t0 and approaches x̄ as t tends to infinity; that is, the so-called basin of attraction of
x̄. The following theorem provides information on the basin of attraction in the setting of
Theorem 2.1(ii).

Theorem 3.1 (Basin of Attraction): Suppose H0, H1, H2, and H3 all hold. Let M = f (x̄),
let c be a real number less than M and let Oc,x̄ be the set defined by Oc,x̄ = {x̄} ∪ {x : c <

f (x) < M}. Then Oc,x̄ is open and has a unique component Ec,x̄ that contains x̄. Let ∂Ec,x̄
denote the boundary of Ec,x̄, and let Ec,x̄ = Ec,x̄ ∪ ∂Ec,x̄ denote the closure of Ec,x̄. Consider
additional hypotheses:

H4 : Ec,x̄ is bounded and Ec,x̄ is contained in D;
H5 : f (x) = c for all x in ∂Ec,x̄; and
H6 : f has no critical points other than x̄ in Ec,x̄.

If H4, H5, and H6 also hold, then Ec,x̄ is contained in the basin of attraction of x̄.

Proof: Suppose H0 through H6 all hold. Let M, c and Oc,x̄ be as defined above. We first
prove Oc,x̄ is open. By the continuity of f, the set {x : c < f (x) < M} is open. Using the
continuity of f and the fact that f has an isolated maximum value at x̄, choose δ > 0 such
that f is defined on the ball Bδ(x̄), f (x) < M for 0 < |x − x̄| < δ and |f (x) − M| < M − c
for x ∈ Bδ(x̄). Then c < f (x) < M for 0 < |x − x̄| < δ so Bδ(x̄) is open, contains x̄, and is
contained inOc,x̄. It follows that the setOc,x̄ = Bδ(x̄) ∪ {x : c < f (x) < M} is open. Hence,
there is a unique open component Ec,x̄ of Oc,x̄ that contains the point x̄.

Let x0 be any point of Ec,x̄ and let x(t) be the solution of (E) satisfying the initial
condition x(t0) = x0 for some t0 ≥ 0. We wish to prove that x(t) exists for t ≥ t0 and
limt→∞ x(t) = x̄. This is clearly true if x0 = x̄ so we assume x0 �= x̄ and, in light of the
uniqueness of solutions to initial value problems, that x(t) �= x̄ for all t ≥ t0. As before,
we let V(x) = M − f (x) for x in D. While the trajectory x(t) remains in Ec,x̄, we have by
H6 that the trajectory derivative satisfies V ′

x(t) = −P(t)∇f (x(t)) · ∇f (x(t)) < 0. Because
Vx(t0) < M − c andVx(t) decreases as t increases, the trajectory x(t) can never reach ∂Ec,x̄
where, by H5, Vx(t) would equal M−c. Hence, x(t) stays in the region Ec,x̄ and therefore
in the set Ec,x̄ so long as the solution x(t) continues to exist. By H4, Ec,x̄ is both closed
and bounded and therefore compact. Since x(t) stays in a compact subset of D, it follows
directly from Theorem 3.1 of Hartman [11], that the right-maximal interval of existence
of x(t) as a solution of (E) cannot be of the form [t0,ω) with ω < ∞. Thus, the solution
x(t) exists for all t ≥ t0.

From here on, the proof essentially follows that of Theorem 2.1(ii), but we repeat some
of the details for clarity. First, let limt→∞ Vx(t) = α and suppose α > 0. Then using the
continuity of V, find δ > 0 small enough that 0 < V(x) < α for 0 < |x − x̄| < δ. Now the
set Ec,x̄\Bδ(x̄) is closed and bounded by H4, so, by H6, the continuous function ∇f (x) ·
∇f (x) assumes a positive minimumm1 on that set. Because x(t) never enters the set Bδ(x̄)
where we would have Vx(t) = V(x(t)) < α, we get that V ′

x(t) ≤ −m1λ1(P(t)) for t ≥ t0.
This leads to Vx(t) → −∞ as t → ∞, a contradiction which shows that α = 0.
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The next step is to prove that limt→∞ x(t) = x̄. To do this, suppose limt→∞ x(t) �= x̄.
There then exists an ε > 0 such that |x(t) − x̄| ≥ ε for arbitrarily large values of t. The
function V(x) is positive and continuous on the compact set Ec,x̄\Bε(x̄), hence, V(x) has a
positive minimum, call it m2, on the set Ec,x̄\Bε(x̄). However, there are arbitrarily large
values of t where x(t) ∈ Ec,x̄\Bε(x̄) for which Vx(t) = V(x(t)) ≥ m2. This contradicts
limt→∞ Vx(t) = 0 and completes the proof. �

We note that LaSalle’s Theorem can be used to obtain information on the basin of
attraction of an equilibrium solution – for example see Theorem 6.1 in Leighton [18],
Theorem 11.11 in Miller and Michel [20], or the theorem on p. 200 of Hirsch et al. [12].
However, those results deal with autonomous systems and do not apply to (E).

We conclude by giving an example illustrating both the use of Theorem 3.1 and the role
played by hypotheses H5 and H6 of that theorem.

Example 3.1: Basins of Attraction. Let f (x1, x2) = 96x2 − 84x22 + 28x32 − 3x42 − 10(x1 −
2)2. Let P(t) be any 2 × 2 matrix-valued function defined and continuous for t ≥ 0 and
such that the eigenvalue condition (EC) holds. Equation (E) becomes[

x′
1

x′
2

]
= P(t)

[ −20(x1 − 2)
−12(x2 − 1)(x2 − 2)(x2 − 4)

]
.

Then f has local maximum values at the points p1 = (2, 1) and p2 = (2, 4) and a saddle at
p3 = (2, 2) with f (2, 1) = 37, f (2, 4) = 64 and f (2, 2) = 32. A sketch of the graph of f is
shown in Figure 2.

For a real number c, let Lc denote the level set defined by Lc = {(x1, x2) : f (x1, x2) = c}.
The level set L33 is shown in Figure 2. L33 consists of two simple closed curves; we let Cp1
and Cp2 denote the curve having the point p1 and p2 (respectively) as an interior point.
Then the set E33,p1consists of all points interior to Cp1 while E33,p2 consists of all points
interior to Cp2 . Theorem 3.1 applies and shows that all trajectories x(t) having x(t0) in
E33,p1 tend to p1 as t → ∞, with a similar conclusion for trajectories in E33,p2 . It is interest-
ing to consider E20,p1 = {p1} ∪ {x : 20 < f (x) < 37} and E20,p2 = {p2} ∪ {x : 20 < f (x) <

64}. First, E20,p2 contains all points interior to a simple closed curve containing both p1 and
p2 in its interior; hence, Theorem 3.1 does not apply to E20,p2 because H6 is violated. On
the other hand, E20,p1 consists of E20,p2\E37,p2 . Now, Theorem 3.1 does not apply to E20,p1
because the boundary of E20,p1 contains points of the level set L37 at which f takes on the
value 37 thus violatingH5; clearly some trajectories starting in E20,p1 will tend towards the
boundary points in L37 while others will tend toward p1.

In practice, Theorem 3.1 highlights an easy approach for biologists to understand the
long-termevolutionary dynamics in their systemof interest. All that needs to be established
is the fitness function, such as the one plotted in Figure 2. Once the fitness function has
been estimated, level sets can be drawn (by choosing various values of c to define Ec,x̄)
to establish basins of attraction for the maxima of the function by applying the theorem.
This approach might be particularly useful in the case of rugged fitness landscapes. The
previous statements assume the researchers either know about P(t) or are willing to make
the (commonly applied) simplifying assumptions that P(t) is constant and λ1(P(t)) > 0,
thus satisfying (EC).
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Figure 2. Plot of f (x1, x2) from Example 3.1. In the plot on the left, the level sets L37 (black), L33 (red),
and L20 (blue) are superimposed on the surface. A level set in R

2 is a curve where f (x1, x2) = c, thus,
for example, L37 is the curve given by f (x1, x2) = 37. The plot on the right depicts the sets of points
interior to the level set curves using the same colour scheme (e.g. E20,p1 is blue like L20). For illustration
purposes, the elevation of the set was chosen to be the number c in the definition of Ec,pi ; thus the labels
for each set include the cross-product with the elevation (e.g. E20,p1 × {20}). Theorem 3.1 does not apply
to E20,p1 because the function f assumes the value 37 on the inside boundary and the value 20 on the
outside boundary, thus violating hypothesis H5.

Conclusions

We have demonstrated conditions for the existence and stability of equilbria in modified-
gradient systems. Such systems include the continuous-time multivariate breeders
equation with a time-dependentG-matrix which is frequently used by evolutionary biolo-
gists. Our research shows that biologists can simply search for the isolated local maxima of
a fitness function; these points are guaranteed to be at least uniformly stable. Furthermore,
in cases where the smallest eigenvalue of the G-matrix, λ1(P(t)) in our notation, meets
the condition

∫ ∞
0 λ1(P(t)) dt = ∞, then the equilibrium is guaranteed to be uniformly

asymptotically stable. In general this condition may be broadly met in biological systems
(though this needs further testing), because the smallest eigenvalue can be decaying over
time at a rate as rapid as 1/t and still meet the condition. Finally, an understanding of the
inverse image under the fitness function f of intervals of the form (c, f (x̄)) gives informa-
tion on the basin of attraction of an equilibrium at x̄. Thus, if biologists can easily determine
f, our work shows the long-term dynamics of the traits being studied can be understood.

One of the more notable findings of this work is that, as long as (EC) is satisfied, evo-
lution of the G-matrix does not affect the stability or existence of equilibria. For the most
part, biological research involving the multivariate breeder’s equation assumes that this
matrix is constant in time, however this constancy has greatly been debated. Regardless of
whether the G-matrix remains constant, there are two main reasons to believe that (EC)
will be satisfied. First, all empirical studies of theG-matrix to date have found that additive
genetic variation exists for all continuous traits under study (i.e. only those traits controlled
by one or a few genetic loci– such as eye colour – are examples of traits that go to ‘fixation’).
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This finding implies that there are never zero-valued eigenvalues for theG-matrix. Second,
mutations are known to occur regularly in the genes controlling most (if not all) pheno-
types. The values of genetic variation in any trait largely end up being a balance of the
force of natural selection on a trait and the mutation rate [6]. Thus the process of mutation
strongly implies that some variation will exist in nearly all continuous phenotypic traits,
and – even if the net genetic variation is being eroded – it is unlikely to be decaying quickly
enough to violate (EC).

Our theorems imply that, if field biologists are only interested in the long-termdynamics
of a system, emphasis should be placed on collecting data regarding fitness and pheno-
types in order to estimate the shape of natural selection in the system. Once such data are
available, it would in theory be possible to find the potential critical points of the fitness
function and, accordingly, obtain information on the basins of attraction for any of the
potential equilibria. This also has important implications for the shifting balance theory of
evolution hypothesized byWright [25]. One of the key phases of the shifting balance theory
is that populations ‘explore’ the adaptive landscape (via processes like mutation, gene flow,
or genetic drift). Some populations will pass through adaptive valleys to find new adaptive
peaks (local fitness maxima) and potentially find a global fitness maximum. Theorem 3.1
details when a population will be in the basin of attraction for a potential adaptive peak.
These findings also support the general concept that evolution by natural selection is a hill-
climbing process and that the G-matrix will rarely, if ever, prevent a system from reaching
a fitness maximum in the long term.

While our work suggests that collection of data regarding the additive genetic covari-
ance for the G-matrix may be unnecessary for understanding the long-term dynamics of
evolutionary systems, short-term dynamics will still be influenced by the structure of this
matrix. For example, if genetic variation is lacking but not absent, then trajectories towards
the nearest local maximum will proceed more slowly. Conversely, with increased genetic
variationwe expect the rate of evolution toward an adaptive peak to be relatively faster. This
is essentially a recapitulation of the fundamental theorem of natural selection [10]. Thus
depending on the application and interest (i.e. short-term versus long-term dynamics),
genetic data may still be necessary to collect.

Finally, our results imply that use of adaptive dynamics may be more closely related and
more similar to quantitative genetic analyses than commonly thought. Adaptive dynamic
models essentially ignore genetic details of biological systems in favour of greater ecological
detail. Typically, in such analyses a so-called ‘invasion fitness’ is often assumed to show
when certain phenotypes may ‘invade’ a population (or other species, etc.). Traditionally
the critical points and derivative of the invasion fitness are then studied to draw conclusions
about ecological or evolutionary outcomes. To a certain degree, the methods of adaptive
dynamics therefore parallel Theorem2.1 and our suggested analyses of systems that involve
the use of the (more) genetically explicit multivariate breeder’s equation.

Disclosure statement

The authors have no conflicts of interest to disclose related to this research.

ORCID

Benjamin J. Ridenhour http://orcid.org/0000-0001-8271-4629

http://orcid.org/0000-0001-8271-4629


50 B. J. RIDENHOUR AND J. R. RIDENHOUR

References

[1] S.J. Arnold, R. Bürger, P.A. Hohenlohe, B.C. Ajie, and A.G. Jones, Understanding the evolution
and stability of the G-matrix, Evolution 62 (2008), pp. 2451–2461.

[2] M. Björklund and L. Gustafsson, The stability of the G-matrix: The role of spatial heterogeneity,
Evolution 69 (2015), pp. 1953–1958.

[3] M.W. Blows and A.A. Hoffmann, A reassessment of genetic limits to evolutionary change,
Ecology 86 (2005), pp. 1371–1384.

[4] M.W. Blows and K. McGuigan, The distribution of genetic variance across phenotypic space and
the response to selection., Mol. Ecol. 24 (2015), pp. 2056–2072.

[5] R. Bürger, Constraints for the evolution of functionally coupled characters: A nonlinear analysis
of a phenotypic model, Evolution 40 (1986), pp. 182–193.

[6] J.F. Crow,Basic Concepts in Population, Quantitative, and EvolutionaryGenetics,W.H. Freeman,
New York, 1986.

[7] F. Débarre, S.L. Nuismer, andM.Doebeli,Multidimensional (co)evolutionary stability, Am.Nat.
184 (2014), pp. 158–171.

[8] G.E. Dickerson, Genetic slippage in response to selection for multiple objectives, Cold Spring
Harb. Symp. Quant. Biol. 20 (1955), pp. 213–224.

[9] S. Engen, R. Lande, and B.E. Sæther, A quantitative genetic model of r- and K-selection in a
fluctuating population, Am. Nat. 181 (2013), pp. 725–736.

[10] R.A. Fisher, The Genetical Theory of Natural Selection, The Clarendon press, Oxford, 1930.
[11] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.
[12] M.W. Hirsch, S. Smale, and R.L. Devaney, Differential Equations, Dynamical Systems, and an

Introduction to Chaos, 2nd ed., Pure and applied mathematics; a series of monographs and
textbooks, vol. 60, Academic Press, San Diego, CA, 2004.

[13] R. Lande, Natural-selection and random genetic drift in phenotypic evolution, Evolution 30
(1976), pp. 314–334.

[14] R. Lande, Quantitative genetic analysis of multivariate evolution, applied to brain: Body size
allometry, Evolution 33 (1979), pp. 402–416.

[15] R. Lande,A quantitative genetic theory of life history evolution, Ecology 63 (1982), pp. 607–615.
[16] R. Lande and S.J. Arnold, The measurement of selection on correlated characters, Evolution 37

(1983), pp. 1210–1226.
[17] D.C. Laughlin and J. Messier, Fitness of multidimensional phenotypes in dynamic adaptive

landscapes, Trends Ecol. Evol. 30 (2015), pp. 487–496.
[18] W. Leighton,An Introduction to the Theory of Ordinary Differential Equations,Wadsworth Pub.

Co, Belmont, CA, 1976.
[19] J.L. Lush, Animal Breeding Plans, Iowa State University Press, Ames, IA, 1937.
[20] R.K.Miller andA.N.Michel,OrdinaryDifferential Equations, Academic Press, NewYork, 1982.
[21] J.R. Nahum, P. Godfrey-Smith, B.N. Harding, J.H.Marcus, J. Carlson-Stevermer, and B. Kerr,A

tortoise–hare pattern seen in adapting structured and unstructured populations suggests a rugged
fitness landscape in bacteria, Proc. Nat. Acad. Sci. (2015), p. 201410631.

[22] J. Neidhart, I.G. Szendro, and J. Krug, Adaptation in tunably rugged fitness landscapes: The
Rough Mount Fuji Model, Genetics 198 (2014), pp. 699–721.

[23] C.M. Pease and J.J. Bull, A critique of methods for measuring life history trade-offs, J. Evol. Biol.
1 (1988), pp. 293–303.

[24] M.C.Whitlock, P.C. Phillips, F.B.G. Moore, and S.J. Tonsor,Multiple fitness peaks and epistasis,
Annu. Rev. Ecol. Syst. 26 (1995), pp. 601–629.

[25] S. Wright, Evolution in mendelian populations, Genetics 16 (1931), pp. 97–159.


	1. Introduction
	2. Existence and stability of equilibria
	3. Basin of attraction
	Disclosure statement
	ORCID
	References

