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    Common Raven (Corvus corax; hereafter
raven) numbers have increased severalfold in
the western United States during the last
several decades (Boarman 1993, Boarman and
Berry 1995, Sauer et al. 2011). These ravens
pose health and safety hazards to humans by
roosting and defecating in areas used by
humans (Engel et al. 1993, Merrell 2012).
Ravens also kill young livestock (Larson and
Dietrich 1970, Spencer 2002) and wildlife
species including the desert tortoise (Gopherus
agassizii), California Least Tern (Sterna antil-
larum browni), and Greater Sage-Grouse
(Centrocercus urophasianus; Linz et al. 1990,
Boarman 2003, Coates et al. 2008). Studies on
raven ecology usually occur during the spring
and summer when ravens cause problems. By

comparison, little research has focused on the
winter ecology of ravens in the western U.S.
What is known about the winter ecology of
ravens in the western U.S. suggests that it is
different from that of ravens in the eastern
U.S. Ravens in the western U.S. utilize land-
fills heavily in winter (Dorn 1972, Preston
2005), whereas exposed carcasses are the main
winter food source of ravens in the eastern
U.S. (Heinrich 1988, Marzluff and Heinrich
1991, Wright et al. 2003). In the West, ravens
often roost in anthropogenic structures rather
than in trees and on natural substrate as they
do in the East (Brown 1974, Lucid and Conner
1974, Temple 1974, Engel et al. 1992, Cotter-
man and Heinrich 1993, Marzluff et al. 1996,
Wright et al. 2003, Merrell 2012).
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WINTER ECOLOGY AND SPRING DISPERSAL 
OF COMMON RAVENS IN WYOMING

Luke W. Peebles1 and Michael R. Conover1,2

      ABSTRACT.—Numbers of Common Ravens (Corvus corax) have increased in western North America, and these high
abundances are the source of problems throughout the species’ range. Little is known about the winter ecology of
ravens. We studied a population of ravens in Wyoming during the winters of 2013–2015; our goals were to examine use
of landfills for foraging and use of anthropogenic structures for roosting, as well as dispersal patterns of ravens from
these landfills in the spring. On average, 22% of radio-marked ravens foraged at landfills on a given day and 68% roosted
at anthropogenic sites (e.g. on buildings or underneath bridges) each night. Daily counts at an anthropogenic roost and
at the nearest landfill were positively correlated. Decreased temperatures increased raven use of landfills and anthro-
pogenic roost sites. In the spring, radio-marked and GPS-marked ravens (n = 56) dispersed an average of 38 km from
the landfills where they were captured. Use of landfills and anthropogenic roost sites in the winter likely contributes to
an increase in the number of ravens by improving survival and body condition of breeding-age birds. In the spring,
ravens moved outward from these locations, and the area most susceptible to raven damage was localized within a 40-km
radius of where ravens wintered.

     RESUMEN.—El número de cuervos (Corvus corax) al oeste de América del Norte aumentó, lo que ha sido un factor pro-
blemático a lo largo de su hábitat. Además, se conoce poco acerca de su ecología durante el invierno. Estudiamos una
población de cuervos en Wyoming durante los inviernos de 2013–2015. Nuestros objetivos fueron examinar el uso de los
vertederos durante el forrajeo y el uso de las estructuras antropogénicas durante el reposo, así como los patrones de disper-
sión de los cuervos en estos vertederos, durante la primavera. En promedio, el 22% de los cuervos radio-marcados se ali-
mentaron en los vertederos en un día determinado y el 68% descansó en sitios antropogénicos cada noche (por ejemplo,
edificios o debajo de puentes). Los conteos diarios entre un sitio de descanso antropogénico y el vertedero más cercano se
correlacionaron positivamente. La disminución en las temperaturas provocó que los cuervos utilizaran más los vertederos y
sitios antropogénicos. En la primavera, los cuervos radio-marcados y aquellos marcados con GPS (n = 56) se alejaron, en
promedio, unos 38 km de los vertederos donde fueron capturados. En el invierno, el uso de los vertederos y de los sitios de
descanso antropogénicos contribuye, posiblemente, al aumento del número de cuervos, ya que mejora su supervivencia y
la condición corporal de las aves en edad reproductiva. En la primavera, los cuervos se alejaron de estos sitios, y el área
más susceptible de daño por los cuervos se identificó dentro de un radio de 40 kilómetros de donde hibernaron.

        1Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT 84322-5230.
        2Corresponding author. E-mail: mike.conover@usu.edu
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    Ravens in eastern North America are highly
vagrant when spring approaches. Heinrich et
al. (1994) found that only 1 of 10 radio-
marked ravens captured in February were
present within a 5000-km2 area by mid-March
when breeding pairs of ravens establish nests.
In western North America, raven dispersal
from areas of winter congregation has not
been described.
     In Wyoming, ravens congregate in large
numbers during the winter at landfills and at
roosts located within anthropogenic structures.
To determine raven fidelity to landfills and
anthropogenic roost sites, we examined weekly
and daily use of these locations by ravens. We
then compared raven count data between spe-
cific landfill–roost pairs and determined their
connectivity. We tested how different environ-
mental variables (e.g., day length, lunar cycle,
precipitation, and temperature) explain the
daily variation in numbers of ravens using land-
fills and anthropogenic roost sites. Finally, we
looked at raven dispersal from landfills to spring
locations to determine how far ravens traveled.

STUDY AREA

     We monitored raven activity at 3 landfills and
5 large (>150 ravens) roosts in southwestern

Wyoming in Lincoln and Sweetwater counties
during the winter months (November–March)
from 2013 to 2015 (Fig. 1). The Green River
landfill was 24 km from the Rock Springs land-
fill; both of these were approximately 60 km
from the Kemmerer landfill. No other landfills
were located in these counties. The Kemmerer
landfill was monitored in all 3 years, and 79%
of the ravens we captured for radio-marking
were captured there. Garbage at this landfill
was packaged daily into large bales, stacked in
an open pit, and covered with approximately
15 cm of dirt. However, the sides of the
newest rows of bales were left exposed and
available for raven foraging. We also captured
ravens at the Uinta and Rock Springs landfills
and monitored these sites for raven activity
after the discovery of radio-marked ravens at
these locations in November 2014 and January
2015, respectively. Both of these landfills uti-
lized a “loose-fill” approach: garbage was
dumped into an open pit, crushed with a com-
pactor, and covered with approximately 15 cm
of dirt 2 to 3 times a week.
    Our study area in rural Wyoming lacked
large groves of trees suitable for roosting in
the winter months. Instead, ravens roosted at
industrial sites or under bridges. To locate
raven roosts, we examined numerous bridges
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    Fig. 1. Map of the study area, showing the locations of 5 anthropogenic roosts and 3 landfills used by ravens in south-
western Wyoming during the winter months (November–March) from 2013 to 2015. The map shows major highways in
the region, and the Kemmerer area is enlarged to show detail.



and chemical plants for radio-marked ravens,
questioned plant personnel and local residents,
used night surveys (visual and audio), and
looked for whitewash (areas of large amounts
of raven fecal matter). This extensive effort
revealed the location of 5 large (≥150 ravens)
roost sites during the winters of 2013–2015.
During the winter of 2013, a 125-m-long
viaduct in Kemmerer was used as a roost by
ravens (hereafter “viaduct roost”), but a year
later ravens abandoned this roost and moved
to a 70-m-long railroad bridge next to the
Kemmerer Port of Entry (hereafter “Port of
Entry roost”). At both structures, ravens roosted
below the road deck pavement on metal I-
beams, which provided overhead and horizon-
tal protection. In the winter of 2015, the
ravens at the Port of Entry roost split, and
60% to 75% of the ravens roosted at an aban-
doned molten sulfur–loading terminal owned
by Encana, an energy corporation (hereafter
“Encana roost”). The predominant roosting
structures at the Encana roost were storage
tanks, metal I-beams, and the metal over-
head walkway. These structures were not
enclosed but had horizontal protection and
limited overhead protection. We monitored 2
other roosts from 2013 to 2015: the Shute
Creek natural gas plant (hereafter “Shute Creek
roost”) and the Solvay Chemicals soda ash
plant (hereafter “Solvay Chemicals roost”). At
these industrial sites, ravens roosted mainly
on pipe racks where heated gas was being
piped in the facilities.
     Our study area had a mean elevation of 2100
m and consisted largely of sagebrush (Artemisia
spp.) plant communities. Agricultural use was
limited to mainly cattle and sheep grazing
across the study area; most land was managed
for multiple use by the Bureau of Land Man-
agement (BLM). Oil and gas sequestration
represented the highest land use activity out-
side of agriculture. During the winter months
from 2013 to 2015, Kemmerer received an aver-
age seasonal precipitation of 6 cm, and daily
temperatures averaged −4 °C. Green River and
Rock Springs received 7 cm of precipitation
from November 2014 to March 2015; daily
temperatures over this period averaged −0.1 °C.

METHODS

    We captured ravens using #3 leghold traps
(Soft Catch® Coil, Oneida Victor®, Euclid,

OH) placed within landfills and near roadkills
or carcasses. We captured and radio-marked
73 ravens during this study (23, 25, and 25
during the winters of 2013, 2014, and 2015,
respectively). The number of ravens known to
be alive was 23 during the winter of 2013, 32
during 2014, and 34 during 2015; these
include surviving ravens marked in previous
years. Ravens were equipped with either a
19- or 24-g VHF backpack transmitter (Model
A1135/A1140, Advanced Telemetry Systems,
Isanti, MN) or a 30-g solar-powered GPS PTT
transmitter (North Star Science and Technol-
ogy, King George, VA) that weighed <3% of
their body weight. Mass measurements as well
as age classifications ( juvenile/adult) based on
mouth color and plumage characteristics were
taken for individuals (Kerttu 1973, Heinrich
and Marzluff 1992).
    Stationary data loggers (Model 4500S,
Advanced Telemetry Systems) equipped with
3-element Yagi antennas (Communications
Specialists, Orange, CA) recorded telemetry
data for radio-marked ravens at landfills and
anthropogenic roost sites on a continual basis
throughout the winter months. Data loggers
were systematically moved among all landfills
and roosts so that all were covered during
each winter. We programmed the data loggers
to detect transmitter frequencies and store
them for subsequent downloading. We also
utilized Communications Specialists R-1000
receivers and 3-element Yagi antennas at land-
fills (throughout the day) and at anthropogenic
roost sites (once each night after all roosting
ravens were present) where data loggers were
not stationed.
    Ravens equipped with the GPS transmit-
ters were monitored on a daily basis using
data collected from Argos satellites. Six points
per raven per day were collected at 00:00,
07:00, 10:00, 13:00, 16:00, and 19:00 Mountain
Standard Time. We were able to locate ravens
with GPS transmitters on 98% of the days;
solar charging issues (e.g., feathers covering
the solar cell) and raven behavior contributed
to most of the lost fixes (2%).
    We counted ravens at the Kemmerer,
Green River, and Rock Springs landfills multi-
ple times per week to assess changes in raven
numbers across time and sites. Counts were
conducted every 15 min, and surveys usually
lasted from dawn until 1 to 2 h before dark.
Counts were conducted at a predetermined
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elevated location that provided the best view
of the garbage where ravens were foraging
within each landfill. We determined the num-
ber of different ravens using a landfill during a
day by determining the maximum number of
ravens at the landfill during a particular day.
This maximum count, however, needed to be
adjusted to account for ravens that used the
landfill sometime during that day but were not
there at the time of the maximum number. We
did this by determining what proportion of the
radio-marked ravens that were at the landfill
sometime during that day were actually pres -
ent at the time of the maximum raven count.
We then divided the maximum raven count by
that proportion (Peebles and Conover 2017).
Evening roost counts were conducted multi-
ple times per week at the 5 roosts (viaduct,
Port of Entry, Encana, Solvay Chemicals, and
Shute Creek). Surveys consisted of counting
individual ravens as they entered the roost or
associated staging areas. Counts began 1 to 2 h
before dusk, before all but ≤5% of the ravens
arrived, and continued until darkness when
counting was no longer possible.
    We analyzed individual raven use of land-
fills and anthropogenic structures for roosting
over time to determine fidelity at each site.
We monitored radio-marked ravens weekly
and recorded whether they were present or
absent from the roost or landfill they used in
the prior week. We also calculated the per-
centage of radio-marked ravens (those known
to be alive and transmitting signals) that used
landfills and anthropogenic roost sites on a
daily basis. These percentages were calculated
on days and nights when all landfills and
known roost sites were monitored for radio-
marked ravens. To examine connectivity of
landfills and anthropogenic roost sites used by
ravens, we looked at whether the number of
ravens attending landfills and anthropogenic
roost sites were concordant (i.e., landfill atten-
dance and anthropogenic roost attendance
increased and declined similarly) or random
(i.e., no patterns were apparent). We analyzed
these data using a negative binomial regres-
sion, which allows comparisons between
count data that are overdispersed. We looked
to see if roost counts were correlated with the
numbers of ravens at landfills, and we noted
which landfill-roost pairs were significant at
a = 0.05. Roost count data were scant in the
winter of 2012–2013 (n ≤ 10 counts/roost).

Therefore, roost-landfill correlations were only
measured during the winters of 2013–2014
and 2014–2015.
    Ravens often forage 1–2 h just before and
1–2 h immediately after roosting (Engel and
Young 1989). To examine how raven landfill
attendance changes throughout the day, we (1)
grouped the number of radio-marked ravens
present at the landfill hourly and (2) recorded
the total number of radio-marked ravens that
visited each landfill daily. We then divided the
former by the latter to determine the percent-
ages of radio-marked ravens that visited the
landfill during each hour of the day.
    We also examined the hourly attendance at
the landfills, which was calculated from the
raw count data by averaging the four 15-min
counts for each hour. Each landfill’s data were
recorded separately. Data were available from
November to March for the Kemmerer and
Green River landfills, whereas data were
available from January to March for the Rock
Springs landfill.
    From January through March 2015, we
recorded behavior data during each 15-min
landfill count. We classified raven activity into
3 categories: foraging, loafing, and flying. We
focused most of our attention on foraging
behavior, the primary behavior of interest.
Ravens were considered to be foraging if they
were seen swallowing garbage, inserting their
bills into garbage, or competing for food with
conspecifics. Loafing behavior included rest-
ing postures, such as perching, as well as
maintenance behaviors, such as preening.
Individuals were considered as flying anytime
that the bird was airborne. We determined the
percentage of ravens foraging at a landfill for
each 15-min time step by dividing the number
of ravens foraging at each landfill count by the
total number of ravens at each landfill count.
We then grouped foraging behavior data
hourly, similar to the landfill count data, to see
if raven behavior followed a certain time pat-
tern (e.g., ravens foraging intensively in the
crepuscular hours). Each landfill’s behavior data
were recorded separately. A Kruskal–Wallis test
was used to detect differences in raven forag-
ing behavior across all landfills. However, a
Kruskal–Wallis test does not allow identification
of which pairs of behaviors are significantly dif-
ferent. Pairwise comparisons of raven foraging
behavior between different landfills were
made using the “posthoc.kruskal.nemenyi.test”
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function in the PMCMR package, version 1.2,
in R (R Development Core Team, Vienna,
Austria), which compares the differences in
the mean rank sums of the different group
levels (behaviors).
    Environmental conditions may explain
variation in the daily numbers of ravens using
anthropogenic roost sites and landfills. We
obtained daily lunar cycle and day length data
from the Astronomical Applications Depart-
ment of the United States Naval Observatory
(USNO, Washington, DC). Lunar cycle (moon -
light) was recorded as the fraction of the moon
illuminated at midnight, Mountain Standard
Time, without regard to cloud cover. Day
length was recorded as the total time that
any portion of the sun was above the horizon.
Day length data for the project were extracted
from the city closest to each anthropogenic
roost site and landfill.
    We obtained daily climate data from
National Oceanic and Atmospheric Adminis-
tration (NOAA) weather stations located
within the vicinity (<10 km) of landfills and
anthropogenic roost sites. Data obtained from
these stations included daily maximum tem-
perature (Tmax; °C), daily minimum tempera-
ture (Tmin; °C), and daily precipitation (cm),
which was usually snow. Maximum tempera-
tures were applied to the landfill data because
they better represent the daytime tempera-
tures when ravens are foraging. Minimum
daily temperatures, in contrast, were applied
to the roost data because they better represent
nocturnal temperatures.
    We analyzed environmental effects on the
numbers of ravens attending anthropogenic
roosts and landfills using negative binomial
generalized linear models (GLMs) in R. Mod-
els were compared using Akaike’s information
criterion corrected for small sample sizes
(AICc) and Akaike weights (wi; Burnham and
Anderson 2002) by use of the “aictab” function
in the “bbmle” package, version 1.0.17, in R;
this function ranks the models using an infor-
mation theoretic approach. Model averaging
over a cumulative AICc weight of 90% was
utilized when large numbers of models were
competitive (∆AICc < 4) or if model weights
were widely distributed, and thus contained
high amounts of uncertainty (Arnold 2010).
Model averaging was performed using the
“model.avg” function in the “MuMIn” pack-
age, R version 1.10.5, which averages over a

specified subset of models based on an infor-
mation criterion (in this case, AICc). The
model-averaged coefficients were then back-
transformed to report incident rates. Before
analyzing groups of covariates, we used a
Pearson’s correlation matrix to identify multi-
collinearity between pairs of variables. If r ≥
0.65, both variables in the pair were not
included in the same model, but rather the
one that made the most biological sense was
chosen. Precipitation was modeled for landfill
and roost data as a quantitative variable and a
binary categorical variable (no precipitation =
0, precipitation = 1) because precipitation in
the study area was sporadic; 14% of roost
nights and 22% of foraging days had precipita-
tion. We used AICc to determine the more
appropriate measure of precipitation for each
dataset within our modeling scheme.
    Fixed-wing telemetry flights were con-
ducted in the spring to locate radio-marked
ravens and calculate the distance from winter
roost sites. We gridded an area covering
approximately 23,000 km2 centered on Kem-
merer, Wyoming, which was where 85% of
the ravens were captured. The aircraft was
equipped with two 3-element Yagi antennas
mounted on the wing struts to increase detec-
tion probability, and a handheld receiver was
used to locate signals transmitted from ravens.
All flights (n = 6) but one were conducted
from 15 May to 31 May. The exception was a
flight that took place the last week of April
2014. Locations from GPS-marked ravens
were obtained in a similar fashion. However,
because these transmitters record data at
specific time intervals, they were reported
separately from the VHF-marked sample. GPS
locations in April and May were analyzed and
compared with VHF raven data.

RESULTS

    Our sample size of radio-marked ravens
was 23 during the winter of 2012–2013, 32
during 2013–2014, and 34 during 2014–2015.
Use of a landfill or anthropogenic roost site
was highly repeatable over time, with 70% of
ravens using the same landfills and 84% of
ravens using the same roosts in consecutive
weeks. During the day, an average of 22%
(SE 1%) of radio-marked ravens were present
at a landfill. During the evening, 68% (SE
1%) of radio-marked ravens were found at an
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anthropogenic roost site. We analyzed 15
landfill–roost pairs during the 2014 and 2015
winters. Out of 15 analyses, there were only
2 negative binomial regressions that were
significant at a = 0.05; these were between
the Kemmerer landfill and the Port of Entry
roost. The other coefficients were positive, indi-
cating that the number of ravens at roosts and
local landfills changed concurrently (Table 1;
Fig. 2). Radio-marked ravens tended to use
the anthropogenic roost site closest to the
landfill where they were foraging (Table 2).
    We conducted 5004 15-min counts at land-
fills and recorded 4620 h of radio-telemetry
data at landfills from November to March of
2013–2015. At the Kemmerer landfill, raven
numbers (Fig. 3) and the percentage of radio-
marked ravens at the landfill (Fig. 4) increased

slowly throughout the day. At the Green River
and Rock Springs landfills, raven numbers
were highest in the morning, and dropped
afterwards; similar patterns were observed in
the hourly percentages of radio-marked
ravens at these 2 landfills.
    We recorded behavioral observations of
ravens over 2349 15-min landfill counts from
January through March 2015 (Fig. 5). Loafing
(x– = 54%) was the most common behavior at
landfills, followed by foraging (x– = 28%) and
flying (x– = 18%). The percentages of ravens
foraging were significantly different across
landfills (Kruskal–Wallis c2 = 198.67, P <
0.01). Post hoc comparisons revealed that the
Kemmerer landfill had more foraging (x– =
36%) compared to the Green River (x– = 11%,
P < 0.01) and Rock Springs landfills (x– = 24%;
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    TABLE 1. Model coefficients of negative binomial regressions between the numbers of ravens roosting at anthro-
pogenic structures and the total numbers of raven utilizing landfills for specific roost–landfill pairs in southwestern
Wyoming, USA, during the winters of 2014 and 2015 (top portion of table). The distance (km) between specific
roost–landfill pairs (bottom portion of table). The sample sizes of roost counts in the winter of 2013 were small (n < 10);
therefore, no correlations were conducted that year. We compared 264 concurrent roost and landfill counts.

                                                                                                                                       Landfill                                                                                    _________________________________________________________
Year                               Roost                                           Kemmerer                        Green River                      Rock Springs

2014                             Port of Entry                               6.6 × 10−4**                           *                                          *
2014                             Shute Creek                                2.5 × 10−4                               *                                          *
2014                             Solvay                                          4.5 × 10−4                               *                                          *
2015                             Port of Entry                               1.0 × 10−3**                  −1.0 × 10−3                          1.1 × 10−3

2015                             Encana                                      −8.8 × 10−5                         8.8 × 10−4                          4.9 × 10−4

2015                             Shute Creek                                2.6 × 10−4                      −7.5 × 10−4                      −6.9 × 10−4

2015                             Solvay                                          2.6 × 10−4                         1.1 × 10−3                      −6.6 × 10−4

                                                                                                                                       Landfill                                                                                    _________________________________________________________
                                      Roost                                           Kemmerer                        Green River                      Rock Springs

                                     Port of Entry                                     7                                         98                                       111
                                     Shute Creek                                    38                                         67                                         77
                                     Solvay                                              69                                         23                                         39
                                     Encana                                             11                                         95                                       110

*Landfill not monitored that year.
**Indicates a coefficient that is significant at a= 0.05.

    TABLE 2. Proportion of evenings (N) that radio-marked ravens roosted at particular anthropogenic roosts sites after
spending that day at certain landfills. Data were collected from 73 ravens in southwestern Wyoming, USA, 2013–2015.

                                                                                                                                        Roost                                                                                    _________________________________________________________
                                                                                                               POE/              Shute                                           
Landfill                           Year                    N                Viaduct             Encana            Creek             Solvay           Unknown

Kemmerer                      2013                    62                 84%                   *                     **                    **                   16%
Kemmerer                      2014                  313                    *                    84%                  8%                    0%                    9%
Kemmerer                      2015                  381                    *                    80%                  3%                    0%                  17%
Green River                   2015                    48                    *                      2%                  0%                  71%                  27%
Rock Springs                  2015                    38                    *                      0%                  0%                  66%                  34%

*Roost not active that year
**Roost not monitored that year
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    Fig. 2. Estimated numbers of ravens attending the Kemmerer, Green River, and Rock Springs landfills, and the
observed numbers of ravens roosting at anthropogenic roost sites during the winter of 2013–2014 on concurrent days in
southwestern Wyoming, USA.



P < 0.01). Hourly comparisons of foraging
behavior show different behavioral trends
among landfills. A higher proportion of
ravens were foraging during the morning
than during the rest of the day at the Green
River and Rock Springs landfills, but not at
the Kemmerer landfill (Fig. 5). The average
percentages of ravens foraging varied signifi-
cantly among landfills later in the morning
and in the afternoon. The Kemmerer landfill
remained constant in the amount of foraging
observed, the Green River landfill saw rapid
declines in foraging, and the Rock Springs
landfill saw declines in foraging during mid-
day, with a substantial increase in foraging at
the end of the day.

    We analyzed the effects of environmental
variables on raven numbers at landfills for
130 d summed across all landfills. With regard
to the landfill attendance model, the qualita-
tive precipitation model had an AICc score
that was within 4 of the AICc of the quantita-
tive precipitation model, so we used the for-
mer for further analysis (Burnham and Ander-
son 2002). The top 12 AICc-selected environ-
mental models were highly competitive and
contained 90% of the model weight (Table 3);
therefore, we employed model averaging. Tem-
perature had negative effects on numbers of
ravens attending landfills (Table 4); an increase
of 1 °C in temperature resulted in a 7% (95%
CI 4% to 10%) decrease in ravens using
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   Fig. 3. Hourly mean of numbers of ravens utilizing landfills during the winter in southwestern Wyoming, USA,
2013–2015. Data were available for the Kemmerer landfill and Green River landfill from November through March; the
Rock Springs landfill had data from January through March. Data were obtained from 5004 landfill count surveys. Error
bars represent standard error (SE).



landfills. Moonlight, day length, and precipita-
tion were uninformative predictors of the num-
ber of ravens utilizing landfills (Table 4).
    We analyzed the effects of environmental
variables on raven numbers at anthropogenic
roost sites for 241 roost nights. The qualitative
precipitation model for roost attendance had
an AICc score that was within 4 of the AICc of
the quantitative precipitation model, so we
used the former for further analysis (Burnham
and Anderson 2002). The top 7 AICc-selected
environmental models were highly competi-
tive and contained 90% of the model weight
(Table 5); therefore, we employed model aver-
aging. Minimum temperature had a negative

relationship with number of ravens roosting at
anthropogenic structures (Table 6); a decrease
of 1 °C in temperature resulted in a 2% (95%
CI 1% to 4%) increase in the number of ravens
roosting at these locations. Moonlight, day
length, precipitation, and the interaction be -
tween precipitation and minimum temperature
were uninformative predictors of roost size at
anthropogenic structures (Table 6).
    We obtained 51 spring dispersal locations
of VHF-marked ravens from 2013 to 2015
(Fig. 6). VHF-marked ravens dispersed, on
average, 38 km (SE 4 km) from landfills where
they were captured and spent the winter; 75%
dispersed <50 km from their capture locations.
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    Fig. 4. Hourly mean of percentages of radio-marked ravens out of the daily total number of marked ravens that visited
landfills during the winter in southwestern Wyoming, USA, 2013–2015. Data were available for the Kemmerer and
Green River landfills from November through March; the Rock Springs landfill had data from January through March.
Data were obtained from 4620 h of telemetry observations of 73 ravens. Error bars represent standard error (SE).



The longest dispersal distance recorded for a
VHF-marked raven was 98 km. We obtained
1383 locations from 5 GPS-marked ravens
during the spring (Fig. 7). These locations
were an average of 39 km (SE = 1 km) from
the landfills where the ravens were captured;
75% of GPS locations were within 60 km of
the landfills where they were captured. The
furthest recorded distance from the point of
capture for a GPS-marked raven was 151 km.

DISCUSSION

    Ravens regularly visited landfills they
attended the week before; however, only 22%
of the radio-marked individuals were found at
landfills on any given day. Other foraging
sites, including paved highways, towns, and
the numerous livestock operations within the
study site, provided adequate food resources
for ravens. Several studies have shown that
small mammals and the remains of larger
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    Fig. 5. Hourly percentages of ravens foraging, loafing, and flying out of the total number of ravens present at landfill
counts at 3 landfills during the winter months in southwestern Wyoming, USA, in 2015. Data were available from
January through March; behavioral observations were recorded for 2349 landfill count surveys.
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    TABLE 3. Top 16 negative binomial generalized linear models assessing the effect of climatic and rhythmic variables
on the daily numbers of ravens utilizing 3 landfills in southwestern Wyoming, USA, 2013–2015. The daily numbers of
ravens utilizing landfills were calculated by dividing the maximum landfill count by the proportion of radio-marked
ravens utilizing the landfill on that day that were present at the time of the count. Models were compared with Akaike’s
information criterion adjusted for small sample sizes (AICc) and Akaike weights (wi). Count data were obtained for 130 d
summed across all landfills.

Model                                                                                                AICc                    ∆AICc                    k                       wi

Precipitation + Tmax                                                                      1601.0                       0.0                     3                      0.17
Moonlight + precipitation + Tmax                                               1601.0                       0.1                     4                      0.17
Day length + Tmax                                                                        1601.3                       0.3                     3                      0.15
Day length + moonlight + Tmax                                                  1602.5                       1.6                     4                      0.08
Day length + precipitation + Tmax                                              1602.7                       1.8                     4                      0.07
Day length + moonlight + precipitation + Tmax                        1602.7                       1.8                     5                      0.07
Precipitation × Tmax                                                                      1602.8                       1.8                     3                      0.07
Moonlight + (precipitation × Tmax)                                             1602.9                       2.0                     4                      0.07
Tmax                                                                                                1602.9                       2.0                     2                      0.07
Day length + Tmax                                                                         1604.2                       3.2                     3                      0.04
Day length + (precipitation × Tmax)                                            1604.6                       3.6                     4                      0.03
Day length + moonlight + (precipitation × Tmax)                     1604.7                       3.7                     6                      0.03
Precipitation                                                                                    1618.2                     17.3                     2                      0.00
Day length + precipitation                                                             1619.3                     18.3                     3                      0.00
Moonlight + precipitation                                                              1620.2                     19.3                     3                      0.00
Intercept-only                                                                                  1622.3                     21.3                     1                      0.00

   TABLE 4. Parameter estimates for the top AICc-selected model explaining environmental variables that influence
the daily number of ravens utilizing 3 landfills in southwestern Wyoming, USA, 2013–2015. The daily numbers of
ravens utilizing landfills were calculated by dividing the maximum landfill count by the proportion of radio-marked ravens
utilizing the landfill on that day that were present at the time of the count. Count data were obtained for 130 landfill days.

Variable                                                Estimate                           SE                        95% Lower CI               95% Upper CI

Intercept                                                 5.160                            0.573                               4.030                             6.291*
Day length                                              1.711                            2.316                            −2.514                             5.937
Moonlight                                               0.370                            0.228                            −0.082                             0.821
Precipitation                                           0.347                            0.229                            −0.105                             0.799
Tmax                                                    −0.072                            0.014                            −0.101                          −0.042*
Precipitation × Tmax                             0.023                            0.037                            −0.050                             0.097

*Denotes parameter estimates where the 95% confidence intervals do not include zero.

    TABLE 5. Top 15 binomial generalized linear models assessing the effects of environmental variables on the numbers
of ravens roosting at 5 anthropogenic roost sites in southwestern Wyoming, USA, 2013–2015. Models were compared
with Akaike’s information criterion adjusted for small sample sizes (AICc) and Akaike weights (wi). Data were collected for
241 roost nights.

Model                                                                                               AICc                     ∆AICc                    k                       wi

Tmin                                                                                                3193.6                       0.0                      2                      0.29
Precipitation + Tmin                                                                     3194.5                       0.9                      3                      0.18
Moonlight + Tmin                                                                         3195.6                       2.0                      3                      0.11
Day length + Tmin                                                                        3195.7                       2.1                      3                      0.10
Precipitation × Tmin                                                                     3196.5                       3.0                      4                      0.07
Precipitation + moonlight + Tmin                                               3196.6                       3.0                      4                      0.07
Day length + precipitation + Tmin                                             3196.6                       3.0                      4                      0.06
Day length + Tmin                                                                        3197.7                       4.1                      3                      0.04
Moonlight + (precipitation × Tmin)                                            3198.6                       5.0                      4                      0.02
Day length + (precipitation × Tmin)                                           3198.6                       5.0                      4                      0.02
Daylength + moonlight + precipitation + Tmin                        3198.7                       5.1                      5                      0.02
Daylength + moonlight + (precipitation × Tmin)                      3200.7                       7.1                      6                      0.01
Intercept-only                                                                                 3202.2                       8.6                      1                      0.00
Precipitation                                                                                   3203.6                     10.0                      2                      0.00
Day length                                                                                      3203.7                     10.2                      2                      0.00



mammals represent larger proportions of food
items in raven diets than garbage (Temple
1974, Harlow et al. 1975, Engel and Young
1989, Kristan et al. 2004). Ravens regularly
visited anthropogenic roost sites they attended
the week before, and 68% of the radio-marked
sample was found at these sites nightly. This
may be reflective of the low availability of
alternate roosting substrate. Elsewhere in
North America, large raven roosts (>100
ravens) have been found in natural substrate,
such as trees and cliffs (Cushing 1941, Temple

1974, Lucid and Conner 1974, Heinrich
1988). In our study area, which is predomi-
nantly sagebrush, large stands of trees and
cliffs suitable for roosting are rare and distant
from major food sources. Therefore, bridges
and industrial sites represent the most suit-
able roosting structures for large numbers of
ravens during the winter. Ravens in Idaho are
known to use transmission towers (Engel et al.
1992). Similar transmission lines are found
within 15 km of the Kemmerer landfill and
25 km of the Rock Springs landfill; however,
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    TABLE 6. Model-averaged parameter estimates for the top 2 models containing 90% of the AICc weight for environ-
mental variables influencing the numbers of ravens roosting at 5 anthropogenic roost sites in southwestern Wyoming,
USA, 2013–2015. Data were collected for 241 roost nights.

Variable                                                Estimate                            SE                        95% Lower CI               95% Upper CI

Intercept                                                 5.557                            0.223                               5.086                             6.029*
Day length                                           −0.082                            1.053                            −2.157                             1.992
Moonlight                                                0.028                            0.117                            −0.202                             0.257
Precipitation                                           0.134                            0.139                            −0.139                             0.407
Tmin                                                     −0.023                            0.007                            −0.036                          −0.009*
Precipitation × Tmin                             0.005                            0.018                            −0.030                             0.039

*Denotes parameter estimates where the 95% confidence intervals do not include zero.

    Fig. 6. Spring dispersal locations (n = 51) for very high frequency (VHF) radio–marked ravens captured in southwestern
Wyoming, USA, in 2013–2015. The 3 large open circles represent capture locations. Locations were obtained via
radiotelemetry in a fixed-wing airplane equipped with dual 3-element Yagi antennas mounted on the wing struts. Each
radio-marked raven was located once each spring.



ravens were never observed roosting on
them. Also, social interactions are frequent
at roosting sites (Marzluff et al. 1996, Wright
et al. 2003); therefore, the social aspect of
roosts may serve to concentrate ravens at
locations where there is adequate room for
many ravens.
    Landfill use by ravens, for the most part,
was not connected to raven use of anthro-
pogenic structures for roosting in southwest-
ern Wyoming; there was no correlation
between the number of roosting birds and the
number of ravens attending local landfills for
13 of 15 landfill–roost pairs. Marzluff et al.
(1996) and Wright et al. (2003) demonstrated
that roosts are mobile information centers for
determining the location of carcasses, which
are sporadically distributed in space and time.
Landfills, in contrast, are dependable food
sources that remain in the same location; ravens
likely do not need to constantly gather landfill
information from roost mates. However, there
was a significant, positive relationship
between the Kemmerer landfill and the Port
of Entry roost in the 2014 and 2015 winters,
suggesting that there is a connection between
the 2 sites. The Kemmerer landfill was used

heavily in the latter part of the day, but few
ravens were foraging late in the afternoon.
During roost counts at the Port of Entry, we
observed that 50%–75% of the ravens coming
to the roost were in a flight path that was in
direct line with the Kemmerer landfill. We
hypothesize that this landfill was used as a
staging area for ravens as they congregated
before roosting at night. In contrast, all other
landfills, which were >10 km from the nearest
anthropogenic roost site, did not see increases
in ravens at the end of the day.
    Environmental patterns affected how often
ravens used landfills for foraging and anthro-
pogenic structures for roosting; raven use of
these sites increased when temperatures
decreased. Although we could not measure
snowfall directly, we included an interaction
between temperature and precipitation, which
was not a significant predictor of raven num-
bers at either location. Studies in western
North America have found that use of landfills
increases with increasing snow depth (Dorn
1972, Preston 2005), which is likely due to
ravens having difficulty locating food items,
such as carcasses from roadkill, that are con-
cealed by snow (Heinrich 1988). Southwestern
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    Fig. 7. Spring dispersal locations (n = 1383) for 5 global positioning system (GPS) radio–marked ravens captured in
southwestern Wyoming, USA, in 2015. Locations were obtained at 07:00, 10:00, 13:00, 16:00, 19:00, and 24:00. GPS
points were obtained in April and May to correspond to VHF-marked raven locations. Raven 146186 was captured at
the Green River landfill (lower right capture location), whereas the other 4 ravens were captured at the Kemmerer
landfill.



Wyoming does have snowfall in the wintertime,
but it is infrequent and does not persist at
lower elevations. However, freezing tempera-
tures could still limit raven accessibility to
carcasses; frozen carcasses not scavenged by
other carnivores are difficult for ravens to tear
apart. In contrast, garbage at the landfills
often was unfrozen.
    Roosting in large numbers (>150 ravens) in
protected and/or heated locations may be a
way for ravens to conserve heat. Two of our
documented roosts had heat sources, and
ravens roosted close to the heated elements in
roosts during winter. In the other 3 unheated
roost sites, ravens were observed roosting
shoulder to shoulder. In Alaska, oil field work-
ers interviewed in Alaska’s North Slope about
raven behavior reported that ravens were
often near heated structures, and 71% of the
workers reported heavy use of processing
facilities by ravens in the winter (Backensto
2010). One smaller raven roost in an aban-
doned building (x– = 72 ravens) in eastern
Canada was used by more ravens when wind-
chill increased during the winter (Watts et al.
1991). Therefore, it appears that winter
weather increases raven use of anthropogenic
structures with shelter or heat for roosts.
    Dispersal distances of ravens leaving win-
ter locations in this study (x– = 38 km) were
significantly less than band recovery distances
for wintering ravens in Iceland (x– = 151 km;
Skarphédinsson et al. 1990) and Greenland
(median distance = 30, 70, and 73 km for 3
study sites; Restani et al. 2001). This short dis-
persal distance suggests that most ravens in
southwestern Wyoming seek local roosts for
the winter.
    Anthropogenic resources have allowed
raven numbers to increase in recent decades
(Leu et al. 2008, Sauer et al. 2011) by increas-
ing survival and chick production (Webb et al.
2004, Kristan and Boarman 2007). In sage-
brush scrub habitats, raven nesting ecology is
tied to use of anthropogenic resources, such as
transmission towers and cell towers (Coates et
al. 2014, Howe et al. 2014); such activities are
important when considering raven management
activities in conjunction with the protection of
other species, like the Greater Sage-Grouse.
We found that the winter ecology of ravens in
these ecosystems is directly linked to anthro-
pogenic resources as well. Winter is a stressful
time for ravens, and use of anthropogenic

roost sites and landfills likely improves a
raven’s probability of surving the winter
(Conover and Roberts 2016). Thus, raven popu-
lations subsidized in the winter by anthro-
pogenic resources will likely continue to
increase if left unchecked.
    Ravens depredate more sage-grouse eggs
and chicks than any other predator (Conover
and Roberts 2017). This depredation is severe
enough that it has contributed to the decline
of sage-grouse numbers over the last century
(Conover and Roberts 2016, Peebles et al.
2017). In this study, we found that ravens do
not disperse far from their winter roosts. This
suggests that one way to reduce local prob-
lems involving ravens would be to locate
roosts and target management efforts at the
roosts during the winter.
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