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ABSTRACT 

Computer Simulation and Homogenization 

in Optimization of Heating Design 

by 

Daniel K. Balls, Master of Science 

Utah State University, 2003 

Major Professor: Dr. James Powell 
Department: Mathematics and Statistics 

The ability to ensure uniformity of temperature within a given finite physical region is 

an essentia l element in the success of many scientific processes, especially those that involve 

extreme fluctuation in temperature. Such a process is performed in an instrument called the 

LightTyper developed by Idaho Technology , Inc. of Salt Lake City Utah . This paper details 

the development and results of a scheme intended to obtain a heating design that ensures 

a high degree of temperature uniformity within the Idaho Technology instrument. Due to 

the exper iments performed during this project, we were able to answer many questions that 

concerned finding an optimal design for a two-dimensional cross-section of the LightTyper. 

(34 pages) 
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CHAPTER 1 

INTRODUCTION 

Idaho Technology (IT) has designed a system whereby an entire 16 x 24 grid of wells 

containing DNA can simultaneously be tested and analyzed for the presence of specific 

genetic sequences using melting curve analysis. After samples of DNA are amplified through 

the process of polymerase chain reaction, the vessel containing them is heated linearly with 

time. A key to the success of the analysis is ensuring each of the samples in the grid is at 

the same temperature at the same time during the process. [4] 

The samples to be quantified and identified are arrayed in depressions in a preformed 

plastic sample tray that fits over a heating block made of aluminum. The block is positioned 

on top of a small circuit card on which is inscribed a heating element. Heat diffuses upward 

through the aluminum block and plastic tray into each sample. Unfortunately, uniformity 

of heating cannot be guaranteed due to the finite extent of the sample tray and consequent 

temperature losses through the tray edges. With the intent of obtaining a design for the 

circuit card that optimizes temperature uniformity in the wells, a computer model was 

created that simulates the flow of heat through a two-dimensional cross-section of the IT 

instrument. The model provides a numeri cal approximation to the solution of the heat 

equation U1 = V · (D(x , y)VU) with appropriate boundary and initial conditions . The 

function U(x , y, t) represents the temperature at a specific two-dimensional location , (x , y), 

on the cross-section at a given time t, and D(x, y) is the thermal diffusivity of the material 

at that coordinate. In addition to the instrument itself, the model simulates the flow of 

temperature in the air surrounding the instrument . 

The model was created to serve as a means for feasibly testing a large number of designs 

in a relatively short period of time, thereby providing means for the identification of an 

optimal circuit card design. However , due to the extreme variation in diffusivity among 

the materials of the cross-section and consequent ultra-fine discretization that a faithful 

approximation necessitated, the running time of a single simulation was undesirably lengthy . 

Therefore, it was beneficial to apply the method of homogenization, an averaging technique, 



to the problem to reduce the computat ional complexity. 

The homogenization method is app licable to problems with functions contain ing inherent 

complex substructures. The process seeks to replace these functions with faithful averages 

which do not include the undesired structure. The disadvantage of using an averaged value 

is the result is only an approximation to the real solution. After an appropriate average is 

determined, the model's running time decreases significantly, making numerous simulations 

more practical. [1] 

The optim izat ion problem we desired to solve involved finding a heating source that, 

when used as the forcing function in the simulator, provided a high degree of temperature 

uniformity among the wells as time progresses. Given an arb itrary heat source design, we 

can simulate the temperatures within the wells of the LightTyper. Once these temperatures 

are known, we can test the uniformity of temperatures at corresponding locations . 

We began by assuming that the heat source of the instrument was a contin uous function 

of the form ¢(x) = a1 + a2 Ix - ala3 , where a1, a2 , a3 are real numbers and a is the horizontal 

center of the instrument. Next we normalized ¢ so that it defined a probability density 

function (pdf) over the interval representing the instrument cross-section, [O, 2a]. The 

purpose of the normalization was to provide a means for translating the optimal heating 

source, a cont inuous function , into a discrete design of elements on the heating circuit card. 

The details of this process are explained in greater detail later in the paper. 

As an aside, we note that since the forcing function is a pdf and must therefore integrate 

to one over a relatively large interva l, the function values of the profile were not large enough 

to produce a heating source required to obtain a proper simulation. However, inasmuch as 

the source output responds linearly, multiplication of the forcing function by a constant can 

regenerate any desired temperature. 

As allud ed to previously, the optimization process involved evaluating many different 

forcing functions. Simulations were performed using the function determined by specific 

choices of a1, a2 and a3 as the heati ng source. Next, the mean of the temperatures at the 

center of each well was computed at 32 different time interv als, ranging from O to 40 seconds. 

2 
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Figure 1.1. Plot of the trough design profile. This profi le was used as th e forcing function 
along y = 0 and given a measure according to the degree of univormity of temperature in 
the sample wells during the simu lation that it was used. After varying (3, 1 and K,, and 
testing num erous profiles, the one with the best measure would be easi ly identifiable. 

The temperature at the center of each well was compared with the mean temperature using 

various norms. The optimization process entai led varying the parameters a1, a2 and a3 

within an appropr iat e constraint range, thus producing different source functions. The 

function producing the greatest degree of temperature uniformity among the wells would 

then be deem ed the optima l heating source. 

The resul ts of this initial attempt at optimization were educational. After checking 

literally thousands of different initial profi les, the program surprisingly deemed a constant 

function as the optima l heat source. Possible reasons for this will be presented later in the 

paper. 

Using the knowledge of the first attempt, a second family (called trough functions in this 

paper) of profiles was constructe d and examined. These profiles are piece-wise cont inuous 

functions of the form 

<h(x)= {- ~x +,+K, 05:_x5:_(3, 
K, f3<x5:_a 

reflected around x = a, with 1 > 0 and O < (3 < a (see Figure 1.1) . For reasons similar 
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to those previously explained, the trough functions were normalized and assumed to be 

density functions. 

The search to obtain the optimal profile among this group was conducted in a manner 

analogous to the previous approach. Values of (3, ,, and "' were chosen and the profile they 

determined was used as the heating source of the simulation. This profile is given a measure 

according to the uniformity of temperature among the wells. As the parameters (3, ,, and 

"' varied within their constraint ranges, a number of profiles were measured and the profile 

with the most desirable measure could be easily detected. 

This search suggested that the optimal profile of the family is the one having parameter 

values (3 = 0.4774, , = 0.0055, and "' = 0.1385. Though this result was arguably more 

informative than the previous one, the optimal profile turned out to produce a distribution 

function that was almost linear. This was not surprising since the bulk of the profile is a 

constant, and the slope of the lines on each end is minimal. 

Initially, we pr esumed that significant adjustments needed to be made to the design of 

th e circuit card to account for the disparate temperatures in the outer wells caused by the 

difficulty of heat diffusing through the plastic that surrounded them. As a consequence a 

number of different forcing functions , symmetric on a finite int erval with higher values at the 

endpoints of the interval, were tested and measured for their ability to maintain consistency 

of temperature within the wells of the Light Typer. A surprising and informative result that 

came from the experiments described in this paper is that the edge effects do not play as 

significant a role as was previously thought. 

As Figure 2.10 conveys, a constant forcing function is not optimal, either, as it leaves 

the temperature in the end wells considerably lower than that of their counterparts in the 

middle. Thus , in the two-dimensional cross-section, in order to obtain the optimal forcing 

function , one must find the proper balance between constancy within the middle wells and 

slight adjustment on the edges . Though the experiments conducted in this project were not 

able to clearly describe that ba lance , the method used and mistakes made shou ld serve as a 

solid foundation in not only determining an optimal two-dimensional forcing function, but 

4 



eventually an optimal circuit card design. 
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2.1 The Analytic Problem 

CHAPTER 2 

DETAILS OF THE PROJECT 

6 

The mathematical model that the simulation is founded upon is a variation of the simple 

heat equation Ut = D(Uxx + Uyy), where the diffusion D is a constant. Due to the fact 

the the diffusion in our problem is spatially dependent, we seek an approximation to the 

solution U of the equation 

( 2.1 ) Ut ( X' y' t) = v' . ( D ( X' y) v' u ( X' y' t) ) . 

( ) £ ( ) ( 
dxx (

0
x, y) 0 ) We note now that the the tensor D x, y has the orm D x, y = . 

dyy(x, y) 
Further, although it is the case that dxx = dyy in the heterogenous tensor D, we will continue 

to distinguish the two in notation because dxx -::/ dyy in the homogenized tensor D. 

The domain of the first spatial variabl e, x, depends on which cross-section is being 

examined. For the experiments in this project , x ranges from O to 11.3 cm. The first 

two centimeters represent air, and the next 7.2 cm correspond to the machine compr ised 

of 16 wells measuring 0.45 cm each. On the other side of the machine is an additional 

two centimeters of air. The final 1 cm comes from the thickness of the plastic, 0.5 cm on 

each side, that surrounds the outer wells. Thus in our situation, 2a represents the middle 

7.3 centimeters. The second spatia l variable, y, ranges from O to 3 cm. The line y = 0 

represents where the circuit card meets the aluminum base of the instrument. From that 

point to the top of each well measures 1.6 cm, and the final 1.4 cm represents the air 

above the instrument. The time variable t usually ranges from O to 40 seconds, as it was 

ascertained that 40 seconds was ample time for achieving a steady thermal state. 

Several assumptions provided the necessary boundary and initial conditions. First, at 

the beginning of the melting curve process, the entire state is assumed to be the temper

ature of the amb ient environment , 25°. Due to the insulating nature of the circuit card 

materials , we require that there is no heat transfer across the line y = 0, which translates 

into the boundary condition JY (U(x , 0, t)) = 0. Further, certain cells along y = 0 are cho-
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Figure 2.1. Plot of the left portion of the diffusion matrix. Dark red colors indicate high 
diffusivity ( close to 1 cm · sec- 2 ) while dark blue represent low diffusivity ( close to 0 
cm · sec- 2 ). 

sen to remain at a constant temperatur e of 70° and provide a forcing function along the 

y = 0 boundary. Th ese cells represent th e heating elements with a different choice of cell 

locat ion constituting a different circuit design. On each side of the machine , we assume 

that the temperat ure of the air will eventuall y reach the ambient temperature, as will the 

temperature of th e air above th e machin e. Figure 2.1 provides a grap hical representation 

of th e diffusion tensor D(.1:, y). 

2.2 The Approximation 

We begin discret izing the spatia l and time domains by letting Xi = ifl x, Yj = jfly, and 

tk = kflt , where fl x = 4+2a, fly = ~, and flt = 40 . In the previous definitions , nx, ny, nx n y nt 

and n 1• represent th e numb er of partitions in the x, y, and t domains , resp ectively. Thus , 

the physical domain of the approximation is made up from a mesh grid of th e domains of 

x and y partition ed evenly into n x and ny discr ete points , respectively. 

If U is a solution to equation (2.1) , we'll define our approximation Oby Oi~j = U(xi, Yj, tk)

In order to approximate th e time derivatives , we'll use the standard Taylor approximation 

Ut ~ lt (0i~t1 - Oi~j) = flt(O). Similarly, spatial derivative approximations have the form 

7 



~ 1 ~k ~ k _ ~ ~ 1 ~k ~ k _ ~ 
Ux ~ c-.x (Ui+l,j - Ui,j) - 6 x(U) and Uy ~ c-.y (Ui,j+l - Ui,j) - 6y(U). Thus the approxi -

mation to equation (2.1) is 

( 2.2 ) 

Equation (2.2) leads directly to the five-point scheme 

h C . • • 6t d i'.t [3] w ere 1or ease m wntmg, PI = (i'.x)2 an P2 = (i'.y)2 • 

A Taylor ana lysis of this scheme reveals that it has local accuracy O (6t + (6x) 2 + (6y) 2 ), 

which means that the difference between the actual solution and the approximat ion , or 

(U - U), goes to zero as 6x , 6y, and 6t all go to zero. Further, a von Nuemann analysis 

shows that the solution is stable as long as p1 < 0.25 and P2 < 0.25. Thus, the number of 

time steps significantly restricts the refinement of the diffusion tensor. Since the maximum 

value in both D and D is less than 1.02, it was sufficient to impose the restriction p1 < 0.245 

and P2 < 0.245. [2] 

The impl ementation of the constant initial and bound ary conditions into the numerical 

scheme was straightforward . In order to put the no-flux cond ition into practice, we referred 

again to the approximation of the first-order spatial derivative. The condition stated that 

& · · 1 ( ~k ~k ) ~k ~k · -8 (U(x, 0, t)) = 0, which translates mto ~ Ui O - Ui _ 1 = 0 • Ui O = Ui _ 1 for all z and Y uy ' , , , 

k. Thus , we merely substituted Ui~O for any computation requiring fji~-l · 

A computer program was written that computed utt1 for k = 1, .. . 'n1 using three 

basic loops . The inner loop cycled i from 1 to nx, while the middle loop cycled j from 1 to 

ny. The outer loop ran through all values of k from 1 to nt. At the beginning of each outer 

loop, the points along y = 0 were reset to the profile temperature, providing the forcing to 

the system. 

2.3 Choosing a Homogenized Value for D(x, y) 

In order to determine the necessary degree of homogenization , a simulation with actual 

diffusion coefficients would need to be availab le for compar ison with simu lat ions using av

eraged diffusion. To save time at this stage, it was decided to run these simulations on 

8 
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which the simulations using homogenized diffusion tensors are judged. 
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hori zontal nod es per well. The structure of th e simulation using heterogeno us coefficients 
can readily be seen in this time slice, as expected. 
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Figure 2.4. Time slice (t = 23 seconds) of the simulation using homogenized values at 8 
horizontal nodes per well. It was decided from graph ical results that this level of homoge
nization would retain enough of the desired structure, and still decrease the running time 
of the simulation significantly. 
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Figure 2.5. Time slice (t = 23 seconds) of the simulation using homogenized values at 4 
horizontal nodes per well. Initially we had hoped that this level of homogenization would 
provide enough of the structure inherent in the simulation using heterogeno us diffusion, as 
it would have significantly reduced the running time of simulations. However, the amount 
of fidelity lost using this level of homogenization was too great. 

10 



~ 
(1) 

Qi 

3 

2.5 

2 

E 1.5 
~ 
(1) 

u 

0.5 

Simulation Using Homogenized (2 nodes per well) Tensor 

3 4 5 6 
Centimeters 

Figure 2.6. Tim e slice (t = 23 seconds) of the simulation using homogenized values at 2 
horizontal nodes per well. This level of homogenization doesn 't come close to retaining the 
necessary structure of the standard. 

only three wells of the cross-section subject to essentially the same boundary conditions 

described in Section 2.1. Th e diffusion tensor of this simulation represented the first 3.4 

cm- 2 cm of air on the left and 1.4 cm for the three wells- of the comp lete simulation. On 

the right side we imp osed a no-flux condition,%x (U(3.4,y , t)) = 0, due to the symmetry in 

the geometry of the problem , in plac e of the constant boundary condition found in the full 

scheme. 

The standard by which the averaged values were to be measur ed was a simulation in 

which each well was made up of 32 horizontal and 256 vertical discr ete points. Hereafter , 

we will describe a spec ific discr et izat ion only in terms of the number of horizontal nodes 

in one well, and it will be assumed that the number of discrete verti cal points per well is 

four (4) times the numb er of horizontal points. The homogenization program that was used 

preserved the aspect ratio of the grid size, and homogenized values of the diffusion tensor 

were computed on grid sizes of 2 x 8, 4 x 16, 8 x 32, and 16 x 64. Some graphical results of 

this experiment are shown in Figures 2.2-2.6. These initial graphical results suggested that 

a discretization with 8 nodes per well would contain enough of the true structure to provide 
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Figure 2.7. Temperatures along the cross-section at a height of .75 cm (the approximate 
vertical center of the well) after 3 seconds . Notice that as the level of homogenization 
increases , the profiles seem to be converging to the standard. 

accurate results. Further examination of temperature profiles at the center of the well (. 75 

cm above the circuit) at two different times, shown in Figures 2.7 and 2.8 concur that an 

average using 8 points per well is sufficient. It is interesting to not e that the average using 

8 points per well is closer to the standard than the one usin g twice as many points per well. 

Using this level of homogenization , the amount of time it took to run one simulation was 

30 seconds, compared to roughly 3 minutes using the original heterogenous coefficients. 

2.4 The Optimization Process 

In order to make the optimizing procedure tractable, we began by assuming that the 

initial temperature profile came from the family of continuous functions of the form ¢(x) = 

a1 + a2lx - ala3 , where a1,a2,a3 are real numbers and a is the horizontal center of the 

cross-section (for the section under analysis , a = 3.65 cm). Next we assumed that ¢ was 

a pdf on the interval [O, 2a]. The purpose of this assumption was to provide a method of 

translating a continuous source function into a design of elements on the circuit card. Once 

the optimal forcing funct ion was found, its distribution function would be computed and 

then n evenly spaced points from the unit interval would be projected onto the x-axis using 
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Homogenization Comparison: t=25 sec, y=.75 cm 
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Figure 2.8. Temperatures along the cross-section at a height of .75 cm (the approx imat e 
vertical center of the well) after 25 seconds. Interestingly, throughout most of the cross
section the 8-node homogenized simulation actua lly comes closer to approximating the 
standard than the 16-node approximation. This observation made the 8-node level even 
more desirable. 

the distribution as functional values , as shown in Figure 2.9. These projected values would 

be the locations that we would place constant heating elements. 

In addition to transforming a continuous profile into a discret e array for the circuit card , 

the fact that </> is a pdf helped reduce the dim ension of the parameter space from 3 to 2 

since the parameter a 1 is easi ly determined by the equation 

once a 1 and a2 are fixed. Further , it is the case that ¢(x) 2:: 0 for all x in the interval 

[0, 2a] and this stipulation provides the the restriction a 1 2:: 0 and a 1 + a2aa 3 2:: 0. With 

this constraint range, a method of measuring the relative effectiveness of the profile for a 

given choice of a2 and a3 was devised. 

The model was executed using¢ as the forcing function along y = 0. After the simulation 

was complete, the mean of the temperatures at the center point of each well was computed 

at 32 different time intervals, ranging from O to 40 seconds. Denot e the mean temperature 

at time step k by T k, and the temperature in the r th well at time step k by Tf. At each 
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Figure 2.9. Projection process for the forcing function ¢(x) with parameter values a 1 

0.03948568, a2 = 0.02301, a3 = 2. The red curve is the cumulative distribution function 
( cdf) of ¢(x). The 19 horizontal lines represent the uniform heat output we desire. The 
intersection of these lines and the cdf are projected onto the x-axis and these projected 
points represent the locations where heating elements should be placed. 

time step k, the temperature at each of these wells was measured against the mean using 

the Euclidean norm 
16 

Ek = l)Tk - t}) 2 , 

r=l 

and a percentage error norm 

These norms were th en averaged over th e 32 tim e int ervals and ¢ was assigned values 

E = 3
1
2 I: Ek and P = 3\ I: Pk. In addition to these measures , a correlation coefficient, R 2 , 

was computed for the vectors M and Tep, of length (16 · 32) which are defined by 

16 r ; 

and 
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Results of Constant Profile Heat Source 
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Figur e 2.10. Temperature profile of cross-sect ion of well . 75 cm above the circuit card using 
a continuo us constant profile as the heat source. Though the temperatures in the end wells 
are lower, the uniformity among the middle 14 wells caused the constant profile to perform 
the best und er our examination method. 

After an initial trial with a3 = 2, it was determined that the E measure would most 

clearly identify an optimal forcing function. Later , upon suggest ion , we incorporated the 

sup norm measure Sk = max (ITk - Tf 1), with S = 3\ I: Sk to try to improve results , and 

found that it is actua lly preferable to the E norm, as not ed later on. 

The results of the initial attempt at optimization using ¢ and the E norm were educa 

tional. After checking litera lly thousands of different initial profiles, the program surpris

ingly deemed as the temperature-uniformity-optimizing profile a constant funct ion . Figure 

2.10 and 2.11 may help explain why this happened. Figure 2.10 shows the results of the 

simulation with a constant profile. The temperatures in the fourteen middle wells are es

sent ially ident ical and th e plastic edge of the tray appears to have only a slight effect on 

the end wells. Contrast this with Figure 2.11, in which, the end wells are brought up in 

temperature , but at a significant cost of variability among the middle wells. 

Using the knowledge of the first attempt, a second family of profiles was constructed. 

These profiles, one of which is depicted in Figure 1.1, are piece-wise continuous functions 

made up of linear and constant functions and are symmetric around x = a. For the same 
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Figure 2.11. Temperature profile of cross-section of well . 75 cm above the heat source using 
as a heat source th e function ¢ (x ) = a 1 + a2lx - ala 3 with param eters a1 = 0.134568, 
a2 = 0.001, and a3 = 2. Using this profile as th e heating source is not pr eferable since th e 
cost of bringing up th e temperature in the end wells is considerable variation in temperature 
among th e middl e wells. 

reasons pr eviously exp lained, we norm alized these functions and requir ed them to be density 

functions on the int erval representing th e inst rum ent cross section , [0, 2a]. 

We procee ded as before , comp utin g K, from the integra l equat ion after choosing /3 an d , 

values. As both /3 an d , varied within th eir constra int range, th e E norm was once again 

used to gauge th e value of each function as a uniformity optimizing profile . The results of 

this search, shown in Figure 2.12 suggest ed th at the optimal profile of th e family is the one 

having paramete r values /3 = 0.4774,, = 0.0055, and K, = 0.1385. 

Though this result was arguabl y mor e inform at ive than the pr evious one , the optimal 

profile (shown in Figur e 2.16 multiplied by 70a - see Appendix B for an exp lanation of this 

constant) , turned out to produce a distribution function that was nearly linear. This was 

not surprising since the bulk of th e profile is constant, and the slope of the lines on each 

end is minimal. 

As previously mentioned , we instituted anoth er method of measuring forcing functions 

based on the sup norm , S, defined above and tested both forcing designs using this mea-
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Figure 2.12. The results of the trough function search using the E norm. The colors 
represent the value E that was assigned to each function for corresponding choices of (3 
and a . The optimal design according to these experiments is the one with parameters 
(3 = 0.4774 , 1 = 0.0055 , and r., = 0.1385. 

surement. Figur es 2.14 -2.18 summariz e these experiments. It is noteworthy that this new 

measurement did not select a constant from the ¢ functions as the optimal heat source. 

This is most likely due to the fact that discrepancies in temperature at the edge wells are 

accentuated when using the S norm. Due to this property of the S measure , it is, in most 

circumstances, preferable to the E norm. 

The optimal trough function chosen using th e S norm were very close to that chosen 

und er the E norm. For the S norm , the optimal function parameters are (3 = 0.4744 , 

1 = 0.0085 , and r., = 0.1383. Due to this fact and the comments in the previous paragraph , 

it seems that S is a more useful measure. 

2.5 Conclusion 

Due to the low thermal diffusion coefficient of the plastic (around 0.0025 cm· sec- 2
) that 

surrounds the Idaho Technology LightTyper instrument , it was the belief of the author that 

significant adjustments needed to be made to the design of the circuit card to account for 

this fact. As a consequence , a number of different forcing functions which had significantly 
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Figure 2.13. Results of the search for an optimal profile among heat sources of the form 
¢(x) = a 1 + a2lx - ala3 using the sup norm. The optimal source function from this family 
has parameters a1 = 0.1380248, a2 = 0.0002 and a3 = 2. This result infers that the sup 
norm is more informative than the Euclidean norm as the latt er selected a constant forcing 
function as optimal under an identical search. 
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Figure 2.14. Results of the search for an optimal trough function using the sup norm 
measure E. The optimal profile in this exper iment was extremely close to the optimal 
profi le found using the Euclidean norm E. The optimal parameters from this search were 
/3 = 0.4744, , = 0.0085, and K, = 0.1383. 
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Figure 2.15. Plot of the source function ¢(x) = a1 + a2lx -ala 3 with values a1 = 0.1380248, 
a2 = 0.0002 and a3 = 2. This function was chosen as the source that effectively maintains 
uniformity of temperature within wells usin g the sup norm. The graphic confirms that in 
order to adjust for the plastic around the end wells only a small incr ease in temperature 
(0.6531 °C) is required at the edges . 
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Figure 2.16. Plot showing the optimal heating sources from each family of designs. The 
differences in the basic structure of each design is quite apparent, yet each produced the 
best measur e using the S norm. The question that follows naturally from this point is, 
"W hich of these two source functions performs better under more exte nsiv e analysis when 
compar ed head to head?" 
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higher values at each end of the instrument interval [O, 2a] were tested and measured for their 

ability to maintain consistency of temperature within the wells of the machine. However, 

a major conclusion that the results of this proj ect has identifi ed is that the edge effects do 

not play as significant a role as was pr eviously thought. 

Having said that, we also declare that a constant profile is inad equate. As Figure 2.10 

describes, a constant forcing function is not optimal, as it leaves th e end wells considerably 

lower than their counterparts in the middle. Thus , in the two-dimensional cross-section, it 

is the case that a significant portion of the optimal forcing function must be constant with 

some adjustment, smaller than previously thought, on the edges. 

The ideas , principles , and foundations laid forth in this paper could eas ily be adapted 

and used to ident ify more specifics of an optimal forcing func t ion and circuit car d design 

for the two-dimensional case. Further , in the author's estimation, having a model that 

simulates heat flow through all three spatial dimensions of the machine is critical in finding 

a clear description of the circuit card design that will optimize the uniformity of heat within 

the wells. 
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APPENDIX A 

BRIEF HOMOGENIZATION THEORY 

Homogenization is an averag ing technique used to simp lify problems with inherent vari

ations over disproportionate lengt h scales. Typically , an average is sought to smoot h out a 

complex substructure, and the role of homogenization answers the question, 'W hich average 

is best?'. One feature of the homogenization process is that it is very problem dependent; 

that is, there is not one general algorithm that one may apply to a general problem. The 

details and specifics of the substructure und er cr itiqu e help guide one through the homoge

nization process. This being the case, we will present the basics of a simple one-dimensional 

example to help elucidate the major components of the technique. Consider the problem 

found in [l] of obtaining the solution to the following ordinary differential equation: 

( A .l ) 0 < X < 1, 

where Dis some sort of diffusion whose graph is shown in Figure A.l. Notice from that figure 

the two levels of structure found in D : on the large scale, x E [O, l] , D is increasing in almost 

a linear fashion , and on the small scale (x E [(n - 1)(0.0625), n(0.0625)], n = 1, 2, ... , 16), 

D is periodic - with relatively large amplitude - in nature. 

The first step in the homogenization process is to choose a value, c, which depends on 

the substructure, as shown in Figure A.2. Next, the micro-scale, or fast scale, variable 

e is defined as follows e = r Note that as x ranges from O to c, e ranges from O to 1. 

We next assume that u, D, and f and are all functions of both x and e, and perform a 

perturbation ana lysis of the differential equation (A.l) in terms of c. That is, we assume 

that the functions u and f may be approximated by 

and 

J(x , 0 = fo(x, 0 + cfi (x, 0 + c2 h(x, e) + · · ·. 
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Figure A .1. Diffusion function D(x) = (1 +ax+ j3g(x)cos(0)- 1
, with parameters~= ~' 

g(x) = e4x( x- l), a= -0.1, j3 = 0.1, and c = 0.01. Notice the periodic sub structure inherent 
in th e function D. The process of homogenization attempts to smooth out that comp lex 
substructur e, which makes equation A.l hard to solve , even numerically. 
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Figure A .2. A close-up of the diffusion function D. A key to obtaining a successful 
homogenization average is choosing the variable E, which depends on the substructure of 
the problem . Here c is the lengt h of one period of the substructure of D. 
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Following this we substitute these approximations into equation (A.l), noting that, by 

definition of~' d~ --+ d~ + ¼ J1:, . Terms are grouped according to order of c and a new 

set of differential equations is obtained. The next crucial step, which again depends on 

the problem , is to compute an average for D (usually an integral average) which helps to 

balance out this new set of differential equations. An effectively chosen average D will now 

be a function of only the macro-scale x, as will be the functions uo and Jo. Thus, equation 

( A. l) has been replaced by the approximation 

( A .2 ) d (- d ) dx D(x) dx uo(x) = fo(x) , 

and as desired, no function in equation (A.2) depends on the micro-scale variable t . In a 

sense we've smoothed out the complexities in the substructure and are now able to solve 

the latter equation quite easily, whereas our original problem would be challenging to solve, 

even numerically. [l] 
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APPENDIX B 

SCALING THE FORCING FUNCTION 

We now give mathematical reasoning for sca ling the forcing fun ctions in order to bring 

their heat up sufficient ly to obtai n a proper simul ation. 

Suppose there exists an equat ion U that sat isfies the equations 

B .1 ) 

and 

( B .2 ) 

au = v . (Dv'U) at 

U(x , 0, t) = g(x) = afi (x) + /3h(x) 

as well as appropriate initial and boundary conditions all of the form 

Further assume that there exist functions u 1 and u2 that sat isfy 

B .3) 

B .4) 

8u1 at = v' · (Dv'ui), ui(x, 0, t) = h (x) 

8u2 at = v' · (Dv'u2) , u2(x, 0, t) = h(x), 

as well as the initial and boundary conditions ri and Si, respectively. If these conditions are 

sat isfied, then we claim U = au1 + /3u2. 

Since the -9t operator is linear it is the case that 

Similarly since the v' operator is linear we have 



Then by equations (B.2) and (B.3) we see that 

and cm1 + f3u2 satisfies equation (B.1). 

More importantly , we have 

au1 (x, 0, t) + f3u2(x, 0, t) = ah (x) + f3h(x) = g(x), 

and au 1 + f3u2 satisfy equation (B.2) also. 

Since au1 + f3u2 satisfy the exact initial and boundary conditions that U does, by the 

uniqueness theorem, it must be the case that U = au 1 + f3u2, and scaling a heating source 

function is justified . 

It was decided, due to a study of the temperatures needed to achieve success throughout 

the polymerase chain reaction, that the heat of each of the discrete elements would remain 

at a constant temperature of 70°. We wanted the energy of the continuous heating source 

to have the same energy as the actual machine and therefore used the following argument 

to arr ive at the constant 70a. Let E represent the total energy of the forcing function. 

Regardless of what function ¢(x) we use as the heat source, it must be the case that 

70 = E = c (fo2°' ¢(x)dx) , 

where c is an unknown constant. Since ¢ is a pdf, it must be the case that c = 70. Thus , 
over the entire int erva l, we desire the energy integral of the forcing function to be 70a. 
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