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ABSTRACT 

Finite Element Studies in Metal Cutting 

by 

Suhail Ahmed, Master of Science 

Utah State University, 2003 

Major Professor: Dr. Emily Stone 
Department: Mathematics and Statistics 

iii 

AdvantEdge is a finite element software package that integrates advanced dynamics , 

thermo-mechanically coupled finite element numerics and material modelling appropriate 

for machining processes. AclvantEdge allows users to spec ify the workpiece material, tool 

geometry and cutting cond iti ons . It then provides accurate estimates of thermo-mechanical 

properties of machining processes such as cutting forces, chip morphology, machined surface 

residual stresses and temperature behavior of the too l and the workpiece. We will use 

AclvantEclge to investigate two areas of interest in metal cutt ing: process clamping via 

crushing of workpiece material and drilling of metal stacks. 

(40 pages) 
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Metal cutting is one of the most common operations in manufacturing. It involves the 

removal of und esired material in the form of chips from the workpiece to obtain the finished 

product. The purpose of the project report ed here was to investigate the behavior of forces 

acting on the tool and the work materials during metal cutting. The report is divided into 

two parts. The first part describes proc ess damping forces acting on the tool, their behavior , 

relationship with other cutting param ete rs and how these could be modelled. The second 

part is a study of the modelling of drillin g metal stacks. In both sections of the report we 

mak e .use of a finit e element machining software to analyze the given problem and obtain 

relevant results. 
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CHAPTER 1 

MODELLING PROCESS DAMPING: CRUSHING FORCES 

1.1 INTRODUCTION TO PROCESS DAMPING: CRUSHING FORCES 

One of the biggest problems faced in metal cutting is the presence of chatter or vi

brations. Ideally the work material is homogeneous and has the same material properties 

throughout. In reality, material properties do not remain constant, and hard spots exist. 

When the tool hits such a hard spot, it is disturbed which can result vibrations of the 

tool. These vibrations may die down, or vibrations (chatter) may continue. Chatter leads 

to undesirable consequences such as poor surface quality and early wear of the tool, which 

causes loss in structural performance of the aircraft or expensive rework. 

There are a number of forces acting on the tool as it cuts metal. The primary force 

can be resolved into a cutting · force and the thrust force. Additionally there are effects 

that contribute to dissipation of energy, for example, rubbing of work material on the tool. 

These effects are collectively called process damping. In figure 1.1, a two dimensional view 

of the the tool cutting metal as it moves from the right to the left, illustrates the tool 

geometry. The face over which the cut material, in the form of chips, moves is called as 

the rake face of the tool and is inclined to the vertical at an angle a:, called the tool rake 

angle. The bottom of the tool just above the cut workpiece surface is called the relief face. 

It is inclined to the horizontal to minimize contact with the workpiece. However contact 

is likely to occur if the tool is experiencing chatter. Such contact leaves behind a flat

tened or crushed work surface. The force associated with such crushing of the workpiece 

by the tool relief face is what we call the crushing force and contributes to process damping. 

The crushing force plays an important role in process dynamics, especially on the sta

bility of vibrations. Brian Whitehead incorporated process damping into a model of chatter 

during drilling [7]. His model was our starting point in studying crushing forces. Here 

Whitehead assumed an inverse relationship between the magnitude of crushing forces and 
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Figure 1.1. Tool Geometry 

wavelength of vibration because small er wavelengths lead to greater crushing contact with 

workpiece causing higher cru shing forces. In this report we simulate crushing behavior us

ing validated finite element software called AdvantEdge to test the assumpt ion made by 

Y./hitehead an d invest igate modelling of crushing forces based on contact length between 

too l relief face and workpiece. 

1.2 CRUSHING SIMULATION AND RESULTS 
1.2.1 Introduction to AdvantEdge 

Invest igation of the cru shing forces was done with machinin g simul at ion softwar e called 

AdvantEdge, developed by Third Wave Systems, In c. [6]. AdvantEdge is a finite element 

software package that int egrates advanced dynamics, thermo-mechanically coupled finite el

ement numerics and material modelling approp riate for machining pro cesses. AdvantEdge 

allows users to specify the workpiece material, tool geometry and cutting conditions. It 

then provid es accurate estimates of thermo-mechanica l properties of machining processes 

such as cutting forces, chip morphology , machin ed surface residual stresses and temperature 

behavior of th e tool and the workpiece [5]. 
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In our invest igation, we mad e use of a new module within AdvantEdge that allows the 

tool to be vibrated. As exp lained in section 1, cru shing is likely during chatte r and the 

vibrating tool feature is used to simulate crushing behavior. 

1.2.2 Method 

In order to comput e cru shin g forces, two almost identi cal simul ations (same workpiece 

and the same cutt ing cond it ions ) were run for tools of t hree relief lengt hs, with a difference 

in the tool relief angles. In the first, t he relief ang le was sma ll enoug h so that th e relief face 

of the tool crushed the work material as it moved through the cut. In th e second simulation, 

the relief ang le was made large eno ugh so that there was very littl e cont act between the 

relief face of the cutt er and the work material. Assuming that t he forces involved in material 

remova l and crushing comb ine linearly, the crush ing force was resolved by subtra cting the 

forces from two such run s [5]. 

Figures 1.2 and 1.3 show the parameters of t he simul at ions. Figure 1.4 is a snapshot of 

a crus hing simu lation where the tool has crushed the workpiece on its sinusoidal path. One 

can clearly see the flattened regions. The resultant force acting on t he too l have a crush ing 

component. In this st udy we are on ly considering the vert ical crus hin g component. 

Figure 1.5 illustrates the same work material being cut under the same cuttin g condi 

tions except that the tool relief angle has been changed from 6 degrees to 25 degrees, so 

that t here is littl e cont act between the tool relief face and the work material, and the tool 

t ip leaves a sinu soidal workpiece surface in it s wake. In this simul atio n forces act ing on the 

too l have a very sma ll crushing compo nent . Subtracting t he forces in the verti cal direction 

from the two simulation s will give us the crushing compo nent . 

A plot of the crushing forces is illustrat ed in figure 1.6, where the mate rial being cut is 
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7 

Al 7050, with a carbide tool with a 10 degree rake angle and a cuttin g edge radius of 0. 787 4 

mils. In the two simulations , the tool vibrates with a wavelength of 40 mils, corr espo ndin g 

to a cuttin g speed of 2680 SFM (surface feet/min) and a vibration frequency of 13.4 KHz 

with an amp litud e of 3 mil (typical of axia l-tor sional vibration mod e of a drill) . The x-axis 

represents t he time for which the tool has been cuttin g the mate rial. Th e y-axis rep resent s 

the forces act ing in th e horizont al (F-x) and vertical (F-y) directions. Th e force in the 

horizonta l direction act ing on the tool is referre d to as the cut t ing force. Th e force on the 

too l in th e vertica l direction is referred to as th e thru st force. Th e crushin g component in 

the vertical dire ct ion alone is considered in this study . 

1.2.3 Modelling Crushing Forces with Contact Length 

We postulat e that th e magnitude of crus hin g forces will depend on the area of materi al 

being crushed und er the too l or the contact length. Figur e 1. 7 represents a short relief length 

tool moving on a sinusoidal path as it moves from the left to th e right. Figure 1.8 illustrates 
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Figure 1.7. Variation of contact length during cutting for short relief length tool-long 

wavelength 

that as wavelength of oscillation decr eases, contact length saturates but the area of work 

material being crushed under the tool increases causing larger crushing forces , implying an 

inverse dependenc e of forces on wavelength , as Whit ehead assumed. This suggests that a 

contact area model may work for the short relief tool. Figures 1.9 and 1.10 illustrates the 

crushing motion of a long relief length tool. Here a increase in the wavelength of oscillation 

causes longer contact length between tool relief face and workpiece suggesting a contact 

length model. Simulations were therefore run with varying tool relief lengths with varying 

wavelengths in order to understand the effect of contact length and wavelength on the 

behavior of crushing forces. The results are presented in section 1.3. 

1.3 Results 

In this section we present resu lts of simu lations to investigate crushing forces. Simula-

tions were run for the following tool relief lengths. 
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l. Short relief length tool - 10 mil 

2. Interm ediate relief length tool - 30 mil 

3. Long relief length tool - 80 mil 

The tool in each simulation was vibrated at varying wavelengths ( 40mil, 60 mil, 80 mil and 

100 mil). As explained in section 1.2.2, in ord er to compute crushing forces we simu lat e the 

tool t hrou gh a crushing and a non-crushing run for each of the specified wavelengths. Each 

of these simu lations had the following cutting conditions 

l. Workpiece 

(a) Length: 300 mil 

(b) Height: 50 mil 

(c) Material: Al 7050 

2. Tool 



(a) Material: Carbide 

(b) Rake angle: 10 mil 

(c) Cutting Edge Radius: 0.7874 mil 

3. Process 

(a) Length of Cut: 250 mil 

(b) Depth of Cut: 4 mil 

(c) Cutting Speed: 2680 SFM 

( d) Vibration frequency : variable 

(e) Vibration Amplitude: 3 mil 

1.3.1 Behavior of crush ing forces 

11 

As In this section we will test \Vhit ehead 's assertion that crushing forces are inversely 

proportional to the wavelength of vibration. Figure 1.11 represents a plot of crushing forces 

on the relief face of the tool vs. the vertical position of a short relief tool lengt h (10 mil) . 

Simulations were performed for different wavelengths of vibration of the tool: 40 mil, 60 

mil, 80 mil and 100 mil. For each simu lat ion we allowed the tool to vibrate through at least 

two comp lete cycles. This is the reason for each wave lengt h having more than one loop 

in figure 1.11. The x-axis represents the vert ical position of the tool through a sinusoidal 

undul ation with amp litud e 3 mils. The crush ing forces go to zero at the bottom of the loop 

as the tool moves from its lowest position to its peak. Past the peak position the relief 

face sta rt s coming into contact with the work material, at an am plitud e that depends on 

the wavelength causing an incre ase in crushing forces. The loops in the plots are traversed 

counter-clockwise and the maximum force increases with decreasing wavelength. Note that 

the bold lines repr esent the 100 mil wavelength simulation and are actually a set of asterisks 

closely spaced so that they look like bold lines. 

In figure 1.12, representing simulations with a long relief tool length(80 mil), we see 

that th e crushing force in the y direction increases during the downward motion of the tool, 
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b~t now the maximum force increases with increasing wavelength. Note however , that the 

maximum cru shing forces for the 80 mil and 100 wavelengt h are almost the same. 

Figure 1.13 shows a simil ar plot of crushing forces vs. the vertical positi on of the tool 

for a tool having a relief face lengt h of 30 mil. The relationship betw een the cru shing forces 

and the wavelength is less clear than for the short an d long relief lengt h tool. 

1.3.2 Crushing Forces vs Contact Length 

T he magnitud e of t he crushing forces depends on the amount of contact between the re

lief face of the tool and the work material. The variation of cont act during a crushing thrust 

of th e tool was determ ined analyt ically by calculat ing the intersection of a tool edge with 

the workpiece (see figure 1.14) . A MATLAB pro gra m calculated this intersection length. 

Figur es 1.15 and 1.16 illustrate the variation of contact length vs. the vertic al position of 

the tool for short and long tools for two wavelengths of vibration , 60 mil and 100 mil. Com

paring with figures 1.11 and 1.12, we observe similarity in variation with crushing forces . 
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Additionally we observe a dir ect dep endence of maximum crushing force with wavelength 

for the long relief too l. This is the basis for modelling the crushing forces based on variation 

of contact length. Also observe sat uration of contact length for th e short relief tool and 

that this sat uration length does not incr ease with decreasing wavelength, suggesting that a 

contact area mod el may work better in this case. Figure 1.17 is a plot of th e crushing forces 

on the tool relief face and the contact length between the tool relief face and the workpiece 

vs. th e verti cal position of the tool for a long relief length tool (80 mil) . The similarity 

between plots of contact length and crushing forces with position of tool suggested plotting 

of crush ing forces vs . the contact length. 

Figures 1.18, 1.19 and 1.20 are plots of th e crushing force on th e tool relief face vs. the 

contact length. 

Referring to fig 1.18 for a long relief lengt h tool (the multiple curves represent the fact 

that the tool has moved through more than one wavelength while cutting) , we see that the 



12 

.3 ·2 ·1 
Ver11cal Posthon of tool 

- 60mil wavelength 
• 100mil w,r.,.elength 

Figure 1.15. Contact Length vs. Verti cal Position of short tool (10 mil) 

50 

40 

30 

20 

15 

10 

- 6Jm1I wavelength 
• 100mil wavelength 

01;\,3----- .'°2----- .'°'1 -----~---- •-----~- .. --~ 
Vertical Position of tool 

Figure 1.16. Contact Length vs . Vertic al Position of long tool (80 mil) 

15 



Long Relief length tool - 00 mil 

-Crushing force 
-· ·· Contact Lenglh 

Venical Position of tool 

Figure 1.17. Crushing Forces and Contact Length vs. Vertical Position of tool 

40 mil wavelength - Long relief 80 mil 
25 

20 

8 
~5 

.. ··::::::.:::::~:::\ 
.·_ .. 

lo ............ ,-·--·.:: ......... •····-<7 

5 5 ,::~, .... :.:-:-::.-: .• •· 

o L------------__, 
10 20 
Contact Length 

30 0 

80 mil wavelength - Long refief 80 mil 
50 

-10 L-----~------_j 
10 20 30 40 

Contact Length 
50 0 

60 mil wavelength - long relief 80 mil 
40 

-10 l_-- - -----~-----' 
10 20 30 40 

50 

40 

0 
Contact Length 

100 mil wavelength - Long relief 80 mil 

10 20 30 40 
Contact Length 

50 

Figure 1.18. Crushing Forces vs. Contact Length• Long relief length tool (80 mil). 

16 



40 mil wavelength- Short Relief length - 10 mil 
12 

10 
., 
~8 
u.. 

I 
I 

.) 
' g,s ~. : 
~ 
24, 

() 2 .-·.:.:·:·:·:· . ... 
. .. 

5 10 15 
Contact Length 

80 mil wavelength- Short Relief length - 10 mil 
10~------------

., 
u 
~6 

5 10 15 
Contact Length 

60 mil wavelength- Short ReM length - 10 mil 
12 -----------~ 

10 

2 .••.••.••• ' -- , ••• 

0'--------- - - --' 
0 5 10 15 

Contact Length 

100 mil wavelength- Short Relief length - 10 mil 8~------------

0'------- ------' 
0 5 10 15 

Contact Length 

Figure 1.19. Crushing Forces vs . Contact Length - Short relief length tool (10 mil). 

60 mil wavelength-Intermediate Relief length- 30 mil 

40 ~i wavelength-Intermediate Relief length - 30 mil 
40 

.. ....-l 

30 

QL- --- ------ ----' 
10 20 
Contact Length 

30 0 

60 mil wavelength-Intermediate Relief length - 30 mil 
40- -----------~ 

.,30 .. <~ to _.·:>·:·=··· 

E:.::::::::: ... ,.•::::::::?'.'.··· . .-

-10'------------ __J 
0 10 20 30 40 

Contact Length 

.,30 ./ :.:: ... •·-J 

to .·•.·::::::::•··· , 
fuo 
0 0 ·::····· .. ·<>·· 
-10 '-------~--~----' 

0 10 20 30 40 
Contact Length 

1 ocf'/l, I wavelength- Intermediate Relief length - 30 mil 

30 

" io ..... :::: 
OI .:' • • 
C 

fuo ... -;;:=-· 
0 ,;11i'' ... · · 

0 :: ::: ::: :::::::!~:~~---· ... • 

17 

Figure 1.20. Crushing Forces vs. Contact Length - Intermediate relief length tool (30 mil). 
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relationship between the contact length and the crushing force is approximate ly linear in 

the mid portion of the curve between contact length values of 8 mil and 34 mil. For contact 

lengths higher than 34 mil curve does not show a linear relationship. The crushing forces 

decrease rapidly for a sma ll decrease in the contact length. Refer again to figure 1.17. Recall 

that the loops are traversed counter -clockwise. Notice at the top of the loop , as the tool 

is about to move to its bottom-most position, the crushing forces start decreasing rapidly. 

However, the contact length sti ll keeps increasing for a short while and then decreases more 

slowly than the decrease in crushing forces. This rapid decrease in crushing forces with a 

slow decrease in contact length explains the portion of figure 1.18 for contact lengths higher 

than approximately 34 mils. For a short relief length tool (see figure 1.19, the contact length 

between the relief face and the workpiece increases and then saturates at 10 mil (since the 

tool relief length is only 10 mil) at which point the tool is still moving down and the entire 

length of the relief face is in contact with the workpiece. We see from figure 1.19 that even 

though the contact length has saturated at 10 mil, the crushing forces continue to increase. 

This may be explained by the fact that while the contact length has saturated, area of 

material being crushed increases leading to higher crushing forces. Table l. 1 represents the 

linear fits of crushing force to contact length for different tool relief length and different 

wavelengths of vibration. y represents the crushing force and x, the exp lanatory variable is 

the contact length. The contact length and crushing force data used to obtain these fits was 

restricted to the middle portions of the plots of crushing forces vs. contact length where 

the relationship was approximately linear (between 10 and 34 mils for a long relief tool, 

between O and 10 mils for a short relief tool and between 10 and 25 mils for an intermediate 

relief too l). 

1.4 MODELLING CRUSHING FORCES - CONCLUSIONS 

l. We have modelled crushing behavior using AclvantEdge and investigated the behavior 

of crushing forces on the relief face of the tool (and on the work material at the same 

time) for varying too l relief lengths and varying wavelengths of vibration . 

2. Brian Whitehead assumed an inverse relationship between the crushing forces and 
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Tool Wavelength Equation Error (lbs) 

Long relief length tool (80 mil) 40 mil y = l.1023*x + 0.39733 2.34 

60 mil y = l.13186*x - 1.5391 3.75 

80 mil y = l.1848*x - 9.6977 3.88 

Table 1.1. Linear fits of contact length and crushing forces. 

100 mil y = l.30557*x -20.4926 3.74 

Short relief length tool (10 mil) 40 mil y = 0.5481 *x + 1.5011 0.84 

60 mil y = 0.2337*x + 1.3497 0.51 

80 mil y = 0.20745*x + 1.484 0.12 

100 mil y = 0.1672*x + 0.9573 0.33 

Int ermediate relief lengt h tool (30 mil) 40 mil y = l.002*x + 3.6279 3.02 

60 mil y = 1.4311 *x - 6.4 724 2.54 

80 mil y = 0.9635*x -7.1277 2.47 

100 mil y = 0.97697*x -7 .877 2.62 

the wavelength of vibration. We invest igate d this assumption and found that short 

relief lengt h tools demonstrate this relationship. For long relief length tools, this 

relations hip is inverted; maximum crus hing forces demonstrate a direct dependence 

on the wavelength of vibration. The relationship is less clear for int ermed iate relief 

length tools. Note that given the wavelength of ax ial-tor sional vibration typical of 

twist drills, the relief face is long compared to the wavelength and process damping 

models shou ld take this into account. 

3. We demonstrated that the length of contact between relief face of the tool and the 

workpiece shows similar variation as the crush ing force and has sim ilar relationships 

with the wavelength. Contact length was therefore used to model crushing forces. 

4. We demonstrated an approximately linear relationship between the contact length and 

crushing forces for part of tool motion. This linear relation ship does not hold during 

the initi al descent of the tool into the workpiece and in the region just before the tool 

reaches its lowest position. 



CHAPTER 2 

DRILLING METAL STACKS 

2.1 INTRODUCTION TO DRILLING METAL STACKS 
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Drilling is one of the most common operations used in the construction of an airplane. 

For example, a 747-400 needs about 3 million drilling operations in order to put in the 

fasteners used to hold the plane together. Boeing cuts composite materials and drills metal 

stacks to build airplanes. Any problems associated these operations can lead to increased 

costs. Composite materials allow lightweight design and structural performance because of 

lower weight, high strength and good fatigue performance. Metal stacks are clamped to

gether; holes are drilled into them and the stacks are riveted together. Boeing is interested 

in modelling drilling operations in these situations and simulating associated problems. The 

original objective of this study was to model drilling of metal stacks and layered composites 

using AdvantEdge. However in order to compute the behavior of work material subjected to 

cutting forces AdvantEdge requires a material model (the relationship between the amount 

a material strains under the action of stresses) . AdvantEdge does not currently support 

machining of composites because it does not have material models for composites.In this 

section we look at modelling drilling of metalstacks using AdvantEdge. 

One of the most common problems encountered in the drilling of metal stacks is de

lamination (separation between layers). Other problems encountered during drilling are 

migration of chips into layer interfaces, crushing of layers , and burr formation, all of which 

reduce the strength of the material and hence its load carrying capacity [3]. This affects the 

structural integrity of aircraft, which are subjected to a combination of compressive, shear, 

fatigue and impact (e.g. bird-hits) loads during maneuvers. 

Early studies on drilling of composites focused attention on delamination, matrix crack 

and fiber damage [4]. Other studies concentrated on preventive measures to reduce damage 

in the machined zone. Ho-Cheng and Dharan [l] identified thrust force as the principal 
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cause of delamination, described the two modes in which it acts, and derived a quantita

tive prediction , of the onset of delamination as a function of the material properties and 

the uncut ply thickness. Their linear elastic fracture mechanics analysis was based on the 

presence of a circu lar crack in the material , which is propagated further due to the thrust 

forces of the drill . 

Jain and Yang [8], [3] carried the work further ,by making the assumption that the ini

tial crack was not circular but elliptic al. Sadat [4] assumed planes of symmetry exist in 

the material and developed expressions for critica l load s and feeds for delamination. All 

of these studies concentrated on the problem of delamination alone and did not consider 

other problems such as chip migration into interface, crushing of layers, and burr formation. 

Two modes of delamination ~re push-out-at-exit and peel-up-at-entrance[l]. Let us ana

lyze each. 

The drill imposes a thrust force on th e workpiece due to the feed, as it moves into the 

workpiece. As the drill approaches th e end of the cut, the thickness of uncut material below 

the drill decreases, resulting in reduced sti ffness and resistance to the thrust forces [1]. At 

a critical thickness, the thrust forces exceed th e interlaminar bond strength, resulting in 

separation of the layers. This mechanism occurs close to the end of the hole and is therefore 

called the push-out-at-exit mode of delamination [Figure 2.1]. 

The second mechanism we examine is layer separation as the drill starts cutting into 

the workpiece . As the drill enters the workpiece , there is a tendency of the upper layers of 

material to move upwards along the flute. The material spirals up before it is machined 

completely [1] resulting in a peeling force which separates the upper layers from those layers 

which have not been cut as yet. Ho-Cheng and Dharan identify the peripheral force ( due 

to rotation of drill) as the primary factor in creat ing this upward peeling away effect. Since 



Figure 2.1. Push-Out-at-Exit Mode of Delaminati on [l]. 
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Figure 2.2. Peel-Up-at-Entrance Mode of Delamination [l]. 
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it occurs at the start of the cut, it is called peel-up-at-entrance [Figure 2.2]. As the drill 

moves through the cut this mode of delamination decreases. 

2.2 MODELLING DRILLING OPERATIONS 

In this section we focus on modelling drilling. We note simplifying assumptions and 

consequent trade-offs. The modelling approach described is necessitated by features offered 

by AdvantEdge. 

Drilling is a comp lex, three dimensional machining process due to the complicated shape 

and geometry of drilling tools and inserts. Drills require flutes to help remove cut material 

(see figure 2.3). The shape of these flutes results in a varying tool geometry along the 

cutting edge. Thus, in order to correctly model the drilling operation we must model the 
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motion of the drill as it cuts material in the workpiece and then account for changes in rake 

and relief angles along the cutting edge. 

In modelling a physical process we balance the desire to capture all important charac

teristics against the need to make simplifications in order to make a complex problem more 

tractable. Simplifications we are making at this stage are related to current capabilities of 

AdvantEdge. AdvantEdge has the capability to simulate machining in both two and three 

dimensions. However, in three dimensions, it Jacks the capability to simulate machining 

of workpieces which have layers. This necessitates transformation of the three dimensional 

drilling process to two dimensions. Additionally, AdvantEdge lacks the capability to create 

stacked workpieces with varying heights. This prevents modelling a tool that is subjected 

to a constant chip load (see figure 2.5) when cut at an angle . 

. The motion of a point on the drill cutting edge is the combination of two motions, ro

tation about the drill axis imparted to it through the spindle, and feed, so that the drill 

moves into the workpiece. Thus a point on th e cutting edge moves in a helical path (figure 

2.4) .We transform the helical motion in 3D as shown in figure 2.4 to an equivalent motion 

in a plane. A point on the cutting edge at any instant of time during the cut will have two 

instantaneous velocities. One velocity will be the tangential velocity at the circumference 

due to the rotation. The other velocity will be velocity in the downward direction due to 

the feed (figure 2.4). 

The drill is rotating at a constant rotational speed. Hence the tangential velocity 

(½angential or Vx) of the point on the cutting edge under consideration must be constant 

(in magnitude) throughout the cut. The feed (VJeed or Vy) also remains constant. Note 

that the direction of the tangential velocity (Vx) vector changes as one moves along the 

motion path. Our main simplification in transforming to motion in a plane is to neglect 

the changing direction of the tangential velocity vector. In a plane the point under consid-
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Figure 2.3. Twist drill geometry - two flutes (Sutherland, 2003) 

eration would have the same two components of velocity whose directions are as shown in 

figure 2.4. One can think of this transformation from three dimensions to two dimensions 

as unwinding the helical motion such that the velocities along the cutting edge maintain 

the same magnitude. 

Vx, the tangential velocity of the point along the cutting edge at a specified radius, given 

by 

( 2.1) Vx=W*r 

where w is the angular velocity of a point at a radius r from the central axis of the drill. 

(Vy) is the feed. 

Figure 2.5 represents the transformed path of only one point along the cutting edge. 

The tool has the geometry of the actual too l that point . Figure 2.3 shows the flutes, the 

portion of the drill which is used for the evacuation of the chips. The shape of these flutes 

results in varying rake and relief angles along the cutting edge of the drill. To model cutting 

action at different points along the cutting edge, we select three points, one near the center 

of the drill along the cutting edge, one in the middle of the cutting edge and one at the 
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Figure 2.4. Transforming three dimensional motion to two dimensions. 
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Figure 2.5. Tool Path and related velocities in two dimensions. 
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Vx 

Figure 2.6. Variation of motion path for different points along cutting edge of drill. 

outer end of the cutt ing edge. The paths of these points in our two dimensional model are 

represented as shown in the figure 2.6. Clear ly the resultant path in two dimensions will be 

steepest for the point near the drill axis and the sha llowest for the point at the end of the 

cutting edge. 

The 2D model has the following limit ations 

1. Thrust force is the most important factor affecting delamination. It may depend on 

factors other than cutting speed, feed and tool geomet ry. The two dimensional model 

may not capt ure the effect of all factors. 

2. In a drilling operation the drill is subjected to a constant chip load. In cutting at an 

angle the load on the tool increases. This is unrealistic. One way to eliminate this 

problem is to create a workpiece with a slant top so that the tool is always subjected 

to a constant chip load. However AdvantEdge lacks this capab ility. Varying chip load 

affects the forces on the work mat erial. 
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Figure 2.7. Typical Simulation set- up in AdvantEdge. 

2.3 SIMULATING DRILLING OF METAL STACKS 

2.3.1 Simulation Issues 
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Titanium-Aluminum (Ti-Al) stacks are common ly drilled in aircraft manufacture. Ad-

vantEdge allows users to set up to 5 layers of metals. The boundaries between the layers 

are assumed to be in a state of perfect stick. Figure 2.7 represents a simu lation with a layer 

of titanium and a bottom layer of aluminum . The tool is assumed to move from right to 

left. A drill has changing rake and relief ang les along the cuttin g edge caus ing a change in 

thrust forces. We have run different two dimensional simulat ions for three points along the 

cutting edge of the same drill. Tool geometry at the selected points is calculated using a 

Boeing Interna l Report [2] for a ½" carbide drill. Given a rotational speed of drill and a 

feed, the tangential and feed velocities are computed at these points along the cutting edge. 

These velocities are input s to the software. The effect of changing rake and relief on work 

material behavior is st udied. 

Recall from sect ion 2.2 that we cons ider two modes responsibl e for the onset of delam-
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.. 

Top(1") Bottom(¼") Radius (Vx)(ft / min) (Vy)(ft/min) Rake Angle Relief Angle) 

Al Ti 0.2" 83 20 25 7 

Ti Al 0.2" 83 20 25 7 

Al Ti 0.025" 11 8 8 13 

Al Ti 0.125" 52 8 12 10 

Al Ti 0.2)' 83 8 25 7 

Ti Al 0.025" 11 8 8 13 

Ti Al 0.125" 52 8 12 10 

Ti Al 0.2" 83 8 25 7 

Table 2 1 List of simul at ions 

inat ion . The push-out at exit mod e occurs when the thickness of the material below the 

drill is sma ll. The peel-up at entrance mode occurs when the drill first ent ers the metal 

stack. We have therefore used sma ll thickness for the layers in our simu lations. Typical 

thicknesses of metal stacks are about a quarter of an inch. \Ve use the same values in our 

simul atio ns . 

2.3.2 Simulation Parameters. 

We chose three points along the cutting edge of a½" drill (at radii of 0.025", 0.125" and 

0.2") and obtained approx imate values of the rake and relief ang les at these points using the 

Boeing Interna l Report [2]. Tab le 2.1 shows t angential and feed velocities at these points 

as well as tool geometry. The workpiece used in this study consists of two layers of metal, 

titanium and aluminum. In each case the workp iece dimensions remained the same. We 

ran simu lat ions with the layers in each order, Ti-Al or Al-Ti to observe differences in the 

cutt ing process. 

The drill was assumed to rotate at a constant speed of 800 rpm. Typical feed velociti es 

are in the range of a tenth of the tangential velocities (about 8 ft/min). However simula

tions run very slowly at this feed velocit y. For this reason the feed velocity was increased 

for some of the simulations. 
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Figure 2.8. Al~ Ti Stack - Rake Angle 25 Relief Angle 7 

2.4 Results 

We make the following observations based on our experience with simulations of ma-

chinin g of two layer stacks. 

1. Al-Ti Stack - Rake Angle 25 Relief Angle 7 

Figure 2.8 is a frame from a simu lation in which the top layer of the stac k was 

Aluminum and the bottom layer was Titanium. Tool velocities are (Vx)= 83 ft/min 

and (Vx)= 20 ft/min . The top layer slides and folds over the bottom layer. The layers 

clearly have separated at the int erface. 

2. Ti-Al stack - Rake Angle 25 Relief Angle 7 Figure 2.9 is a frame from a 

simulat ion in which the top layer of the stack was Titan ium and the bottom layer was 

Aluminum. Tool velocities are the same as simu lation 1 (Al-Ti Stack - Rake Angle 

25 Relief Angle 7) . In this case the softer layer of alumi num gets crushed and slides 

under the titanium layer. A clear separat ion is seen in this simulation as well. 

3. Al-Ti stack - Rake Angle 12 Relief Angle 10 Figure 2.10 repr esents a machining 
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simulation on a Al-Ti stack. Tool velocities are (Vx)= 52 ft/min and (Vx)= 8 ft/min. 

At the specified tool velocities the aluminum layer is clearly sliding over the titanium 

layer. No separation is observed. 

4. Ti-Al stack - Rake Angle 12 Relief Angle 10 Figure 2.11 represents a machining 

simulation on a Al-Ti stack. Tool velocities are (Vx)= 52 ft/min and (Vx)= 8 ft/min. 

In this case, we observe squishing of the aluminum layer under the titanium layer and 

relative sliding between the layers. 

5. Al-Ti stack - Rake Angle 8 Relief Angle 13 Figure 2.12 represents a machining 

simulation on a Al-Ti stack at the point along the cutting edge closest to the drill axis. 

Tool velocities are (Vx)= 11 ft/m in and (Vx)= 8 ft/min. The aluminum layer clear ly 

slides under the tool and over the t itanium layer. The varying chip load problem is 

evident here. 
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Figure 2.12. Al-Ti Stack - Rake Angle 8 Relief Angle 13 

2.5 MODELLING DRILLING OF STACKS - CONCLUSIONS 
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1. Drilling may be transformed from a complex three dimensional process to a two di

mensional one under simplifying assumption s mentioned in section 2.2 . 

2. From th e results of section 2.4, we observe that metal layers initially in a state of 

perfect stick at the interface slide over each other or separate. At the interface high 

displac ement values at nodes are probably resulting in a re-meshing, so that the perfect 

stick boundary condition does not hold any further and the layers may either slide 

relative to each other or separate . 

3. Clearly moving along the cutting edge of the drill affects the thrust forces and con

sequently separation between layers. From the results of section 2.4, at the point on 

the cutting edge furthest away from the drill axis , the sharper rake angle and higher 

velocities resulted in a clear separation between layers in addition to relative sliding. 

Separation was not observed at the inner points along cutting edge, where tool ve-
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loci ties were lower and rake angle was smaller. However some sliding between layers 

was observed. Thrust forces increase along the cutting edge and separation between ' 

layers may occur at outer ends of the cutting edge. 

4. The simu lations predict plausible behavior of the softer material (aluminum). When 

the top layer was aluminum, sliding and folding over the bottom titanium layer was 

observed. With titanium as the top layer, the softer bottom layer gets squished and 

slides under the top layer. 
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The following not es about running simulation s with layers are useful in resolving run 

time probl ems. 

1. Simulations running properly are list ed in the job monitor. Absence of simulation 

name in the job monitor indicates failure of simulation, the reason for which can be 

obtained from the * .out file. 

2. Outd ated license files will lead to a checkout failed warning. 

3. AdvantEdg e may keep running in the background preventin g usage of a simulation 

file. This may be prevented by endin g the process in Task manager. 

4. Bat ch simulatio ns continu e in the background even afte r process has been stopped. 

This may be prevented by stopp ing all simul at ions in the batc h file that show up in 

the job monitor . 

5. Folder or file names in AdvantEdge cannot have spaces . Additionally simulation file 

name must be the same as the folder name. 

Run-time errors of the following types typ ically show up in simulations with layers . 

1. Dep ending on simul at ion parameters, the spec ified numb er of nod es may be insuffi

cient. Changes to the * .inp file help resolve this problem. 

2. The adapt ive meshing featur e can fail eith er due to excessive mesh disto rtion or failure 

to identi fy surfaces. Increas ing maximum number of nod es or decreasing the maximum 

element size value may be helpful in these situ at ions . However by doing this we force 

excess ive mesh refinement which may affect run times. 
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