
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Plan B and other Reports Graduate Studies 

5-2008 

Comparison of Machine Learning Algorithms for Modeling Comparison of Machine Learning Algorithms for Modeling 

Species Distributions: Application to Stream Invertebrates from Species Distributions: Application to Stream Invertebrates from 

Western USA Reference Sites Western USA Reference Sites 

Margi Dubal 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Dubal, Margi, "Comparison of Machine Learning Algorithms for Modeling Species Distributions: 
Application to Stream Invertebrates from Western USA Reference Sites" (2008). All Graduate Plan B and 
other Reports. 1298. 
https://digitalcommons.usu.edu/gradreports/1298 

This Report is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Plan B and 
other Reports by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/1298?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Comparison of machine learning algorithms for modeling species 
distributions: application to stream invertebrates from western USA reference 

sites 

by 

Margi Dubai 

A report submitted in partial fulfillment 
of the requirements for the degree 

of 

MASTER OF SCIENCE 

Ill 

Statistics 

UTAH STATE UNVIVERSITY 
Logan, Utah 

2008 



Comparison of machine learning algorithms for modeling species 

distributions: application to stream invertebrates from western USA 

ref ere nee sites 

Abstract. Machine learning algorithms are increasingly being used by ecologists to 

model and predict the distributions of individual species and entire assemblages of sites. 

Accurate prediction of distribution of species is an important factor in any modeling. We 

compared prediction accuracy of four machine learning algorithms-random forests, 

classification trees, support vector machines, and gradient boosting machines to a 

traditional method, linear discriminant models (LDM), on a large set of stream 

invertebrate data collected at 728 reference sites in the western United States. 

Classifications were constructed for individual species and for assemblages of sites 

clustered a priori by similarity on biological characteristics . Predictive accuracy of the 

classifications was evaluated by computing the percent of sites con-ectly classified, 

sensitivity, specificity, kappa, and the area under the receiver operating characteristic 

curve on 10-fold crossvalidated predictions from each classification method on each 

individual spec ies and assemblage of sites. The prediction s from each type of 

classification were used to estimate the Observed over Expected (0/E) index of taxa 

richness. Random Forests generally produced the most accurate individual species 

models . However, none of the machine learning algorithms showed significant 

improvement over LDMs for classifications of assemblages of sites and precision of the 

0/E index. The performance of Support Vector Machines was particularly poor for 

classifying individual species and assemblages of sites, and resulted in greater bias in the 

0/E index. We believe that the performance of models developed for species at such 

large spatial scales may depend more on the predictor variables available than the 

classification technique. 

Key words: Classification, machine learning, 0/E index, species distribution modeling. 
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Introduction: 

Predicting where individual taxa should occur under reference conditions is a critical part 

of biological assessments and conservation management. These predictions are typically 

derived from 'niche' models, which describe how taxa abundances or probabilities of 

presence vary with different environmental conditions. Most niche models have been 

based on analyses using traditional statistical methods, including logistic regression and 

linear discriminant models (LDMs). These traditional methods make stochastic and 

structural assumptions (e.g., linearity) that are not generally satisfied by ecological data 

and, consequently, they may not provide meaningful analyses in the situation of complex 

and non-linear relationships between the classes and the predictor variables. Accurate 

prediction is an important objective in species distribution modeling. Ecologists have 

recently started to evaluate models based on machine learning methods, which make 

almost no stochastic and structural assumptions, and they have the capacity to predict 

complex and highly non-linear systems (see, for example, De'ath 2007; Cutler et al. 

2007). The machine learning algorithms used in this study are classification trees 

(hereafter CT; Breiman et al. 1984; De'ath and Fabricius 2000), random forests (hereafter 

RF; Breiman 2001; Cutler et al. 2007), support vector machines (hereafter SVM; Hastie 

et al. 2001; Drake et al. 2006), and gradient boosting machines (hereafter GBM; Hastie et 

al. 2001; De'ath 2007). In other applications , all these methods have been shown to have 

very high classification accuracy. 

The Observed over Expected (0/E) index of taxa richness (see, for example, Hawkins 

2001) is an important tool in assessing the biotic condition of streams. Predictions of 

taxa presences at selected sites are made using classification models fit to data from 

reference 'pristine' sites and then compared to the numbers of taxa actually observed at 

the site through the 0/E index. The classification models that have typically been used in 

this kind of assessment are linear discriminant models (LDM; Hastie et al. 2001; 

Hawkins 2001). 

The purpose of the study reported here was to evaluate the four machine learning 

algorithms CT, RF, SVM, and GBM, for the purposes of individual species distribution 

modeling, for classification of assemblages of sites, and for estimation of the 0/E index. 

For comparison purposes, LDMs were used as a benchmark. It was anticipated that the 
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machine learning algorithms would significantly out-perform LDM for the individual 

species distribution modeling and assemblage classifications, and would result in more 

accurate estimates of the 0/E index. 

Data: 

the data used in the analyses was obtained from 728 reference sites in the western United 

States (Fig. 1). The biological data is the presence or absence of 375 stream invertebrates 

at each of the 728 sites. A GIS was used to generate associated environmental predictor 

variables for each site, including drainage area, topography, watershed geology, soils, and 

long-term climate variables (PRISM 2004). There were 11 continuous predictors and 

seven categorical variables. Variable descriptions are given in Table 1. 

Table 1: Names and descriptions of predictor variables used in analyses. 

Variables Description Type Range 
ELEV Elevation of site Continuous 10 - 3660 
log WSAREA log of watershed area Continuous -0.33 - 4.05 
GIS LAT Latitude Continuous 31.63 - 48.87 
GIS LONG Longitude Continuous -124.32 - 103.41 

The average annual number of days 
FRZ_FREE with mean air temperature above 0°C Continuous 14 - 318 

30-year average annual air emperature 
TMEAN_PT at sampling site. Continuous -15 - 210 
LOG_PPT Log Precipitation Continuous 2.15 - 3.57 

Ratio of mean of the minimum of mean 
monthly flows on record (baseflow) to 
the mean of the maximum of mean 
monthly flows interpolated from USGS 
gauging stations: value for the 

HYDR_PT sampling site. Continuous 0 - 0.3105 
% of gneiss geology in the watershed 

derived from a simplified version of 
Reed & Bush (2001) - Generalized 
Geologic Map of the Conterminous 

GNEIS United States. Categorical 0/1 
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Table l(cont.): Names and descriptions of predictor variables used in analyses. 

Variables Description Type Range 
% of granite geology in the watershed 

derived from a simplified version of 
Reed & Bush (2001) - Generalized 
Geologic Map of the Conterminous 

GRANTIC United States. Categorical 0/1 
% of mafic-ultramafic geology in the 

watershed derived from a simplified 
version of Reed & Bush (2001) -
Generalized Geologic Map of the 

MAF_ULT Conterminous United States. Categorical 0/1 
% of quartemary geology in the 

watershed derived from a simplified 
version of Reed & Bush (2001) -
Generalized Geologic Map of the 

QUART Conterminous United States. Categorical 0/1 
% of sedimentary geology in the 

watershed derived from a simplified 
version of Reed & Bush (2001) -
Generalized Geologic Map of the 

SEDIMENT Conterminous United States. Categorical 0/1 
% of volcanic geology in the 

watershed derived from a simplified 
version of Reed & Bush (2001) -
Generalized Geologic Map of the 

VOLCANIC Conterminous United States. Categorical 0/1 
Presence (1) / absence (0) of carbonate 
geology at the sampling site derived 
from map of merged carbonate rocks 

CARB_PT derived from state geologic maps. Categorical 0/1 
Slope (rise/run) of the stream channel 

from the National Hydrologic Dataset 
(NHDPlus, http://www.horizon-

SLOPE systems.com/nhdp lus). Continuous 0 - 0 .2875 
srSLOPE Square root of SLOPE Continuous 0 - 0.5361903 
srHYD ROPT Square root of HYDR PT Continuous 0 - 0.5572253 
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Classification Methods: 

There were two parts to the classification analyses. One part involved predictive 

classification of presences and absences of individual taxa. The other analyses involved 

the classification of sites that had been assembled into biologically similar groups. 

_ Individual Species Distribution Modeling: 

Presences and absences of individual species were predicted usmg the set of 11 

continuous environmental and seven categorical variables .. Only the 111 taxa that 

occurred at more than 30 sites were included in these analyses. All five classification 

methods were used for all 111 taxa. 

Assemblage of Sites Classifications: 

The composite species modeling involved two distinct stages . In the first stage, the 728 

reference sites were clustered into biologically similar groups based on the presence and 

absence of species. A similarity matrix was created using Bray-Curtis Index and then 

clustering algorithm was applied. The dendogram that graphically displays the degree of 

biotic similarity between sites and groups of sites was then used to identify similar groups of 

sites (Hawkins - www .cnr.usu.edu/wmc). Thus, clustering algorithm is used to group 

biologically similar sites into quasi-distinct classes that represent different 'types' of 

sites. Sites within each class are simply more similar to each other than sites from 

different class. In the analyses reported here two different groupings of reference sites 

were used. One grouping contained 28 classes (groups) of similar sites and another set 

contained coarser set of 11 classes (groups). 

In the second stage, likelihood of group membership for each site was generated as 

function of environmental predictor variables using all selected classification algorithms 

and the set of 11 continuous and seven categorical predictor. Predicted occurrence 

probability of each taxon at each site was calculated by multiplying occurrence frequency 

of all taxa in the reference site groups and probability of group membership generated 

from each classification methods. Thus, a 728 x 375 matrix was obtained containing 

predicted occurrence probabilities of each taxon at each site. 
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Classification Accuracy Assessment: 

The metrics used to evaluate the accuracy of the predictive classifications were the 

percentage of sites correctly classified (PCC), the sensitivity, the specificity, the kappa 

statistic, and the area under the receiver operating characteristic curve (AUC). All these 

metrics have their advantages and disadvantages (Fielding and Bell 1997); together they 

characterize overall classification accuracy. The AUC criterion is particularly widely 

used in ecology because it is independent of the probability threshold used to classify 

sites into different groups. 

For both the individual species distribution modeling and the classification of 

assemblages of sites, 10-fold crossvalidation was employed to ensure that the models did 

not "overfit" the data and inflate the classification accuracies (Kohari 1995). In 10-fold 

crossvalidation the dataset is randomly divided into 10 equal-or nearly equal-sized 

pieces, which may be indexed by i = 1, 2, 3, ... , 10. The crossvalidated predictions for 

the /h piece are obtained by fitting or "training" the classifier on the data in the remaining 

nine pieces and then predicting for all the sites in the /h piece. 

Review of Classification Methods: 

Linear Discriminant Models: 

Linear discriminant models are one of the oldest methods for classification. The decision 

boundaries between the different classes or groups of observations are linear 

combinations of the predictor variables. Prior probabilities of membership in the 

different classes may be specified. The general form of the linear discriminant function 

for the kth class is: 

8k (x) = xT I- 1µk - 1/2 µ/I- 1µk + log nk , 

where k is number of classes, nk is prior probability of membership in the kth class, I is 

estimated covariance matrix for the predictors, and x is a vector of values on the predictor 

variables for the observation in question. The observation is classified as belonging to 

the class for which the value of •k is largest. That is, Predicted class = G(x) = argmaxk 8k 

(x). A more detailed description of LDM may be found in Hastie et al. (2001). 

Although they are simple and very easy to compute, LDMs have several disadvantages . 

The optimality of the LDM is derived assuming that the predictor variables jointly have 
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multivariate normal distributions with a common covariance matrix for all classes. This 

assumption is rarely satisfied in practice. The linear form of the separators of the 

different classes also limits the types of problems for which LDMs are effective. Despite 

these shortcomings, LDMs have proved to be useful classifiers in a wide range of 

problems and are still widely used in ecology. The lda function from the MASS package 

in R was used for all analyses reported here. 

Classification Trees: 

A classification tree is built using a process of binary recursive partitioning, which splits 

the observations into increasingly homogeneous groups with respect to response classes. 

The criterion that is usually used to assess homogeneity of the subgroups of data is the 

Gini index (Breiman et al. 1984 ). At each step, an optimization with regard to the Gini 

index is carried out to determine the variable and cutpoint to split on. The most 

effective way to fit a classification tree is to fully grow the tree until no futher decrease in 

the Gini index is possible, and then prune the tree back by removing the lower branches 

to optimize crossvalidated prediction error More technical detail about classification 

trees may be found in Breiman et al. (1984) and Hastie et al. (2001). The classification 

trees of our analyses were fit using the rpart package in R. . The amount of pruning of 

classification trees in rpart is controlled by the complexity parameter. The value of the 

complexity parameter was selected by inspecting a plot of the crossvalidated error rate 

against value of the complexity parameter (Breiman et al. 1984 ). 

Random Forests: 

As the name suggests, RF combines the predictions from many classification trees to 

obtain more accurate classifications. Many (e.g., 500) samples of the same size as the 

original data set are draw from the dataset with replacement. These samples are called 

bootstrap samples. In each bootstrap sample approximately 68% of the observations in 

the original dataset occur one or more times. The observations in the original dataset that 

do not occur in the bootstrap sample are said to be out-of-bag for that bootstrap sample. 

On each bootstrap sample, a classification tree is fit. At each step in the fitting process 

(split) only a small number of variables (typically, the square root of the number of 
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observations) is available to be split on. The tree is fully grown, with no pruning. The 

tree is then used to construct predictions for all the out-of-bag observations for that 

bootstrap sample. Finally, the predicted class for an observation is obtained by "voting" 

the predicted classes for all the trees fit on bootstrap samples for which the observation 

was out-of-bag. More technical detail about random forests may be found in appendix A 

of Cutler et al. (2007). 

Random forests classifications for the analyses reported here were fit usmg the 

randornforest in R (Liaw and Wiener 2002). Although RFs are much more 

computationally intensive to fit than single classification trees, they may also give 

substantially more accurate predictions (Breiman 2001; Cutler et al. 2007). 

Gradient Boosting Machine: 

Gradient boosting machines is another procedure that, like RF, fits many trees to a single 

dataset. Gradient boosting machines differ from RF in that the trees are fit sequentially, 

with observation weights updated according to whether observations are correctly or 

incoJTectly classified. The algorithm for updating and using the weights is quite complex 

and may be found in Friedman (2000), Hastie et al. (2001), and De'ath (2007). The last 

of these papers also contains some ecological examples of the use of GB Ms. 

The GBMs for the analysis reported here were fit using the gbm package in R. 

Gradient boosting machines are very computationally intensive and require substantial 

tuning of parameters. However, in many applications they have proved to be the most 

accurate classifier that is currently available. 

Support Vector Machines: 

Support Vector Machine (SVM) leads to a different approach for classification other than 

trees. The basic idea behind support vector machine is to create non linear boundaries by 

generating linear boundaries on higher dimensional space. It is a computationally 

extensive algorithm but it works well in many situations. SVMs are stable, require less 

tuning and have greater prediction accuracy in ecological modeling (Drake et. al 2006). 

More technical details about SVM can be found in Hastie et. Al 2001. We used e1071 

package in R to build SVM model. 
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The Observed over Expected Ratio 

A second objective of this study was to see whether improved values of the observed 

over expected (O/E) ratio could be obtained using machine learning algorithms to obtain 

the expected component of the statistic instead of LDMs. We used the output (such as 

predicted occurrence probability of each taxon at each site) generated from each type of 

model to estimate the O/E value and the precision of the estimated O/E values. It is 

known that the O/E value can vary due to many factors. One of these factors is the 

threshold for the probability of presence that is used to screen taxa for inclusion in the 

total expected value (Yuan 2006). In the analyses reported here, two detection thresholds 

were used: zero and 0.5. When the threshold is set at zero, all taxa are included in the 

computation of the E component of the O/E statistic at a given site. With a threshold of 

0.5, only those taxa that have a predicted occurrence probability greater than 0.5 are 

included in the calculation of E for that site. A third choice is to calculate adjusted 

threshold for individual taxa and use it to make decision about inclusion of that taxa in 

calculation of E. The optimal value was estimated by minimizing the difference between 

sensitivity and specificity. This assumes that predicting presences coITectly is as 

important as predicting absences correctly. Optimization was done by checking each 

possible value between O and 1. 

Different measures of model accuracy were plotted against how frequently taxa occurred 

among samples using SYSTAT (version 11). Taxa were only introduced in modeling, if 

they were observed in greater than 30 sites . Plots have been created for each metrics such 

as PCC, Sensitivity, Specificity, Kappa and AUC for two different thresholds (cutoff) to 

capture probability. Thus, only those species whose estimated capture probabilities were 

at least as large as the threshold were indicated as present otherwise they were counted as 

absent. The random selection of taxa was made such that entire range of species 

frequency (rare as well as more common species) was represented in any given plot. For 

each 0.1 interval, we randomly selected 5 taxa to plot. Only two taxa had frequencies of 

occurrence greater than 0.7. So the totals of 37 taxa were plotted in the graph. Trend lines 

were fitted by LOESS regression with tension equal to 0.5. 

9 



Results: 

The first set of analyses was for the assemblages of sites. Crossvalidated and 

resubstitution (see Fielding and Bell 1997) estimates of classification accuracies were 

obtained using RF, SVM, LDM, and CT (Table 2). Gradient boosting machines were not 

included in these analyses because the implementations available to us only worked for 

binary responses. The most striking aspect of Table 2 is how poorly classification trees 

performed compared to all the other classifiers. The crossvalidated PCC for 

classification trees for the 28 class problem was about 7 .1 % compared to values between 

30% and 38% for the other classifiers. For the 11 class analysis, the crossvalidated PCC 

was 17.7% for classification trees compared to values between 50% and 55% for the 

other classifiers . We are unable to explain why classification trees perform so poorly. 

For the 28-class analyses, the PCC for RF (37.7%) was slightly higher than for SVM 

(31.1 %) and LDM (34.3%). For the 11-class analyses, the PCCs for RF (53.5%) and 

SVM (53.8%) are nearly identical and slightly higher than the PCC for (LDM). Overall, 

there is little to choose between SVM , LDM , and RF for the classification of assemblages 

of sites. 

Also of interest was the effects the different classifications have on the estimation of the 

0/E index. Because all the sites used in these analyses are reference sites the mean value 

of 0/E should be close to 1.0 and the smaller the standard deviation of the 0/E values the 

better. Given the poor classification performance of classification trees it is perhaps 

surprising that the mean 0/E values using cross-validated predicted probabilities are 

close to 1.0 for all four classification methods (Table 3 and Figure 12(a)). The largest 

mean 0/E value is 1.053 for RF and the smallest is 0.970 for SVM. Using pairwise t

tests (Tables 4 and 5) we see that the modest difference in mean 0/E values for the 

different classification methods are all statistically significant except for the difference 

between CT and LDM, which have the mean crossvalidated 0/E values closest to 1.0. 

The standard deviations of the 0/E values for the different classification methods are all 

about 0.2 with a slight ly higher value of 0.249 for SVM. The higher standard deviation 

and bias for SVM suggest that it is the least useful classification procedure from the 

perspective of estimating the 0/E index. 
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For individual taxa modeling, most methods performed similarly with respect to the 

accuracy metrics, except for SVM, which performed poorly or erratically (Figures . 2, 4, 

6, 8, and 10).In many cases, accuracy metrics varied substantially with frequency of 

occurrence. Rare species were observed to have higher accuracy measure compared to 

more common species for all five classification methods. There was no significant 

difference in classification accuracy for the entire range of species frequency in terms of 

PCC for all four methods excluding support vector machine (SVM) (Figure 2). Adjusting 

the threshold to minimize the difference between sensitivity and specificity substantially 

reduced the effect of commonness on perceived prediction accuracy. SVM performed 

poorly for the threshold value (used to classify presence or absence of the species) of 0.5 

(Figure 2) and for the adjusted cutoff (Figure 3) but showed better prediction for common 

species than rare species. 

PCC obtained by using species specific adjusted cutoff had relatively high value for 

random forests. There was not much difference between Classification Tree, Linear 

Discriminant Analysis and Gradient Boosting Machine for the value of PCC and also it 

had substantially low value for Support Vector Machine for the entire range of frequency. 

Specificity defined as percentage of correctly classified absences, was similar for all 

methods except SVM; however, they differed substantially for different frequency of taxa 

when threshold value was set to 0.5. Rare species had higher specificity prediction 

compared to more common species (Figure 4). SVM showed straight line across the 

graph showing no difference in specificity for entire range of species indicating no 

dependency on species range size. Again for adjusted threshold, Random Forests had 

relatively high value across the species distribution giving better specificity prediction for 

rare and common species (Figure 5). SVM again proved to be a poor method while other 

methods were similar in estimating specificity . 

Sensitivity showed quite opposite of what we observed in specificity for rare • and 

common species. Rare species tend to estimate lower sensitivity compare to common 

species. For the threshold value of 0.5, as frequency of occurrence for species increased, 

sensitivity also increased (Figure 6). SVM performed substantially different from other 

methods and resulted in moderate value for rare species. This gradually decreased for 

common species. Plots obtained for sensitivity and specificity looked similar for adjusted 
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probability of detection threshold showing Random Forests as one of the best classifier 

among other methods (Figure 5 & 7). Ideal adjusted threshold values were calculated 

such that difference between sensitivity and specificity were minimized and this caused 

similarity between the two plots. 

Kappa showed slight improvement for Random Forests compare to other methods where 

as SVM gave the lowest prediction accuracy (Figure 8 & 9). Kappa also gave identical 

plots for both threshold values which proved that we can use kappa as accuracy measure 

independent of the value for probability of detection threshold. Kappa varies between 0.1 

and 0.5 for entire set of species distribution with few negative values which showed 

overall poor prediction for all methods. 

Like Kappa, AUC is also independent of the choice of the threshold value. In terms of 

AUC, Random Forests was slightly more accurate than LDA, CT and GBM where as 

SVM had the lowest AUC values (Figure 10) for the entire range of distribution. Rare 

taxa (frequency of occurrence less than 0.2) tend to give higher classification accuracy in 

terms of AUC which decreased when the frequency of occurrence was approximately 0.2, 

increased slightly as frequency increased and stabilized for remaining frequencies (Figure 

10). Thus, species that are rare were modeled with higher accuracy than the other 

common species. 

We observed that Random Forests was slightly superior to other methods in classification 

accuracy. Also, SVM had the lowest performance scores across all five measures of 

model accuracy. However, we did not notice huge difference for Linear Discriminant 

Analysis, Classification Tree and Gradient Boosting Machine . Hence, it was worth 

comparing model precision using 0/E index. 

Three threshold values were used to see the performance of model precision . We found 

that different threshold values produced dramatically different mean and standard 

deviation of 0/E ratio for each method. All methods showed some departure from 1 for 

the mean of 0/E (mean (0/E)) introducing some biasness in model precision. When 

threshold value was chosen to be 0, values of mean (0/E) were approximately 1 

producing unbiased estimate of E for all methods, except for SVM ( overestimated E) 

(Figure 12 (d)). However, index performance was erratic at probability of detection 

threshold greater than 0.5. Mean (0/E) decreased immediately from 1 when threshold 
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value was 0.5 or for any other adjusted threshold. But, we got the highest standard 

deviation of O/E (approximately 0.22) for all methods when threshold value is 0 (Table 

7). Also, adjusted threshold had higher standard deviation of O/E for all methods (Table 

8). Thus, standard deviation of O/E when threshold = 0.5 gave relatively low values 

compare to other threshold values . CT, SVM, and GBM generally underestimated E 

(Figure 11, Table 6), although these models were often equally precise as their less biased 

counterparts (Table 6) standard deviation Mean (O/E) for Random forest (0.96) with 

standard deviation (0.18) and LDA (0.94) with standard deviation (0.20) were close to a 

standard 1 (Table 6). 

Results from pair-wise t-test for mean comparison of O/E indicated that all methods were 

statistically different from each other for adjusted cutoff value (Table 10). These results 

were also true when threshold value was set to O and 0.5 (Table 11 & 12) with the 

exception for the threshold value O where LDA and classification tree were not 

statistically different from each other. 

Conclusion: 

Overall, we found that RF was slightly superior (accuracy and precision) in predicting 

individual taxa as compared to that from other methods we examined. However, none of 

the machine learning algorithms showed significant improvements over LDMs when 

modeling assemblage types and estimating E from those models . We also observed no 

improvement in O/E index precision when RF estimates for individual taxa were 

aggregated to estimate O/E. SVM performed relatively poorly in both assemblage and 

individual taxa modeling compared with the other methods and thus resulting in higher 

bias in most O/E indices. Given the superior performance of RF and other machine 

learning algorithms for other applications, it is likely that the performance of models and 

associated indices developed for such large spatial scales may depend more on sample 

size and the availability and suitability of predictor variables than the modeling 

technique . Along with the predictor variables, the quality and type of data plays a large 

role in determining which modeling technique results accurate predictor. We also 

conclude that the best way to determine an ideal modeling technique is to compare the 

data modeling results from all the known modeling methods on various precision metrics 
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and choose the accurate model for prediction. Modeling requirement could be different 

for various data sets and should not be generalized based on the outcomes and results of 

some other dataset. In our case even though the newer methods were more promising, 

upon modeling they did not provide better results than that obtained from the traditional 

method. 

Fig. 1: Location of 728 reference sites the western United States. 
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Table 2: Percentage correctly classified for assemblage of sites classifications (N = 628 

sites). PCC: the percentage of correctly classified presences and absences, Xval: 

Crossalidated estimates, Resub: Re-substituted estimates, LDA : Linear Discriminant 

Analysis 

Classification Percentage Correctly Classified (PCC) 
Method 28 Groups 11 Groups 

Xval Resub Xval Resub 

LDA 0.343 0.437 0.507 0.573 
Classification Tree 0.071 0.287 0.177 0.511 
Random Forest 0.377 1 0.535 1 
Support Vector Machine 0.312 0.476 0.538 0.608 

Table 3: Summary for observed over expected ratio (0/E) for all four classification 

methods 

Classification Xval Resub 
Method 

Mean O/E Std O/E Mean O/E Std O/E 
LDA 0.993 0.193 1.009 0.191 
Classification Tree 1.006 0.203 1.019 0.203 
Random Forest 1.053 0.187 1.066 0.159 
SVM 0.970 0.249 0.959 0.251 

Table 4: Paired T-test to compare statistical significance difference in mean (0/E) for 

composite modeling 

Standard t 
Estimate Error DF Value PR> ltl 

LDA * ClassificationTree 0.0093 0.15 678 1.58 0.1138 
LDA * RandomForest 0.058 0.13 678 12.03 <0.0001 

LDA * SVM -0.022 0.22 678 -2.58 0.01003 
ClassificationTree * RandomForest -0.049 0.14 678 -9.24 <0.0001 
ClassificationTree * SVM 0.031 0.21 678 3.83 0.00014 
RandomForest * SVM 0.080 0.21 678 9.85 <0.0001 
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Table 5: Summary for mean difference. Methods those share same letter are not 

statistically different. 

Methods 
LDA A 

Classification Tree A 
Random Forest B 
SVM C 
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Figure 3: Model accuracy as measured by Percentage of correctly classified (PCC) when 
adjusted threshold is applied for probability of detection. 
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Figure 4: Model accuracy as measured by Percentage of absence s correctly classified 
(Specificity) when probability of detection threshold = 0.5 
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Figure 5: Model accuracy as mea sured by Percentage of absences correctly classified 
(Specificity) when adjusted threshold is applied for probability of detection. 
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Figure 6: Model accuracy as measured by Percentage of presences correctly classified 
(Sensitivity) when probability of detection threshold= 0.5 
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Figure 7: Model accuracy as measured by Percentage of presences correctly classified 
(Sensitivity) when adjusted threshold is applied for probability of detection. 
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Figure 8: Model accuracy as measured by Kappa (Adjusted PCC for the agreement 
between presences and absences that might occur due to chance alone) when probability 
of detection threshold = 0.5 
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Figure 9: Model accuracy as measured by Percentage Kappa (Adjusted PCC for the 
agreement between presences and absences that might occur due to chance alone) when 
adjusted threshold is applied for probability of detection. 
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Figure 10: Model accuracy as measured by area under the curve (AUC) when probability 
of detection threshold = 0.5 
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Figure 11: Model accuracy as measured by area under the curve (AUC) when adjusted 
threshold is applied for probability of detection. 
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Cutoff :0.5 

LDA Classification Tree RandomForest SVM GBM 
mean(O/E) 0.944 0.797 0.960 0.498 0.835 
sd(O/E) 0.199 0.161 0.183 0.166 0.171 
mean(O) 15.291 16.462 16.331 9.506 16.273 
mean(E) 16.389 20.583 17.092 19.051 19.606 

Table 6: Summary of O/E ratio for five classification methods (cutoff= 0.5) 

Cutoff: 0 

LDA Classification Tree Random Forests SVM GBM 

mean(O/E) 0.998 0.998 0.989 0.908 1.025 
sd(O/E) 0.243 0.217 0.215 0.215 0.242 
mean(O) 29.3923 29.3927 29.392 29.392 29.392 
mean(E) 29.639 29.486 29.746 32.391 28.905 

Table 7: Summary of O/E ratio for five classification methods (cutoff= 0) 

Cutoff: Adjusted 

LDA Classification Tree Random Forest SVM GBM 

mean(O/E) 0.974 0.849 0.932 0.742 0.856 

sd(O/E) 0.2614 0.194 0.205 0.214 0.202 

mean(O) 20.191 18.399 19.710 15.431 19.160 

mean(E) 21.157 21.640 21.212 20.969 22.534 

Table 8: Summary of O/E ratio for five classification methods (Adjusted Cutoff) 
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Fig. 12. Box plots of O/E index values for each prediction method. A= composite type 

modeling (probability of detection threshold P1 2: 0.5). B = individual taxa models (P1 2: 

0). C = individual taxa models (P1 2: 0.5) . D = individual taxa models (Adjusted P1) . 
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Adjusted threshold 

t 
Estimate DF Value PR> ltl 

LDA * ClassificationTree 0.13 728 18.29 <.0001 
LDA * RandomFore st 0.04 728 5.96 <0.001 
LDA * SVM 0.23 728 32.57 <0.001 
LDA * GBM 0.12 728 18.34 <0.001 
ClassificationTree * RandomForest -0.09 728 -18.71 <0.001 
ClassificationTree * SVM 0.11 728 15.23 <0.001 
ClassificationTree * GBM -0.01 728 -2.22 0.026 
RandomForest * SVM 0.20 728 28.42 <0.001 
RandomForest * GBM 0.08 728 16.63 <0.001 
SVM * GBM -0.11 728 -17.21 <0.001 

Table 9: Paired T-te st to compare statistical significance difference with p-value for 

Individual specie s modeling using adjusted probability of detection threshold 

Threshold = 0 

t 
Estimate DF Value PR> ltl 

-

LDA * ClassificationTree 0.00017 728 -0.048 0.069 
LDA * RandomF orest 0.0078 728 1.82 <0.001 
LDA * SVM 0.09 728 22.46 <0.001 
LDA * GBM -0.029 728 -6.14 <0.001 
ClassificationTree * RandomFore st 0.0079 728 2.67 0.008 
Class ificationTree * SVM 0.091 728 22.90 <0 .001 
Class ificationTree * GBM -0.028 728 -7.25 <0.001 
RandomForest * SVM 0.083 728 19.47 <0.001 
RandomForest * GBM -0.036 728 -8.93 <0.001 
SVM * GBM -0.12 728 -22.07 <0.001 

Table 10: Paired T-te st to compare statistical significance difference with p-value for 

Indiv idual specie s modeling using probability of detection threshold Pt= 0 
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Threshold= 0.5 

t 
Estimate DF Value PR> ltl 

LDA * ClassificationTree 0.15 728 26.76 <.0001 
LDA * RandornForest -0.013 728 -2.40 0.0168 

LDA * SVM 0.44 728 65.29 <0.001 

LDA * GBM 0.12 728 21.25 <0.001 

ClassificationTree * RandornForest -0.16 728 -34.04 <0.001 

ClassificationTree * SVM 0.29 728 47 .32 <0.001 
ClassificationTree * GBM -0.039 728 -8.99 <0.001 
RandornForest * SVM 0.45 728 67.43 <0.001 

RandornForest * GBM 0.12 728 26.83 <0 .001 

SVM * GBM -0.33 728 -52 .25 <0.001 

Table 11: Paired T-test to compare statistical significance difference with p-value for 

Individual specie s modeling using probability of detection threshold Pt= 0 

Adjusted cutoff 

Method s 
LDA A 

ClassificationTree B 
RandornFore st C 
SVM D 
GBM E 

Table 12: Summary of mean difference for Individual species modeling using adjusted 

probability of detection threshold 

25 



Cutoff= 0 

Methods 

LDA A 

Classification Tree A 

RandornForest B 
SVM C 
GBM D 

Table 13: Summary of mean difference for Individual species modeling probability of 

detection threshold Pt = 0 

Cutoff= 0.5 

Methods 

LDA A 

Classification Tree B 

RandornForest C 
SVM D 
GBM E 

Table 14: Summary of mean difference for Individual species modeling using probability 

of detection threshold Pt = 0.5 
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