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Abstract
Battery-powered electric buses are gaining popularity as an energy-efficient and emission-free alternative for bus fleets.
However, battery electric buses continue to struggle with concerns related to their limited driving range and time-consuming
recharging processes. Fast-charging technology, which utilizes dwelling time at bus stops or terminals to recharge buses in
operation employing high power, can raise battery electric buses to the same level of capability as their diesel counterparts in
terms of driving range and operating time. To develop an economical and effective battery electric bus system using fast-
charging technology, fast-charging stations must be strategically deployed. Moreover, due to the instability of traffic conditions
and travel demands, the energy consumption uncertainty of buses should also be considered. This study addresses the plan-
ning problem of fast-charging stations that is inherent in a battery electric bus system in light of the energy consumption
uncertainty of buses. A robust optimization model that represents a mixed integer linear program is developed with the
objective of minimizing the total implementation cost. The model is then demonstrated using a real-world bus system. The
performances of deterministic solutions and robust solutions are compared under a worst-case scenario. The results demon-
strate that the proposed robust model can provide an optimal plan for a fast-charging battery electric bus system that is
robust against the energy consumption uncertainty of buses. The trade-off between system cost and system robustness is
also addressed.

The electrification of bus fleets has been widely consid-
ered as an effective method of abating local emissions,
improving fuel economy, and reducing oil dependence in
conventional diesel-powered bus systems (1–3). Battery
electric buses (BEBs) are among the most popular elec-
tric buses today. Compared to trolleybuses, which are
attached to continuous overhead wires along the entire
bus line, BEBs are more flexible in their operation.
However, due to the limitations of battery technology,
the energy density of batteries for BEBs is rather low
when compared to diesel. BEBs therefore suffer from the
disadvantages of cumbersome and costly on-board bat-
teries and limited driving ranges. Moreover, the refueling
of BEBs using either standard or slow-charging methods
takes much longer when compared to diesel buses. The
emerging technology of fast-charging BEBs provides
promising potential in helping to offset these drawbacks.
This technique follows the opportunity charging concept,
which utilizes dwelling times at bus stops or terminals to
recharge buses in operation using high charging power
(3). By fast-charging en route, BEBs are as capable as
their diesel counterparts in terms of range and operating

time. Promising results have been reported by many fast-
charging BEB demonstration projects (4–6).

A fast-charging BEB system requires comprehensive
planning and design to ensure effective and economical
implementation. Two key design factors of the system
are the deployment of fast-charging stations and on-
board battery size. The planning problem is twofold.
First, the combination of deployed fast-charging facilities
and the design of battery sizes should ensure the normal
operation of the bus system. Second, one must consider
the trade-off between on-board battery sizes and the
number of fast-charging facilities.

Although several studies have investigated the plan-
ning problem of a fast-charging electric bus system (e.g.,
1, 3, 7), none have considered the energy consumption
uncertainty of buses. For a fast-charging electric bus
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system, the energy consumption of BEBs is a key para-
meter in determining the locations of charging stations
and the battery sizes of BEBs. In the above studies, energy
consumption is assumed to be predefined and is estimated
either based on collected sample data or through simula-
tion. In reality, however, the energy consumption of BEBs
may be uncertain. For instance, the energy consumption
of a BEB between two stops will change in conjunction
with traffic conditions and travel demands. Ignoring the
uncertainty of energy consumption of BEBs could lead to
a suboptimal or even an infeasible plan for a fast-charging
electric bus system. Therefore, this study explicitly
addresses energy consumption uncertainty in the planning
of a fast-charging electric bus system.

To model the energy consumption uncertainty of BEBs,
this study applies the technique of set-based robust optimi-
zation (RO). This technique has been developed and
improved by many researchers (e.g., 8–10). It allows the
parameters with uncertainty to vary within a given set and
requires solutions to be feasible for any realizations of the
parameters in the set. Compared with other modeling meth-
ods regarding data uncertainty, such as stochastic program-
ming and scenario-based RO, the set-based RO has the
virtues of not requiring probability distribution of uncertain
data and providing computationally tractable formulations.
The set-based RO approach has been applied in many
study areas, including humanitarian relief supply chain
problems with demand uncertainty (11), multi-period fleet
allocation problems in a bike-sharing system with demand
uncertainty (12), robust dynamic network design problems
with demand uncertainty (13), and robust planning of
dynamic wireless charging infrastructure for BEBs (14).

In this study, we first provide a deterministic optimi-
zation model for the planning problem of a fast-charging
electric bus system. We then develop its robust counter-
part model to address the energy consumption uncer-
tainty of BEBs. The approach developed by Ben-Tal
et al. (10) is adopted to derive the robust counterpart for
a given uncertainty set.

Deterministic Optimization Model

In this section, we introduce the deterministic optimiza-
tion model for the planning of a fast-charging electric
bus system. To develop a feasible and cost-effective sys-
tem, the battery sizes of BEBs and the deployment of
fast-charging stations need to be simultaneously deter-
mined. Because there are multiple types of fast-charging
stations with different power levels and costs, we also
need to determine the most suitable type for each charg-
ing station. The combination of designed battery sizes
and deployed charging stations should first meet the
energy requirements for normal operation of the bus sys-
tem. Under this premise, we then seek the optimal

combination with minimum total cost. Moreover, our
model is based on a fast-charging electric bus system
with the following assumptions:

1. Each bus line in the bus system operates on a
fixed route.

2. Each bus line has a base station, where all buses
begin and end each of their service loops.
Different bus lines may share a base station if
their service routes converge at the base station.

3. After finishing a service loop, an electric bus will
be fully charged at the base station before it starts
another service loop.

Assumption 1. is not restrictive, because we can always
treat a bus line with multiple routes as multiple lines that
share the same bus fleet and require the bus fleet to be feasi-
ble for all lines. Assumption 2. is accordant with the com-
mon practice of bus systems. The base station is usually the
location where drivers have a rest and buses are checked.
Assumption 3. means that a fast-charging station must be
installed at the base station, and that an electric bus will uti-
lize its long dwell time between two service loops to get fully
charged. Assumption 3. is consistent with the operational
rules in the demonstration project of a fast-charging electric
bus line, as reported by Eudy et al. (4). We note that some
other studies, such as that of Qin et al. (15), allow electric
buses to operate more than one service loop before they are
fully charged. However, this may result in a queue at the
charging station and require additional scheduling efforts to
ensure normal operations. Because the primary focus of this
study is to develop a modeling framework for the robust
optimal planning of a fast-charging electric bus system, we
leave the work of capturing more flexible operational rules
to future studies.

Notation

For the convenience of readers, we list all notations of
the deterministic model in Table 1.

Model Formulation

S1ð Þ : min
x, y, emax, s, earriving, eleavingð Þ

X
k2K

abatteryzkemax
k

+
X
i2~N

X
t2T

a
charger
t xi, t +

X
k2K

X
i2Nn~N

X
t2T

a
charger
t yk, i, t

s:t:X
t2T

xi, t� 1 8i 2 ~N ð1Þ

X
t2T

yk, i, t� 1 8k 2 K, i 2 Nkn~N ð2Þ
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xi, t 2 0, 1f g 8i 2 N , t 2 T ð3Þ
yk, i, t 2 0, 1f g 8i 2 N , t 2 T ð4Þ

e
leaving
k, i = εupperemax

k 8k 2 K, i= ok ð5Þ

e
arriving
k, j = e

leaving
k, i � ck, i, j 8k 2 K, i, jð Þ 2 Lk ð6Þ

e
leaving
k, i = e

arriving
k, i + sk, i 8k 2 K, i 2 Nk ð7Þ

sk, i�
X
t2T

ptxi, ttk, i 8k 2 K, i 2 Nk \ ~N ð8Þ

sk, i�
X
t2T

ptyk, i, ttk, i 8k 2 K, i 2 Nkn~N ð9Þ

e
arriving
k, i � εloweremax

k 8k 2 K, i 2 Nk ð10Þ

e
leaving
k, i � εupperemax

k 8k 2 K, i 2 Nk ð11Þ

emax
k � 0 8k 2 K ð12Þ

The objective function minimizes the total system cost,
including the cost of batteries and the cost of installing
fast-charging stations. Note that because the dwelling
time or the potential charging time at a base station or
terminal station is long, to avoid a queue, we assume that
different bus lines cannot share charging stations at a
shared base station or terminal station. While at a bus

station that is neither a base station nor a terminal sta-
tion, we assume that different bus lines can share one
charging station. We note that to realize charging station
sharing, a bus system must be systematically and compre-
hensively scheduled. We leave the work of developing a
schedule-based modeling framework to future studies.

Constraint (1) ensures that only one type of fast-charging
station can be installed at bus station i 2 ~N . Similarly, con-
straint (2) ensures that for bus line k 2 K, only one type of
charging station can be deployed at the base station or termi-
nal station i 2 Nkn~N . Constraints (3) and (4) require variables
xi, t and yk, i, t to be binary. Constraint (5) specifies that a BEB
is fully charged when it begins its service from the base sta-
tion. Constraints (6) and (7) describe the change in battery
power on a bus due to energy consumption and potential
fast-charging. Constraints (8) and (9) ensure that an electric
bus can be charged at a bus station only when it has an avail-
able charging station, and that the potential energy supply
cannot exceed the product of charging power and dwell time.
Constraints (10) and (11) specify the lower bound and upper
bound of the battery power of an electric bus. Constraint (12)
ensures that battery capacity cannot be negative.

By eliminating variables, e
arriving
k, i and sk, i, model S1

can be equivalently reformulated as a more concise pro-
gram as

Table 1. Notation of the Deterministic Model

Description

Sets
N Set of bus stations (including base stations and terminals), indexed by i and j
L Set of directed road segments connecting sequential stations, indexed by i, jð Þ
T Set of fast-charging station types, indexed by t
K Set of bus lines, indexed by k
~N Set of bus stations (excluding base stations and terminals), indexed by i and j

Lk Set of all the links that form bus line k 2 K
Nk Set of all the nodes that form bus line k 2 K

Parameters
ok A node representing the base station of bus line k 2 K
abattery Amortized battery cost per kWh, considering replacement and discount rate

a
charger
t

Amortized cost of installing a type t 2 T fast-charging station

zk Total number of buses on line k 2 K
ck, i, j Energy consumption of an electric bus from line k 2 K on link i, jð Þ 2 Lk

tk, i Dwell time of an electric bus from line k 2 K at station i 2 N
pt Power of a type t 2 T fast-charging station
eupper Upper bound of remaining battery power (in percentage of battery capacity)
elower Lower bound of remaining battery power (in percentage of battery capacity)

Variables
xi, t A binary variable, representing whether to build a type t 2 T fast-charging station at bus station i 2 ~N. If yes, xi, t = 1;

otherwise, xi, t = 0
yk, i, t A binary variable, representing whether to build a type t 2 T fast-charging station at base station or terminal station

i 2 Nn~N. If yes, yk, i, t = 1; otherwise, yk, i, t = 0
emax

k Battery size for electric buses on line k 2 K

e
arriving
k, i

Remaining battery power of an electric bus on line k 2 K when it arrives at station i 2 N

e
leaving
k, i

Remaining battery power of an electric bus on line k 2 K when it leaves station i 2 N

sk, i Energy supply at station i 2 N for an electric bus from line k 2 K
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S2ð Þ : min
x, y, emax, eleavingð Þ

X
k2K

abatteryzkemax
k

+
X
j2~N

X
t2T

a
charger
t xj, t +

X
k2K

X
j2Nn~N

X
t2T

a
charger
t yk, j, t

s:t: (1)-(5), (11)-(12)

e
leaving
k, j � e

leaving
k, i � ck, i, j +

X
t2T

ptxj, ttk, j

8k 2 K, j 2 Nk \ ~N , i, jð Þ 2 Lk

ð13Þ

e
leaving
k, j � e

leaving
k, i � ck, i, j +

X
t2T

ptyk, j, ttk, j

8k 2 K, j 2 Nkn~N , i, jð Þ 2 Lk

ð14Þ

e
leaving
k, i � ck, i, j � εloweremax

k 8k 2 K, i, jð Þ 2 Lk ð15Þ

Robust Formulation

As formulated, the above deterministic optimization
model is a mixed integer linear programming problem.
In this section, we apply the set-based RO methodology
to address the uncertainty in energy consumption of
BEBs and to identify a robust solution for the planning
problem of a fast-charging BEB system.

Energy Consumption Uncertainty

Under the set-based RO approach, it is assumed that
energy consumption ck, i, j is unknown and belongs to a
specified uncertainty set. Specifically, the following box
uncertainty set is commonly used:

ck, i, j 2 Ub
k [ �ck, i, j,�ck, i, j + ĉk, i, jsk, i, j

� �
where sk, i, j is the uncertainty level coefficient; �ck, i, j and
ĉk, i, j are the nominal value and maximum deviation of
energy consumption of a BEB from link k 2 K on link
i, jð Þ 2 Lk , respectively. In practice, both �ck, i, j and ĉk, i, j

can be calculated based on collected bus driving profile
and ridership data. Here, possible negative deviations in
energy consumption are neglected, because they are not
adverse factors for the bus system.

The box uncertainty set only restricts the maximum
deviation of each individual parameter ck, i, j. Under the
box uncertainty set, all energy consumption parameters
can reach their worst-case value (i.e., the maximum
value) simultaneously. In practice, however, it is very
unlikely that there are heavy passenger demands and
extremely bad traffic conditions in all parts of the bus
route. Therefore, to find a less conservative solution, we
impose Gk as a budget for uncertainty to set an upper
limit for the cumulative deviation in energy consumption
along a route. Thus, the following polyhedral uncer-
tainty set is used to replace the box uncertainty set as

ck 2 U
p
k [

(
ck 2 R

Lkj jj�ck, i, j� ck, i, j��ck, i, j + ĉk, i, jsk, i, j,

X
i, jð Þ2Lk

ck, i, j � �ck, i, j

� �
�Gk

)

where ck denotes the vector of � � � , ck, i, j, � � �
� �

.

Affinely Adjustable Robust Counterpart

In the deterministic model S2, if constraints (13)–(15)
must be satisfied for all realizations of ck 2 U

p
k , then the

corresponding solution is deemed robust against the
uncertainty set U

p
k . A traditional set-based RO approach

focuses on static problems and has an underlying
assumption that all decision variables represent ‘‘here
and now’’ decisions and therefore should be assigned
specific numerical values as a result of solving the prob-
lem before the actual data ‘‘reveals itself’’ (10). In our
problem, however, the change in battery power for a
BEB depends on the actual realizations of uncertain
energy consumption and should be a dynamic process.
To consider such a dynamic nature, we adopt a more
advanced approach of an affinely adjustable robust
counterpart (AARC), as developed by Ben-Tal et al. (9).
AARC allows some of the decision variables, including
auxiliary variables (e.g., slack or surplus variables) and
variables representing ‘‘wait and see’’ decisions (i.e., deci-
sions that can be made when part of the uncertain data
becomes known) (9), to be adjustable based on different
realizations of uncertain data by introducing functional
relationships between these decision variables and uncer-
tain data. Moreover, by restricting the functional rela-
tionships to the affine, the AARC approach ensures
tractable robust formulations.

For our problem, the decision variables include
xj, t, yk, j, t, e

max
k , and e

leaving
k, i , where xj, t and yk, j, t determine

the deployment of fast-charging stations, emax
k determines

on-board battery sizes, and e
leaving
k, i represents the remain-

ing battery power of an electric bus at a certain station.
From the perspective of planning, the deployment of
fast-charging stations and the battery sizes of electric
buses should be determined before construction of a
fast-charging electric bus system. Thus, decision vari-
ables xi, t, yk, i, t, and emax

k should represent ‘‘here and
now’’ decisions and should not be adjustable variables.
However, because the remaining battery power of an
electric bus at a certain station is directly affected by
actual energy consumption on those links that have been
passed, variable e

leaving
k, i should represent a ‘‘wait and see’’

decision (its value can be determined only when the
actual energy consumption data on the links that have
been passed ‘‘reveals itself’’). Therefore, variable e

leaving
k, i

should be an adjustable variable.

4 Transportation Research Record 00(0)



To derive the AARC of our problem, we should first
define a functional relationship between the adjustable
variable e

leaving
k, i and uncertain energy consumption data.

As discussed above, the value of e
leaving
k, i depends on

uncertain energy consumption data on those links that
have been passed. Let Li

k denote the set of links that an
electric bus needs to pass from the base station to station
i 2 Nk along the route of bus line k 2 K. Note that for
the base station of a bus line i= ok , we set Li

k = Lk . Let
ci

k denote the vector of � � � , ck,m, n, � � �f g, where
m, nð Þ 2 Li

k . The adjustable variable e
leaving
k, i can then be

represented as the affine function

e
leaving
k, i ci

k

� �
= ui

k +
X

m, nð Þ2Li
k

li
k,m, nck,m, n

where ui
k and li

k,m, n are new decision variables that are
not adjustable.

Substituting the adjustable variable, we arrive at the
AARC formulation

S2�AARCð Þ : min
x, y, emax, u,lð Þ

X
k2K

abatteryzkemax
k

+
X
j2~N

X
t2T

a
charger
t xj, t +

X
k2K

X
j2Nn~N

X
t2T

a
charger
t yk, j, t

s:t: (1)–(4), (12)

ui
k +

X
m, nð Þ2Li

k

li
k,m, nck,m, n = εupperemax

k

8k 2 K, i= ok , ck 2 U
p
k

ð16Þ

u
j
k +

X
m, nð Þ2L

j

k

l
j
k,m, nck,m, n� ui

k +
X

m, nð Þ2Li
k

li
k,m, nck,m, n � ck, i, j

+
X
t2T

ptxj, ttk, j 8k 2 K, j 2 Nk \ ~N , i, jð Þ 2 Lk , ck 2 U
p
k

ð17Þ

u
j
k +

X
m, nð Þ2L

j

k

l
j
k,m, nck,m, n� ui

k +
X

m, nð Þ2Li
k

li
k,m, nck,m, n � ck, i, j

+
X
t2T

ptyk, j, ttk, j 8k 2 K, j 2 Nkn~N , i, jð Þ 2 Lk , ck 2 U
p
k

ð18Þ

ui
k +

X
m, nð Þ2Li

k

li
k,m, nck,m, n � ck, i, j � εloweremax

k

8k 2 K, i, jð Þ 2 Lk , ck 2 U
p
k

ð19Þ

ui
k +

X
m, nð Þ2Li

k

li
k,m, nck,m, n� εupperemax

k

8k 2 K, i 2 Nk , ck 2 U
p
k

ð20Þ

In S2-AARC, the adjustable variable e
leaving
k, i is no lon-

ger a decision variable, but the coefficients of the affine

function of e
leaving
k, i , including ui

k and li
k,m, n, become new

decision variables. This means that the solution of S2-
AARC only determines the relationship between e

leaving
k, i

and uncertain energy consumption. Specific values of
e
leaving
k, i can be calculated following the realization of
energy consumption.

Tractable Reformulation of S2-AARC

In the above formulation, we observe that each piece of
constraint in constraints (16)–(20) (i.e., for a certain com-
bination of superscripts and subscripts) actually consists
of a continuum, or an infinite number, of constraints,
because the formulation must be satisfied for all realiza-
tions of uncertain energy consumption. Therefore, S2-
AARC is a semi-infinite programming problem (the
number of variables is finite) that is computationally
intractable. As shown in Proposition 1, we can further
reformulate S2-AARC as a tractable optimization
problem.

Proposition 1. Given the polyhedral uncertainty set,
U

p
k , S2-AARC can be equivalently reformulated as

the mixed integer linear programming problem

S2�AARC� Tð Þ : min
x, y, emax, u,l,vð Þ

X
k2K

abatteryzkemax
k

+
X
j2~N

X
t2T

a
charger
t xj, t +

X
k2K

X
j2Nn~N

X
t2T

a
charger
t yk, j, t

s:t: (1)–(4), (12)

ui
k = εupperemax

k 8k 2 K, i= ok ð21Þ

li
k,m, n = 0 8k 2 K, i= ok , m, nð Þ 2 Li

k ð22ÞX
m, nð Þ2Lk

�ck, i, j + ĉk, i, jsk, i, j

� �
vi1

kmn �
X

m, nð Þ2Lk

�ck,m, nvi2
kmn

+ Gk +
X

m, nð Þ2Lk

�ck,m, n

0
@

1
Avi3

k � ui
k � u

j
k

+
X
t2T

ptxj, ttk, j 8k 2 K, j 2 Nk \ ~N , i, jð Þ 2 Lk

ð23Þ

vi1
kmn � vi2

kmn +vi3
k = l

j
k,m, n � li

k,m, n

8k 2 K, j 2 Nk \ ~N , i, jð Þ 2 Lk , m, nð Þ 2 Li
k

ð24Þ

vi1
kij � vi2

kij +vi3
k = l

j
k, i, j + 1

8k 2 K, j 2 Nk \ ~N , i, jð Þ 2 Lk

ð25Þ

vi1
kmn � vi2

kmn +vi3
k = 0

8k 2 K, j 2 Nk \ ~N , i, jð Þ 2 Lk , m, nð Þ 2 LknLj
k

ð26Þ
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vi1
kmn,vi2

kmn,vi3
k � 0

8k 2 K, j 2 Nk \ ~N , i, jð Þ 2 Lk , m, nð Þ 2 Lk

ð27Þ

X
m, nð Þ2Lk

�ck, i, j + ĉk, i, jsk, i, j

� �
vi4

kmn �
X

m, nð Þ2Lk

�ck,m, nvi5
kmn

+ Gk +
X

m, nð Þ2Lk

�ck,m, n

0
@

1
Avi6

k � ui
k � u

j
k

+
X
t2T

ptyk, j, ttk, j 8k 2 K, j 2 Nkn~N , i, jð Þ 2 Lk

ð28Þ

vi4
kmn � vi5

kmn +vi6
k = l

j
k,m, n � li

k,m, n

8k 2 K, j 2 Nkn~N , i, jð Þ 2 Lk , m, nð Þ 2 Li
k

ð29Þ

vi4
kmn � vi5

kmn +vi6
k = l

j
k, i, j + 1

8k 2 K, j 2 Nkn~N , i, jð Þ 2 Lk

ð30Þ

vi4
kmn � vi5

kmn +vi6
k = 0

8k 2 K, j 2 Nkn~N , i, jð Þ 2 Lk , m, nð Þ 2 LknLj
k

ð31Þ

vi4
kmn,v

i5
kmn,v

i6
k � 0

8k 2 K, j 2 Nkn~N , i, jð Þ 2 Lk , m, nð Þ 2 Lk

ð32Þ

X
m, nð Þ2Lk

�ck, i, j + ĉk, i, jsk, i, j

� �
vi7

kmn �
X

m, nð Þ2Lk

�ck,m, nvi8
kmn

+ Gk +
X

m, nð Þ2Lk

�ck,m, n

0
@

1
Avi9

k � ui
k � εloweremax

k

8k 2 K, i, jð Þ 2 Lk

ð33Þ

vi7
kmn � vi8

kmn +vi9
k = � li

k,m, n

8k 2 K, i 2 Nk , i, jð Þ 2 Lk , m, nð Þ 2 Li
k

ð34Þ

vi7
kmn � vi8

kmn +vi9
k = 1

8k 2 K, i 2 Nk , i, jð Þ 2 Lk

ð35Þ

vi7
kmn � vi8

kmn +vi9
k = 0

8k 2 K, i 2 Nk , i, jð Þ 2 Lk , m, nð Þ 2 LknLj
k

ð36Þ

vi7
kmn,v

i8
kmn,vi9

k � 0 8k 2 K, i 2 Nk , i, jð Þ 2 Lk , m, nð Þ 2 Lk

ð37ÞX
m, nð Þ2Lk

�ck, i, j + ĉk, i, jsk, i, j

� �
vi10

kmn �
X

m, nð Þ2Lk

�ck,m, nvi11
kmn

+ Gk +
X

m, nð Þ2Lk

�ck,m, n

0
@

1
Avi12

k � εupperemax
k � ui

k

8k 2 K, i 2 Nk

ð38Þ

vi10
kmn � vi11

kmn +vi12
k = li

k,m, n 8k 2 K, i 2 Nk , m, nð Þ 2 Li
k

ð39Þ

vi10
kmn � vi11

kmn +vi12
k = 0 8k 2 K, i 2 Nk , m, nð Þ 2 LknLi

k

ð40Þ

vi10
kmn,v

i11
kmn,v

i12
k � 0 8k 2 K, i 2 Nk , m, nð Þ 2 LknLi

k

ð41Þ

where v is a set of dual variables. Note that the numeri-
cal superscripts are used for simplicity of notation.

Proof. For constraint (16) in S2-AARC, because it
must be satisfied for all realizations of uncertain energy
consumption ck 2 U

p
k , it is straightforward to prove its

equivalency with constraints (21) and (22). Except for
constraint (16), each constraint affected by energy con-
sumption uncertainty in S2-AARC (i.e., each of con-
straints (17)–(20)) can be generalized byX

m, nð Þ2Lk

ai
k,m, nck,m, n� hi 8ck 2 U

p
k ð42Þ

For instance, for constraint (17), ai
k,m, n = l

j
k,m, n � li

k,m, n

for 8 m, nð Þ 2 Li
k , ai

k, i, j =l
j
k, i, j + 1, ai

k,m, n = 0 for

8 m, nð Þ 2 LknLj
k , and hi = ui

k � u
j
k +

P
t2T

ptxj, ttk, j. Note

that constraints (17)–(19) are link-based, and superscript
i in constraint (42) corresponds to the starting node of
link i, jð Þ 2 Lk .

Constraint (42) can be equivalently given as

max
ck2U

p

k

X
m, nð Þ2Lk

ai
k,m, nck,m, n� hi ð43Þ

Without loss of generality, U
p
k =

(
ck 2 R

Lkj j j�ck, i, j

� ck, i, j��ck, i, j + ĉk, i, jsk, i, j,
P

i, jð Þ2Lk

ck, i, j � �ck, i, j

� �
�Gk

)

can be represented as Ack � b, and

max
ck2U

p

k

P
m, nð Þ2Lk

ai
k,m, nck,m, n can be written as the optimiza-

tion problem

Pð Þ : max
ck

ai
kck

s:t:

Ack� b

ck � 0

According to the property of strong duality (10, 16), the
equivalent dual problem (D) of (P) is given as
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Dð Þ : min
v

bv

s:t:

AT v=ai
k

v � 0

where v is a vector of dual variables.
Because the programming of (D) is equivalent to that

of (P), they will have the same optimal value. Therefore,
constraint (43), which requires that the optimal value of
(P), � hi, is equivalent to the optimal value of (D), is
achieved and is � hi. Because (D) is a minimization
problem, the requirement that the optimal value of (D) is
� hi is equivalent to the requirement that (D) has a feasi-
ble solution v with bv� hi. Therefore, constraint (43)
can be equivalently replaced by bv� hi, AT v=ai

k and
v � 0, and the reformulation of S2-AARC-T becomes a
mixed integer linear programming problem, which is
tractable.

Numerical Study

To demonstrate the effectiveness of the proposed model,
a numerical study is presented. The case study is based
on the bus system in downtown Salt Lake City, Utah, in
the United States.

Bus System and Model Parameters

A subnetwork of the Salt Lake City bus system, as
shown in Figure 1, is considered in the case study. The
subnetwork covers 91.4 kilometers of road segments and
includes eight bus lines, with a total of 34 buses serving
315 bus stations. Assuming that the transit agency wants
to transform this bus system into a fast-charging electric
bus system, the locations and types of charging stations,
as well as the battery capacity of the electric buses, must
be determined.

To evaluate the energy consumption of an electric bus
on each link for each bus line, an energy consumption
model proposed by Wang et al. (17) has been adopted.
The model is derived from the analysis of forces exerted
on a running electric bus, which considers air resistance,
rolling resistance, climbing resistance, acceleration resis-
tance and regenerative braking. Table 2a reveals the
simulation parameters applied to calculate energy con-
sumption. For simplicity, it is assumed that all roads in
the network have the same friction factor, and that the
eight bus lines use the same type of electric buses. The
slope profile is calculated based on Digital Elevation
Model (DEM) data from the Utah Automated
Geographic Reference Center (AGRC). The driving pro-
files are extracted from live Service Interface for Real
Time Information (SIRI) vehicle monitoring data, which

is collected using the ‘‘VehicleMonitoring by Route’’ ser-
vice implemented by the Utah Transit Authority (UTA)
(18). The data was collected from October 10, 2017, to
November 5, 2017. In total, 1,086, 216, 510, 608, 324,
486, 590 and 414 driving loop profiles for bus lines 2,
2X, 3, 6, 11, 500, 519 and 520, respectively were
obtained. Figure 2a lists some sample data for bus line 2,
which corresponds to two service loops of a vehicle on
October 12. The dwelling time data can be extracted

Figure 1. Salt Lake City bus system.

Table 2. Model Parameters

Value

Parameters of Energy Consumption Model
Parameter
Friction factor 0.02
Total mass of a bus (Kg) 20,400
Gravity acceleration (m=s2) 9.81

Air density (kg=m3) 1.2
Air resistance coefficient 0.7
Bus frontal area (m2) 7.5
Energy output efficiency 60%
Energy input efficiency 50%

Parameters of Batteries and Charging Stations
Parameter
Charging power of a type 1 charging station
(kW)

90

Charging power of a type 2 charging station
(kW)

250

Amortized cost of installing and maintaining a
type 1 charging station ($)

4,637

Amortized cost of installing and maintaining a
type 2 charging station ($)

11,589

Amortized cost of battery, including
replacement ($/kWh)

148

Lower bound of remaining battery power (in
percentage of battery capacity)

0.3

Upper bound of remaining battery power (in
percentage of battery capacity)

0.8

Parameters of Uncertainty Set
Uncertainty level of box uncertainty set 1.0, 2.0, 3.0
Uncertainty level of budget uncertainty set 0-1.0

Liu et al 7



from the driving profiles. The ridership data was
requested from the UTA. The average weight of a pas-
senger is assumed to be 70 kg. Based on the collected
data, the energy consumption data can then be calcu-
lated. Figure 2b reveals the energy consumption data for
bus line 2.

The parameters relating to batteries and fast-charging
stations are given in Table 2b. For simplicity, we only
consider two types of fast-charging stations, whose
charging power and costs are 90 kW, $50,000 (19) and
250 kW, $125,000 (20), respectively. We further assume
that the service life of charging stations is 12 years, and

that the maintenance cost is 1% of the installation cost
per year. For the on-board batteries, we consider the
lithium-titanate battery (referred to as LTO in the bat-
tery industry) utilized in Proterra’s battery electric
CATALYST Fast Charge transit bus. The battery has a
service life of six years with a cost of around $1000/kWh
(21). Considering a 0.01 discount rate, we can then calcu-
late the amortized cost of charging stations and batteries.

The uncertainty set in our robust model is given

by ck 2 U
p
k [

(
ck 2 R

Lkj jj�ck, i, j� ck, i, j��ck, i, j + ĉk, i, jsk, i, j,

Figure 2. (a) Sample speed profile data for line 2, and (b) energy consumption data for line 2.
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P
i, jð Þ2Lk

ck, i, j � �ck, i, j

� �
�Gk

)
. �ck, i, j and ĉk, i, j are calculated

based on real-world data. Parameters sk, i, j and Gk repre-

sent the conservation level of the robust model and are
determined in practice by decision makers or planners. In
this numerical study, we assume that sk, i, j (representing

the conservation level of the box uncertainty set) is uni-
form for all bus lines and all links and considers three
conservation levels: sk, i, j 2 1:0, 2:0, 3:0f g. For the budget
of uncertainty, we use the ratio of the uncertainty budget
to the total possible energy consumption deviation along

a route (i.e., Gk=
P

i, jð Þ2Lk

ĉk, i, jsk, i, j), denoted as gk , to repre-

sent the conservation level. We further assume that gk is
identical for all bus lines and consider 11 levels of uncer-

tainty with gk ranging between 0 and 1, with a step size
of 0.1.

Results and Analysis

Based on the network of the Salt Lake City bus system,
we obtain a robust model with 171,951 variables (644
binary variables) and 86,217 constraints. We solve this
model using GAMS (22) with a CPLEX (23) solver on a
3.40 GHz Dell Computer with 16 GB of RAM. With a
0.1% relative optimality gap, the computation time of
robust models ranges from 10 to 60 minutes, depending
on the uncertainty level. Note that when gk is zero, the
robust model will have the same solution as the determi-
nistic model. Table 3 lists the comparison between the
results of one robust model with an uncertainty level of

sk, i, j = 2:0 and gk = 1:0 and the results of the corre-
sponding deterministic model. Compared to the determi-
nistic model, the robust model requires larger batteries
for all eight bus lines. Moreover, as shown in Figure 3a,
b, the deployment and the number of fast-charging sta-
tions in the robust model is also different from that of
the deterministic model. We observe that when com-
pared to the deterministic solution, the robust solution
deploys more 250 kW fast-charging stations and less 90
kW fast-charging stations. In addition, bus lines 6, 11,
and 500 use 90 kW fast-charging stations at the base sta-
tion in the deterministic solution, whereas they require
250 kW fast-charging stations in the robust solution.
When considering the uncertainty of energy consump-
tion at the levels of sk, i, j = 2:0 and gk = 1:0, the amor-
tized cost of the electric bus system will increase from
$347,835 to $481,277 under the robust model.

Although the robust optimal solution requires greater
investments, the corresponding electric bus system can
operate uninterrupted when energy consumption experi-
ences deviations within the uncertainty set. Consider a
worst-case scenario in which all of the energy consump-
tion ck, i, j has a deviation from the expected value �ck, i, j

which is double that of the calculated maximum devia-
tion ĉk, i, j. Under this scenario, the solutions of robust
models with conservation levels of sk, i, j � 2:0 and
gk � 1:0 will still be feasible, and the corresponding elec-
tric bus system can operate normally, whereas the solu-
tion of the deterministic model will become infeasible,
and the corresponding electric bus system cannot satisfy
the energy requirements for normal operations. Under
the worst-case scenario, Figure 4 lists comparisons of the

Table 3. Comparison between the Deterministic Model and A Robust Model (sk, i, j = 2:0, gk = 1:0)

Battery size comparison

Shuttle Line
Battery capacity (kWh)

Battery size increaseDeterministic model Robust model
519 55.9 75.5 35.1%
520 55.2 75.8 37.3%
500 32.0 60.8 90.0%
11 33.2 65.3 96.7%
6 32.4 69.2 113.6%
3 59.2 82.3 39.0%
2 15.8 25.7 62.7%
2X 25.0 28.5 14.0%

Comparison of fast-charging stations

Items
Number –
Deterministic model Robust model

90 kW station 9 6
250 kW station 11 15

Cost comparison

Items
Cost

Cost increaseDeterministic model Robust model
Battery $178,623 $279,620 56.5%
Fast-charging stations $169,212 $201,657 19.2%
Total $347,835 $481,277 38.4%
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battery level profiles of bus line 6 in its first service loop
between the deterministic solution and the robust solu-
tion, with sk, i, j = 2:0 and gk = 1:0. We can observe that
bus line 6 under the robust solution can operate nor-
mally within the given range of the battery level, whereas
bus line 6 under the deterministic solution will run out of
energy at the 63rd station and cannot return to the base
station. Therefore, the performance of the robust solu-
tion is superior to that of the deterministic solution
under the worst-case scenario.

With our robust model, we can obtain the optimal
design for a fast-charging electric bus system that is robust
against the uncertainty of energy consumption. However,
additional investments will be required when an optimal
robust design is sought. In practice, decision makers must
determine the trade-off between robustness and the total
cost of the bus system. For the bus system under study,
Figure 5 compares the total amortized cost under different
levels of conservation (or robustness). We can observe that

under a certain box uncertainty level sk, i, j, the total cost
increases as the budget uncertainty level gk increases.
Moreover, under a certain budget uncertainty level gk . 0,
a higher box uncertainty level leads to a higher total cost.
This is expected under the robust model, because as the size
of the uncertainty set for energy consumption increases,
the electric bus system will require larger batteries, or a
greater number of higher power fast-charging stations, or
both, thus leading to a higher total cost. Under a certain
box uncertainty level sk, i, j, the size of the polyhedral
uncertainty set will increase as the budget uncertainty level
gk increases. Under a certain budget uncertainty level
gk . 0, the size of the polyhedral uncertainty set will
increase as the box uncertainty level sk, i, j increases.

Conclusion

In this study, we address the robust optimal planning
problem of a fast-charging electric bus system considering

Figure 3. (a) Deployment of fast-charging stations in the deterministic model, and (b) deployment of fast-charging stations in a robust model.
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the uncertain energy consumption of buses. We first for-
mulate a deterministic optimization model to determine
the types and the deployment of fast-charging stations
and the sizes of on-board batteries. Using the RO tech-
nique, we then derive the robust counterpart of the deter-
ministic model. The uncertainty of energy consumption is
bound by the intersection of the box uncertainty set and
the budget uncertainty set. We apply the AARC
approach to derive a less conservative and computation-
ally tractable robust model. The model is tested with a
real-world, large-scale numerical example. The results

demonstrate that our model is able to solve the robust
planning problem of a fast-charging electric bus system,
and the optimal design is robust against uncertain energy
consumption data. The comparison between the solutions
of the deterministic model and those of the robust model
under a worst-case scenario demonstrate that the robust
model provides solutions that are robust against energy
consumption uncertainty. Using different uncertainty levels,
we investigate the relationship between the total cost and
the level of robustness in a fast-charging electric bus system.
The results may help decision-makers to determine the best

Figure 5. System cost under different uncertainty levels.

Figure 4. Comparison of battery level profiles of bus line 6.
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trade-off between investments and the level of robustness in
a fast-charging electric bus system.

The fast-charging electric bus system, as an emerging
clean and sustainable alternative to a traditional diesel
bus system, may be widely adopted in the near future.
The proposed modeling framework in this study pro-
vides practitioners with an effective tool in the design of
a robust optimal fast-charging electric bus system.
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