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Abstract 

A mathemati cal model for PCR (Polymerase Chain Reaction ) is developed using the law 

of mass action. Differential equations are written from the chemical equations, preserving th e 

detail of the complementary DNA single strand being extended one bas e pair at a time. Th e 

equations for th e annealing stage are solved analytically. The method of multiple scales is used 

to approximate solutions for the extension stage. A map is then developed from the solutions 

to simulate PCR. The advantage of this model is the ability to use the map to optimize the 

process. Our result s suggest that dynamically optimizing the extension and annealing stages 

may significantly reduc e the total time for a PCR run, 

1 Introduction 

The Polymerase Chain Reaction (PCR ) is a technique for enzymatic amplification of specific seg

ments of DNA. Since its inception (Saiki et al. , 1985), it has revolutionized research involvin g 

genomic material. Pathogen detection, disease diagnosis, human genetics and developmental biol

ogy are just a few of the research areas impacted by PCR (Stone et al. , 2006). 

PCR is performed by repeating three temperature-induced stages : dissociation , annealing , and 
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extension. In dissociation a samp le containing the target DNA is first heated to approximately 95°C 

to separate the DNA into single strands. The mixture is then cooled to allow primers to anneal 

to the temp late DNA. Primers are short single strands of DNA specifically designed to target and 

bracket the sequence of DNA in the sample to be duplicated (the amplicon). Th e temperature of 

this stage is primer-specific , ranging from 37°C to 72°C. The solution is then heated to 74°C for 

exte nsion. During this phase the thermostable enzyme Taq Polymerase synthesizes a new DNA 

strand, completing the complimentary sequence started by the primer. These three stages are 

repeated 30 to 40 times yielding millions of copies of the target DNA. 

Real-time PCR uses fluorescent probes to monitor the amplification of DNA throughout the 

reaction. The speed at which the fluorescent signal reaches a threshold level correlates with the 

amo unt of target DNA in the initial sample. Real-time PCR is used to precisely distingu ish and 

measure specific DNA sequences even if there is only a very small quantity present in the original 

samp le (Valasek and Repa, 2005). This technology has many applications, including those that 

benefit from rapidity. Identification of microbes or parasites in commercial food and municipaJ 

water supplies, pathogen detection, and forensic applications are just a few. Portable, rapid, real

time PCR machines can determine the presence of a pathogen , such as anthrax, in as little as 30 

minutes. However , 30 minutes can be a long time on a battlefield or in the event of a biological 

terror attack. Using mathematics to optimize the process to potentially reduce this time is a 

valuable exercise. 

PCR has been mathematically modeled in several different ways. Early models assumed growth 

per cycle proportional to the amplicon density (Stone et al., 2006). However , assuming exponential 

growth of tem plate copies greatly oversimplifies the process and models t he growth only for the first 

few cycles. In reality, limiting factors cause the process to slow and eventually stop . These factors 

may includ e exhaustion of pr imer molecules and raw base pairs or a decrease i11 the effectiveness 
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of Taq (Liu and Saint, 2002). 

In consideration of this limiting behavior, several mathematical models in the literature predict 

the efficiency of the PCR process. Liu and Saint (2002) used a sigmoidal mathematical model to fit 

real time PCR data , and demonstrated that amplification efficiency can change from cycle to cycle. 

A linear regression approach to calculating PCR efficiency was given by Ramakers et al. (2002), and 

Rutledge and Cote (2003) proposed a simplified method for absolute quantification. Gevertz et al. 

(2005) considered the efficiency of the reaction as a function of the cycle number. They considered 

an equilibrium model as well as a kinetic model by deriving differential equations directly from the 

chemical equations for the annealing and extension phases. Aach and Church (2003) also derived 

mathematical equations from the chemical reactions , but for diffusion-constrained PCR reactions. 

Stochastic and probabilistic models are also used to model PCR. Velikanow and Kapral (1999) 

treated the eJ,,,'tension step as a microscopic Markov process in which the nucleotides bind onto the 

primed single strand of DNA one at a time. Sun et al. (1996) used the theory of branching processes 

to develop a model for distributions of mutations and estimation of mutation rates during PCR. 

Weiss and Von Hessler (1995) treated the accumulation of new molecules during PCR as a random 

bifurcation tree to estimate overall error rates for the reaction. More recently, Jagers, et al. (2003) 

used Galton-Watson branching processes to arrive at a linear growth phase following the initial 

expo nential phase. Lalam (2006) based another model on a Galton-Watson branching process 

des cription of PCR to estimate the reaction efficiency. A drawback of man y of these models , 

particularly from the standpoint of optimization, is their complexity, which requires numerical 

integration and obscures dynamical understanding of the process. 

The model we present uses th e chemical reactions of PCR to derive a system of differential 

equations, mimicking the physical behavior of the single-stranded DNA (ssDNA) copy being ex

tended one nucleotide base pair at a time. Addition of individual nucleotides occurs very rapidl y, 
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and the amount of Taq is small relativ e to both primer and base pair concentration. Thi s provide s 

leverage to apply an asymptot ic soluti on strategy . Th ere are two main objecti ves for the solution 

strategy for this mathematical model. First, the approximate solutions found by a multiple tim e 

scale approach can be put into a map to simulat e the PCR process . Second, the solutions and the 

map can be used to optimize the time spent in each stage in order to obtain the m ost amplificat ion 

in the shortest possible time. Our results indicate that dynamic optimizing of the extension and 

annealing phases may significantly decrease the time require d for the entire PCR process. 

2 The Chemical Reactions of PCR 

2.1 Dissociation 

Dissociation occurs when the sample containing the doubl e-strand ed DNA (dsDNA) is heated to 

separate th e dsDNA into single strands. The chemical equation can be written as 

n-2s , 

where D is dsDNA and Sis single-stranded DNA (ssDNA) . Experimentation has shown that dsDNA 

held at temperatures above 94°C for more that five seconds is comp letely denatured (Gevertz et 

al., 2005) . This justifie s the assumption that dissociat ion is comp lete. Using lower case letters to 

indicate concentrations (s = [S],d = [DJ), we represent this stage mathema tically bys= 2d. 

2.2 Annealing 

After the dsDNA is denatur ed, two complementary ssDNA templates are formed. A primer is 

designed to anneal at the end of the target DNA template for each of the two complementar y 

stra nds. \Ve simplify the reaction by includin g only one chemical equation for t hi s, assuming that 

t he priming for each of the compl ementar y strands occur s at the same rate. The chemical equation 

4 



for annealing describes the primer, P, attaching to the ssDNA, S, to form a molecule of prim ed 

ssDNA, S'. It can be written as 

S+Pk~i S'. 

The constant k1 is the rate the reaction moves forward, creating primed ssDNA. A constant k-1 is 

included to model the reverse reaction of primers falling off of previously primed ssDNA. Reaction 

temperatures are chosen so that k1 > > k_ 1, allowing the reaction to proceed rapidly. 

Other reactions can occur during annealing. The two complementary template strands can 

reanneal and primers can anneal to each other instead of to the ssDNA. Since the length of the 

strand is generally greater than 100 base pairs, reannealing of the complementary templates is 

unlikely and we assume it does not happen. We also neglect the scenario of primer to primer 

annealing, since tremendous effort is exerted in primer design to prevent this (Eyre, 2005). 

2.3 Extension 

In the extension stage, Taq polymerase, Q, binds with primed ssDNA, S', to form a complex, C, 

at the rate >-1, 

S' + Q ~ C. 

Taq facilitates the addition of base pairs in order from the primer to the end of the strand. We 

write a separate equation for each base pair added. Cj denotes the complex with j base pairs 

(j = 1, ... , n). The number, n , denotes the number of nucleotide base pairs needed to comp lete 

the complementary strand and R represents the resources containing all 4 types of individual base 

pairs for extension. We assume that all base pairs add on to the template at the same rate , .,\2 , 

and that all are presen t and needed in equal proportions. 

The equations for this process are as follow8: 
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The Taq separates from the dsDNA as the template copy is completed at the rate ,\3, 

A3 
Cn -D+Q . 

At the reaction temperatures used for PCR, Taq is quite efficient at synthesizing the complementary 

strands. Therefore, we consider any back reactions in this stage to be negligible. Descriptions of 

the reactants and constants are shown in Table 1. 

Symbols 
D , d 
S,s 
P,p 
S', s' 
Q,q 
C,c 

Cj,Cj 

R,r 
k1,k-1 

>-1,>-2,>-3 
s 
p 
s' 
q 
f 

T 

s, q, etc. 

E 

l/ 

µ 

Description 
double stranded DNA (dsDNA), d = [DJ (concentration) 
single stranded DNA (ssDNA), s = [SJ 
primer, p = [P] 
primed ssDNA, s' = [S'] 
Taq polymerase , q = [Q] 
complex of primed ssDNA with Taq, c = [C] 
complex with j base pairs added, j = l, 2, ... , n, Cj = [Cj] 
resources containing nucleotides for extension, r = [ R] 
forward and backward reaction rates for annealing 
forward reaction rates for extension stage 
initial amount of ssDNA for a single cycle 
initial amount of primer for a single cycle 
initial amount of primed ssDNA for a single cycle 
initial amount of Taq for a single cycle 
initial amount of resources containing the individual base pairs 
rescaled time for extension stage (>-2ft) 
resca led reactants for extension stage 
>-1q 
>-2f 
~ 
>-2f 
..h.._ 
>-,f 

Table l: List of variables and constants used in PCR model. 
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3 Model Developn1ent 

3 .1 Annealing 

The law of mass action is invoked to ·write a system of differential equations for the annealing stage 

of a single cycle of PCR. This approach is particularly justified in the case of quantitative PCR 

where reactions occur in small, well-mixed containers. 

ds , 
dt = -kisp + k_1s, (1) 

dp I 

dt = -kisp +Lis, (2) 

and 

ds' dt = k1sp - k_1s'. (3) 

Equation (1) represents the change in the concentration of ssDNA as a function of the concentrations 

of ssDNA s, primer, p, and primed ssDNA, s', scaJed by the forward and backward reaction rates, k1 

and L 1 . Likewise, equations (2) and (3) describe the change in concentrat ion of primer and primed 

ssDNA. The initial conditions are s'(O) = 0 (since no primed ssDNA survjves denaturing), s(O) = s 

(the amount of ssDNA after dissociation), and p(O) = p (the amount of primer at the beginning 

of this stage). It can be observed from equations (1)-(3 ) that ~~ + ct;; = 0 and <iJf. + ct;; = 0. This 

gjves rise to two conserved quantities: 

s + s' =Ki= s(O) + s'(O) = s(O) = s 

and 

p + s' = K2 = p(O) + s1 (0) = p(O) = p. 

Using these quantitie s the system can be reduc ed to a single equation , 

ds' k ( A ') (, ' ) k , dt = ~l p - S S - S - -1 S , (4) 
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and solved analytically, using separation of variables. The solution is 

(5) 

where 

(6) 

The sigmoidal solution (5) increases to a limiting quantity determined by the initial amounts of 

ssDNA and primer. 

X 10.3 

<{ 2 -

1 n~ ·-= I 
o. 0 

0 5 10 15 

X 1•·3 

<{ 1~ : ] z 
0 v, 

(fJ 

0 5 10 15 

05~1 ai 

: l E 
·.::: 
CL 

O.::,~ 

---. 
0.498 

0 5 10 15 
time in seconds 

Figure l: The graphs of the exact solution s for the annea ling stage of a single cycle of PCR with 
p = .5 ands= .002. The rate constants used are k1 = 0.205 and L 1 = 0.01025. The solution curve 
for primed ssDNA levels off when all of the ssDNA strands have been primed. 

The solutions for primer and single-stranded DNA come from the conserved quantities and are: 

s(t) = s - s'(t) (7) 

and 

p(t) = p - s' (t). (8) 

A graph of this solution is shown in Figure (1). 
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3. 2 Extension 

The law of mass action is again applied to write differential equations (9)- (16) that describe the 

change in concentration of each of the reactants as Taq extends the template copy. The constants, 

>-1 ,>-2, and A3 are forward reaction rates for this stage. The change in the concentration of primed 

ssDNA, is proportional to the product of the concentrations of primed ssDN A, s1
, and unattached 

Taq, q, as shown in the equation, 

ds' 
- = ->-1s'q. 
dt 

(9) 

The change in the concentration of unattached Taq is also a function of s' and q as well as the 

concentration of the complex with all the base pairs added, en. This models Taq binding with the 

primed ssDNA at the beginning of extension and detaching after the template strand is completed 

giving, 

(10) 

The change in the concentration of the complex, c, is a function of i, q, c, and the concentration 

of resources, r, 

(11) 

The next n - 1 equations, represented by (12) and (13), exhibit a distinct pattern as they model 

addition of base pairs to the template strand. The pattern models the creation of the comp lex, 

Cj as the jth base pair is added to the previous comp lex , Cj-1, and its subsequent disappearance 

when the next base pair is added. Th e change in the concentration for a particular complex with 

j base pairs added is a function of the concentration of that complex, Cj, r, and the concentration 

of the previously formed complex, Cj-l · 

(12) 
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(13) 

The equation for the change in the concentration of the comp lex with n base pairs differs from 

(12)-(13) and is written, 

(14) 

It is a function of the concentrations of the previous complex, Cn-1, r, and itself, Cn, but it includes 

A3, the rate at which Taq detaches from the completed complex, Cn, forming dsDNA. The change 

in the concentration of resources is affected by the concentrat ions of all the complexes up to Cn-1 

as shown in the equation, 

(15) 

The change in the concentration of dsDNA is proportional to the concentration of the complex 

with all of the base pairs added, en: 

dd 
- = A3Cn. 
dt 

(16) 

The equation for double-stranded DNA, (16), is coupled only to (14) and can be solved by direct 

integration after (9)-(15) are solved. The initial conditions are: s' (0) = s' ( the amount of primed 

ssDNA present at the end of the previous annealing stage), q(O) = (j (the initial amount of Taq) , 

c(O) = Cj (O) = d(O) = 0 (since dissociation peels off any partially competed arnplicon ) , and r(O) = f 

( the amount of resources remaining after the previous extens ion stage). 

An inherent small quantity in this stage of the PCR process is the proportion of t he initial 

amount of Taq to the initial amount of resources , i , due to the fact that nucleotide base pairs are 

relatively easier to obtain and used in much larger quantities than Taq. Therefore, we choose a time 

sca le and concentration scales to form a din1ensionless system in a way that let s us take advantage 

of this small quantity. This amounts to assuming that Taq is the rate-limiting quantity . Th e time 
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is non-dimensionalized using T = >,2 ft, and tb e concentrations are normalized using: s' = {i-, fj = ~, 

c = ~' Cj - %, and , f = r Using dot notation for lT (~~ = s', etc.), the equations (9)-(15) 

become: 

and 

>, ' .:.. lP -I - -c =~sq - re, 
A2r 

Cn- 1 = f'Cn-2 - f'Cn-1, 

, n-1 
.:.. q-~-r = --r c· f ], 

j=l 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

with rescaled initial conditions s'(0) = i = 1', q(0) = j = 1, r(0) = ; = l,and c(O) = Cj(0 ) = 0. 

Th e quantity ~~j in (17), contains the small quantit y, f Since the rate constants , >-1 and >-2 

are of the same order, E = ~~j is small. We define two other dimensionless parameters , 1; = ~~~ , 

and µ = ~ for simplification. The system (17-(23 ) becomes: 

-'-I -I 
S = -ES q, 

if= - vs'q + µen, 

.:.. - /- --
c = vs q - re , 
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(25) 

(26) 
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Cn-1 = fcn-2 - fcn -1, (28) 

(29) 

and 

(30) 

Symbol Un its Value 
p µmol µl - 1 0.5 
q µmol µl - 1 0.01 
r µmol µz- 1 10 
k1 µl µmoz - 1 sec- 1 0.205 

k-1 sec-1 0 

>-1 µl µmoz- 1 sec 1 9 

>-2 µl µmoz -l sec- 1 10 
>.3 sec -1 100 

Table 2: Parameters in PCR model and the ir estimated values in simulation s. Concentrations are 
in micromoles per microliter (µmol µz- 1 ) and time is in second s. 

3.3 Multiple Time Scale Analysis 

The presence of a sma11 pa ram eter, E, allows the application of the method of multiple t ime scales. 

A more detailed description of this method is found in Holmes (1995). Assigning t1 = T to be the 

fast time scale and t2 = ET to be the slow t ime scale, l
7 

becomes ¾ + r:-Jh = Ot1 + EOt2 . We 

substitute this new time deriva tiv e into equat ions (24)- (30), along with a power series expansion of 

the form , 

(31) 

for each concentrat ion variabl e. For exampl e, (24) beco mes 

(32) 

Collecting the order t:0 terms gives th e leading order equa t ions: 

(33) 
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(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

and 

(40) 

The initial conditions become: s0(t1 = t2 = 0) = , ', iio(t1 = t2 = 0) = ro(t1 = t2 = 0) = 1, and 

Equations (33) and ( 40) imply that ro and s0 are constant on the fast time scale. This means 

that the system of equations,(34)-(39), is linear and can be written in vector form as 

where A is the coefficient matrix. The sum of the rows of A equals zero, and it is easy to show 

that A has one zero eigenvalue and n + l eigenvalues less than zero . Therefore, the solution for thi s 

linear system takes the form , 
n 

x (t1) = vo + L e>-it1 vj , 
j=l 

where v 0 is an eigenvector associated with the zero eigenvalue , and the >./s are the negativ e 

eigenvalues , with their associated eigenvectors , Vj. Consequently, x (t1) -t v o exponentially fast on 

the fast time scale. Ignoring these transients, the leading order solution becomes x(t 1) = vo. 
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With the above in mind, we determine v 0 using the conserved quantity obtained by adding 

together the right sides of (34)-(39), 

n-l n-l 

ffo +co+ L Cjo = K = ffo(O) + eo(O) + L Cjo(O) = 1. 
j =l j=l 

K = 1 is determined using the initial conditions. Solving ffo + co + I:,]::;; Cj0 = 1 for iJo yields, 

n-l 

iio = l - co - L Cjo . 
j=l 

Setting the right hand sides of (35)-(39) to O and solving yields: 

and 

vs' - 0-Cno = -qo, 
µ 

Co= C10 = C20 = · · · = Cn-lo· 

Using (43)-(45), the equation for ffo, (42), becomes 

- µ 
qo = µ + nµvs 0 + vs 0' 

where n, the number of base pairs added, acts as a shape parameter. 

The order t:1 equation for s' is 

Solving this equation yields: 

since s0 and iJo are functions only at t2. To eliminate the secular term in (48), we require 

-I 

0 
!'.l _, _, - !'.l _, + µso 0 

= Ut2So + soqo = Ut2So -I -I = , µ + nµvs 0 + 1;s 0 

14 
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( 42) 

( 43) 

(44) 

( 45) 

( 46) 

(47) 

(48) 
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using the expression for q0 in ( 46). We solve ( 49) using separation of variables. Separating and 

integrating gives 

µlnso + (nµ + l)vso = -µt2 + K, 

where K is an integration constant. The initial condition s0(t2 = 0) = 1 gives 

K = µlw y + (nµ + l )wy. 

The implicit solution for s', (50), becomes 

Jl ln so+ (nµ + l)vso = -µt2 + µ ln 1 + (nµ. + l)vy, 

which can be solved for t2, 

µln s0 - (nµ + l)vs 0 + µln 1 + (nµ + l)v 1 t2 = __ :=___;_ __ ___;_~ ____ ___;_ __ ___;__. 

µ 

Returning to the original scale, equations (51) and (43)-(46) become: 

ln ~ v(nµ + l)(s' - s') t = _s_ + --'-----'---'---
EA2f µ cAzfp 

µqp 
q = µp + nµvs' + vs'' 

vqs' 
Cn= µp+nµvs'+vs'' 

C = C1 = C2 = · · · = Cn-1 = µen. 

The solution to our original equation for double-stranded DNA is 

tend 

d = A3 .I en(t)dt. 

0 

Th e units used in the original scale are shown in Table 2. 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

Figure 2 shows a comparison between the asymptotic and numerical solutions for the concentra

tion of dsDNA in the extension stage . A Runge Kutta method was used for the numerical solution 

Parameter values were estimated. Th e asymptotic and numerical solutions converge as E tends 

towards zero . 
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X 1•·3 epsilon= 0.0045 x 10 
-3 epsilon = 0.0023 

2 2 

1.5 /--· 1.5 ~--/,,,. 
<{ 1/ z 
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"'D , I 

f I 
0.5 0.5 / l // t I 

" 0 1_,- 0 
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1.5 1.5 
<{ 

~ z 
0 

I (/) 

"'D 

0.5 0.5 asymptotic 
/I /. - - - numerical ~ 

0 0 
0 20 40 60 0 20 40 60 

time in seconds time in seconds 

Figure 2: Compar ison of asymptotic (solid lines) and numerica l (dashed lines) solutions for dsD NA 
in the extension stage for various values oft: with a target strand length of n=lOO. A Runge Kutta 
method was used to generate the numerical solutions . As t: tends towards zero, the asymptotic and 
numerical solutions converge. 

4 Multi-cycle Map 

A map from one cycle of PCR to the next can be constructed from the solutions for the annealing 

and extens ion stages and their initi al conditions. This is done by cascading the resu lts of a previous 

cycl e into the ini tial conditions for the next cycle . Let the concentration of primed ssDNA be 

represented by s'A for the annealing stage and by s'E for the extension phase. Also , let the final 

times for the annealing and extension stages be fixed at tA and tE respectively. 

The first cycle begins with initial amounts of resources , primer and Taq , and a samp le containing 

the dsDNA to be duplicat ed. Th e amount of resources, f , is considered as essentially constant in 

16 



0.7 

0.6 

0.5 

0.4 
<t: z 
0 
1/) 

1/) 0.3 

0.2 

0.1 

t
•~ •_;,•- •·•-• ·-"P " 
:,I,,.• 
/ 

I . 

I --n= 1 
---n=100 

// ,'I 
.,I 

........ · n=200 

-·- ·· n=300 
0 '--'- ....... --~ .• -_ ..... _..,,.-...:·-•-==----' -L----'------'---L----' 

45 0 5 10 15 20 25 30 35 40 
cycle number 

Figure 3: The PCR map for various lengths of target DNA . The longer the target strand, the 
longer it takes the solution to reach a limiting value. Thu s, n acts as a shape param eter. Du e 
to a relationship between E and n in the solutions, the error increases as n increases , causing the 
solutions to rise above the eA-pected limiting value (the initial amount of primer). 

the map ; the amount of resource used is too small to hav e an appreciable effect. Assuming that 

dissociation is complete, the init ial amo unt of ssDNA for the annealin g stage of the first cycle is 

s 1 (0) = 2d1 . The other init ial conditions for the annealing stage of the first cycle are P1 (0) = p ( the 

amount of primer at th e beginning of the PCR run) and st(0) = 0. For all other cycles dissociation 

not only denatures th e dsDNA created in the extension phase , it also denature s any primed ssDNA 

and any complexes that remain after extension. Thus , for the annealing stage of the ith cycle , the 

initial amount of ssDNA, si(0), include s not only twice th e amount of dsDNA from the previous 

cycle, but also the amount of ssDNA, the amounts of primed ssDNA, and the amount of all of the 

complexes from the previous cycle. This can be written as 

Likewise , the initial amount of prim er for the ith cycle is the sum of the amount of primer from 
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the previous cycle plus the primers gained from denaturing the primed ssDNA and the complex of 

Taq and primed ssDNA from the previous cycle , written as, 

The initial condition for primed ssDNA is s~A(O) = 0, because dissociation is assumed to be com-

plet e. 

Then using solutions (5)-(8), the map for the annealing stage of the ith cycle is: 

wher e 

and 

The amount of primed ssDNA at the beginning of extension stage for the ith cycle is the amount 

at the end of the annealing stage of that same cycle, st(O) = st(tA)- Th e initial amount of Taq 

is the beginning amount for the first cycle, q1 = q and the amount from the previous cycle for the 

rest of the cycles, qi(O) = qi-l(tE )- Th e initial conditions for dsDNA and all the comp lexes for 

the extens ion stage of the ith cycle are: c;(O) = c1i(O) = c2i(O) = · · · = Cni(O) = 0 and di(O) = 0, 

because dissociation is assumed to be complete. 

A map for the extension stage can be derived from the solutions (51)-(55). The value for s~E(tE) 

is extracted numerically from th e implicit relationship 
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The concentrations for the rest of the reactants are given by: 

and 

qi= µPi(O) + nµvs~E(tE) + vst(tE) ' 

vqi(O)st(tE) 

tE 

di(tE) = J A3Cni(s)ds. 

0 

The equation for ~(tE ) is solved numerically , using trapezoidal quadrature . 

0.25 

0.2 

0.15 

~ 1' z 
0 v, 

I lime oplimum 'U 

0.1 for extension 

I 
stage 

0.05 

I 

-15 -10 -5 0 5 10 15 20 
time 

25 

Figure 4: An illustration of the idea of optimization. The blue graph represents the solution for 
the extension stage for n= 200. The negative part of the time axis represents the time spent in the 
preceding dissociation and annealing stages. The tangent line touches the blue curve at the poin t 
of the optimal time to run the extension phase . 

Th e behavior of the solutions can be explored by using this map to simulate the PCR process. 

However , the parameters must be estima t ed or fit from t he data. This include s iA, iE, the rate 

constants and the initial concentrations of primer, dsDNA, Taq, and resources . One example of 
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implementing this map with estimated parameters is shown in Figure 3. The lag phase befor e 

the 1:,olution ri1:,es is shorter than it is in most actual PCR runs. One explanation for this is the 

sensitivity this model has for target DNA strand length. In the early cycles of PCR the amplicon 

is part of a much longer DNA strand. Until the primers bracket the target sequence, longer strands 

are being duplicated, which will vastly lower the initial efficiency of the reaction. This map assumes 

a uniform strand length being amplified from the very first cycle. 

5 Optimization 

This model and it s map may be used to optimize the time spent in each stage of a PCR cycle in 

order to produce the most DNA copies in the shortest amount of time possible. For an examp le of 

how this might be done, we consider optimizing the time spent in the extension stage of a cycle. 

Let tv and iA be the fixed times for the dissociation and annealing stages, respectively. Let t be 

the variable representing the time spent in the extension stage. Then the total time to complete 

one cycle of PCR is tv + tA + t. Let d(t) be the total amount of dsDNA produced in a PCR cycle. 

Then the t such that 

is the optimal time for t he extension stage for one cycle. Differentiating , 

!I:_( d(t) ) = d'(t) 
dt tv + iA + t tv + tA + t 

d(t ) 
(57) 

Figure 5 illustrates the idea of optimizing th e time spent in the extension stage. Setting the right 

hand side of ( 5 7) equal to zero gives us 

(58) 
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Then using the right sides of equations (16) and (56) for d'(t) and d(t),(58) becomes 

After simplification we have 

t 

(tn + tA + t),\3 Cn = A3 j cn(s)ds. 
0 

t 

(tn + tA + t)en = j en(s)ds. 
0 

(59) 

(60) 

The t that makes (60) true is found numerically by using the solutions for the extension stage . 

In order to produce the most dsDNA over the shortest amount of time for an entire PCR run, 

we include the optimization for the extens ion stage in the map. The optimal time is calculated 

and used for each iteration of the extension stage. A set time is used for all the iterations of the 

annealing stage. 
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Figure 5: A comparison of optimized runs to a run with a fixed annealing and extension stage 
times of 10 and 20 seconds, respectively in terms of cycle number. All runs are for target strands 
of n=l00 . Even though the optimized runs need more cycles to reach equi librium , the total time 
required for the cycles is less . 

A similar optimization can be performed for the annealing stage. Figure 5 compares the number 

of cycles needed for a run with a set time of 10 seconds for annealing and 20 seconds for extension 
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Figure 6: A comparison of optimized runs to a run with a fixed annealing and extension stage times 
of 10 and 20 seconds, respectively in minutes needed for 35 cycles. Each run has a target strand 
length of n=lO0. The total time for 35 cycles is 22 minutes for the non optimized run, 20 minutes 
for the optimized extension stage run, 18 minutes for the optimized annealing stage run, and 14 
minutes when both stages are optimized . 

with three optimized runs . First just the extension stage is optimized , second , just the annealing 

stage, and then both. An 8 second dissociation time is assumed for all runs. Th e optimized 

simu latio ns take more cycles to produce the maximum amount of product, but less time as shown 

in Figure 6. The total time for 35 cycles is 22 minute s for the non optimized run , 20 minutes 

for the optimized extension stage run , 18 minutes for th e optimized annealing stage run, and 14 

minutes when both stages ar e optimized. These results show that optimizing the annealing stage 

may redu ce the time for a PCR run more than just optimizing the extension stage. The time spen t 

in the annealing and extension stages for each cycle for a run with both stages optimized is shown 

in figure 7. 
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Figure 7: The time spent in the annealing and extension stages for each cycle for a run with 
both stages optimized. The optimal time changes dynamically with the amount of product being 
produced . This differs from the set constant times for the annealing and extension stages of the 
not optimized run. 

6 Discussion and Conclusion 

In this paper, we have described PCR, discussed existing models, and developed a model from 

the chemical equations, using the law of mass action. This model of PCR is sensitive to the 

length of the target DNA st.rand and models the effect of strand length on the solution shape . We 

found a simple solution for the dissociation stage, analytical solutions for the annealing stage , and 

asymptotic approximations for the extension stage , using the method of multiple scales. Thes e 

solutions were put into a multi-cycle map to simulate PCR. The solutions and the map were then 

used to optimize the time spent in the extension and annealing stages of each cycle. This research 

suggests that such an optimization can significantly reduce the overall time for a PCR run. 

Further research includes parameterizing the model with PCR data and running optimizations 

to fit the needs of specific applications . Also, the model could be modified to mor e realisticall y 
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simulate the early cycles when DNA strands longer than the amplicon are being duplicated . 
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