
1

Low-Level Placement and Routing Changes to
Increase SRAM FPGA Reliability

Matthew Cannon, Andrew Keller and Michael Wirthlin
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Abstract—Mitigation techniques, such as TMR, are used
to reduce the negative effects of radiation on FPGAs
deployed in space environments. While these techniques
increase the robustness of the device, there is still room
for improvement in the range of 100 to 1,000x. These
improvements can be realized through the low-level im-
plementation of the placement and routing on the device.
This work has implemented a wide variety of techniques
to realize these gains, achieving an overall improvement
of 45,653x through fault-injection testing and an improve-
ment of 368x in radiation testing.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGA) are com-
putational devices (much like a CPU or GPU) that are
being considered for many space-based applications. An
FPGA is a device with many configurable resources
coupled with a configurable routing network to allow
it to take on many applications as shown in Figure 1.
It can implement any logic function, provided that it
contains a sufficient amount of resources to do so. Due
to the large bank of input/output (I/O) ports available
and amount of resources, FPGAs provide speed and
power benefits for many applications. Coupled with their
relatively inexpensive cost in low quantities, FPGAs
provide many benefits for potential space applications.

However, space is full of many radioactive particles
that can induce single event effects (SEE) in electronic
devices. SRAM FPGAs are particularly vulnerable to
SEEs in the form of single event upsets (SEU). An SEU
represents a change in the state of a memory structure,
such as a bit changing from 0 to 1, or vice-versa, 1
to 0. Such changes in the FPGA state will change the
underlying circuitry implemented on the device. This
can include introducing new circuitry to the device,
modifying the existing circuitry or the removal of some
circuitry. Before deployment in space, the circuit needs
to be tested to determine its sensitivity in the space
environment. The sensitivity may be improved through
the application of techniques specifically developed to
mitigate against SEUs.
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Figure 1: General FPGA Architecture

One of the popular techniques to mitigate against the
effects of ionizing radiation is triple modular redundancy
(TMR). TMR uses three redundant copies of a module
to mask failures. When a module (i.e., the circuit to be
protected by TMR) is triplicated, three separate domains
are created: TMR0, TMR1, and TMR2, as shown in
Figure 2. All three domains are driven by the same input
stimulus and under normal operating conditions should
yield identical outputs. If one of the domains becomes
corrupted, its outputs may not match those of the other
two domains. An erroneous output is masked by voting
on the outputs from each domain so that only the major-
ity vote is propagated. Voters can be placed throughout a
module to synchronize internal signals between domains
and increase reliability (often referred to as partitioning).
The voting mechanism is often triplicated as well, which
prevents the introduction of single-point failures and
allows a voter to fail without compromising the integrity
of TMR. TMR is able to mask any error that is limited
to a single domain between voter insertion points.

Configuration memory repair is often coupled with
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Figure 2: Triple Modular Redundancy

TMR to prevent the accumulation of errors that would
break TMR and is often implemented with configuration
scrubbing on FPGAs. Configuration scrubbing is usually
performed by partially reconfiguring the device with the
original bitstream to “scrub” incorrect values. Repair is
also needed for the state of the circuit. If the design
state becomes corrupted (e.g., counters, state machines,
status registers), there needs to be a method to clear
the error. Some errors will naturally flush out of the
design (i.e., the state is not used in next state logic),
or can be manually flushed out of the design on reset.
To allow self synchronization, voters need to be placed
along feedback paths throughout the design. Scrubbing
can even be implemented on BRAM by reading the ECC
and correcting any errors, if present.

The theoretical model of a TMR system [1] is shown
in Figure 3. In this model there are 3 states: normal
operation (S0), single failed module (S1), and TMR
defeat or system failure (S2). In states S0 and S1, the
system functions correctly. In state S2, the system has
failed and outputs of the system should not be trusted.
The arc from S0 to S1 represents the failure of a single
module when all three modules are functioning correctly,
which occurs three times faster than the single module
failure rate, λ. The arc from S1 to S0 represents a repair
mechanism (scrubbing) with repair rate µ.
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Figure 3: TMR Reliability Model

From the TMR model, the MTTF of a TMR system

with repair can be extracted. The MTTF simplifies to:

MTTFTMR =
5

6λ
+

µ

6λ2

As µ
λ →∞, MTTFTMR also will go to∞. This means

as µ >> λ, the MTTF should be very high . In other
words, if a fault affects only one TMR domain and it is
repaired before a different domain fails, then there is no
limit to the reliability improvement provided by TMR,
when considering only single bit upsets. While infinite
repair rate is impossible to achieve, high repair to failure
rates are possible. It is possible to achieve a repair rate
under 1 second for most devices making the repair rate
significantly faster than the CRAM upset rate in GEO
orbit (typically in the range of .9 upsets per day on the
device) [2].

Of particular interest are the two arcs from S0 and S1
to S2. This represents the single bit failure (SBF) rate of
the circuit, i.e. the rate at which single SRAM bits cause
TMR failure. These bits compromise the functionality
of multiple redundant modules simultaneously. Direct
system failure can be caused by single point failures
(SPF) and common mode failures (CMF). These place a
significant ceiling on the overall improvement TMR can
provide. Even at an infinite repair rate the maximum
improvement is:

ImprovementMAX =
λ

λSBF

For example, if λSBF is λ/50, then TMR can provide,
at most, a 50× improvement.

Removing SBF bits can yield significant reliability
improvements. TMR combined with configuration scrub-
bing has already improved the MTTF of a design in
space by 50×. By removing SBF bits from the design,
the MTTF has a potential to improve by 500× or even
5, 000×.

Testing a circuit’s sensitivity is typically done in one
of two ways: fault-injection or radiation testing. During
fault-injection, errors are randomly introduced into the
the devices memory and allowed time to propagate
through the system. If the error causes a failure, the
injected bit is marked as sensitive, the device is brought
back into a known state and the test resumes by selecting
a new random bit to inject. This can be easily performed
in a lab setting and can be done with the just access to
the device.

Radiation testing is done by exposing the device to
high energy particles (such as neutrons, protons or heavy
ions) while observing the devices behavior. Radiation
testing is required to fully understand how the device will
behave in its intended environment and to obtain accurate
information about the sensitivity of the circuit. However,
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this type of testing can be difficult and expensive to
perform because it can only be done at a few facilities.
Typically, the device will first be tested via fault-injection
and only the most promising mitigation strategies will
be tested at particle beam. For this work, all mitigation
strategies were first tested using fault-injection with the
most promising techniques being tested at a particle
beam.

II. AUTOMATED SBF REMOVAL

SBF bits are broken down into two categories: SPF
and CMF. SPF bits are caused by components that
are not fully triplicated. Recall in TMR, voters are
usually triplicated to avoid single points of failure. If
a component (such as an I/O port or a memory) is not
triplicated, then a resource failure could also cause a
TMR failure. The proper way to address these bits is
through complete triplication (i.e. triplicating the com-
ponent), however, there are other strategies to reduce the
impact these bits have on the sensitivity (but not remove
them completely). CMF bits are different in that they
affect multiple domains simultaneously. These can be
completely removed through proper mitigation strategies.

Previous work has shown that many of the SBF bits
occur in the routing network and can be addressed
through placement and routing changes [3]. A circuit
goes through several design steps in order to be imple-
mented on an FPGA device. The first is logic synthesis,
which converts the hardware description language (HDL)
into device specific components, such as lookup tables
(LUT) and block memories (BRAM). After synthe-
sis is packing/clustering, which packs the components
produced during synthesis into device specific sites or
configurable logic blocks (CLB). Once packed, these
CLBs are assigned to specific locations on the device.
After placement the device can be routed. Finally, after
these implementation steps, the bitstream for the circuit
is generated which can be used to program the device.
This work makes changes to the synthesis, placement
and routing of the design to remove the SBF bits.

A. Feedback TMR

There are many ways to apply TMR, however, ap-
plying it manually through HDL is error prone and
synthesis tools are likely to remove redundancy through
optimizations, so automated approaches are preferred.
The approach used for this work is to apply TMR to
the netlist of a design after logic synthesis. Once the
netlist has been modified for TMR, the updated netlist is
then used in implementation. Voters are placed along the
feedback path to provide auto resynchronization for the

flip-flops in the circuit [4]. Doing so also introduces the
notion of partitioning in to the circuit. Partitioning refers
placing multiple groups of voters in the circuit. Doing
so makes TMR more robust as it can withstand multiple
errors in multiple domains, as long as those errors occur
in different partitions. Figure 4 shows an example of
this. Even though errors occurred in all domains, because
those errors occurred in multiple partitions, the circuit
successfully mitigated against those and did not fail. The
tool used in this work is described in [5].
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Figure 4: TMR Partitioning

B. SPF Removal

As previously stated, SPF occurs because of untrip-
licated components in the circuit. This can be common
for global signals such as resets and clocks, or could
be other untriplicated I/O ports. The effectiveness of
TMR will always be limited as long as SPF is present in
the design. The best way to mitigate against these is to
triplicate them, however, there are still some options to
reduce the impact of SPF on the design, the idea being to
minimize the footprint of the untriplicated components.
Fault-injection testing has shown that the majority of
these bits occur along long routes, as the example in
Figure 5 shows (red dots showing locations of SPF bits
that cause failure). This work has reduced the impact of
these bit by inserting 3 identity LUTs into netlist that
split the signal and forcing the placement of these LUTs
near the source port. Similarly for clocks, 3 BUFGs can
be used to “triplicate” the clock for each domain.

C. CMF Removal

Even after triplicating all I/O, there are still single bits
that will cause the design to fail, referred to as CMF bits.
These bits affect multiple domains and may require more
spatial separation to be eliminated. In order to understand
the removal techniques a brief overview of the cause for
discovered CMF bits (more information can be found in
[6]).

The routing configuration bits of the device do not
control individual programmable interconnect points
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Figure 5: Example of single point failures on a high
fanout input pin net (left) and long reduction voter to
output pin net (right).

(PIPs), but instead control the rows and columns of a
mux (referred to as a routing mux). The programmed
row and column bits act as a grid to select one input to
propagate to the output wire. The input of the selected
column on each row is allowed to drive the row wire,
but only the selected row is able to drive the output
wire. When a second column bit becomes programmed
(through an SEU), a second column in the mux is
allowed to drive the row wires (but not the output),
possibly creating multiple shorts in the mux (up to one
short per row wire), as shown in Figure 6.
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Figure 6: Example of multiple shorts in a routing mux

It is these multiple shorts that cause CMF. Further-
more, through testing TMR failure has only been ob-
served when multiple clock nets are shorted in these
situations. Three techniques have been developed to
address this issue: incremental placement, striping, and
incremental routing. Both incremental techniques use the
flow shown in Figure 7.

D. Incremental Placement

The goal of this technique is to either limit each tile to
a single domain, or ensure that multiple domain tiles do
not share flip-flops in the same partition (assuming the
TMR design is using advanced partitioning techniques).
Because the chosen placement is likely already sub-
optimal (heuristics are used for placement), this work
assumes that slightly altering the placement should have
a negligible impact on its timing. In this technique tiles
with CMF are identified and a swap is attempted with
a site in one of the tiles neighbors. This will ensure
that multiple shorts between clocks will not happen and
routing can continue using the vendor’s tool. In a sample
design, this tool identified many CMF tiles and was able
to resolve them as shown in Figure 8.

E. Striping

Another solution is to restrict each tile to only allow
cells of one domain to be placed there. While it is
difficult in the tools to restrict each individual tile, it is
possible to perform this by restricting each column. This
can be done by setting a pblock (partial reconfiguration
block) for each domain in a column. Thus, the columns
of the device are “striped”. The tools are forced to
comply with these restrictions, thus enforcing the spatial
separation to remove CMF from the design. Striping
the design is more effective than creating three large
pblocks (i.e., one for each domain); however, forcing
spacial separation at this level can be detrimental to
the achievable clock frequency and can increase routing
congestion.

F. Incremental Routing

In this technique the design is placed and routed using
the typical design flow, but the design is changed post-
routing to remove any CMF that may be present in
the design. Because only tiles with multiple blocks can
contain CMF, only switchboxes with CMF need to be
analyzed. The goal of the incremental routing technique
is to prevent shorts between multiple clock signals and
other (non-clock) signals.

III. RESULTS

All of the presented techniques were implemented on
the b13 design. The b13 design comes from the ITC’99
benchmark suite and is a simple finite state machine that
interfaces with a weather station. It has been used by a
mitigation working group to test benefits of TMR [7].
This particular design instantiates 256 copies of the
b13 to increase resource utilization and statistics collec-
tion. The design has been compared against the other
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Figure 7: Design flow for removing CMF from a TMR design.

Table I: Radiation Test Results - b13

TMR Number of Cross Section 95%
Type Fluence Failures (n/cm2) Confidence Improvement

Unmitigated 1.70× 1011 314 1.85× 10−9 2.06× 10−9 1×
TMR (trip I/O) 2.48× 1011 6 2.42× 10−11 4.39× 10−11 76×

Striped 1.90× 1012 28 1.47× 10−11 2.03× 10−11 92×
PCMF 3.98× 1011 2 5.03× 10−12 1.21× 10−11 368×

Table II: Fault Injection Results - b13

TMR Number of Number Percent 95% Confidence Number of
Type Injections of Faults Sensitivity Intervals Sensitive Bits Improvement

Unmitigated 2,193,073 29,436 1.342% 1.327 – 1.357% 784,860 to 802,876 1×
TMR (w/ SPF) 2,573,824 4,064 0.158% 0.153 – 0.163% 90,520 to 96,258 9×

TMR (trip. clock) 2,595,200 2,480 0.096% 0.092 – 0.099% 54,297 to 58,744 14×
TMR-SPF 2,563,200 57 2.2×10−3% 1.6 – 2.8×10−3% 974 to 1,657 604×

PCMF-SPF 2,081,280 34 1.6×10−3% 1.1 – 2.2×10−3% 641 to 1,291 822×
TMR (trip I/O) 2,351,568 43 1.8×10−3% 1.3 – 2.4×10−3% 758 to 1,405 734×

RCMF 2,400,791 39 1.6×10−3% 1.1 – 2.1×10−3% 659 to 1,262 826×
PCMF 2,396,265 3 1.3×10−4% 0 – 2.7×10−4% 0 to 158 10,721×
Striped 3,401,285 0 2.9×10−5% 0 – 8.7×10−5% 0 to 51 45,653×

Note: 1 error is assumed when no faults were detected.

Figure 8: TMR B13 design where identified tiles with
CMF are highlighted in red.

presented techniques for comparison in improvement
using both radiation testing and fault-injection, shown

Figure 9: Boards in the neutron beam at LANSCE.

in Tables I and II, respectively. Confidence intervals are
shown with 95% confidence.

The fault-injection infrastructure for this work con-
sisted of a custom setup using Nexys Video Artix-
7 FPGA boards available from Digilent. Each setup
consists of 2 boards, one master and one device under
test (DUT), connected via the FMC card slot. The master
operates with a golden copy of the design (i.e. no CRAM
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fault injections) in lockstep with the DUT running the
same design, but subject to CRAM upsets. After fault-
injection, the design was allowed to run for a period of
time to flush out any faults in the system, before being
scrubbed and repeating the process. After finding a fault
the device was reconfigured and the bit was injected
again to verify the upset. Fault-injection was preformed
via the JTAG interface.

Due to the reduction in cross-section of these new
techniques, many copies of the design are run con-
currently in our setup to collect meaningful statistics,
as shown in Figure 9. This setup is used for both
radiation testing (see Table I) and fault injection testing
(see Table II). Because 5 copies of the circuit are run
concurrently, this allows data to be collected 5× faster,
or in radiation testing, provides ≈ 5× effective fluence.

Many variations of discussed techniques were created
to observe their impact on bit sensitivity. Specifically,
the following designs were tested: (1) Unmitigated, (2)
TMR with SPF (i.e. no triplication on the I/O), (3) TMR
with SPF, but clocks triplicated using 3 BUFGs, (4)
TMR-SPF (i.e. no triplication on I/O, but SPF mitigation
techniques used), (5) PCMF-SPF (i.e. PCMF technique
used on TMR-SPF design), (6) TMR with triplicated I/O,
(7) Routing CMF technique (8) PCMF technique and (9)
Striped technique. The results are shown in Table II.
Both the PCMF technique and the striped technique
show significant improvement to TMR with complete
triplication. This is due to the successful mitigation of
single SRAM bits that cause TMR failure.

Due to limited beam time and resources, only a
handful of designs were tested using radiation, specif-
ically: unmitigated, TMR with triplicated I/O, striped
and PCMF (however other TMR strategies have been
tested in [8]). The main purpose of the beam test was
to observe the improvement CMF removal provides to
a TMR scheme that has implemented all of the other
strategies presented. The results of the test are shown in
Table I.

The striped design only showed marginal improve-
ment over TMR (1.6×) while the PCMF design showed
significant improvement (4.8×) over TMR. As a note,
the Striped design was tested at a 2× higher flux rate
than the PCMF design which could account for some of
the failures. All failures on both designs can be attributed
to multi-cell upsets (MCUs) and upset accumulation
(multiple single upsets before repair). The differences in
improvement between fault-injection and radiation test-
ing are due to radiation testing triggering other SEEs that
can not be tested during fault-injection and is expected.
However, the techniques that perform well during fault-
injection also perform well during radiation testing.

IV. CONCLUSION

FPGAs are computational devices that can be used in
space, but proper mitigation techniques must be applied
to assure proper functionality. A TMR tool has been
previously developed to help mitigate against SEUs in
space and has yielded good results. However, there are
many single SRAM bits that still cause failure that could
be addressed through more advanced techniques.

An automated tool was developed for this work to
identify and remove these single SRAM bits that cause
failure. Several techniques were developed to address
these bits with varying success. Results from this initial
experiment suggest that that the most promising tech-
nique can improve the MTTF by 5× over traditional
TMR with the vast majority a failures are comprised of
multiple upsets (instead of single upsets). Future work
will investigate the effectiveness of this technique on a
wide variety of designs as well as testing those designs
in other radiation sources (such as heavy ions).

This technique and additional techniques that will be
developed are improving the reliability of SRAM-based
FPGAs in the presence of ionizing radiation. These will
allow SRAM-based FPGAs to be increasingly considered
for use in spacecraft and other environments with high
levels of radiation.
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