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Incorporating Electron Range Approximations into
Secondary Electron Emission Models

Gregory Wilson

Abstract—Secondary Electron Yield is a key parameter in
spacecraft charging. In order to develop a robust model to predict
the secondary electron yield for any given material, the work done
by Utah State University’s Materials Physics Group on electron
range is extended to the yield problem. This newly developed
yield model uses the probabilistic nature of inelastic collisions
to incorporate the material dependent inelastic mean free path
model used in USU’s MPG’s range model.
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I. INTRODUCTION

Spacecraft charging is the leading cause of spacecraft failure
due to the space environment. In order to mitigate deleterious
charging phenomenon, an understanding of material interaction
with the space environment is essential. One of the driving
phenomenons of spacecraft charging is secondary electron
emission (SEE). SEE has been studied extensively for space-
craft charging as well as for electron spectroscopy.

Several semi-empirical models have been developed in order
to fit SEE data. However, due to the uncertainty in the stopping
power, inelastic mean free path, and the electron range at
low energies (∼50 eV), predictive models have been far
more difficult to develop. This paper describes an attempt
to use the electron range models developed by Utah State
University’s (USU) Materials Physics Group (MPG) to create
a predictive model for the secondary electron yield (SEY).
The development of one of the most general methods will be
described which will lead into the development of a predictive
model based on USU’s MPG’s work on electron range.

II. ELECTRON RANGE

The range, R, or maximum distance an electron of a given
incident energy can penetrate through a material before all
kinetic energy is dissipated and the electron comes to rest,
is a common way to parameterize electron interactions with
materials. The range differs from the penetration depth which
is the distance a material penetrates as measured from the
surface whereas the range is a measure of the total path
length of the electron since it ignores all elastic collisions and
deviations in trajectory.

The range is often used in spacecraft charging calculations
to predict the charge distribution of deposited electrons in ma-
terials as well as the modeling of secondary and backscattered
electron emission. It is also used to predict the distribution
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Fig. 1. Electron range versus incident beam energy for the various electron
range models for Au. The Simple Power Law Model uses Eq. 1 with an
exponent of 1.55 and a factor of b set to fit the NIST ESTAR database. The
power law sum uses Eq. 2 with exponents -0.55 and 1.55 for n0 and n1

respectively with values of b1 and b2 set to fit the model to data. The USU
Range use Eq. 3 with Nv set to fit the NIST Data. The Christensen Power
Law model is a simple power law using Eq. 1 with b and n set so that the
yield model with m = 0.6 matches the yield data as shown in Fig. 7b.

of energy deposited by incident electrons as they traverse a
material [1], [2]; this distribution is further used to model
radiation induced conductivity and cathodoluminescence.

The primary energy loss mechanism for electrons is due to
inelastic collisions within material. This is generally split into
two categories, plasmon-pole excitations and single-electron
excitations [3]. Due to the probabilistic nature of this mecha-
nism, the Continuous Slow Down Approximation (CSDA) is
often employed to simplify the problem. In the CSDA, the
rate of energy loss, dE/dz (termed the total stopping power)
is assumed equal to the total stopping power at every position
along the penetration path; variations in energy-loss rate with
energy, E, or with penetration depth, z, are neglected.

Detailed expressions for the range have been developed
starting from early work by Bethe [4]; however, these models
often have restricted energy ranges of applicability and involve
many fitting parameters. One of the most common approxima-
tions is given by:

R(E) = bEn (1)

where the value of n is a constant between 1 and 2 [5]–[8].
A more general form used in the NASCAP charging code

[9] is given by the summation of two power laws [10] of the
form,
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Fig. 2. Comparison of predicted Npre
v values to empirical Neff

v values. The
red and purple dashed lines represent 10% and 30% deviations, respectively,
from an exact one-to-one linear fit (solid red).

R(E) = b1E
n1 + b2E

n2 (2)

Using the CSDA as well as a Constant Loss Approximation
(CLA) [11] for high energies and an extension of the innelastic
mean free path for low energies, the MPG at USU has
developed a composite analytic approximation to the range,
spanning incident energies from <10 eV to >100 MeV, with a
single fitting parameter, Neff

v , that can be readily implemented
for a wide array of conducting, semiconducting and insulating
spacecraft materials [12], [13]. This formula is given as:
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where the inelastic mean free path, λIMFP (E) is given by
the TPP-2M formula [14] fit to the NIST IMFP database [15]
where data is available:

λIMFP (E) = E
[
Eeffp

]−2 [
β ln (γE) − CE−1 +DE−2

]−1

(4)
where β, γ, C, and D are defined in [14] and n and b are

defined by [12]. In order to make this formula a predictive
model, a predictive formula for Neff

v was developed.

(a)

(b)

Fig. 3. Residuals (Npre
v - Neff

v ) versus empirical Neff
v values. The

different symbols indicate different material types. (a): Without the density
correction: (b): With the density correction.

Originally, Neff
v were empirically determined by fitting the

model to the ESTAR and IMFP NIST databases [15]. These
values were then compared to several material properties.
Using a least squares regression method, a predictive formula
for Npre

v was developed, given by:

Npre
v (Z̄A, ρm) = N0

(
Z̄n0

A +Noffset
)
−N1

(
ρm − n1Z̄A

)
(5)

where Z̄A is the mean atomic number weighted by atomic
fraction which can be easily determined from the stoichio-
metric formula for compounds or from elemental fractions for
composite materials as

Z̄A ≡
[
∑
i fiZAi]

[
∑
i fi]

(6)

Although the linear fit of Npre
v vs Neff

v as shown in
Fig. 2 showed reasonable agreement, they exhibited a clear
pattern which is even more evident when categorized into
material type as shown in the residuals depicted in Fig. 3a.
The observed patterns were very reminiscent of the deviations
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Fig. 4. Diagram of incident electron flux impinging on a generic material.
η(Eb) denotes the backscattered yield for electrons that originate within the
incident beam or that have emission energies E>50 eV. δ(Eb) denotes the
secondary yield for electrons liberated from within the material or that have
emission energies E<50 eV. The total yield for all emission energies is the
sum of the secondary and backscattered yield; σ(Eb) = η(Eb) + δ(Eb).
R(Eb) is the incident energy-dependent electron range [1], [12].

from linearity seen in plots of density versus atomic number
for the elements [16].

Therefore, a density correction was added as is shown in Eq.
5 with the resulting residuals shown in Fig. 3b. This allowed
the range to be predicted for any given material using readily
available material properties with reasonable accuracy.

III. ELECTRON YIELD

As energetic electrons interact with the surface of materials,
they impart energy throughout the material, as described by
the range process. If the energy exchange is near the surface,
electrons in the material can be excited and emitted. It is also
possible for the incident electron to undergo a quasi-elastic
collision near the surface, wherein the electron is backscattered
from the surface and therefore imparts no charge to the
material.

This process of electron emission from the surface, known
as the electron yield, is highly dependent upon the incident
electron energy. The total electron yield, defined as the ratio
of emitted to incident flux is fundamental in understanding the
charging of materials [1].

The incident flux is the total number of electrons entering the
material from the environment. The incident flux in a space
environment consists of a distribution of energetic electrons
at different energies and different incident angles, however,
most spacecraft models of secondary emission only consider
monoenergetic beams of electrons and then extrapolate to
multi-energetic environments.

The emitted flux is the sum of backscattered and secondary
electrons, as shown in Fig. 4. Secondary electrons, which
originate within the material, conventionally have energies
<50 eV where backscattered electrons, which originate from
the incident beam, conventionally have energies >50 eV.
Secondary yield is then defined as the ratio of secondary
electrons to the incident electrons, denoted as δ(EB). The
backscattered yield is the ratio of backscattered electrons to

Fig. 5. Total electron yield of polycrystalline Au as a function of incident
energy. Data were taken using a DC electron beam. E1 and E2 are the first
and second crossover energies where yield with σ > 1 occur when E1 <
Eb < E2. The yield peak, σmax, is the maximum yield and occurs between
the crossover energies at Emax. (Hoffmann, 2010)

incident electrons denoted as η(Eb) where Eb is the electron
beam energy. Thus the total electron yield is the sum of these
two, given by σ(Eb) = η(Eb) + δ(Eb).

The yield, as shown in Fig. 5, is highly energy dependent
with ”crossover” energies at E1 and E2 and a maximum yield
σmax at Emax. At very low energies, electrons generally do not
have enough energy to excite many electrons, thus low energy
electrons generally produce yields less than one. As the energy
increases, the probability of multiple collisions near the surface
increases which causes the yield to rise above one.

As the energy increases, the electron inelastic mean free
path increases causing the collisions to occur deeper within the
material, decreasing the likelihood of the electron reaching and
then escaping the surface; this leads to a decrease in σ above
Emax

To model secondary electron emisssion, the general formula
is usually given by [7], [17]:

δ(Eb) =

∫ R(Eb)

0

n(z, Eb)P (z)dz (7)

where R(Eb) is the range or the maximum depth at which
electrons penetrate with a given beam energy Eb, n(z, Eb) is
the average number of secondary electrons produced per unit
of penetration depth, dz, and P(z) is the probability of the
electron reaching and escaping the surface from a depth z.

The differences between different models are most often
attributed to variations of assumptions and forms of these
functions. The general assumptions that are most commonly
used are as follows:

1) One-Dimension - In order to simplify the range, pen-
etration depth and probability of escape, a one dimen-
sional model is used with a normally incident beam
and all backscattered electrons are emitted normal to
the surface.

2) Mean Field Excitations - Secondary electron production
is assumed to be solely dependent on the total stopping
power scaled by the mean field energy, εm, required to
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produce a secondary electron given by:

n(z, Eb) = − 1

εm

dE

dz
(8)

3) Range Approximations - The continuous slowdown
approximation is often incorporated in order to simplify
the range by assuming that the change in energy dE
of an electron through a given distance dz is equal to
the total stopping power S(E), neglecting energy loss
deviations. Note that the energy E in this equation is
the current energy of the electron and not the incident
energy. This allows the range to be approximated by:

R(Eb) =

∫ Eb

10eV

dE

S(E)
(9)

which is known as the CSDA range. The CSDA range
can further be approximated by power law expressions
as explained in Section II.
A more restrictive assumption is the use of the CLA
where the stopping power is assumed constant and
equal to the average stopping power over the entire path
length of the electron. This allows the relation,

dE

dz
= − Eb

R(Eb)
. (10)

This simplifies the mean field excitation approximation
by removing any z or energy dependence on the stop-
ping power.

4) Probability of Emission - The probability of secondary
electrons leaving the material is dependent on two
different phenomena. The first phenemona involves
traversing the material and reaching the service from
a depth z. The second phenemona involves overcoming
the surface barrier and escaping from the material.
The first phenomena is generally approximated by ap-
plying the inelastic mean free path of an electron where
the probability of traversing a distance z without an
inelastic collision is given e−z/λSE . In order to account
for the direction of emission, a constant factor α is
multiplied to this probability. For one dimension, its
generally taken as 1/2.
The second phenomenon involves the probability, β,
that an electron will escape the surface which is depen-
dent upon the surface potential along with the electron
affinity and band gap of the material [11].
Together, these give a formula of the form:

P (z) = αβe
− z
λSE (11)

Putting all of these assumptions together and combining α
and β, this gives for the secondary electron yield,

δ(Eb) =
β

2εm

Eb
R(Eb)

∫ R(Eb)

0

e
− z
λSE dz (12)

=
βλSE

2R(Eb)

Eb
εm

(
1 − e

−R(Eb)

λSE

)
(13)

Fig. 6. A model for the secondary electron yield using a simple power law
model for the range as shown in Eq. 14 with varying powers of n in the range
model. Markers for the first and second cross over energies are given by E1

and E2 respectively. The maximum yield δmax at Emax are also indicated.
Note that increasing n shifts Emax to the left and δmax down.

If a power law range is assumed as given by Eq. 1 then the
equation becomes

δ(Eb) =
βλSE
2bεm

E1−n
b

(
1 − e

−
bEn
b

λSE

)
(14)

Figure 6 shows this model for the yield using different
values of n in the range approximation.

IV. PREDICTIVE YIELD MODELING

The easiest way to incorporate the range into the secondary
yield model is to plug Eq. 3 into Eq. 13. The IMFP for
secondary electrons can then predicted using the TPP-2M
equation using the same parameters used in the range equation.
That leaves β, εm, and ESE , the average kinetic energy of the
secondary electrons used to determine the IMFP.

These parameters can be approximated using the assump-
tions in Section II along with the general assumption that the
mean secondary electron energy as given by [19]. Figure 7a
shows the models of secondary electron emission as a function
incident beam energy using Eq. 13 using the different models
of the range. As is seen, the differences in the range are slight
and only become apparent at low energies.

This graph highlights one of the issues with the yield model
itself, which often has difficulty fitting the data at low energies.
In order to make a better fit, Christensen developed a model
[18] similar to the Sternglass model [20], with a varying
parameter, m, which changes the slope of the yield at low
energies as shown in Fig. 7b.

While this creates a better fit for the yield, the resulting
parameters, when plugged back into the range model used,
give an unrealistic version of the range as shown in Fig. 7.
When this power of m is introduced into the yield models
using the other approximations for the range, it gives a better
fit at low energies, but causes the slope at high energies to be
too steep. Thus, in order to use this extra fitting parameter m
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(a)

(b)

Fig. 7. Graphs of the various secondary electron yield models for Au vs the
incident electron energy along with Au SEY data taken by USU’s MPG. (a)
Using the models as discussed in this paper. (b) Using an extra product of
Em as discussed in [18]

with accurate approximations for the range, a better physical
representation of m must be developed.

To approach the problem from another angle, the calcula-
tions for the IMFP used in the range approximation were used
to develop a different function for n(z, Eb) given by

n(z, Eb) =
∑
i

(
P colli (z, Eb)P

exct
i (Eb)

)
(15)

where P colli (z, E) is the probability of an i’th collision
at a depth z and P excti (E) is the probability of a collision
producing a secondary electron from a primary electron with
energy E.

Using, the IMFP, the probability density of the i’th collision
occurring in a given dz can be approximated by the Gamma
distribution given by

P colli (z, Eb) =
1

Γ(i)λ(Eb)i
zi−1e

− z
λ(Eb) (16)

The probability of a secondary electron being generated can
be approximated by the Fermi-Dirac probability distribution

(a) Au

(b) HOPG

Fig. 8. A model for the secondary electron yield using a probabilistic model
based on the IMFP using parameters determined by USU’s MPG electron
range model and using εm = 4eV , σ = 10eV and (a) ESE = 3eV and
β = 0.85 for Au (b) ESE = 4eV and β = 0.7 for HOPG.

function giving the form:

P excti (Eb) =
1

1 + e−
(Eb−(i−1)Ē)−εm

σ

(17)

where (i − 1)Ē is the energy lost in the previous (i − 1)
collisions where Ē is the mean energy lost per collision as
defined by the range.

Multiplying Eq. 15 by Eq. 11 and integrating over all z as
in Eq. 7 and combining β and α in Eq. 11 gives

δ(Eb) =
∑
i

(
λSE

(λSE + λ(Eb))

)i
β

(i− 1)!

1

1 + e−
(Eb−(i−1)Ē)−εm

σ

(18)

where the fitting parameters are the energy of secondary
electrons ESE which determines λSE , the energy required to
excite an electron given by εm and distribution of states from
which electrons can be excited given by σ.
ESE changes the slopes at both high and low energies and

shifts the graph vertically. Changing εm primarily changes the
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slope at low energies and σ effects the discrete nature of the
number of collisions resulting in steps at low energies for small
values of σ. It was shown that the first three terms in the sum
were significant with changes in the yield above five collisions
becoming negligible.

V. CONCLUSION

Secondary electron yield models are varied both in form and
in complexity. While complex models such as those developed
using the Full Penn Algorithm [21] or those employing Monte
Carlo methods can produce models that fit extremely well
to data [22], these models are difficult to employ and nearly
impossible to use in a predictive method.

To approach the problem with simpler and more straight-
forward methods can produce the opposite result where no
amount of tweaking of the parameters can fit the model to the
data.

USU’s MPG model of the electron range is an example of
merging both worlds by creating an easy to use model that
functions over a wide energy range for a substantial number
of elements. Coupled with the ability to predict ranges for
complex materials with a minimal number of well defined
material parameters this tool becomes a perfect base to build
other useful tools.

Building upon the backbone of this model, a robust yield
model has now begun to be developed with the potential of
predicting the yield of hundreds of materials already in the
database and potentially limitless more using the predictive
capabilities already developed in the range model.

Further testing, tweaking and validating must be done in
order to verify that not only does the model fit a plethora
of data, but that the physical models used will remain valid
when the fitting parameters are tweaked to fit those data. The
model can also be adjusted to incorporate a three-dimensional
model of secondary electron excitation, traversal and emission
as was done for the simple power law model by Christensen
[18] or any other more refined adjustments that will improve
the model while still keeping the needed inputs to a minimum.
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