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Abstract

Cognitive load theory (CLT) holds that discovery learning and other instructional strategies 

imposing high levels of extraneous load on novice learners hinder learning.  Such learning 

conditions are also associated with significant drops in persistence, a key measure of motivation.  

However, research within the CLT framework typically engages motivation as a necessary 

precursor to learning, rather than as an outcome of instruction. In this study, we examine changes 

in motivational beliefs as outcomes of learners’ cognitive processes through a CLT lens as they 

engage with instruction. Using a double-blind quasi-experimental design, we manipulate the 

level of cognitive load imposed on participants through instruction and assess changes in self-

efficacy from pre- to post-intervention. In an analysis of data from students enrolled in an 

undergraduate biology course (n=2,078), students in the treatment condition demonstrated 

significantly higher performance on end-of-semester lab reports and self-efficacy measures. 

However, post-instruction self-efficacy was not significantly related to performance, controlling 

for pre-instruction self-efficacy, gender, and scientific reasoning ability. These findings 

introduce the possibility that the cognitive load imposed on working memory during instruction 

may affect motivational beliefs and provides a foundation to further explore connections between 

historically distinct theoretical frameworks such as CLT and social cognitive theory.

Keywords: cognitive load, motivation, self-efficacy, mental effort, cognitive task analysis.
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Changing Self-Efficacy as a Function of Manipulating Cognitive Load in an Undergraduate 

Biology Course

In cognitive load theory (CLT), motivational beliefs are considered primarily to be a 

precursor, rather than an outcome, of instruction (Moreno & Mayer, 2007).  CLT research 

studies typically assume that sufficient motivation is required for participants to invest the 

mental effort necessary to meet the cognitive demands of instruction (van Merriënboer & 

Sweller, 2005; Kanfer & Ackerman, 1989).  However, nascent work has begun to consider 

further the nature of the relationship between learning as a function of CLT-based instructional 

principles and the role of motivation (e.g., Paas, Tuovinen, van Merriënboer, & Darabi, 2005; 

Likourezos & Kalyuga, 2017; Schnotz, Fries, & Horz, 2009; van Gog & Rummel, 2010).  In 

these analyses, invested mental effort is considered a nexus between cognitive and motivational 

perspectives as an index of both imposed cognitive load (assuming motivation sufficient to 

engage for the duration of the learning task; Paas, 1992) and motivation (Pintrich, 1990; Schunk, 

Pintrich, & Meece, 1996; Wigfield & Eccles, 2000).  For example, the imposition of excessive 

cognitive load is associated with drops in persistence, which is operationally defined as sustained 

mental effort until the completion of a goal (Britt, 2005; Lewis, Bishay, McArthur, & Chou, 

1993; Paas et al., 2005).  However, Schnotz and colleagues speculate that stripping too many 

interesting-but-extraneous details from instruction may result in learning materials that are “no 

longer optimally activating from a motivational perspective” (p. 81) and consequently decrease 

invested effort.  We test the hypothesis that efficient management of cognitive load can result in 

positive shifts in measures of motivational belief.  The findings of the study presented here 

suggest that motivational belief (i.e., self-efficacy) may be a consequence of the cognitive load 
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imposed by instruction, rather than merely a necessary precursor of the decision to invest mental 

effort.

Mental Effort in the Context of Cognitive Load Theory

From the perspective of cognitive load theory, the major factor influencing an 

individual’s success in learning from instruction is the limited ability of working memory to 

assimilate and structure target information. Working memory capacity is generally considered to 

be capable of processing very few pieces of information at a time and of retaining them for less 

than 20-30 seconds without rehearsal (Cowan, 2001; van Merriënboer & Sweller, 2005). In that 

sense, working memory functions as a bottleneck, filtering the information to be encoded in 

long-term memory through attentional, conscious processes in ways that are evolutionarily 

adaptive for information processing (Sweller, 2004). The availability of relevant and well-

structured prior knowledge increases the functional capacity of working memory relative to the 

task, such that an individual with greater expertise will experience a lower burden on working 

memory resources than an individual with less expertise (Ericsson & Kintsch, 1995; Author, 

2007; Gobet, 1998; Sweller, 1994).  

The capacity of working memory can be operationally defined by the maximum quantity 

of new, non-automated information it is capable of processing at a given time. As a corollary, the 

greater the quantity of non-automated or novel information to be processed (i.e., cognitive load), 

the greater the requirement to invest mental effort for successful processing (Kalyuga, 2011). 

When the cognitive load imposed exceeds the working memory capacity of the learner, maximal 

investment of mental effort on the part of the student will not be sufficient to attain the intended 

learning or performance outcomes (Paas & van Merriënboer, 1993). 
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In dealing with difficult tasks, higher degrees of cognitive demand impose higher load 

and require greater effort.  In other words, “mental load is imposed by instructional parameters 

(e.g., task structure, sequence of information), and mental effort refers to the amount of capacity 

that is allocated to the instructional demands” (Paas, 1992, p. 429). If cognitive load imposed by 

instructional material exceeds the level of effort an individual can or does invest, instruction will 

be less effective than if effort is greater than or equal to the demands imposed by the learning 

task. Learning tasks that have been practiced consistently require less conscious information 

processing in working memory due to the development of automated knowledge (i.e., learned, 

unconscious processing) (Anderson, 1982; Blessing & Anderson, 1996; Clark, 2014) and schema 

development (van Merrienboer & Sweller, 2005).  

Types of Cognitive Load

CLT currently identifies three categories of cognitive load that might be imposed on a 

learner during the learning process: intrinsic, extraneous, and germane (van Merriënboer & 

Ayres, 2005; Kalyuga, 2011). For effective learning to occur, the sum of these loads must remain 

smaller than the capacity of the learner’s working memory. Therefore, the main objective of CLT 

has been to derive principles for managing cognitive load during instruction to maximize the 

efficiency and effectiveness of instruction (Paas et al., 2003; Tuovinen & Paas, 2004).

As originally established by Sweller (1993, 1994), intrinsic cognitive load is a 

characteristic of the information to be learned itself, independent of the learner. Thus, 

information that entails more propositions or more interactions among knowledge elements 

imposes a higher level of intrinsic load by definition (van Merriënboer & Sweller, 2005). More 

recent studies, however, argue that the level of intrinsic load is also influenced by “the degree of 
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interactivity between essential elements of information relative to the level of learner expertise in 

the domain” (Kalyuga, 2011, p. 2).  As such, an individual with higher levels of relevant and 

accurate prior knowledge will process information with a lower burden on working memory (i.e. 

intrinsic cognitive load) than an individual with a lower level of prior knowledge.  Further, this 

approach permits convergence between the intrinsic and germane load constructs, with the total 

quantity of cognitive load necessary for optimal learning represented by the learner’s capacity 

for processing the instructional content itself combined with the appropriate instructional 

mechanisms necessary for optimal learning to take place. 

Extraneous cognitive load is imposed by burdening working memory during instruction 

in a manner that does not positively contribute to learning. This type of load is associated with 

inappropriate instructional design and activities, which can manifest in two possible ways.  First, 

instruction or instructional materials may force a learner to process unnecessary or irrelevant 

information that results in unproductive element interactivity in working memory (Ayres & Paas, 

2012; Kalyuga, Chandler, & Sweller, 1999; Mayer, Heiser, & Lonn, 2001; Sweller, van 

Merriënboer, & Paas, 1998, Sweller, 2010).  Second, information necessary or beneficial to 

instruction may be withheld, which forces a learner to simultaneously structure and attempt to 

solve a problem for which appropriate schemas are not yet developed (Likourezos & Kalyuga, 

2016; Sweller, 1988).  Similarly, “any instructional procedure that requires learners to engage 

in… a search for referents in an explanation (i.e., when Part A of an explanation refers to Part B 

without clearly indicating where Part B is to be found) is likely to impose a heavy extraneous 

cognitive load because working memory resources must be used for activities that are irrelevant 

to schema acquisition and automation” (Paas, Renkl, & Sweller, 2003, p. 2).  Thus, when 
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guidance is needed and not provided, cognitive information processing becomes a burden to 

learners and likely ineffective for learning (Kirschner, Sweller, & Clark, 2006).

Mental Effort in the Context of Motivation Theories

Theories of motivation consider investment of mental effort to be one of three major 

indicators of motivation, along with goal selection (a decision of where to invest mental effort) 

and persistence (the maintenance of mental effort over time until a goal is achieved) (Pintrich, 

1990; Schunk et al., 1996; Wigfield & Eccles, 2000).  When motivated, learners also tend to 

demonstrate a more strategic approach to learning tasks and direct mental effort toward 

processes that are more pertinent to learning (Rey & Buchwald, 2011).

One of the most prominent theories of motivation that links beliefs to effort investment is 

social cognitive theory (SCT; Bandura, 1992, 1997).  SCT holds that self-efficacy (i.e. one’s 

belief in their capability to manage and succeed in a particular task) drives the investment of 

mental effort (Bandura, 1992), because “unless people believe that they can produce desired 

effects by their actions, they have little incentive to act” (Bandura, Barbaranelli, Caprara, & 

Pastorelli, 1996, p. 1206). Further, successful past performances can enhance self-efficacy, 

contributing to higher goal aspirations and further investment of effort, which produce 

subsequent performance improvements (Bandura, 1997).  This perspective has driven a large 

proportion of motivation studies in education, with meta-analyses supporting the positive 

relationship between self-efficacy and achievement (Bandura & Locke, 2003; Multon, Brown, & 

Lent, 1991; Stajkovic & Luthans, 1998).

Anticipated Investment of Mental Effort
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From the SCT perspective, learners’ beliefs about the necessary level of effort to invest in 

a learning task is of central importance. Similarly, CLT assumes that in order for instruction to 

be effective, students need to be motivated so that they will invest sufficient mental effort to 

meet the cognitive demands imposed by the instruction (van Merriënboer & Sweller, 2005). 

Such motivation is typically indicated by the learner’s choice to engage in a given learning task 

(i.e. goal selection), so that if the perception of task difficulty is extremely high, it could lead to a 

lack of engagement (Clark, 1999).  Salomon (1984) argued that students “make judgments on the 

basis of the perceived attributes of the instructional procedures, and subsequently expend mental 

effort accordingly” (p. 649).  

For example, Zheng, McAlack, Wilmes, Kohler-Evans, & Williamson (2009) found that 

participants receiving instruction within an interactive multimedia context reported greater self-

efficacy than their counterparts in a non-interactive version. In this case, the participants’ 

perceptions and expectations regarding instructional format were highly salient, because self-

efficacy mediated the relationship between instructional condition and task performance.  While 

the influence of instructional condition on self-efficacy and the influence of self-efficacy on 

performance were each positive, the direct effect of instructional condition on performance was 

negative, indicating the importance of motivational beliefs for influencing learning outcomes 

even when instructional design may hinder learning outcomes.  

As individuals develop knowledge and skills that support successful task performance, 

their perceptions of the necessary effort required to perform the task decreases, resulting in 

diminishing estimates of necessary effort and subsequent allocation of effort to performance 

(Yeo & Neal, 2008). Similarly, it is possible that changes in belief regarding necessary effort 

may stem from perceptions of effort expended during learning and be expressed by participants 
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in the form of self-efficacy beliefs (Clark, 1999).  For example, in a study comparing 

constructive failure and direct instruction strategies, Likourezos and Kalyuga (2017) found that 

participants’ perceived mental effort, perceived task difficulty, and expected probability of task 

success (i.e., self-efficacy) differed significantly as a function of instruction.  Participants 

receiving fully guided instruction with worked examples reported significantly lower levels of 

perceived effort and task difficulty and higher levels of self-efficacy than the unguided problem-

solving condition representing the constructive failure approach.  However, these differences 

were obtained in the absence of significant differences across instructional conditions in posttest 

performance.  The authors concluded that differences in learners’ goals and possible low levels 

of task complexity could account for the results.  However, it is also possible that cognitive load 

can have a direct impact on motivational beliefs, even in the absence of differences in learning 

outcomes. 

Research Questions

In the current study, we argue that these learners’ estimates of necessary effort, and thus 

their self-efficacy, may be influenced directly by the level of cognitive load imposed by 

instruction.  As such, motivational beliefs can be outcomes rather than merely predictors of the 

learners’ cognitive processes as they engage with instruction. Specifically, the level of 

extraneous cognitive load imposed during instruction may be associated with changes in 

learners’ expectations regarding the necessary levels of effort required in future, related tasks, 

independent of performance levels.  Thus, we address the following research question:  Can a 

manipulation of cognitive load undetected by participants predict a differential change in post-

instruction motivational beliefs? We hypothesize that:

1. Participants in the treatment (lower extraneous load) condition will demonstrate stronger 
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performance in the post-instruction assessment than participants in the control (higher 

extraneous load) condition.

2. Participants in the treatment condition will demonstrate greater gains in self-efficacy from 

pre- to post-instruction than participants in the control condition.

3. Post-instruction self-efficacy levels cannot be accounted for by differences in task 

performance, reflecting the influence of cognitive load imposed by instruction rather than 

beliefs formed on the basis of assessment task performance. 

Method

Participants

Participants in this study were undergraduates at a public research university in the 

Southeastern United States who were enrolled in a one-semester introductory biology course that 

was offered every Fall and Spring term. Data for this study were drawn from 5 consecutive terms 

from Spring, 2008 through Spring, 2010 (N=2,078; n = 1,052 treatment, n = 1,026 control).  The 

course consisted of 3 lecture hours and 3 laboratory hours per week, providing a survey of 

macromolecules, cell structure and function, genetics, and molecular biology. As the course 

primarily served freshman in biology and allied health majors, the course material was generally 

relevant to their future goals.

Thirty-eight percent of the participants were male, and 62% were female. The average 

age was 19.6 years. Seventy-eight percent of the participants majored in biology-related 

disciplines such as biology, biomedical engineering, nursing, pharmacy, and exercise science; 

22% majored in typically unrelated disciplines such as computer science, economics, art, history, 

etc.  All participants were blind to experimental conditions and to the existence of the study, as 
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were the graduate teaching assistants who taught the weekly laboratory sections.  Participants did 

not need to provide consent for data collection, because the study was granted exempt status by 

the university's institutional review board.  Its activities occurred as part of normal educational 

practice using instruments typical of the university classroom environment.

Materials

In addition to weekly lectures and laboratory sessions, students were required to watch 

brief weekly videos (~10 minutes) that explicitly instructed students in the processes of 

biological research, beginning with the identification of potentially productive trends in observed 

data or primary literature, the framing of research questions and testable hypotheses, the design 

of experiments, the analysis of data, and the drawing of justifiable conclusions based on data.  

Two versions of the videos were created.  The first were recordings of a biology professor at the 

university, experienced with teaching the introductory biology course, who had won multiple 

teaching awards delivering his own brief lectures on these topics.  The second were recordings of 

the same professor in the same setting delivering lectures on the same topics.  However, in the 

second (i.e., treatment) condition, the script was provided to the professor and was developed on 

the basis of cognitive task analyses (CTA) (See Author et al., 2010).  Thus, the differences 

between the two sets of videos did not lie in what content was covered.  Instead, they differed in 

the level of detail provided and organizational structure provided in each lecture.

CTA uses interviewing techniques and other knowledge elicitation methods to capture 

both explicit and tacit knowledge from experts (Author et al., 2008). Because experts’ procedural 

knowledge tends to be automated and their schemas tend to be highly efficient in the 

organization of relevant information, they frequently but unintentionally omit information on 
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how they solve problems in their domains of expertise (Clark, 2009; Clark et al., 2012; Author, 

2007, 2010; Rikers, Schmidt, & Boshuizen, 2000; Sullivan, Yates, Inaba, Lam, & Clark, 2014). 

Consequently, CTA-based training is typically more complete, providing a higher level of detail 

than instructional content identified through other means (Author et al., 2009).  CTA-based 

training also typically yields greater learning gains than training based on other sources of 

instructional content.  A recent meta-analysis found a large advantage for CTA-based training, 

reporting a Hedge’s g mean effect size of 0.87 (Author et al., 2013).

As discussed previously, cognitive load theory predicts that incomplete instruction or 

instruction omitting important information for learners (e.g., detailed step-by-step processes) 

imposes extraneous load that hinders student learning (de Jong, 2010; Mayer & Moreno, 2003). 

For a novice learning the complex task of science inquiry—as in this study—the limitations of 

working memory are accentuated due to the combination of both the great amount of new 

content information and the complexity of the task (i.e., problem solving; Sweller, 1988) in the 

absence of well-structured schemas that could retain relevant information without additional 

effort.  As such, the effectiveness of CTA-based training that scaffolds procedural learning is 

typically attributed to a reduction in extraneous load imposed by otherwise missing information 

regarding detailed steps and rules that is captured through the CTA process (Author et al., 2010).  

To produce the instructional videos, the lead author conducted CTA interviews with three 

experts in biological research salient to the focus on the course.  Details regarding the CTA 

procedures and outcomes used to develop the instructional videos for this study are reported in 

detail elsewhere (Author et al., 2010; Author et al., 2009).  

To prevent the CTA-based scripts from inadvertently influencing the recorded business-

as-usual lectures, all control condition videos were created before the professor was provided 
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with the CTA-based scripts. Eight pairs of videos (traditional versus CTA-based) were 

developed. Each video lasted 5-10 minutes. Content analysis of the videos indicated that the 

explanations provided in the traditional videos were more abstract and presented principles 

illustrated with examples (Author et al., 2009). In contrast, CTA-based videos provided more 

specific and detailed statements and were framed as a set of step-by-step actions and decisions to 

be made. To maintain the students’ viewing habit every week, two condition-neutral videos were 

also developed to match video deployment dates to each week’s scheduled content.

Comparison of cognitive load imposed by treatment and control videos.  Treatment 

and control versions of the videos were viewed under laboratory conditions by undergraduate 

participants who did not enroll in the biology course (n=42).  These participants rated the 

cognitive load imposed by the full set of videos they viewed (either treatment or control) using 

Paas’s (1992) 9-point Likert item.  Mean cognitive load ratings indicated that the treatment 

condition imposed less total load than the control (Meantreatment = 5.35, SDtreatment = 2.01; 

Meancontrol = 5.56, SDcontrol = 1.46), though the difference was not statistically significant.  

As reported by Author et al. (2009), the treatment videos presented higher levels of 

instructionally relevant information (i.e., information that would impose intrinsic cognitive load) 

in 39.8% of coded transcript segments (treatment = 33 out of 83; control = 0 out of 83) with an 

interrater agreement rate of 97% (disagreements resolved through discussion).  Because total 

cognitive load experienced by a learner is the sum of extraneous cognitive load and intrinsic 

cognitive load processed in working memory (i.e., cognitive load is “additive”; van Merrienboer 

& Sweller, 2005, p. 150), a difference in intrinsic load between conditions without a concomitant 

difference in overall cognitive load must, by definition, reflect differential levels of extraneous 

load.  Considering both the lower level of overall cognitive load reported by participants viewing 
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the treatment materials and the higher level of intrinsic load identified in the treatment condition 

through content analysis, we conclude that the treatment condition must have imposed less 

extraneous load than the control condition.

A form of cognitive efficiency was computed on the basis of the perceived level of 

cognitive load relative to quantity of assessment-relevant information (i.e., intrinsic load) 

included in the videos of each condition.  Dividing the mean levels of perceived load by the 

number of instances of greater intrinsic load for each condition (increasing the count for the 

control condition to 1 to avoid dividing by 0) yielded a ratio of 0.162 for the treatment condition 

and 5.56 for the control condition.  A two-sided Z-test confirmed a significant difference 

indicating that cognitive efficiency (perceived load/intrinsic load) was significantly greater in the 

treatment condition (Z = 8.4, p < 0.001).

Course structure.  Following the completion of the series of videos, the laboratory 

portion of the course culminated in a multiple-week, inquiry-based investigation of Drosophila 

melanogaster (fruit fly) genetics wherein students were required to make observations, generate 

hypotheses, collect, analyze and interpret data and form conclusions based on those data.  The 

work product submitted for course credit was a formal paper, written in scientific format, 

reporting their findings.  Due to logistical constraints, all students investigated the same 

unknown genetic cross.  Their task was to determine the genotypes of the parental generation and 

if the alleles exhibited Mendelian inheritance patterns.  Investigations were conducted in small 

groups within a laboratory section.  Drosophila observation data were pooled within each 

laboratory section to increase sample size.  Thus, students were provided with the research 

question, hypothesis, and methods, but they had complete discretion in the scientific judgments 

articulated in their papers (i.e., discussions of intellectual context, study rationale, data analysis 
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and interpretation, conclusions, and limitations). Lab reports were written and submitted 

individually by students via an online course management website and scored using a rubric 

described in the Measures section below.  All papers were checked for plagiarism using 

SafeAssign™ and papers containing plagiarized material were not included in the sample.

 

Procedure

This study employed a double-blind, quasi-experimental design with random assignment 

to conditions to evaluate the impact of CTA-based instruction on undergraduate biology 

students’ motivation and achievement. We randomly assigned laboratory sections to either use 

CTA-based online instructional videos (experimental condition) or traditional online 

instructional videos (control condition). Laboratory sections were facilitated by graduate 

teaching assistants (TAs) who were assigned to a single condition (i.e., no TA taught sections in 

both the treatment and control conditions). Both sets of videos were similar except the actual 

verbiage of the content being presented (e.g., same presenter, same clothing, same room, same 

topics, etc.). The participants and TAs were blind to the existence of the study and the instructors 

and researchers were blind to participant assignment to experimental conditions, which averted 

both potential experimenter effects and the Hawthorne effect (Rosenthal, 1966). 

Students’ viewing behavior was recorded via server logs, and points contributing to the 

final course grade were awarded for viewing the videos outside of class each week. Viewing 

rates ranged from 69% to 93% of students each week (meancontrol = 87% of students; meantreatment 

= 82% of students). Viewing was consistently but non-significantly higher in the control 

condition each week, with only 1 of the 12 videos being viewed more in the treatment condition 

(93% compared to 92%). As students watched the videos in laboratory each week as well, these 
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viewings represent reinforcement of the material. Thus, there do not appear to be any meaningful 

distinctions between viewing rates in treatment and control and if such differences exist, they 

favor the control condition.

To ensure the equivalency of students’ general scientific reasoning ability and initial 

levels of motivation between conditions, Lawson’s Test of Scientific Reasoning (Lawson, 1978, 

2000) and two subscales of the Motivated Strategies for Learning Questionnaire (MSLQ; 

Pintrich, Smith, Garcia, & McKeachie, 1991, 1993) were both administered at the beginning of 

the course in every semester. During the course in every semester, the traditional and CTA-based 

instructional videos were delivered via the internet as a series of streaming videos as described 

above. In both control and experimental condition, each condition-appropriate video became 

available for viewing at the beginning of the week for which it was assigned and students were 

required to view it before each weekly laboratory session (students were free to view it as many 

times as they wished). Viewing the videos was a required weekly assignment for students, for 

which they received a small number of points toward their final grade in the course.  At the 

beginning of each laboratory session, students viewed the videos again with their TA and briefly 

discussed the content of videos. The MSLQ was administered in class for a second time, just 

prior to the end of the course each semester. Learning outcomes were assessed using the final 

written lab report of the semester, in which students were provided with a testable hypothesis and 

methods and the asked to write a report of findings that emphasized primarily the discussion 

section against the rubric criteria listed in the preceding section.

Measures
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To assess participants’ motivation, two subscales from the MSLQ (Pintrich et al., 1991) 

served as dependent variable measures in this study. The MSLQ is a self-report instrument to 

measure undergraduates’ motivation and learning strategies specific to a designated course with 

strong reliability and validity (α ≥ 0.90 for undergraduate populations; Spitzer, 2000). The 

current study utilized the task value (6 items) and self-efficacy (8 items) subscales.  In this case, 

the instrument was situated specifically within the laboratory section of the biology course, 

which had an explicit focus on development of authentic biology research skills and appropriate 

interpretation of empirical results.  As such, the subscales were appropriate for eliciting 

participants’ motivational beliefs in a context with known “situational demands” (Bandura, 2007, 

p. 646).  Confirmatory factor analysis conducted with the pretests from the sample in the current 

study replicated the factor structures reported by Pintrich et al. (1993): each of the relevant items 

loaded onto only the anticipated factor with weights between 0.755 and 0.907.  Attained 

reliability for the task value and self-efficacy scales using the current sample were α = 0.924 and 

α = 0.946, respectively.

Lawson’s Test for Scientific Reasoning (Lawson, 1978, 2000) assesses participants’ 

abilities to distinguish between discrete sources of variance, apply proportional, probability, and 

correlation reasoning, control of variables, use hypothetical-deductive method. It consists of 24 

multiple-choice items and has been validated with high reliability (α = 0.81; Lawson, Alkhoury, 

Benford, Clark, & Falconer, 2000) among undergraduates. On the test items, participants are 

presented with several scenarios and required to draw correct deductive inferences from 

presented data and evaluate the effectiveness of strategies to control variables. Attained 

reliability for the sample in the current study was α = 0.865.
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As described in Author et al. (2010), student learning gains were measured using rubric-

based assessment of sole-authored lab reports.  Development and validation data are presented in 

Timmerman, Strickland, Johnson, & Payne (2011).  The rubrics measured the quality of 

demonstrable skills in the research process that were evident in the lab reports, specifically: the 

ability to set the research in context, cite relevant literature and concepts accurately, generate 

testable hypotheses, generate hypotheses with scientific merit, appropriately select data, 

effectively present data, appropriately analyze data, base valid conclusions on data, generate and 

evaluate alternative explanations for results, identify the limitations of the study design, and 

generate implications and gauge significance of the findings.   

Overall reliability of the rubric was calculated using generalizability analysis and found 

to be high (g = 0.85). Attained pairwise inter-rater reliability for the current sample ranged from 

g = 0.70 to 0.86 for each rubric plank (Timmerman et al., 2011). Analysis of the factor structure 

using Mplus (Version 7.4) for the rubric yielded four factors, described as Framing the Study, 

Hypotheses, Results, and Discussion.  Framing the Study consisted of two rubric planks: (1) 

Setting the work in context (theoretical importance) (b = 0.75) and (2) Accuracy and relevance of 

information cited (b = 1.00).  Hypotheses also consisted of two planks: (1) Testability of 

hypotheses (b = 0.84) and (2) Scientific merit of hypotheses (b = 1.00).  Results consisted of 

three planks: (1) Data selection (b = 0.82), (2) Data presentation (b = 0.27), and (3) Data analysis 

(b = 1.00).  Discussion consisted of four planks: (1) Conclusions based on data (b = 0.55), (2) 

Alternative explanations for data (b = 1.35), (3) Limitations of study design (b = 1.01), and (4) 

Implications/significance of research (b = 1.00).  Planks related to research methods were 

excluded from all analyses, because the methodology (i.e., experimental design, measures, etc.) 

were determined by the instructor, as described previously.  Factors intercorrelated minimally 
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but significantly (0.04 ≤ r ≤ 0.10), and overall model fit was good (X2 = 304.75, df=36, p < .001; 

RMSEA = 0.073; CFI = 0.934; SRMR = 0.046).  Primary evaluative weight was placed on the 

Discussion scores, due to the anticipated similarity of scores on Hypotheses and Results due to 

the common methodology dictated by the instructor and used across all laboratory sections in 

both treatment groups (see Author et al., 2010).

Data Analysis 

Tests of the three hypotheses utilized a multivariate analysis of covariance (MANCOVA) 

framework within a hierarchical linear model to control for nested variance at the laboratory 

section level using specific commands (‘Type = Complex’) in Mplus (Version 7.4) that allow the 

ignoring of nesting without producing biased parameter estimates. All group comparison 

analyses were conducted using the multiple-group analysis function in Mplus to ensure that the 

MANCOVA assumption of homogeneity of covariate regression slopes is met through parameter 

estimate constraints while appropriately handling missing data. Across all variables per case, 

missing data ranged between 21.1% - 41.3%, with no individual variable exceeding 32.7% 

missing (including participants who dropped or withdrew from the course or failed to turn in 

assignments).  Missing data was handled via the default maximum likelihood estimation 

algorithm in Mplus (MLR).

Analyses were conducted in two phases. In the first phase, group differences on the rubric 

factor scores (i.e., observed means of items loading significantly onto each factor), as well as 

post-test self-efficacy and post-test task value scores were tested, using gender, Lawson pretest 

scores, and self-efficacy pre-test and task value pre-test scores, respectively, as covariates. In the 

second phase, group differences on the self-efficacy and task value were tested using lab report 



COGNITIVE LOAD AND MOTIVATION 20

factor scores as covariates to control for the potential effect of performance on post-test self-

efficacy and task value. Statistical significance was determined using two-tailed p-values, and 

effect sizes were calculated using Cohen’s d.

  

Results

Performance Outcomes

Tests of the first hypothesis yielded a statistically significant group difference on one of 

the four factor scores on the laboratory report assessment: treatment group participants showed 

stronger performance on their Discussion scores (mean difference = 0.45; p < .05; d = 0.36; see 

Figure 1), after controlling for gender and Lawson’s Test scores (see Table 1 for unique R2 of 

covariates).  As discussed above and elsewhere (Author et al., 2010), performance on the 

Discussion factor was considered the most targeted measure of efficacy for this intervention.  

This anticipated difference between conditions supports the assumption that the CTA-based 

instruction decreased extraneous load compared to the control condition.

[INSERT FIGURE 1 ABOUT HERE]

[INSERT TABLE 1 ABOUT HERE]

Self-Efficacy and Task Value

Tests of the second hypothesis yielded a marginal group difference: treatment group 

participants showed greater post-instruction self-efficacy scores (mean difference = 3.90; p = 

0.093; d = 0.54; see Figure 2), after controlling for pretest self-efficacy scores, gender, and 

Lawson’s Test scores (see Table 2 for unique R2 of covariates).  Participants did not differ 



COGNITIVE LOAD AND MOTIVATION 21

significantly across conditions in task value (mean difference = 2.38; p = 0.236), after controlling 

for pretest task value scores, gender, and Lawson’s Test scores.

[INSERT FIGURE 2 ABOUT HERE]

[INSERT TABLE 2 ABOUT HERE]

Tests of the third hypothesis yielded one significant difference: treatment group 

participants showed higher self-efficacy scores at post-test (mean difference = 4.34; p < .05; d = 

0.61; see Figure 3), after controlling for both pretest self-efficacy scores and lab report 

performance scores, as well as gender and Lawson’s Test scores. Unique variance accounted for 

by each of the covariates differed somewhat between the treatment and control conditions, with 

collective performance (i.e., scores for all 4 performance factors) accounting for 0.1% of 

variance in post-instruction self-efficacy in the treatment condition and 2.4% of variance in the 

control condition (see Table 3 for unique R2 of covariates).  It demonstrates that participants who 

received the CTA-based instruction and consequently experienced less extraneous cognitive 

load, increased their levels of self-efficacy, independent of their performance.

[INSERT FIGURE 3 ABOUT HERE]

[INSERT TABLE 3 ABOUT HERE]

Discussion

Cognitive load theory has consistently treated motivational beliefs solely as a precursor to 

instruction rather than a possible consequence of instructional design grounded in CLT 
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principles.  The purpose of this study was to test the hypothesis that instructional conditions 

affecting the cognitive load imposed on a learner can directly impact post-instruction 

motivational beliefs that do not derive from performance.  The results generally support this 

hypothesis.  Specifically, the imposition of more extraneous load predicted lower levels of post-

instruction self-efficacy, in contrast to the predictions of Schnotz and colleagues (2009).

Established views of the relationship between motivation and the investment of mental 

effort have maintained that beliefs about necessary effort drive the subsequent investment of 

effort (e.g., Cennamo, 1993; Clark, 1999; Salomon, 1983, 1984).  Recent studies support these 

views, consistently finding that tasks for which participants had lower self-efficacy were the ones 

to which they allocated increased effort, leading to stronger task performance (Yeo & Neal, 

2008).  In instances where participants did not have past performance experiences to draw upon, 

self-efficacy beliefs positively predicted performance (Sitzmann & Yeo, 2013).  

In the current study, participants had not written a full laboratory report for the course 

prior to the assignment whose scores were analyzed here.  Further, it was the first laboratory 

course in the biology sequence, so it is likely to have been their first such experience at the 

undergraduate level.  Participants did not differ significantly across conditions in their self-

efficacy or task value beliefs at the outset of the course, and there was no reason to expect that 

students would hold differing effort expectations based on the format of the instruction, because 

they were blind to the existence and nature of the differences between the treatment and the 

control conditions. Further, performance on the report accounted for minimal variance on post-

instruction self-efficacy measures (0.01% in the treatment condition; 2.4% in the control 

condition), leaving the manipulation of cognitive load through instruction as the most likely 

source of the medium-large effect size (d = 0.61; Cohen, 1988) effect of the treatment on self-
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efficacy.  Thus, we conclude that the level of extraneous cognitive load experienced during 

instruction may shape self-efficacy beliefs independent of performance. 

In interpreting these findings, it is possible that participants consciously considered 

mental effort necessary during instruction as a function of cognitive load when reporting their 

post-instruction self-efficacy.  However, it is also possible that participants’ assessment of 

necessary effort and related self-efficacy beliefs engaged unconscious processes (Bargh, 

Gollwitzer, Lee-Chai, Barndollar, & Trotschel, 2001; Clark, 2014). Extensive research has 

demonstrated unconscious influences of “cognitive feelings” (Greifeneder, Bless, & Pham, 2011, 

p. 107), including subjective mental effort (Schwarz & Clore, 2006) and ease of recall (Schwarz, 

1998) on subsequent judgments. Typically, judgments preceded by lower effort investment in 

weighing evidence or greater feelings of ease during recall are associated with more positive 

evaluations. It is possible that such mechanisms could impact self-efficacy beliefs during or upon 

reflection of a low extraneous load instructional condition and subsequently impact judgments 

of self-efficacy more positively than those generated by participants in the high load condition. 

Implications and Limitations

The findings reported here have important implications for both the further development 

of cognitive load theory and practical considerations in instructional design.  From a theoretical 

perspective, the presence of motivational outcomes distinct from learning gains as a function 

of cognitive load manipulation suggest a need for future research to further verify and explore a 

greater range of interactions between cognitive load and motivation.  The possibility that the 

cognitive load imposed on working memory during instruction can have direct impacts on 

motivational beliefs introduces opportunities to connect historically distinct theoretical 
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frameworks. Cognition and motivation may not simply interact through a convergence of 

independent mechanisms. The processes that give rise to each may be more fundamentally 

entwined.

There are several specific implications for future research to address additional questions, 

as well as the limitations of the current study’s design.  First, additional studies are necessary to 

replicate the observed effects and, should they be successful, investigate further the possible 

influence of cognitive load types.  In the present study, CLT would characterize the instructional 

manipulation as imposing additional extraneous load on control participants by delivering task-

specific instruction that provided fewer details relevant to attaining stronger performance on the 

laboratory report task (Author, 2007; Author et al., 2009; Kirschner et al., 2006). However, 

differentiating between types of cognitive load (i.e., intrinsic, extraneous, germane) can be 

problematic for both practical and theoretical reasons (de Jong, 2010; Kalyuga, 2011; Schnotz & 

Kurschner, 2011; Sweller, 2010).  As such, more specific interventions must target 

manipulations of different types of load to determine if the effect is specific to extraneous load or 

to the overall level of cognitive load imposed by instruction (e.g., Likourezos & Kalyuga, 2017).  

Second, although the double-blind quasi-experimental design, the naturalistic 

environment, and the large sample size are strengths of the current study (Lazowski & Hulleman, 

2015), several aspects of the design limit the conclusions that can be drawn. First, this study did 

not collect cognitive load data from the participants in the course, so it cannot definitively 

confirm that the treatment did maximize cognitive efficiency (i.e. reduce cognitive load relative 

to performance-relevant content) for learners in the treatment condition relative to those in the 

control.  Although the anticipated difference in post-instruction performance was attained and 

the assumption of enhanced cognitive efficiency in the treatment condition was supported by 
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laboratory-based results, there is room for alternative explanations.  For example, scientific 

reasoning ability accounted for substantially more variance in performance scores in the control 

condition than in the treatment, which is consistent with Bloom’s (1984) findings that more 

specific and procedure-focused instruction was associated with a large drop in the correlation 

between student aptitude and academic achievement (from r = 0.60 to r = 0.25).  While these 

findings are not incompatible with cognitive load theory, they do not inherently require cognitive 

load as a construct.

Another limitation of this study was the lack of multiple measured performance events 

that could have better informed ongoing research related to the nature of the influence of self-

efficacy on performance.  Consistent with Bandura’s claims (1997; Bandura & Locke, 2003), 

pre-performance self-efficacy was positively associated with performance outcomes.  However, 

the current findings suggest that the positive association of post-instruction self-efficacy and 

performance in this case was correlative but not causal, with performance accounting for little 

variance in self-efficacy gains.  The observed correlation is thus likely due to the influence of the 

training condition as the common variable.

Lastly, the implications of this study for instructional designers suggest 

reducing extraneous cognitive load imposed in order to promote students’ self-efficacy, beyond 

the known benefits for knowledge acquisition. If instructional design considerations can play a 

role in shaping students’ motivational beliefs, applications of CLT can be brought to bear on a 

broader scope of training issues that transcend outcomes from individual implementations of 

instruction and potentially impact the students’ pursuit of higher level goal attainment. 

Motivational beliefs are an important outcome of learning experiences "that individuals hold 

about their abilities and about the outcome of their efforts, [which] powerfully influence the 
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ways...they will behave” (Pajares, 1996, p. 543) over longer spans of academic and professional 

endeavors.
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Figure 1.  Adjusted mean scores for the Discussion factor in lab reports after controlling for 

gender and Lawson’s Test scores.  The mean difference is significant at 0.45, p < .05 (d = 0.36).

� � � � � � � � � � � � � � � �		 
 ��� 
 �

 
 �

� � � � �� �� � ������� �� ��� �!" �����
# �$%  �� �$ &��!�'



Figure 2.  Adjusted means for post-instruction self-efficacy scores after controlling for pretest 

self-efficacy scores, gender, and Lawson’s Test scores.  The mean difference is nonsignificant 

using a 2-tailed test at 3.90, p = 0.093 (d = 0.54).
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Figure 3.  Adjusted mean post-instruction self-efficacy scores after controlling for both pretest 

self-efficacy scores and lab report performance scores, as well as gender and Lawson’s Test 

scores.  The mean difference is significant at 4.34, p < .05 (d = 0.61).
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Table 1.

Treatment Control

Dependent Variable Covariates Unique 

Variance

Cumulative 

Variance

Unique 

Variance

Cumulative 

Variance

Gender 0.006 0.006 0.01 0.01Framing the Study 

factor score Lawson's Test score 0.006 0.012 0.012 0.022

Gender 0.001 0.001 0.001 0.001Hypotheses factor 

score Lawson's Test score 0.011 0.012 0.014 0.015

Gender 0.000 0.000 0.000 0.000
Results factor score

Lawson's Test score 0.017 0.017 0.039 0.039

Gender 0.001 0.001 0.000 0.000
Discussion factor score

Lawson's Test score 0.011 0.012 0.043 0.043



Table 2.

Treatment Control

Dependent Variables Covariates Unique 

Variance

Cumulative 

Variance

Unique 

Variance

Cumulative 

Variance

Pre-Instruction 

Self-Efficacy score
0.097 0.097 0.090 0.090

Gender 0.093 0.190 0.087 0.177
Post-Instruction Self-

Efficacy score

Lawson's Test score 0.093 0.283 0.100 0.277

Pre-Instruction 

Task Value score
0.128 0.128 0.120 0.120

Gender 0.130 0.258 0.128 0.248
Post-Instruction Task 

Value score

Lawson's Test score 0.130 0.388 0.128 0.376



Table 3.

Treatment Control

Covariates Unique 

Variance

Cumulative 

Variance

Unique 

Variance

Cumulative 

Variance

Pre-instruction Self-Efficacy score 0.073 0.073 0.080 0.080

Gender 0.001 0.073 0 0.082

Lawson's Test score 0.001 0.073 0.016 0.095

Framing the Study factor score 0 0.073 0.018 0.105

Hypotheses factor score 0 0.073 0.002 0.112

Results factor score 0 0.073 0.002 0.112

Discussion factor score 0.001 0.074 0.002 0.113


