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Abstract.  Predator control is often implemented with the intent of disrupting top-down regulation
in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management,
as well as the strength of top-down effects of predators in general, is often exacerbated by the spatially
implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight
the importance of considering spatial context in the case of a predator control study in south-central
Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule
deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi-level
Bayesian model. With our model, we were able to evaluate spatial congruence between management
action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the
level of the management unit and the individual coyote removal. In the case of the former, our results
indicated substantial spatial heterogeneity in expected congruence between removal risk and parturi-
ent deer site selection across large areas, and is a reflection of logistical constraints acting on the man-
agement strategy and differences in space use between the two species. At the level of the individual
removal, we demonstrated that the potential management benefits of a removed coyote were highly
variable across all individuals removed and in many cases, spatially distinct from parturient deer
resource selection. Our methods and results provide a means of evaluating where we might anticipate
an impact of predator control, while emphasizing the need to weight individual removals based on
spatial proximity to management objectives in any assessment of large-scale predator control.
Although we highlight the importance of spatial context in assessments of predator control strategy,
we believe our methods are readily generalizable in any management or large-scale experimental
framework where spatial context is likely an important driver of outcomes.

Key words:  Bayesian; Canis; Canid; carnivore; coyote; fawn; mule deer; neonate; Odocoileus; predator control;
wildlife management.

INTRODUCTION management outcomes (Salo et al. 2010, Hurley et al. 2011,
Bradley et al. 2015).

The absence of consensus with regard to predator control
is a manifestation of inconsistencies across studies, including
differences in species’ life history, control strategy, scale of
inference, and analytical methods (Graham et al. 2005).
Many such studies are limited to correlating raw removal
effort (e.g., absolute numbers of individual predators
removed) with some metric capturing the desired manage-
ment outcome (e.g., survival or population growth). Yet in
doing so, researchers often omit relevant confounding factors
that potentially mask or exaggerate the impact of predator
control on management objectives. Such factors are often
independent of predator control strategies and can include
influential environmental variables, such as climatic state or
phenology (Hunter et al. 2007, Griffin et al. 2011), that drive
numerical responses in predator and prey populations or
affect prey vulnerability (Hebblewhite 2005). Resource avail-
ability can also alter community composition (Tilman 1981),
triggering additive or compensatory processes associated with
Manuscript received 30 August 2017; revised 27 October 2017; ~ Species interactions within (Leo et al. 2015, Serrouya et al.

accepted 2 January 2018. Corresponding Editor: Aaron Wirsing. 2015) and across trophic levels (Griffin et al. 2011). For
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Under the guiding tenants of the North American Model
of Wildlife Conservation (Organ et al. 2012), the lethal
removal of problematic species is permissible for “legitimate
purposes” following humane and scientifically sound strate-
gies. Lethal predator control programs have been imple-
mented to mitigate declines in threatened and endangered
species (Harding et al. 2001, Smith et al. 2010) and to bene-
fit economically valuable prey species throughout the United
States, such as wild ungulates (Hurley et al. 2011, Kilgo
et al. 2014) and livestock (Graham et al. 2005, Mabille et al.
2015). In both cases, management is often conducted on the
basis of assumed impacts of predation rather than from a
mechanistic understanding of the interactions between
predators and managed prey populations (Ballard et al.
2001, Harding et al. 2001, Brown and Conover 2011).
Indeed, few studies have critically assessed predator control
and those that have lack consistency in conclusions regarding
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example, the availability of alternative prey can sustain larger
predator populations or modify consumption rates of man-
aged prey, leading to variable impacts on managed prey pop-
ulations (Knowlton et al. 1999, Hurley et al. 2011).

At a finer scale, the individuals being removed by control
efforts are unlikely to have consistent impacts on prey popu-
lations (Jaeger et al. 2001, Blejwas et al. 2002, Swan et al.
2017). Behavioral differences between individuals attributa-
ble to experience, social status, and social learning are
potentially important predictors of individual impact and
the success of a given control program (Mitchell et al. 2004).
Variation in spatial and temporal proximity to the desired
objective (e.g., wintering yards, fawning sites) and proximity
to management boundaries where recruitment of new indi-
viduals may be more frequent (Conner and Morris 2015,
Lieury et al. 2015) are also likely to influence an individual’s
effect on management goals. Similarly, the size of a manage-
ment area relative to the movement characteristics of the
focal species can directly affect detection, risk, and rate of
reestablishment following removals (Stoddart et al. 1989).
Although individual variation in behavior is difficult to
quantify, defining the spatial context of individual removals
is frequently possible, yet to our knowledge rarely accounted
for in these assessments (Conner et al. 2008).

Coyotes (Canis latrans) are often the focus of predator con-
trol efforts throughout much of North America, in part due
to extensive range expansion over the last century that has
increased conflict with humans for domestic livestock and
wild game (Berger et al. 2008, Magle et al. 2014). A common
method used to mitigate coyote-human conflicts in the west-
ern United States is aerial gunning (hereafter removal) from
fixed-winged aircraft or helicopters (Brown and Conover
2011). The desired outcome of this strategy is the targeted
removal of problem animals or broad reduction in predator
abundance, followed by a decline in predator-induced addi-
tive mortality in prey populations (Wagner 1997).

Coyotes can be effective predators of neonatal deer fawns
(Odocoileus spp.; Kilgo et al. 2014). In many areas of the
western United States, aerial removal of coyotes is employed
during winter in an effort to maximize coyote detection
through snow tracking in remote and often difficult to access
areas (Wagner 1997). This results in a temporal mismatch
between the timing of removals in winter and the phenology
of deer parturition in summer, when fawns are most vulnera-
ble to coyote predation (i.e., within eight weeks post-parturi-
tion; Hall et al. 2016), and is a sufficient gap in time for
immigration and replacement of coyotes to occur in some sys-
tems (Conner et al. 2008). However, timing of removals may
negatively impact reproductive output in coyotes by disrupt-
ing pair formation and copulation (Gantz and Knowlton
2005), which in turn reduces the caloric demands of raising
pups on surviving adults during the summer (Till and Knowl-
ton 1983, Bromley and Gese 2001) Thus, winter removal strat-
egy assumes a reduction in coyote abundance and/or number
of reproductive packs, along with any associated effects like
reduced predator-related additive mortality in fawns, persists
through mule deer parturition several months later.

Although temporal mismatch is likely important, spatial con-
text is almost always known. Here we demonstrate a conceptu-
ally intuitive approach to quantifying spatial match between
management removals and objectives. We use data from a
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predator control study in south-central Utah, USA to assess the
spatial match between coyote aerial removal risk and mule deer
(O. hemionus) resource selection during parturition using a spa-
tially explicit, multi-level Bayesian model. Mule deer exhibit dis-
tinct resource selection patterns during parturition (Long et al.
2009, Freeman 2014), leading to spatial heterogeneity in the
accessibility of fawns to coyote predation. Similarly, coyote
removal risk is a product of encounter probabilities (i.e., proba-
bility of use by coyotes) and spatial constraints acting on
removal crews (i.e., terrain). Thus, the efficacy of such strategy is
dependent upon the degree to which removal risk overlaps mule
deer habitat selection during parturition. As coyote and parturi-
ent deer space use, as well as aerial removal risk in coyotes, are
inherently spatial processes linked to landscape features, we
adopt a resource selection framework for each level within the
hierarchical model (Johnson et al. 2006). Such an approach will
improve our understanding of the impacts of predator manage-
ment, while providing an objective method for evaluating the
efficacy of specific proposed management strategies.

MATERIALS AND METHODS

Study area

We monitored aerial removal of coyotes, as well as space use
by coyotes and mule deer, in a 1,200-km’ area on Monroe
Mountain, Fishlake National Forest, Utah (Appendix Sl:
Fig. S1). The study system is highly heterogeneous and
characterized by a diverse array of elevation-dependent cover
types that reflect differences in seasonal moisture regimes. The
elevation ranges from 1,430 to 3,400 m with lower elevations
dominated by shrub lands (Artemisia spp. and Chrysothamnus
spp.), mid-elevations by pinyon (Pinus edulis), juniper (Juniperus
osteosperma), gambel oak (Quercus gambelii), and mahogany
(Cercocarpus ledifolius and C. montanus), and higher elevations
by alpine meadows (Achnatherum spp.), sagebrush (A. triden-
tata), aspen (Populus tremuloides), and conifer (Abies lasiocarpa,
Pseudotsuga menziesii, and P. ponderosa). Precipitation on
Monroe Mountain occurs primarily in the form of snow from
mid-to-late winter, with often highly variable spring mixed pre-
cipitation, late summer monsoonal rains, and dry falls.

Management

The USDA-Wildlife Services-Utah State Program (WS)
actively implements a coyote aerial control program via heli-
copter and fixed-winged aircraft as a means of mitigating
conflict with livestock and as part of an on-going statewide
deer management plan to reduce coyote predation on mule
deer fawns and to promote higher densities of harvestable deer
(Utah Division of Wildlife Resources 2011, 2014). During the
winters of 2012 through 2015, we capitalized on this existing
plan by demarcating boundaries for WS flight teams with the
purpose of overlapping removal efforts with concurrent, on-
the-ground data collection related to coyote and mule deer
demography (Appendix S1: Fig. S1). We imposed a before-after
control-impact design (BACI) where removals were limited to
one of two areas representing the northern and southern halves
of Monroe Mountain (Appendix S1: Fig. S1). Removals were
conducted on the northern site during the winters of 2012 and
2013, and the southern site during the winters of 2014 and
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2015. The teams followed standard protocols, which aim to
maximize removal efficacy within the logistical constraints
of aerial removals (e.g., aircraft/personnel availability and
weather). The frequency and timing of removal flights were
dependent upon weather and usually occurred within 48 h of
fresh snowfall, which facilitated coyote tracking by flight teams
and is perceived to maximize efficiency of aerial removal
efforts. Flight teams reported the locations of all animals
removed using an on-board global positioning system (GPS).
Prior to each removal season, we live-captured coyotes
and fitted individuals with GPS collars (n = 16; Lotek GPS
60008, Isanti, MN, USA) using a combination of helicopter
net-gunning, leg-hold traps, and cable restraints (USDA-
NWRC TACUC: QA-1907, USU: IACUC-2182). We
programmed GPS collar fix rates for 8-h intervals from
September through May (non-summer) and 3-h intervals for
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June through August (summer). We captured female mule
deer using helicopter net-gunning and fitted individuals with
GPS collars during the first week of March in 2012 and 2013
(n = 21; Advanced Telemetry Systems models G2110D and
G2110E; Newmarket, Ontario, Canada) and again in March
2015 (N = 57; Advanced Telemetry Systems W300; BYU:
TACUC-150110). We programmed collars to obtain locations
at three (2013) or 11 h intervals (2015), year-round.

Model framework

We used a Bayesian hierarchical modeling framework to
simultaneously evaluate coyote resource selection, coyote
removal risk, and overlap with summer resource selection by
deer (Fig. 1). Using a multi-level framework allowed us to
account for parameter uncertainty within nested models. We

Coyote space use

o, ~ Half-cauchy(0, 2.5)
M, ~ Normal(0, 10)
®rnd ~ (Hor Og)

Bixec ~ Normal(O0, 5)

Ye ™~ Bern_loQit(aInd + X Bkc)
Xpred = inV_IOQit(I"a + X, pkc)

Deer space use

o, ~ Half-cauchy(0, 2.5)
M, ~ Normal(0, 10)
aYear ~ (I‘lul ou)
Bwa ~ Normal(O, 5)
ya ~ Bern_logit(oyear + XaBya)
Pl:’Deer = i'W_|09it(llu + XunitBkd)

Coyote removal risk
o, ~ Half-cauchy(0, 2.5)
M, ~ Normal(0, 10)
Qarea (pal ou)
Bir ~ Normal(O, 5)
BCoyUse ~ NormaI(O, 5)
Y. ~ Bern_logit(aares + X Bir +
Xpred BCoyUse)
PPCoyRisk = inV_|°git(|'la + Xunit Bkr)

Earth mover's distance
(Pixel by Pixel, scaled by Egn. 1)

Management scale
EMD ~ GAM(tps(B) + tps(X,Y),
family=Gamma)

Individual scale
Cing ~ Median(EMD,)
Cing ™~ Median(DeeryR)

Fic. 1.

Multi-level model specification for evaluating the spatial overlap between management actions and objectives. Each box corre-

sponds to a dependent sub-model specification with prior distributions, hyperparameters, and model distributions (y.q4). Subscripts of c, ,
and d are for coyote, removal risk, and deer, respectively. o are the random intercepts (individual, year, or study area), X* the covariates, and
B* the coefficients for each submodel. The subscript k* is the number of parameters within a given model. Inv_logit transforms the linear
function to a probability scale. HR are values estimated at the home range-level. TPS is a thin-plate spline used to estimate non-linearities in
space using x-y coordinates. Arrows represent the hierarchical flow of sub-model output during simultaneous model fitting. X},;.q are model-
predicted data, X, are pixel-level covariates for the Monroe Mountain management unit, and PP are pixel-by-pixel model estimates.



April 2018

built all models in R (v3.3.1; R Core Team 2016) using rstan
(v2.11.1; Stan Development Team 2015; Appendix I).

Spatial data and sub-model specification

We incorporated a number of ecologically relevant spatial
covariates in our sub-models (Appendix S1: Table S1), each of
which was hypothesized to influence species-specific resource
selection or coyote vulnerability to aerial removal. We
included distance to water and to tertiary roads (i.e., unpaved
roads), but did not include primary and secondary roads (i.e.,
paved roads and highways) as these were limited to the
margins of the study system and therefore confounded by ele-
vation and edge effects. We simplified LANDFIRE (2012)
landcover classes into aspen, other hardwood (e.g, Quercus
spp. and Cercocarpus spp.), shrublands, grasslands, pinyon or
juniper, other conifer, mixed hardwood and conifer, rocky/bar-
ren, and tree cover >50% (see Appendix S1: Table S1). Each
cover class was then converted into a continuous, distance-
based metric by estimating the distance from each pixel to the
nearest pixel of a given cover class. We also incorporated two
terrain ruggedness metrics: vector ruggedness (VRM; Sap-
pington et al. 2007) and terrain ruggedness index (TRI; Riley
et al. 1999). Each ruggedness metric and categorical aspect
(i.e., north, east, south, west, and flat aspect) was derived from
30-m USGS digital elevation maps (DEM, Utah Mapping
Portal, 2015)". We measured summer maximum normalized
difference vegetation index (NDVI) as an index of forage-
quality potential at 500-m resolution (Stoner et al. 2016). We
assessed all continuous metrics for problematic correlations
using a combination of Pearson’s R (R < 0.70; Menard 1995)
and variance inflation (VIF <4) by means of the R package
usdm (Naimi 2015). We standardized (i.e., centered by means
and scaled by one standard deviation) all continuous metrics
to improve model convergence. Finally, so as to limit our pre-
dictive inference to the range of values evaluated, data used
for prediction were truncated by the minimum and maxi-
mums, as well as standardized by the original means and stan-
dard deviations, for each covariate used in model fitting.

We used a mixed-effect logistic model to assess coyote
resource selection within home ranges (i.e., third-order selec-
tion; Johnson 1980) following a used-available design (John-
son et al. 2006). We chose a third-order scale for the purpose
of estimating a proxy for the likelihood of encountering coy-
otes during removal efforts. Thus, we included all diurnal
fixes from coyote location data from December through
March, corresponding to when coyotes were at risk of aerial
removal. We estimated winter home ranges for each individ-
ual using kernel density (KDE, 95% isopleth) with a plug-in
bandwidth estimator in R (KernSmooth; Wand and Ripley
2013). We then compared used locations with points sampled
systematically within each home range (i.e., available loca-
tions) at the minimum resolution of our landcover layer
(30-m grid) following Benson (2013). The model included
random effects of individual crossed with year, as well as
fixed effects for terrain ruggedness (VRM) and aspect, as
well as distance to roads, water, and landcover class.

We assessed coyote removal risk using mixed-effect logis-
tic regression. In this case, the locations where removals

" https://gis.utah.gov/
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occurred were compared to areas where removals did not
occur, with the latter represented by a systematic sample of
each 30-m pixel within the WS removal boundaries. As aer-
ial removal risk is likely influenced by coyote resource selec-
tion, a proxy for the relative probability of encounter by WS
personnel, we simultaneously fit coyote resource selection
with removal risk. Thus, we estimated the relative probabil-
ity of coyote use from the marginalized (i.e., population-
level) resource selection model during each Monte Carlo
iteration for inclusion as a covariate in the removal risk sub-
model. In addition to coyote probability of use, we included
a random intercept for year and fixed effects for aspect
(given its relationship with snow cover, and therefore track-
ing conditions, attributable to variable sun exposure
throughout the winter), distance to tree cover >50%, and ter-
rain ruggedness (TRI). We chose TRI, which retains infor-
mation pertaining to slope that VRM does not (Sappington
et al. 2007), as a parsimonious way of representing the effect
of terrain on accessibility by aerial removal teams.

We evaluated deer space use at the second-order scale to
reflect the seasonal, elevation-dependent migration typical of
mule deer populations in much of the western United States
(Merkle et al. 2016). We chose a second-order scale because
we were interested in characterizing site selection, rather than
usage within a site (i.e., third-order selection), while captur-
ing the shift toward higher elevation by parturient mule deer.
Although usage within a site is also important, the coarse
11-h fix interval for a majority of deer (73%) precluded our
ability to do so rigorously, particularly when constrained to
the brief period when deer fawn were most at risk of coyote
predation. Thus, deer location data were constrained to peri-
ods representative of summer ranges (i.e., timing of parturi-
tion) and specifically to periods from fawn birth dates to
eight weeks post-parturition (Hall et al. 2016), correspond-
ing to approximately June through August. We retained data
from only those females that were gravid at the time of cap-
ture, survived through the middle of the following summer,
and were likely to have dependent fawns during the antici-
pated window for parturition. We confirmed females were
with fawns either visually during summer of each year or
classified as having dependent young based on site fidelity
and movement patterns using the program rASF (Mahoney
and Young 2016). Fawn birth dates were estimated by hoof
growth (Sams et al. 1996) or when parturient deer began
exhibiting highly localized movements as identified by rASF.
We further truncated an individual’s data to include only
those locations collected between the estimated birth dates
and eight weeks post-parturition. Using these locations, we
generated individual home ranges by KDE with an h-ref
bandwidth estimator in R package adehabitatHR (Calenge
2006). We used a different bandwidth estimator for deer than
for coyotes due to differences in fix interval and movement
distributions, with the intent to produce more connected
home ranges with fewer patches for both species. We then
systematically sampled (30-m grid) “used” points within 80%
isopleths to reduce the influence of a number of infrequent
yet apparently spurious locations generated by collars with
longer fix intervals. We represented availability, or potential
sites where deer could have established summer fawning
home ranges, by sampling points systematically within a
minimum convex polygon encompassing all deer points plus
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a 5-km buffer. We then compared these parturient deer home
ranges with population-level availability using mixed-effect
logistic regression (i.e., second-order selection; Johnson
1980). We included a random effect of year, and fixed effects
for distance to landcover, distance to roads, distance to water,
maximum NDVI, ruggedness (VRM), and aspect. We chose
VRM as a ruggedness metric for deer because it represents a
measure of terrain variability independent of slope and is
commonly used in studies of montane ungulates (Sappington
et al. 2007). Although deer migrate along an elevation gradi-
ent within this system, we did not include elevation as a
covariate due to strong correlation with distance-to-land-
cover metrics such as aspen and conifer (R > 0.70).

While our approach for sampling “available” spatial data
represents a census of availability at our finest spatial resolu-
tion (30-m grid; Benson 2013), the increased computation
time required within a Bayesian framework necessitated
subsetting these data in most cases. Thus, we evaluated the
influence of systematic subsamples (e.g., every two or more
pixels) on our representation of availability within each sub-
model (Northrup et al. 2013). We retained the smallest sam-
ple that was representative of the “census” or that produced
manageable model fitting times, whichever was achieved first.

Model evaluation

We used leave-one-out cross validation (LOOCV) and LOO
information criterion (LOOic) to assess absolute model fit (R
package loo v0.1.6; Vehtari et al. 2017), which as approxima-
tions of out-of-sample cross validation and prediction helped
to reduce the potential for model overfitting. We implemented
model selection within each sub-model set independent of the
overall multi-level model in an effort to simplify the selection
process at later steps. All sub-model sets included a null fixed-
effect model for comparison with more complex models, which
provided a means of insuring covariates explained variations
in the data in a meaningful way. We then incorporated the sin-
gle best sub-models for deer and coyote resource selection in
the overall model and interpreted variable significance by pos-
terior credible interval overlap with zero. In all cases, we con-
firmed proper model convergence with R-hat estimates <I.1,
Monte Carlo errors at least one order of magnitude smaller
than mean estimates, and through trace diagnostics for all
model parameters. In addition, we confirmed all Pareto shape
parameters (k) were <0.5 to ensure unbiased approximations
of LOO (Vehtari et al. 2017). Finally, as an additional qualita-
tive measure of model fit, we performed posterior predictive
checks for the final model by plotting observed against model-
predicted values (Gelman et al. 1996).

Model synthesis

To address the question of scale in predator control, we
generated posterior predictions for the probability of coyote
removal and summer deer use for each 30-m pixel across the
management unit (UDWR Monroe, Unit 23). We estimated
congruence (i.e., overlap) between posteriors for removal
risk and deer probability of use using the Earth Mover’s
Distance (Dgy) in R package emdist (Urbanek and Rubner
2012), and weighted congruence to favor locations with a
high median probability of use by deer (Ppee;) using Eq. 1
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2
Deer X D EM

C =
PDeer X DEM

% 1,000. (1)

At the level of the management unit, we performed a
post-hoc assessment using generalized additive models
(GAMs) with Gamma errors to evaluate the influence of ele-
vation, ruggedness, and distance to tree cover on weighted
congruence metric, while accounting for spatial autocorrela-
tion with isotropic thin-plate smooths (R package mgcv;
Wood 2011). At the level of the individual, in cases where
collared animals were removed, we estimated the median
and coefficient of variation (CV) in probability of use by
deer across all 30-m cells within a coyote’s home range. For
those removals lacking home range data, we generated bio-
logically meaningful buffers around removals by simulating
movement trajectories, and therefore home ranges (1,000
minimum convex polygons per removal; Moorcroft et al.
2006, Van Moorter et al. 2009), using a hidden Markov
model fitted to the complete coyote GPS data set (R pack-
age moveHMM; Michelot et al. 2016). We then used these
simulated home ranges to derive a posterior expectation of
median probability of use by deer for each individual, which
in turn can be interpreted as the degree to which that indi-
vidual overlapped mule deer parturition habitat and the
potential contribution of that individual toward mule deer
management objectives.

REsuLTs

Coyote resource selection

We used GPS data from 11 coyotes (fix success:
pn=94.1%, o = 3.5%) with sufficient location information
during the winter at risk period, resulting in 16 seasonal
home ranges from nine different packs. We evaluated 26
models for coyote resource selection, including a single null
fixed effects model (Appendix S1: Table S2). We originally
included random effects for both individual and year given
the sampling structure within our data. However, a sizeable
number of pointwise Pareto k estimates were >0.7 for all
models including year, indicating potential bias in LOO esti-
mates. Further inspection indicated problems with estimat-
ing the effect for the last year of the study. Thus, following
the recommendations of Vehtari et al. (2017), we simplified
our model structure by removing year as a random effect,
which in turn dropped all Pareto k estimates below the
acceptable threshold of 0.5. Furthermore, removing year
from the model did not change the interpretation of fixed
coefficients in any biologically meaningful way.

We did not consider coyote resource selection models with
aspen due to problematic correlations with distance to coni-
fer and mixed conifer/hardwood. Here, we derived inference
from the most parsimonious top model (Table 1, Fig. 2a),
which was also our best model based on LOOic (App-
endix S1: Table S2). During daylight hours in the winter,
coyotes selected for shrublands, rocky/barren cover, and
water, as well as intermediate distances to grasslands and
tertiary roads. They also selected rugged terrain, and east-
and south-facing aspects (relative to north aspects). Coyotes
avoided conifer, mixed conifer/hardwood, and non-aspen
hardwood stands.
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Coefficient estimates for the coyote resource selection, coyote removal risk, and deer resource selection models.

Coyote resource selection
(third order)

Deer resource selection

Coyote removal risk (second order)

Fixed effects Mean SD Lower CI UpperCI Mean SD Lower CI Upper CI Mean SD Lower CI Upper CI
Aspen —0.102 0.028 —0.156 —0.047
Aspen® —0.054 0.020 —0.094 —0.014
Barren —0.052 0.024 —0.096 —0.004
Conifer 0.181 0.036 0.110 0.252 —0.560 0.033 —0.625 —0.496
Grass —0.080 0.039 —0.157 —0.004 0.471 0.017 0.439 0.504
Grass® 0.072 0.021 0.032 0.111 —0.130 0.009 —0.148 —0.114
Hardwood (other) 0.177 0.032 0.113 0.240 —0.360 0.020 —0.401 —0.320
Hardwood? —0.050 0.014 —0.078 —0.024 —0.078 0.016 —0.110 —0.047
Mixed forest 0.059 0.050 —0.039 0.159
Pinyon/Juniper 0.730 0.025 0.680 0.779
Pinyon/Juniper? —-0.262 0.009 —0.279 —0.244
Shrub —0.106 0.025 —0.156 —0.057 —0.050 0.018 —0.084 —0.014
Shrub? —0.013 0.005 —0.023 —0.003
Tree Cover (>50%) —0.036 0.121 —0.281 0.195
Tree Cover® (>50%) —0.402 0.124 —0.664 —0.179
Tertiary roads 0.068 0.031 0.008 0.129 —0.258 0.014 —0.286 —0.230
Tertiary roads’ —0.062 0.015 —0.092 —0.032 0.043 0.004 0.035 0.051
Water —0.118 0.023 —0.163 —0.075 0.575 0.015 0.545 0.604
Water? —-0.270 0.013 —0.297 —0.244
Max NDVI 1.056 0.026 1.005 1.108
Max NDVI? —1.099 0.021 —1.140 —1.058
Ruggedness, TRI 0.461 0.139 0.180 0.734
Ruggedness, TRI? —-0.216 0.077 —0.368 —0.070
Ruggedness, VRM 0.063 0.020 0.024 0.103 0.078 0.012 0.054 0.102
Ruggedness, VRM? —0.035 0.011 —0.056 —0.014
Probability of use by 1.436 1.938 —2.044 5.567

coyotes
Eastt 0.195 0.058 0.078 0.306 0.145 0.204 —0.267 0.535 0.357 0.027 0.305 0.409
Southf 0.247 0.060 0.130 0.363 0.126 0.229 —0.336 0.559 0.056 0.030 —0.002 0.115
Westt —0.277 0.058 —0.392 —0.165 —0.377 0.028 —0.432 —0.323
No aspectf 0.260 0.456 —0.708 1.074 —0.451 0.102 —0.653 —0.258

Notes: Lower and upper CI are the lower and upper 95% credible intervals. PJ represents pinyon, juniper cover, VRM the vector rugged-

ness metric, and TRI the terrain ruggedness index.

tReference groups are north aspect for deer and coyote resource selection and north, west, and no aspect for removal risk.

Coyote removal risk

A total of 182 coyotes were removed from the study site
over 4 yr. We received removal locations for 156 and visited
106. The remaining 50 removal sites were either inaccessible
due to winter conditions, had been covered by subsequent
snowfalls, or sufficient time had transpired permitting scav-
engers to disperse the carcasses. The accuracy of aerial fixes
was consistently within 50 m, indicating that the GPS error
was usually less than our minimum spatial data resolution.
We evaluated seven models for coyote removal risk and
derived inference from the single best model (Table 1,
Fig. 2b, Appendix S1: Table S3). In general, aspect did not
influence coyote removal risk. However, coyotes were most
susceptible at intermediate distances to tree cover. In addi-
tion, coyotes were much more likely to be removed in flatter
terrain (Appendix S1: Fig. S2). The nonlinearity for rugged-
ness (i.e., TRI) indicated that the probability of coyote
removal declined exponentially with increases in ruggedness.
While not significant, the large, positive effect of coyote
probability of use indicated that managers were removing

animals from primarily areas where encounter probabilities
were high, namely open, flat terrain.

Deer resource selection

We had sufficient location data from 39 adult female deer
with confirmed or probable dependent young from 2012
through 2015, resulting in a total of 51 summer home range
estimates. Of these 51 probable fawning events, we con-
firmed six visually and estimated 45 using program rASF.
However, rASF was less precise for some individuals with
the longer fix interval collars deployed in 2015 (i.e., 2- to 7-d
window). Thus, when fawning was confirmed as likely, we
used the first day of the estimated parturition interval as the
birth date for truncating location data. Eleven of these
females (14 home ranges) summered on neighboring ranges
outside the Monroe Mountain management unit. However,
these ranges are also districts in Fishlake National Forest
and consisted of a similar mosaic of landcover types and
plant assemblages. Thus, the added power provided by these
additional individuals increased the representative nature of
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Heat maps for the model predicted relative probabilities of (a) coyote use, (b) coyote removal risk, and (c) deer use on Monroe

Mountain in Fishlake National Forest, UT. Dark to light is low to high probability, respectively. The x-y coordinates are in Universal Trans-

verse Mercator (UTM Zone 12N, datum NADS3).

deer site selection during parturition for the region. Our sam-
ple of availability encompassed all lands that were potentially
accessible to study animals, including these neighboring
ranges, for the deer selection models only.

We evaluated 23 models for deer resource selection
(Appendix S1: Table S4). LOOic strongly supported our top
model for adult deer resource selection during the eight
weeks post-parturition (Fig. 2¢), indicating significant non-
linearities in all of our continuous metrics with the exception
of distance to conifer (Table 1). The top model indicated that
deer selected fawning sites near tertiary roads, shrublands,
aspen, conifer, or hardwood, as well as intermediate levels of
ruggedness (VRM) and NDVI. Deer avoided grasslands,
pinyon—juniper, and water when selecting fawning sites. In
addition, deer selected for home ranges on east-, south-, and
north-facing aspects over west-facing and no aspect.

Congruence at the level of the management unit

All three sub-models exhibited good posterior predictive
accuracy (Appendix S1: Fig. S2). The study-area median
congruence between coyote removal risk and deer fawn site
selection, after weighting by mule deer probability of use, was
0.25 (CV = 120.51) (Fig. 3). The GAM indicated substantial
spatial variation in weighted congruence between removal
risk and probability of use by deer (spatial smooths with
edf = 1,446.06, Appendix S1: Fig. S3a). We tested models
with elevation, ruggedness (TRI), and elevation with rugged-
ness. Model selection retained elevation (edf = 37.97) and
ruggedness (edf = 39.83). However, the effect of elevation

was not likely to be biologically meaningful given the rela-
tively flat relationship (Appendix S1: Fig S3c). Yet, congru-
ence declined precipitously and nonlinearly as ruggedness
increased (Appendix S1: Fig S3b).

Congruence at the level of the individual removal

The hidden Markov models performed well at simulating
movement trajectories, and thus home ranges, when fitted
using coyote GPS trajectories (Fig. 4a). Simulated home
range sizes were larger than observed, but in general median
home range size from simulations matched our observed
sizes in cases where home ranges were known (Fig. 4b). In
addition, median overlap with predicted relative probability
of use by deer was also a close approximation for the
observed values in known coyotes and in all cases were
encompassed by the 95% highest posterior density interval
(Fig. 4c, Appendix S1: Table S5).

Discussion

Our primary objective was to evaluate the spatial match
between spatially explicit removal risk in coyotes and space
use by parturient deer. Our model, and the respective sub-
models, accurately captured coyote (Arjo and Pletscher
2004) and deer resource selection (Long et al. 2009), as well
as coyote removal risk, and exhibited strong predictive infer-
ence based on posterior predictive checks (Appendix Sl:
Fig. S2). Although intuitive, our results indicated that coy-
otes were generally most at risk of removal in areas with the
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highest predicted (relative) probability of occurrence, which
was represented by open shrublands in low-to-moderately
rugged terrain during daylight hours in winter. However,
after accounting for coyote resource selection, spatial con-
straints acting on the efficacy of removal indicated coyote
removal risk declined as ruggedness increased or when near
tree cover. Likely, flight crews were impeded by more rugged
terrain due to safety concerns, requiring more attentive
flying by the pilot and overall reduced detectability of
coyotes. Although trees pose a similar safety concern, tree
cover limits visibility and obstructs projectiles used in lethal
removal, thereby providing refuge for coyotes. Our models
also indicated a decline in removal risk at higher distances to
tree cover, suggesting intermediate distances were most risky
for coyotes. Intermediate distances are likely an artifact of
WS targeting areas believed to be favored by mule deer (e.g.,
near tree cover) or due to differences in how coyotes respond
behaviorally to aircraft, potentially affecting detectability as
distance to cover increases (e.g., flight response vs. holding
still when near and far from tree cover, respectively). There
was no effect of aspect, at least relative to our expectations
of coyote resource selection. This is not particularly surpris-
ing given the timing of flights to coincide with fresh snowfall
(i.e., before south faces had an opportunity to melt off).
Although we do not explicitly address how coyotes will
respond to sustained aerial removals, we acknowledge that
plasticity in coyote behavior may further mitigate the utility
of such a management strategy as individuals learn to avoid
aircraft, particularly in areas with ample tree cover favored
by parturient deer (Freeman 2014). Nonetheless, our effort
clearly highlights the spatial heterogeneity in coyote aerial
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(a) An example of 1,000 simulated home ranges for a removed coyote (white star) with a known home range (blue polygon). The

darker shading corresponds to more frequent home range overlap in a given region of space. The densities for (b) 1,000 simulated home
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removal risk and emphasizes the constraints acting on aerial
removals as a management tool for mule deer (Knowlton
and Windberg 1985).

We also evaluated the influence of elevation and rugged-
ness on the spatial congruency between management
removals and parturient deer site selection. In this case, we
found no effect of elevation and a strong negative, nonlinear
effect of ruggedness on weighted congruency (Appendix S1:
Fig. S3). Thus, not surprisingly, WS personnel are most
effective at removing coyotes from areas favorable for deer
when navigating less rugged terrain regardless of elevation
(white colors in Figs. 2b, ¢, 3), but their success declines with
increasing ruggedness likely as a consequence of operational
challenges in mountainous terrain. However, declines in
overlap are also indicative of differences in expectations of
space use in both species, with coyotes generally preferring
more open landcover classifications (e.g., barren ground and
shrublands) relative to mule deer (e.g., forest; Table 1).

Predator control is often evaluated in terms of purely
demographic processes. Yet, ignoring spatial structure may be
critical and could either mask or exaggerate the perceived effi-
cacy of control efforts. We highlight substantial spatial varia-
tion in the overlap between coyote removal risk and where
deer fawns are likely to be encountered, and that the outcome
of such management can be highly variable in heterogeneous
landscapes at two distinct spatial scales. First, aerial control
is potentially more impactful in areas where aerial risk is con-
gruent with management objectives but likely to be inconse-
quential at broader management scales where overlap among
focal species is low. Although this is intuitive, our approach
provides an objective means of quantifying the potential of a
given management tool when applied across broad land-
scapes, with the ability to distinguish favorable management
units from other, more challenging units. Second, assessments
of predator control have often assumed each management
removal is equally impactful on the desired objective
(e.g., Hurley et al. 2011). Yet, variation in the proximity of
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removed predators to objectives (e.g, deer fawns, Fig. 5) will
likely contribute to uncertainty regarding the outcome of
predator control. Specifically, we anticipate ignoring spatial
context will bias most evaluations of predator control pro-
grams (Stoddart et al. 1989). Here, for example, although the
annual numbers of coyotes removed were consistent from
year to year, removals during the winter of 2015 were pre-
dicted to be largely ineffective due to poor overlap with par-
turient deer site selection (Fig. 5). While detection and effort
are likely key predictors of absolute removal risk, we could
not explicitly account for these factors. However, our results
are robust within the context of our primary objective in that
we compare spatial congruence between removal risk and
parturient deer resource selection. For example, increased
removal effort will lead to a proportional increase in the rela-
tive probability of risk but will not change the spatial context
of risk (i.e., low risk will remain low risk and vice versa). Our
estimates of spatial congruence between removal risk and
parturient deer resource selection should also be consistent
regardless of effort, though the absolute measures of congru-
ence will change. Similarly, we acknowledge that although
animals were likely detected and pursued before ultimately
being removed, initial encounter is a matter of detection.
Documenting where an animal was removed with precision
was more reflective of actual risk and therefore most relevant
to our analytical goals. However, the hierarchical structure of
the risk model helped to capture variation between years and
across study areas that is likely attributable to variation in
detection, density, and climatic conditions.

In addition to assessing match at the scale of a manage-
ment unit, we provide a means of quantifying potential
impact at the level of the individual removal by simulating
home ranges (or biologically plausible spatial buffers) using
fitted hidden Markov movement models. By intersecting
these simulated home ranges with deer probability of use
during parturition, we were able to derive a posterior
expectation of overlap on a per removal basis. Doing so
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greater potential impact on mule populations.

The estimated median overlap with relative probability of use by deer for all 156 coyote removals. Larger median values indicate
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clearly demonstrated the inequality among individual re-
movals with regard to objectives (Fig. 5; Mitchell et al.
2004), suggesting the need to weight actions by their poten-
tial impact in a spatially explicit manner when evaluating
the efficacy of a given management strategy.

We recognize that there are likely seasonal differences in
coyote resource selection (Koehler and Hornocker 1991,
Neale and Sacks 2001). By evaluating winter diurnal space
use, we intended to address the issue of encounter probabil-
ity during removal efforts, and therefore seasonal differences
are likely of little consequence. We also recognize that our
relatively small sample of coyotes may insufficiently repre-
sent coyote probability of use during the winter. However, a
distinct advantage to a hierarchical Bayesian framework is
that the uncertainty in probability of use is carried over to
the removal risk model as a result of simultaneous model fit-
ting. Thus, the uncertainty in probability of use and its role
in removal risk is reflected in the credible intervals for this
covariate (Table 1). With regard to simulating home ranges
based on only winter removal locations, there is ample evi-
dence to indicate that coyotes in the region are non-migra-
tory and exhibit strong home range fidelity across seasons
(Gantz and Knowlton 2005). In addition, we parameterized
our hidden Markov models using the complete year-round
location data sets, including both resident and transient
individuals. Thus, our estimates of individual-level impact
should be conservative. These estimates of overlap do not
account for coyote resource selection within home ranges,
which would accommodate shifts toward or away from areas
within a home range utilized by parturient deer. Although
we did not do so here because of limited spatial data from
removed coyotes, the framework we have outlined could
incorporate estimates of overlap weighted by probability of
use estimates at finer than home range scales provided
empirical data are available. Nonetheless, we feel confident
that our estimates provide an effective measure for evaluat-
ing the variation in potential impacts of removed animals on
deer management objectives.

Managers can use such spatial models to make objective
decisions about where and when proposed aerial predator
control should be employed, while reducing risks to human
safety, unnecessary animal removals, and undue financial bur-
den to wildlife programs. However, the ambiguity regarding
management impacts is not reserved to predator control
alone. The importance of spatial context in wildlife manage-
ment is increasingly relevant. The growth in popularity associ-
ated with resource selection functions, such as the generalized
linear mixed models implemented here, is a testament to such
a focus (e.g., Gillies et al. 2006, Johnson et al. 2006). Thus,
we should not expect all management actions to result in
equivalent effects when operating in a highly heterogeneous
environment. Hierarchical models lend themselves well to
exploring complex interactions across multiple data sets or
spatial scales, particularly when there is need to account for
variation and uncertainty at the respective levels (Gelman
et al. 2014). While the methods outlined here represent only
one of many potential approaches, such models can be
extended to evaluate the match between management action
and objectives in a variety of circumstances where space is
an important driver of management success. For example,
we recognize the potential value in considering such models
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within the context of restoration ecology (e.g., riparian
restoration or animal reintroductions), habitat management
(e.g., landcover modification or enhancement), or population
regulation (e.g., ungulate management to reduce overbrows-
ing/grazing). By integrating resource selection data as we do
here, or through incorporating demographic data, we can
begin to quantify the relative impacts of spatially explicit
management actions so that we may arrive at an unbiased
understanding of efficacy.

ACKNOWLEDGEMENTS

This research was supported by the Utah Division of Wildlife
Resources (Coyote grant #121560), USDA-Wildlife Services-
National Wildlife Research Center, Ecology Center and Department
of Wildland Resources at Utah State University, NASA Biodiversity
and Ecological Forecasting Program (Climate and Biological
Responses, grant #NNH10ZDAO0O0IN), Utah’s Hogle Zoo, and the
American Association of Zoo Keepers. We thank K. Dustin and M.
Linnell for their assistance and data sharing, along with other
USDA-WS staff. We also thank V. Mumford, E. Freeman, J. Hall,
M. Davis, J. Shultz, and many USU, BYU, and UDWR staff, tech-
nicians, and volunteers for significant contributions to capture
efforts, logistics, and data collection. We thank J. Benson, E. Gese,
D. Koons, J. Powell, J. Shivik, and two anonymous reviewers for
reviewing drafts of the manuscript. We thank J. Nagol for producing
the NDVI data (Global Landcover Facility, University of Mary-
land). P. Mahoney lead the writing. P. Mahoney and J. Young con-
ceived the idea and methodology for the analysis, as well as
collected the coyote data. D. Stoner, K. Hersey, R. Larsen, and B.
McMillan collected the deer data. All authors contributed to the
drafts and gave final approval for publication.

LiTERATURE CITED

Arjo, W. M., and D. H. Pletscher. 2004. Coyote and wolf habitat use
in northwestern Montana. Northwest Science 78:24-32.

Ballard, W. B., D. Lutz, T. W. Keegan, L. H. Carpenter, and J. C. Jr
DeVos. 2001. Deer-predator relationships: a review of recent
North American studies with emphasis on mule and black-tailed
deer. Wildlife Society Bulletin 29:99-115.

Benson, J. F. 2013. Improving rigour and efficiency of use-availabil-
ity habitat selection analyses with systematic estimation of avail-
ability. Methods in Ecology and Evolution 4:244-251.

Berger, K. M., E. M. Gese, and J. Berger. 2008. Indirect effects and
traditional trophic cascades: a test involving wolves, coyotes, and
pronghorn. Ecology 89:818-828.

Blejwas, K. M., B. N. Sacks, M. M. Jaeger, and D. R. McCullough.
2002. The effectiveness of selective removal of breeding coyotes in
reducing sheep predation. Journal of Wildlife Management
66:451-462.

Bradley, E. H., H. S. Robinson, E. E. Bangs, K. Kunkel, M. D.
Jimenez, J. A. Gude, and T. Grimm. 2015. Effects of wolf removal
on livestock depredation recurrence and wolf recovery in Mon-
tana, Idaho, and Wyoming. Journal of Wildlife Management 79:
1337-1346.

Bromley, C., and E. M. Gese. 2001. Surgical sterilization as a
method of reducing coyote predation on domestic sheep. Journal
of Wildlife Management 65:510-519.

Brown, D. E., and M. R. Conover. 2011. Effects of large-scale
removal of coyotes on pronghorn and mule deer productivity and
abundance. The Journal of Wildlife Management 75:876-882.

Calenge, C. 2006. The package adehabitat for the R software: tool
for the analysis of space and habitat use by animals. Ecological
Modelling 197:1035.

Conner, M. M., M. R. Ebinger, and F. F. Knowlton. 2008. Evaluat-
ing coyote management strategies using a spatially explicit, indi-
vidual-based, socially structured population model. Ecological
Modelling 219:234-247.



796

Conner, L. M., and G. Morris. 2015. Impacts of mesopredator con-
trol on conservation of mesopredators and their prey. PLoS ONE
10:1-16.

Freeman, E. 2014. Parturition of mule deer in southern Utah: man-
agement implications and habitat selection. Thesis Brigham
Young University, Provo, Utah, USA.

Gantz, G. F, and F. F. Knowlton. 2005. Seasonal activity areas of
coyotes in the Bear River Mountains of Utah and Idaho. Journal
of Wildlife Management 69:1652-1659.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and
D. B. Rubin. 2014. Bayesian data analysis. Chapman and Hall,
Boca Raton, Florida, USA.

Gelman, A., X. Meng, and H. Stern. 1996. Posterior predictive
assessment of model fitness via realized discrepancies. Statistica
Sinica 6:733-807.

Gillies, C., M. Hebblewhite, and S. Nielsen. 2006. Application of
random effects to the study of resource selection by animals. Jour-
nal of Animal Ecology 75:887-898.

Graham, K., A. P. Beckerman, and S. Thirgood. 2005. Human-
predator-prey conflicts: ecological correlates, prey loss and pat-
terns of management. Biological Conservation 122:159-171.

Griffin, K. A., et al. 2011. Neonatal mortality of elk driven by cli-
mate, predator phenology and predator community composition.
Journal of Animal Ecology 80:1246-1257.

Hall, J., B. R. McMillan, and R. T. Larsen. 2016. Impacts of coyote
removal on the survival of mule deer fawns, Annual Report 2015.
Brigham Young University and the Utah Division of Wildlife
Resources, Utah, USA.

Harding, E. K., D. F. Doak, and J. D. Albertson. 2001. Evaluating
the effectiveness of predator control: the non-native red fox as a
case study. Conservation Biology 15:1114-1122.

Hebblewhite, M. 2005. Predation by wolves interacts with the North
Pacific Oscillation (NPO) on a western North American elk popu-
lation. Journal of Animal Ecology 74:226-233.

Hunter, J. S., S. M. Durant, and T. M. Caro. 2007. Patterns of scav-
enger arrival at cheetah kills in Serengeti National Park Tanzania.
African Journal of Ecology 45:275-281.

Hurley, M. A., J. W. Unsworth, P. Zager, M. Hebblewhite, E. O.
Garton, D. M. Montgomery, J. R. Skalski, and C. L. Maycock.
2011. Demographic response of mule deer to experimental reduc-
tion of coyotes and mountain lions in southeastern Idaho. Wild-
life Monographs 178:1-33.

Jaeger, M. M., K. M. Blejwas, B. N. Sacks, J. C. C. Neale, M. M.
Conner, and D. R. C. N. McCullough. 2001. Targeting alphas can
make coyote control more effective and socially acceptable. Cali-
fornia Agriculture 55:32-36.

Johnson, C. J,, S. E. Nielsen, E. H. Merrill, T. L. Mcdonald, and
M. S. Boyce. 2006. Resource selection functions based on use—
availability data: theoretical motivation and evaluation methods.
Journal of Wildlife Management 70:347-357.

Johnson, D. 1980. The comparison of usage and availability mea-
surements for evaluating resource preference. Ecology 61:65-71.
Kilgo, J. C., M. Vukovich, H. Scott Ray, C. E. Shaw, and C. Ruth.
2014. Coyote removal, understory cover, and survival of white-tailed

deer neonates. Journal of Wildlife Management 78:1261-1271.

Knowlton, F. F., E. M. Gese, and M. M. Jaeger. 1999. Coyote
depredation control: an interface between biology and manage-
ment. Journal of Range Management 52:398-412.

Knowlton, F., and L. Windberg. 1985. Coyote vulnerability to
several management techniques. Great Plains Wildlife Damage
Control Workshop Proceedings 172:165-176.

Koehler, G. M., and M. G. Hornocker. 1991. Seasonal resource use
among mountain lions, bobcats, and coyotes. Journal of Mam-
malogy 72:391-396.

Leo, V., R. P. Reading, and M. Letnic. 2015. Interference competi-
tion: odours of an apex predator and conspecifics influence
resource acquisition by red foxes. Oecologia 179:1033-1040.

Lieury, N., S. Ruette, S. Devillard, M. Albaret, F. Drouyer, B.
Baudoux, and A. Millon. 2015. Compensatory immigration
challenges predator control: an experimental evidence-based

PETER J. MAHONEY ET AL.

Ecological Applications
Vol. 28, No. 3

approach improves management. Journal of Wildlife Manage-
ment 79:425-434.

Long, R. A., J. G. Kie, R. Terry Bowyer, and M. A. Hurley. 2009.
Resource selection and movements by female mule deer Odo-
coileus hemionus: effects of reproductive stage. Wildlife Biology
15:288-298.

Mabille, G., A. Stien, T. Tveraa, A. Mysterud, H. Broseth, and J. D.
C. Linnell. 2015. Sheep farming and large carnivores: What are
the factors influencing claimed losses? Ecosphere 6:1-17.

Magle, S. B., S. A. Poessel, K. R. Crooks, and S. W. Breck. 2014.
More dogs less bite: the relationship between human-coyote con-
flict and prairie dog colonies in an urban landscape. Landscape
and Urban Planning 127:146-153.

Mabhoney, P. J., and J. K. Young. 2016. Uncovering behavioural
states from animal activity and site fidelity patterns. Methods in
Ecology and Evolution 8:174-183.

Menard, S. 1995. Applied logistic regression analysis. University
Paper Series on Quantitative Applications in the Social Sciences.
Sage Publications, Thousand Oaks, CA, USA.

Merkle, J. A., K. L. Monteith, E. O. Aikens, M. M. Hayes, K. R.
Hersey, A. D. Middleton, B. A. Oates, H. Sawyer, B. M. Scurlock,
and M. J. Kauffman. 2016. Large herbivores surf waves of green-
up in spring. Proceedings of the Royal Society B 283:1-8.

Michelot, T., R. Langrock, and T. A. Patterson. 2016. moveHMM:
an R package for the statistical modelling of animal movement
data using hidden Markov models. Methods in Ecology and Evo-
lution 7:1308-1315.

Mitchell, B. R., M. M. Jaeger, and R. H. Barrett. 2004. Coyote
depredation management: current methods and research needs.
Wildlife Society Bulletin 32:1209-1218.

Moorcroft, P. R., M. A Lewis, and R. L. Crabtree. 2006. Mechanis-
tic home range models capture spatial patterns and dynamics of
coyote territories in Yellowstone. Proceedings of the Royal Society
B 273:1651-1659.

Naimi, B. 2015. usdm: Uncertainty analysis for species distribution
models, R package ver. 1.1-15. R package. https://cran.r-project.
org/web/packages/usdm/

Neale, J. C. C., and B. N. Sacks. 2001. Resource utilization and
interspecific relations of sympatric bobcats and coyotes. Oikos
94:236-249.

Northrup, J. M., M. B. Hooten, C. R. Anderson, and G. Wittemyer.
2013. Practical guidance on characterizing availability in resource
selection functions under a use-availability design. Ecology
94:1456-1463.

Organ, J. F,, et al. 2012. The North American model of wildlife con-
servation. Wildlife Society Technical Review, 1-47. ISBN: 978-0-
9830402-3-1 http://www.conservationvision.co/sites/default/files/
tws_north_american_model_of wildlife_conservation.pdf

R Core Team. 2016. R: a language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria.

Riley, S., S. DeGloria, and R. Elliot. 1999. A terrain ruggedness
index that quantifies topographic heterogeneity. Intermountain
Journal of Sciences 5:23-27.

Salo, P, P. B. Banks, C. R. Dickman, and E. Korpimaki.
2010. Predator manipulation experiments: impacts on popula-
tions of terrestrial vertebrate prey. Ecological Monographs 80:
531-546.

Sams, M. G., R. L. Lochmiller, E. C. Hellgren, W. D. Warde, and
L. W. Varner. 1996. Morphometric predictors of neonatal age
for white-tailed deer. Wildlife Society Bulletin (1973-2006) 24:
53-57.

Sappington, J. M., K. M. Longshore, and D. B. Thompson. 2007.
Quantifying landscape ruggedness for animal habitat analysis: a
case study using bighorn sheep in the Mojave Desert. Journal of
Wildlife Management 71:1419-1426.

Serrouya, R., M. J. Wittmann, B. N. McLellan, H. U. Wittmer, and
S. Boutin. 2015. Using Predator-prey theory to predict outcomes
of broadscale experiments to reduce apparent competition. Amer-
ican Naturalist 185:665-679.


https://cran.r-project.org/web/packages/usdm/
https://cran.r-project.org/web/packages/usdm/
http://www.conservationvision.co/sites/default/files/tws_north_american_model_of_wildlife_conservation.pdf
http://www.conservationvision.co/sites/default/files/tws_north_american_model_of_wildlife_conservation.pdf

April 2018

Smith, R. K., A. S. Pullin, G. B. Stewart, and W. J. Sutherland.
2010. Effectiveness of predator removal for enhancing bird popu-
lations. Conservation Biology 24:820-829.

Stan Development Team. 2015. Stan: A C++ library for probability
and sampling, Version 2.11.0. http://mc-stan.org

Stoddart, L., F. Knowlton, and R. Taylor. 1989. A first generation
mathematical model for calculating area of influence and
potential number of animals exposed to management programs.
Pages 28-33 in K. A. Fagerstone and R. D Curnow, editors.
Vertebrate pest control and management materials: sixth vol-
ume. ASTM International, West Conshohocken, Pennsylvania,
USA.

Stoner, D. C., J. O. Sexton, J. Nagol, H. H. Bernales, T. C. Edwards,
and C. Edwards. 2016. Ungulate reproductive parameters track
satellite observations of plant phenology across latitude and cli-
matological regimes. PLoS ONE 11:1-19.

Swan, G. J. E, S. M. Redpath, S. Bearhop, and R. A. McDonald.
2017. Ecology of problem individuals and the efficacy of selective
wildlife management. Trends in Ecology and Evolution 32:518-530.

Till, J. A., and F. F. Knowlton. 1983. Efficacy of denning in alleviat-
ing coyote depredations upon domestic sheep. Journal of Wildlife
Management 47:1018-1025.

Tilman, D. 1981. Resource competition and community structure.
Page Monographs in population biology. Princeton University
Press, Princeton, New Jersey, USA.

ASSESSING SPATIAL CONTEXT IN MANAGEMENT 797

Urbanek, S., and Y. Rubner. 2012. emdist: Earth Mover’s distance,
R package v.0.3-1. R package. https://cran.r-project.org/web/pac
kages/emdist/

Utah Division of Wildlife Resources. 2011. Managing predatory wild-
life species policy WIAG-4. Utah Division of Wildlife Resources,
Salt Lake City, Utah, USA.

Utah Division of Wildlife Resources. 2014. Utah statewide manage-
ment plan for mule deer. Utah Division of Wildlife Resources,
Salt Lake City, Utah, USA.

Van Moorter, B., D. Visscher, S. Benhamou, L. Borger, M. S. Boyce,
and J.-M. Gaillard. 2009. Memory keeps you at home: a mecha-
nistic model for home range emergence. Oikos 118:641-652.

Vehtari, A., A. Gelman, and J. Gabry. 2017. Practical Bayesian
model evaluation using leave-one-out cross-validation and WAIC.
Statistics and Computing 5:1413-1432.

Wagner, K. K. 1997. Preventive predation management: an evalua-
tion using winter aerial hunting. Thesis, Utah State University,
Logan, Utah.

Wand, M., and B. Ripley. 2013. KernSmooth: functions for kernel
smoothing for Wand & Jones (1995). R Package. https://cran.
r-project.org/web/packages/KernSmooth/

Wood, S. N. 2011. Fast stable restricted maximum likelihood and
marginal likelihood estimation of semiparametric generalized
linear models. Journal of the Royal Statistical Society: Series B,
Statistical Methodology 73:3-36.

SUPPORTING INFORMATION

Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.1686/full

DATA AVAILABILITY

Data available from GitHub: https://doi.org/10.5281/zenodo.1135370.


http://mc-stan.org
https://cran.r-project.org/web/packages/emdist/
https://cran.r-project.org/web/packages/emdist/
https://cran.r-project.org/web/packages/KernSmooth/
https://cran.r-project.org/web/packages/KernSmooth/
http://onlinelibrary.wiley.com/doi/10.1002/eap.1686/full

