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ABSTRACT 

 

Effects of Short-Term Strains on Concrete Bulb-Tee Bridge Girders  

and Analysis of the Practicality of Using Three-Dimensional Models  

Based on Drone Imagery to Aid in Bridge Inspections 

 

by 

 

Justin M. Pace, Master of Science 

Utah State University, 2018 

 

Major Professor: Dr. Paul J. Barr 

Department: Civil and Environmental Engineering 

 

The University Transportation Center at Utah State University sponsors research 

through the Federal Highway Administration’s University Transportation Center 

Program. The purpose of this research is to advance technology and expertise in 

transportation-related fields. This includes research pertaining to bridge design, 

monitoring, and inspection (the focus of this research). 

The first focus area of this research monitored short-term strains at the bottom of 

girders in a concrete bulb-tee girder bridge. The strains were caused by traffic loading 

and recorded using strain transducers attached to the bottom of each bridge girder. 

Patterns in the strain loading were monitored to draw conclusions about the girder 

distribution factors and the maximum strains caused by various vehicle types. The largest 

loadings were evaluated and compared against the design loading. 
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The second focus area of this research examined whether three-dimensional 

modeling software could create a bridge model of sufficient quality to be used as a 

supplementary aid in bridge inspections. This was done by capturing imagery of three 

bridges using a standard, commercially available drone. The imagery was then input into 

three different modeling programs, and the results were evaluated to determine their 

suitability. 

 (187 pages) 
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PUBLIC ABSTRACT 

 

Effects of Short-Term Strains on Concrete Bulb-Tee Bridge Girders  

and Analysis of the Practicality of Using Three-Dimensional Models  

Based on Drone Imagery to Aid in Bridge Inspections 

Justin M. Pace 

 

The University Transportation Center at Utah State University sponsors research 

through the Federal Highway Administration’s University Transportation Center 

Program. The purpose of this research is to advance technology and expertise in 

transportation-related fields. This includes research on the best methods to design, 

monitor, and inspect bridges. 

When a vehicle drives over a bridge, each bridge girder carries a portion of the 

vehicle’s weight. This load causes strain in the bottom of the bridge girders. However, 

depending on where the vehicle is located on the bridge, some bridge girders carry a 

higher percentage of the vehicle’s load. This study investigated the amount of strain 

typical vehicles caused in the bottom of each girder. This research also examined the 

maximum strains in the bridge girders, which is of interest in girder design. 

Bridges need to be inspected regularly to determine whether they are structurally 

sound. However, some bridges have components that can be difficult to reach without 

specialized equipment. The advent of drone technology potentially offers a cheap, easy 

method to access and inspect these bridge components. 
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This research also examined whether a 3D model could be developed using a 

commercially available drone that could be used to aid bridge inspections. It did so by 

using a drone to take several pictures of multiple bridges. The pictures were then used to 

create 3D models of each bridge, and the models were inspected to investigate whether 

they were of sufficient quality for bridge inspections.  
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CHAPTER 1 

INTRODUCTION 

1.1  Context 

To better understand how concrete bulb-tee girder bridges respond to traffic 

loading, the University Transportation Center (UTC) at Utah State University sponsored 

research through the Federal Highway Administration UTC program. This funding is part 

of a regional transportation center with North Dakota State University. The goal of the 

research was to quantify short-term strains in concrete bulb-tee girders. The University 

Transportation Center also sponsored research to determine whether drone imagery could 

be used to create bridge models to supplement bridge inspections. The findings of both 

areas of this research are included in this report. 

To monitor the short-term strain response of the bridge, eight strain transducers 

were installed on a recently constructed bulb-tee girder bridge with permission from the 

City of Nibley. The strain transducers were attached to the bottom of the bridge girders at 

mid-span. The strain transducers, datalogger, and other instrumentation were provided by 

Bridge Diagnostics Inc. (BDI). Data from the strain transducers was gathered over a total 

of five weeks and then analyzed for patterns and trends in traffic flow. 

Additionally, to investigate whether images captured via a standard, commercially 

available drone could be used to create bridge models of sufficient quality to supplement 

bridge inspections, a DJI Phantom 4 Pro drone was purchased. The drone was used to 

capture images of three bridges, and the images were input into three different computer 

modeling programs. The resulting 3D models were examined to determine whether they 

adequately modeled bridge properties. 
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1.2  Research Objectives 

The objective of the short-term strain monitoring area of research was to analyze 

the short-term strains recorded in a bulb-tee girder bridge due to everyday traffic flow. 

This was achieved by monitoring various bridge girders in a selected bridge. Monitoring 

took place over a total of five weeks at different times of the year.  

The resulting strain data was analyzed to investigate trends in both everyday 

traffic and extreme loading events. This included comparison of actual traffic loads to 

design loads and analysis of potential causes of extreme loading events. Conclusions 

were also drawn about the distribution of strain within the bridge girders due to everyday 

traffic loading. Finally, this research examined short-term loading trends and analyzed 

the strain caused by various vehicle types. 

The objective of the drone modeling area of research was to determine whether a 

three-dimensional computer model based off of drone imagery could be used to 

supplement bridge inspections. To accomplish this goal, images were captured of three 

bridges using a drone. The images were then input into three different modeling 

programs. The resulting 3D models were then compared qualitatively and quantitatively 

against each other and against actual measurements taken of the bridge. Conclusions on 

the viability of the drone modeling procedure were drawn based on these results. 

1.3  Organization of Paper 

This paper is organized as follows: 

Chapter 2: Examines previous research related to girder distribution factors, load 

distribution in bridges, live load testing, short-term strains, drone 
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imagery capture, and 3D modeling. Reviews details pertinent to the 

research conducted for this project. 

Chapter 3: Provides details about the monitored bridge and the instrumentation 

used. Discusses how stain data was collected and processed. Examines 

the implications of the processed strain data as it relates to this 

research. 

Chapter 4: Provides details about the drone and modeling software used for this 

project. Also discusses how drone imagery was captured and examines 

the results of the finished models. Draws conclusions about the 

viability of using drones and 3D models to conduct bridge inspections. 

Chapter 5: Presents the final conclusions of this project as well as 

recommendations for additional research. 
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CHAPTER 2 

LITERATURE REVIEWS 

2.1  Live-Load Analysis of Posttensioned Box-Girder Bridges 

In this journal article, Hodson et al. (2012) summarize a study that was performed 

on the Lambert Road Bridge, a Type “d” box-girder bridge near Elk Grove, California. 

As part of the study, a live load test was performed on the bridge, and the results were 

used to validate a finite-element model (FEM) of the bridge. The FEM was then used to 

obtain moment distribution factors for the exterior and interior girders of the bridge. The 

finite-element analysis was performed while including the stiffness of bridge parapets 

and again without their effect. The obtained distribution factors were then compared to 

distribution factors calculated using procedures in the AASHTO Standard Specifications. 

The researchers found that the AASHTO Standard distribution factors were 

conservative for both the interior and exterior girders when the stiffening effects of the 

bridge parapets were not included. However, when the bridge parapets were included in 

the FEM, the distribution factors for the exterior girders were unconservative by 

approximately 2 to 9%. The distribution factors for the interior girders remained 

conservative. This finding is significant because the AASHTO LFRD specifications do 

not provide for the stiffening effect of parapets in distribution factors for Type “d” box-

girder bridges. Thus, design using the AASHTO Standard Specifications for external 

girders is unconservative. 

A parametric study was performed to investigate properties that could potentially 

influence the distribution factors of the bridge. The seven factors that were evaluated 
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were span length, girder spacing, skew, deck overhang, continuity, deck thickness, and 

the thickness of the bottom girder flange. The first four parameters are accounted for in 

the AASHTO Standard Specifications, while the later three were not.  

Analyses were performed by incrementally changing one bridge parameter at a 

time in the FEM. From these analyses, it was concluded that span length and girder 

spacing have the greatest effect on the distribution factors. Skew and continuity had a 

lesser effect on the distribution factors, while deck thickness, bottom flange thickness, 

and deck overhang have little to no effect on distribution factors. 

Based on their calculation of the FEM and parametric study, Hodson et al. 

proposed a new formula for the distribution factor of an external girder. This formula 

accounts for both span length and girder spacing and is viewable in Equation 1, where g 

= exterior distribution factor applied to the interior girder, de = horizontal distance from 

the centerline of the exterior web to the inside of the traffic barrier [feet (m)], S = girder 

spacing [feet (m)], and L = length of the span [feet (m)]. 

 

 Finally, the load rating of the bridge was calculated using both the distribution 

factors from the AASHTO LFRD Specifications and from the proposed formula. The 

load rating from the FEM analysis was 29% higher than that obtained using the 

AASHTO LFRD Specifications. Thus, it was concluded that the AASHTO LFRD 

Specifications were overly conservative, and the proposed formula was recommended. 

Equation 1 (Hodson et. al. 2012). 
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2.2  Field Test and 3D FE Modeling of Decked Bulb-Tee Bridges 

In this journal article, Ma et al. (2007) summarized research on the effects of 

intermediate diaphragms and shear connectors on a bridge’s live load distribution factors. 

The research also compared values for a single-lane loading condition to existing 

research on double-lane loaded bridges. This research focused on bridges with decked 

precast, prestressed concrete girders. 

The study investigated four pairs of bridges. The bridge pairs represented a 

variety of geometries. The two bridges within each pair had similar geometries in order to 

allow verification of results.  

Prior to testing, strain transducers were attached to the bridge at three locations: 

near the girders’ centroid and end of span to measure shear stresses, at the bottom of the 

girders at mid-span to measure flexural stress, and on the intermediate diaphragms to 

measure axial stresses. 

Two types of testing were performed on each bridge: continuous and static 

loading. During continuous loading, a heavily loaded dump truck was driven slowly 

across the bridge without stopping. During static load testing, the truck would stop at 

predetermined locations in order to allow changes in strains at that location to be 

recorded. As opposed to existing research that focused on double-lane loading, only one 

lane of the bridges was loaded at a time. 

Using the results from the live load testing, a FE model was developed using 

ABAQUS software. The calibrated model was then used to determine three different live 

load distribution factors for a variety of bridges. Live load distribution factors were 
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determined when a single lane of the model was loaded, when two lanes of the model 

were loaded, and using AASTHO LFRD models.  

The results showed that in every case the single-lane distribution factor was 

smaller than the double-lane distribution factor. In fact, the single-lane distribution factor 

was usually smaller by over 15%. Additionally, both mentioned distribution factors were 

typically conservative when compared with the distribution factor calculated using LRFD 

methods. Because the current AASHTO LRFD only allowed the one equation for both 

the single-lane and double-lane loading types, the researchers recommended the addition 

of a new equation for the single-lane loading condition. 

The researchers also analyzed the effects of intermediate diaphragms and shear 

connectors on a bridge’s live load distribution factors. It was found that the inclusion of a 

single diaphragm provided significant advantages over no diaphragms. However, adding 

additional diaphragms did not provide a notable decrease in distribution factors. 

When analyzing shear connectors, researchers discovered that changing the shear 

connector spacing (and thus the number of shear connectors) did not have an effect on the 

live load distribution factors. The only difference that changing the connector spacing 

had was in the magnitude of vertical and horizontal forces carried by each connector. 

Therefore, Ma et al.’s conclusion was that if the shear connectors’ capacity was adequate 

for the carried forces that any number of connectors could be used without affecting the 

live load distribution factors. 
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2.3  Response of Prestressed Concrete I-Girder Bridges to Live Load 

In 2001, Schwarz and Laman summarized their research on three concrete I-girder 

bridges. During the study, strain transducers were attached at mid-span to the bottom 

flange of each bridge girder. The transducers then recorded strains caused in the bridge 

by both normal traffic and test trucks. Research focused on three factors: dynamic load 

allowance (DLA), girder distribution factors (GDF), and service level stresses.  

The study evaluated different factors that could potentially affect the DLA– 

number of axles per vehicle, vehicle speed, and span length. First, it was noted that the 

DLA has an inverse relationship with a bridge’s maximum static stress. While the study 

found that the number of axles per vehicle did not have a statistically significant role in 

determining the DLA, it did find that the DLA increased by approximately 50% when 

vehicle speed was increased from 45 to 55 mph (72 to 88 kph). Finally, Schwarz and 

Laman concluded that there was no definable relationship between span length and a 

bridge’s DLA. 

Because GDFs are important factors in bridge girder design, the study also 

compared the measured GDFs from the live load tests to AASHTO code. GDFs were 

developed for both single-lane and multi-lane loading. Researchers found that between 

the three bridges, the measured GDF for a single lane was less than the GDF calculated 

using AASHTO code by at least 17%. For double-lane GDFs, the code’s GDF exceeded 

the measured GDF by at least 22%. 

The graph shown in Figure 1 shows the results from Bridge 1 of the study. The 

pair of lower, solid lines shows the measured GDFs from single-lane testing, while the 

dashed lines show the measured GDF ±1 standard deviation. The upper line “Test Trucks 



9 

Side-by-Side” shows the measured GDF when a pair of trucks was driven over the bridge 

simultaneously. The upper line labeled “GDF2” shows the sum of the two single-lane 

GDFs. Finally, the four uppermost horizontal lines show the AASHTO LFRD and 

AASHTO Standard Specifications. 

 
Figure 1. Bridge 1 girder distribution factors by girder (Schwarz and Laman 2001). 

A grillage model was also developed for each bridge and compared to the live 

load test results. It was found that the models agreed closest with the real-world results 

when mid-span diaphragms were not included. As shown in Figure 2, the grillage models 

typically agreed well with the measured results. The model GDFs were typically 

conservative by 2–11%. 
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Figure 2. Comparison of Bridge 2 numerical and measured GDFs for test truck runs (truck in left lane on 

centerline) (Schwarz and Laman 2001). 

From the normal traffic data, service level stresses were compiled and compared 

against a HS-20 truck. From this data, it was found that the interior girders directly 

beneath the traffic lanes had a far greater likelihood of reaching higher stresses. On 

Bridge 1, the girders underneath the right traffic lane experienced loading equivalent to a 

HS-20 truck once a day, while the remaining girders were not likely to ever reach that 

level of stress within the bridge’s lifespan. 

 Schwarz and Laman reached numerous conclusions due to the findings of this 

study. They concluded that while vehicle speed plays a factor in DLAs, span length and 

the number of vehicle axles do not. They found that both AASHTO and modeled GDFs 

were conservative when compared to measured values. Finally, they also concluded that 
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interior girders directly below the traffic lane are much more likely to see higher stress 

values than other girders in the bridge.  

2.4  Unmanned Aerial Vehicle Bridge Inspection Demonstration Project 

This report was published in 2015 by the Minnesota Department of 

Transportation (MnDOT). Over the course of the research project, Zink and Lovelace 

investigated the effectiveness of using drones to conduct bridge inspections. Four bridges 

of various types and sizes were examined using a variety of image capturing systems, 

including still images, video, and infrared imagery. The inspections conducted by the 

drone were then compared to the last routine physical inspection conducted on the bridge 

in order to determine the drone’s effectiveness. 

 This research was conducted using an Aeryon Skyranger drone (Skyranger), 

valued at $140,000 (See Figure 3). The Skyranger had the ability to change payloads (i.e. 

cameras), and standard, optical zoom, and infrared cameras were used over the course of 

the study. A 360° video camera was also manually installed on top of the drone, but did 

not work due to Wi-Fi interference. Additional drones were purchased for this project, 

but were not approved by the Federal Aviation Administration (FAA) in time to be used 

for this research. 
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Figure 3. The Aeryon Skyranger (Zink and Lovelace 2015). 

One of the largest obstacles encountered during the research was the drone’s 

inability to inspect the underside of a bridge. The gimbal for the Skyranger’s camera was 

unable raise the camera to a purely vertical orientation, making it difficult to inspect the 

underside of the bridge deck. The Skyranger also featured a “return to home” safety 

feature, which caused the drone to return to its takeoff point if it lost GPS signal. Because 

the drone would lose the GPS signal when flying underneath the concrete deck, it would 

cause the drone to fly straight upwards into bridge deck and crash. 

One of the four bridges that the team inspected, Bridge 13509 in Chisago County, 

was a prestressed concrete girder bridge similar in length to the Nibley Bridge inspected 

for this project. The research team concluded of Bridge 13509 “Because of its smaller 

size, this bridge may not be an ideal candidate for using a UAV [unmanned aerial 

vehicle] as an inspection tool” (Zink and Lovelace 2015). However, this was due in part 
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to the Skyranger’s inability to fly underneath the bridge. The drone performed well in 

regards to inspecting all other bridge components.  

The research also explored mapping and modeling functionality based on the 

images taken by the drone. At Bridge 13509, the drone was used to create an 

orthographic overhead map of the bridge and surrounding area (See Figure 4). At the 

largest bridge (the Arcola Railroad Bridge), researchers used images from the drone to 

create a 3D model of one of the bridge foundations positioned mid-river (See Figure 5). 

Both the orthographic map and 3D model were created using Postflight Terra 3D 

software. 

 
Figure 4. Bridge 13509 Orthographic Map (Zink and Lovelace 2015). 
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Figure 5. Orthographic model of bridge foundation (Zink and Lovelace 2015). 

The researchers drew several conclusions as a result of this project’s findings. 

First, they concluded that drones could safely be used to perform bridge inspections and 

that they were most suitable for inspecting larger bridges. They also determined that 

drones could access difficult-to-reach areas cheaper than an under bridge inspection 

vehicle. However, the research team also found that drones could only provide a level of 

detail equivalent to a high-quality photograph. While measurements could be estimated 

from the photos, they could not provide accuracy equivalent to a hand-on inspection.  

As a result of the project, the researchers recommended that the FAA rules be 

updated in order to be more accommodating to drone research. They also identified 
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several areas where drone technology could improve, including the ability to fly 

underneath bridge decks. The authors were encouraged by the fact that the drone 

technology was advancing rapidly, and expected it to be able to meet the needs of bridge 

inspectors within a matter of years. In conclusion, the researchers determined that drones 

present a potentially useful tool to provide significant cost-savings for bridge inspections 

when hand measurements are not required. 

2.5  3D Scene Reconstruction for Robotic Bridge Inspection 

In 2015, researchers David Lattanzi and Gregory R. Miller explored the 

effectiveness of using robotic systems to create high-quality 3D bridge models for bridge 

inspections. The goal of this research was to see whether a 3D model could be used to 

accurately inspect a bridge. The research consisted of two parts: first, comparing 3D 

modeling methods via a series of small-scale tests and second, using images captured 

from a drone to create a 3D bridge model. 

The researchers began by reviewing the two major methods available to create a 

3D model, dense structure from motion (DSfM) and image mosaicing (IM). DSfM 

modeling creates a 3D model by identifying easily recognizable points on an object 

across multiple images. It then uses the location of these points in relation to each other 

to create a 3D point cloud. Finally, Poisson meshing is used to create a triangular mesh 

between these objects, resulting in a 3D model. For this study, the researchers used 

123DCatch software to create the DSfM models. 
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Image mosaicing is different from DSfM modeling in that the base model is not 

created using photos. Instead, the model must be created separately beforehand by the 

user. Images are then superimposed onto the structure to create a textured 3D model. 

For the first focus area of the research, the authors tested the limitations of both 

the DSfM and IM methods by creating three small-scale models. The models were 

created using images taken of an aluminum S-shape, a skeletal aluminum/acrylic 

structure, and a steel bridge column embedded in a concrete footing. The images for these 

objects were taken by hand using a 12MP camera with a focal length of 50 mm at an ISO 

of 400. The images were taken close to the object and in sequential order, in the same 

manner that a drone or other robotic system would take them. 

Each modeling method was found to have distinct advantages and disadvantages. 

DSfM modeling had difficulties when points were coplanar. The DSfM modeling 

software also struggled on smooth, low-texture surfaces where an abundance of 

recognizable points was not available. This led to poor models of both the smooth S-

shape and the skeletal aluminum/acrylic structure (Figure 6). IM modeling did well 

modeling both of these objects.  
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Figure 6. 3D models of the aluminum/acrylic structure using IM (left) and DSfM (right) modeling (Lattanzi 

and Miller 2015). 

The principle limitation of IM modeling was that it was only as accurate as the 

underlying model. If the underlying model was inaccurate, the resulting model would be 

inaccurate as well. This is easily seen in Figure 7, where the IM model was unable to pick 

up spalling in the concrete of the bridge column’s footing. However, the DSfM model 

was easily able to detect this irregularity. An additional disadvantage of IM modeling was 

that if an existing 3D model was not available for an object, one had to be created before 

IM modeling could be used. 
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Figure 7. Spalling on the column (left), IM model (center), and DSfM model (right) (Lattanzi and Miller 

2015). 

Measurement accuracy was also investigated during the three small-scale tests. 

Before photographing an object, imperfections or marks were measured at three different 

locations. These baseline measurements were compared to measurements taken from 

each of the models. Measurements taken by hand and from the models are given in Table 

1. 
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Table 1. Measurements on aluminum section, scale structure, and bridge column (nearest 0.5 mm) (Lattanzi 

and Miller 2015). 

 

Hand 

Measurement 

(mm) 

IM Model (mm) 
DSfM Model 

(mm) 

S-Shape    

Pen Marking 32x1.5 32x1.5 34.5x1.5 

Pen Marking 79.5x1.5 82.5x1.5 82.5x1.5 

Mud Smear 111x25.5 82.5x25.5 111x31 

Structure    

Pen Marking 159x3 159x3 — 

Tape Residue 35x51 35x54 — 

Surface Gouge 391x1.5 365x1.5 — 

Bridge Column    

Pen Marking 952.5x1.5 965x3 959x3 

Tape 219x25.5 197x25.5 216x25.5 

Circular Hole 66.5x66.5 63.5x60.5 63.5x63.5 

From the results of the small-scale testing, the researchers selected a target 

resolution of 20.3 pixels per inch (0.8 pixels per mm) for the full-scale model of the 

bridge. Images of the bridge were captured using a Parrot AR Drone 2.0 UAV. To 

achieve the desired pixel density, the drone was flown at a distance 3 feet away from the 

structure. A photograph of the Parrot AR Drone 2.0 UAV is shown in Figure 8. 

 
Figure 8. Parrot AR Drone 2.0 UAV (Parrot S.A. 2017) 
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The bridge selected for the full-scale model was a reinforced concrete arch bridge 

used by pedestrians. Because no preexisting model of the bridge was available, only a 

DSfM model was created. Figure 9 shows a photograph of the bridge. Figure 10 shows 

pictures of the DSfM model. 

 
Figure 9. Photograph of Pedestrian Bridge (Lattanzi and Miller 2015). 
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Figure 10. DSfM Model of Pedestrian Bridge (Lattanzi and Miller 2015). 

One obstacle that the researchers encountered was the contrast in brightness 

between the underside of the bridge and the surrounding area. When taking pictures from 

the surrounding area, the bright sunlight caused the camera to underexpose the area 

underneath the bridge. The shadows underneath the bridge also made it harder for the 

DSfM software to identify points for comparison. The researchers suggested that this 

could be overcome by supplemental lighting attached to the drone. 

 As a result of this research, the authors concluded that both DSfM and IM 

modeling worked well for virtual bridge reconstruction. While 3D model research is 

ongoing, they concluded the two modeling methods used in the study would not likely 

change significantly in the near future. Most of the modeling errors encountered during 

the full-scale bridge test were anticipated by the results of the small-scale models, and 

were inherent to the type of modeling used. Overall, the researchers concluded that while 
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work remained to be done, it would be feasible to use drones and other robotic systems to 

create 3D bridge models for inspections. 

  



23 

CHAPTER 3 

SHORT-TERM STRAIN MONITORING 

3.1  Bridge Description 

The Nibley Bridge (National Bridge Inventory Structure Number 005065F) is 

located in Nibley, UT. The bridge is owned by Nibley City and was designed by Forsgren 

Associates Inc. in conjunction with Design West Architects. The bridge is located at 

41°41’8.41” N and 111°49’56.42”W. The bridge was designed to carry vehicle and 

pedestrian traffic on 2600 South across the Blacksmith Fork River to service Ridgeline 

High School. Figure 11 shows a photograph of the Nibley Bridge taken on 28 August 

2017. 

The Nibley Bridge was constructed from 2015-2016. Because it is the main 

access point for Ridgeline High School, it experiences relatively high traffic for the area 

depending on the time of day and season. The calculated Annual Daily Traffic for the 

bridge is 1706 vehicles/day during the school year and 1436 vehicles/day during the 

summer. While the majority of vehicles crossing the bridge belong to students, parents 

and school officials, there is also a relatively high volume of heavy vehicles (i.e. school 

buses and construction equipment) that use the bridge. 
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Figure 11. Photograph of the Nibley Bridge. 

The bridge spans 88 feet (26.82 m) across the Blacksmith Fork River. It is 60 feet 

(18.28 m) wide with one 12-foot (3.66-m) lane of traffic each direction. There is also an 

8-foot (2.44-m) median, two 5-foot (1.52-m) bike lanes, two 1.42-foot (0.43-m) wide 

parapets, and two sidewalks with a combined width of 15.17 feet (4.62 m). There is no 

skew or superelevation in the bridge’s structure. However, the roadway itself curves 

slightly on top of the bridge, causing the width of the sidewalk to vary slightly along the 

bridge’s length. Figure 12 shows a cross-section of the bridge at mid-span.  

 

 
Figure 12. A cross-section of the Nibley Bridge at mid-span showing bridge dimensions. 
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The 3-inch (7.62 cm) asphalt deck surface is supported by a series of ten bulb-tee 

girders. Together, the girders form the deck and superstructure of the bridge. For this 

research, the girders were numbered G1 through G10, with G1 being the northernmost 

girder and G10 being the southernmost girder.  

The basic girder dimensions follow that of a UDBT42 girder, with minor 

dimension adjustments. Every girder has the same typical cross-section, with 

modifications to allow tie-ins for utility pipes, barriers, etc. The dimensions of a typical 

girder are shown in Figure 13. The top of each girder contains a 2% slope in order to 

allow water to drain off the roadway.  

 
Figure 13. Dimensions of a typical bridge bulb-tee girder at centerspan. 
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 The girders were cast during December 2015 in Salt Lake City, Utah. The girders 

are prestressed longitudinally with 0.6-inch (1.52-cm) diameter AASHTO M203 Gr270 

low relaxation strands. The strands have a yield strength of 270 ksi (1861.6 MPa). Ten 

harped strands and twenty-four straight strands were used. Each prestressed strand was 

tensioned with a minimum force of 44 kips per strand, equivalent to 202.5 ksi (1398 

MPa) stress.  

The girders were designed to have an initial compressive strength (f 'ci) of 6.0 ksi 

(41.37 MPa) and a compressive strength at 28 days (f 'c) of 8.5 ksi (58.61 MPa). During 

casting, Girders 1 and 5 were monitored to determine actual concrete strengths. For 

Girder 1, f 'ci equaled 6.91 ksi (47.64 MPa) and f 'c equaled 10.94 ksi (75.45 MPa). For 

Girder 5, f 'ci equaled 6.72 ksi (46.33 MPa) and f 'c equaled 11.77 ksi (81.15 MPa). The 

girders were allowed to cure for six weeks before being transported to the bridge site. The 

girders were then connected longitudinally using shear connectors that were spaced 5 feet 

(1.52 m) apart. 

 While there is 88 feet (26.82 m) between the centerlines of the bearings, 

individual girders were constructed at 89.5 feet (27.28 m) long. The girders are supported 

on abutments that measure 91 feet (27.74 m) to the outside face and 85 feet (25.91 m) to 

the inside face. The abutments are 9 feet (2.74 m) tall at the exterior girders and 9.48 feet 

(2.89 m) along the bridge centerline. Loads are transferred from the abutments to eight 

15-foot-deep (4.57 m) piles that are 12.75 inches (32.39 m) in diameter. A plan view of 

the bridge is given in Figure 14. 
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Figure 14. Plan view of the Nibley Bridge. 

 Other elements of the bridge include the parapets, wing wall, and intermediate 

diaphragms. The parapets are on each side of the bridge and act as guardrails for 

pedestrians and traffic barriers for errant vehicles. The parapets are 3.5 feet (1.07 m) high 

and tie directly into the exterior girders. The wing walls are adjacent to the abutments on 

each end of the bridge and are 11.58 feet (3.53 m) tall. The wing walls extend 12 feet 

(3.66 m) back from the abutments and are 1.5 feet (0.46 m) thick.  

Finally, two intermediate diaphragms are located at 29.33 feet (8.94 m) from each 

end of the bridge. The diaphragms are constructed of MC18x42.7 steel channels that span 

between the girder webs, except for the space between Girders 3 and 4. The space 

between Girders 3 and 4 uses a concrete diaphragm in order to accommodate a steel pipe 

that runs longitudinally underneath the bridge (see Figure 15). 
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Figure 15. Underside of the Nibley Bridge. 

3.2  Instrumentation Description 

For this study, the Nibley Bridge was instrumented with eight ST350 Model strain 

transducers (See Figure 16). The strain transducers were attached to the exterior of the 

bridge using Loctite 410 adhesive and brackets. Once attached, the sensors were used to 

monitor the strain induced by loading the bridge. Sensors and recording equipment for 

this research were fabricated by Bridge Diagnostics Inc. 

         
Figure 16. Strain Transducer Attached to the Bridge (Pickett 2017). 
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Once attached to the bridge, the strain transducers allowed monitoring of the 

longitudinal strain in eight of the ten girders. All sensors were attached at mid-span of the 

girders and were aligned parallel with the longitudinal axis of the girder. Strain values in 

unmonitored girders were assumed to have strains similar to those in monitored girders at 

mirrored points due to the symmetry of the bridge. 

Initially, six sensors were placed at the center of the bottom flange of Girders 1 

through 6, with the two additional sensors located near the centroid of Girders 1 and 2 

(See Figure 17). Upon review of the data, the two sensors located at the neutral axis 

(B1987 and B1979) were recording values near zero. The gauge located at the bottom of 

Girder 1 also recorded near-zero strains. It was decided to move these three sensors to 

maximize the study. In September 2017, the sensors attached to the girder centroids and 

to the bottom of Girder 1 were moved to the center of the bottom flange of Girders 7, 8, 

and 9 in order to monitor those girders as well (See Figure 18).  

 
Figure 17. Initial Locations of the Strain Transducers. 
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Figure 18. Adjusted Locations of the Strain Transducers. 

3.3  Data Collection and Processing 

3.3.1 Data Collection 

Once the strain transducers were attached to the bridge, traffic over the bridge was 

monitored over several weeks. Because much of the bridge traffic is destined for the 

nearby high school, data was recorded during both the summer (July 29-August 11) and 

the winter (January 7-January 27) in order to determine strain levels while school was 

both in and out of session.  

This research focused on strain “events”. Each loading event was characterized by 

a noticeable increase in strain, followed by a return in strain to near at-rest levels (i.e. 

approximately 0 με) (See Figure 19). Positive strain values corresponded to tension in the 

girder.  

Typically, events were caused by traffic driving over the bridge. As a vehicle 

drove over the bridge, the strain at the bottom of each girder would increase until the 

vehicle was positioned to cause the maximum moment in the girders. It would then 

decrease as the vehicle drove off the bridge, at which point the strains returned to 

measure at-rest levels. 
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Figure 19. A typical strain event. 

 Data was recorded using Bridge Diagnostics Inc.’s STS Monitor software (Figure 

20). While the STS Monitor software has the ability to record individual strain events, it 

was discovered that the software failed to record all of the strain events that occurred on 

the bridge. Instead, the STS Monitor software was set to continuously capture strain data 

from each sensor every 0.1 seconds. This data was recorded in technical data 

management streaming (TDMS) files that were saved to the datalogger. An add-in 

allowed the TDMS files to be opened and manipulated in Microsoft Excel. 
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Figure 20. Screenshot of STS Monitor recording data. 

3.3.2 Data Processing 

The focus of the research called for the examination of individual strain events; 

however, the TDMS files were recorded as 4-hour-long blocks of continuous data. To 

avoid combing through hundreds of hours of data to manually identify strain events, two 

programs were written in Visual Basic for Applications (VBA) that would extract data 

about individual strain events and then compile the strain data into a consolidated Excel 

workbook. 

The first VBA program identified sections in the continuous data where one or 

more sensors suddenly experienced a rapid increase in strain. The program identified 

rapid increases in strain by finding the value of each data point minus the minimum strain 

value from the previous 6.0 seconds for each sensor. If the difference between the two 

values was greater than 1.0 με, the program would copy all of the strain data from 3 
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seconds before the rise in strain began to 3 seconds after the strain values began to lower 

back to at-rest values (See Figure 21). It will also copy the 6.0-second minimum data. 

Finally, the VBA program would paste the copied information into a separate Excel 

workbook, save it, and continue scanning the TDMS files for further events. 

 
Figure 21. Annoted graph of a strain event showing the 1.0 με threshold as well as start and cutoff times. 

Strain events that never crossed the 1.0 με threshold were considered negligible 

and were ignored by the event extraction program. A 1.0 με threshold was chosen after 

higher thresholds were shown to exclude a percentage of light motor vehicles. A trial-

and-error approach was used to determine that the majority of vehicles caused greater 

than 1.0 με in bridge girders. 

Once each strain event had been extracted into its own Excel workbook, the 

second VBA program would open the workbook for each event, read the maximum strain 

values for every sensor, and compile the maximum strain data values into a consolidated 

Excel workbook. The comprehensive workbook was then used as a basis for the 

conclusions found in Section 3.4. Copies of both of the VBA programs can be found in 

Appendix A. 
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It is important to note that not every vehicle produced a strain event. For example, 

pedestrians, bicycles, motorcycles, and other light loading might produce a strain event 

below the 1.0 με threshold. Likewise, some vehicles might produce more than one strain 

event. It was observed that semis hauling multiple trailers could have multiple, separate 

events. Finally, if two vehicles were on the bridge at the same time (either in separate 

lanes or one behind another) and strain levels did not return to a near-zero level between 

the two events, the combined response of the two vehicles would create a single strain 

event. 

3.3.3 Precautions Against Data Errors 

Several safeguards were implemented to make certain that the VBA programs 

accurately read and extracted the event data. These safeguards included precautions 

against drift, counting the same event twice, consecutive strain events, noise, and failure 

to return to at-rest strain levels. To minimize the effect that these potential errors had on 

the results, sections of code were included in the two programs to address each problem. 

3.3.3.1 Drift 

Because the BDI sensors were initially intended for short-term recording, they 

experienced a certain amount of drift throughout the day. The STS Monitoring software 

was designed to zero out the strain in the sensors when recording begins. As the time 

passes, changes in temperature and other environmental factors can cause the at-rest 

value of strain in the sensors to vary, even when there was no applied load on the bridge. 

For example, sensors that began by recording 0 με in the morning might be reading 30 με 

in the heat of the day and -20 με at night.  
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To compensate for drift, the strain compilation program would subtract the 6-

second minimum value from the maximum strain value recorded by each sensor. This 

would transform the event on the left in Figure 22 to the event on the right. The VBA 

program would then copy the adjusted maximum value to the consolidated workbook as 

the maximum event strain. 

 
Figure 22. Uncorrected and corrected drift for the same event. 

3.3.3.2 Multiple Event Triggers 

In several cases, the same strain event would have multiple points that could 

trigger the program to copy it to a new workbook. For example, every point in the shaded 

area in Figure 23 could independently trigger the event extraction program to create a 

separate event. This would result in nineteen separate Excel files of the same event. 
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Figure 23. Multiple triggers for the same strain event. 

In order to force the program to create only one workbook for each event, a 

segment of code was used that forced the program to ignore additional event triggers for 

0.5 seconds after an event had begun. A 0.5-second window was chosen because, for a 

vehicle to cross the bridge in one second, it would be traveling 140.4 mph (113.0 kph) in 

a 25 mph (40.2 kph) speed zone. Therefore, a vehicle is unlikely to cross the entire bridge 

(i.e. create a complete strain event) in a single second. Any additional vehicles coming 

onto the bridge during the one-second window would end up contributing to the original 

event instead of creating a new, separate event. 

Additionally, if an event had been triggered within the previous ten seconds, the 

program checked whether the program was a large strain event. It did so by subtracting a 

base value from the strain value that created the new trigger. The program would then 

check to see whether the difference was reasonably close to the 1.0 με threshold. If not, 

the new trigger was ignored (i.e. for the event shown in Figure 23, the event is initially 

triggered at 6:41:19.6 AM. One second later, the strain is at 7.64 με. 7.64 με is not 
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reasonably close to 1.0 με, so the program determines that it is a large strain event and 

ignores the additional trigger). 

3.3.3.3 Consecutive Strain Events 

Occasionally, multiple vehicles drove over the bridge within a matter of seconds 

of each other. When this happened, it was challenging for the event extraction program to 

count the number of vehicles accurately. The event extraction and strain compilation 

programs were designed to work best when single vehicles drove over the bridge one at a 

time.  

To demonstrate some of the issues involved with consecutive strain events, Figure 

24 shows an example of when two vehicles crossed the bridge within a few seconds of 

each other. Each vehicle created its own event file, but each event file contained 

information from both events. The first vehicle’s event file spanned from Point A to Point 

D, while the second vehicle’s event file spanned from Point B to Point E. 

 
Figure 24. Consecutive strain events. 

The above scenario created several problems. The event extraction program 

originally detected events by comparing each data point against the data point exactly 3.0 
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seconds before it. For the second event in Figure 24, this was the difference between 

Point C and Point B. Because the difference between these two points is only 0.06 με, the 

original event extraction program would not have detected the second event. To address 

this, the program was modified to subtract the minimum value from the last 6.0 seconds 

from Point C instead (a difference of 1.07 με).  

Currently, the strain compilation program calculates the maximum strain in each 

file by subtracting the 6.0-second minimum from the maximum strain. Initially, the strain 

compilation program took the maximum strain value from anywhere in the event file. 

This caused inaccurate readings, because when it read the file for the second strain event 

file (comprised of points between Point B and Point E), the program detected the 

maximum from the first strain event instead.  

This issue was addressed by modifying the program to take the maximum strain 

value from after the 1.0 με threshold was crossed (the second event crosses the threshold 

at Point C). However, if the second event were larger than the first, the program could 

still use the maximum strain from the second event when calculating the maximum strain 

of the first event (which contains data from Point A to Point D). This remains a known 

issue with the strain compilation program. 

If a vehicle stopped on the bridge, it also created problems. For example, in 

Figure 25 a car stopped on the bridge to pick up pedestrians. Then, at 2:44:28 pm, a 

second car crossed the bridge. Because the strain compilation program only considers 

data from up to six seconds before the start of the event, the maximum strain for the 

second vehicle stopped did not include the initial strain caused by the stopped vehicle. 
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Instead, it only included the additional strain caused by the second vehicle driving onto 

the bridge. The strain compilation program faced similar problems if heavy traffic at the 

nearby stoplight caused vehicles to back up onto the bridge. 

 
Figure 25. Strain data showing a car stopped on the Nibley Bridge. 

3.3.3.4 Noise 

All sensors experience some level of variation in their data called noise. Testing 

the BDI sensors revealed that the strain transducers experienced variation between 0.01–

0.15 με while the bridge was unloaded. In order to avoid picking up sensor noise as 

actual strain events, a 1.0 με trigger threshold was selected for this project. It was 

observed that the majority of vehicles caused a strain greater than 1.0 με. Any sudden 

increases in strain that were did not exceed 1.0 με were ignored by the event extraction 

program. Setting the threshold at 1.0 με also helped combat drift, which could trigger a 

false event if the threshold were to set lower. 
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3.3.3.5 Failure to Return to At-Rest Strain Levels 

Occasionally, the program would fail to return to normal strain levels at the end of 

the event. While the exact cause for this is unknown, it could potentially be related to 

vehicles parking on the bridge. When the program did not return to at-rest levels of strain, 

the event extraction program was set to extract a maximum of 30 seconds of data. This 

prevented a single event file from lasting for several minutes and containing multiple 

events. 

3.3.4 Accuracy Verification of Results 

To ascertain that the developed event extraction program could accurately locate 

and extract the strain events caused by traffic, video monitoring was set up at the Nibley 

Bridge (See Figure 26). The video camera chosen, the GoPro Hero5 Black, recorded 

video of vehicles driving over the bridge over the period of an hour. The footage of the 

traffic was then reviewed and compared against processed strain data for the same time 

period for validation purposes. 

 
Figure 26. Still from recorded video showing a vehicle crossing the Nibley Bridge. 
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Video was recorded between 2:00–3:00 P.M. on 11 January 2018. This time was 

chosen because it allowed for video capture during two different levels of traffic flow. 

During most of the day, traffic on the bridge is comparatively low. The exception is just 

before school is about to start at 8:00 A.M. and right after school lets out at 2:45 P.M, 

when for a brief period the traffic volume is comparatively high. For the purposes of 

comparison, data was analyzed separately from 2:00–2:30 P.M. and from 2:30–3:00 P.M. 

Between 2:00–2:30 P.M., the video recording showed that 71 vehicles crossed the 

Nibley Bridge. The event extraction program was able to detect and extract 67 events. 

The four omitted events involved vehicles in opposite lanes crossing the bridge within 0.5 

seconds of each other; per the definition of a strain event in Section 3.3.2, the strains 

caused by these vehicles were treated as a single strain event. Under these conditions, 

94.4% of vehicles triggered strain events, and 100% of vehicle strain data was accurately 

extracted. 

Between 2:30–3:00 P.M., 311 vehicles crossed the Nibley Bridge. The event 

extraction program was able to detect and extract 261 strain events. The program also 

extracted a single event twice due to an exceptionally high amount of noise that coincided 

with the event. Due to the high volume of traffic, the specific causes of each omitted 

event were unable to be determined. However, the event extraction program was 

successfully able to detect and extract strain data files for 83.7% of vehicles. 

At approximately 2:48 P.M., the traffic volume was so high that traffic backed up 

on the bridge in the north lane for approximately 1.7 minutes. Because the event 

extraction program only extracts data from the previous six seconds, the strain 
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compilation program only considered additional strain caused by new vehicles driving 

onto the bridge, not the total strain in the bridge girders, during this window. 

Additionally, most vehicles followed each other so closely that the heaviest vehicles (i.e. 

school buses) appeared in multiple events; the strains caused by the heaviest vehicles 

were counted multiple times by the strain compilation program.  

Comparing the event extraction program against the bridge traffic video footage 

demonstrates that the event extraction program is able to accurately detect and extract 

events from the raw TDMS files. While the program had difficulty distinguishing 

between vehicles during levels of high traffic, it was still able to extract events for 83.7% 

of all vehicles. During periods of low traffic, the program was able to extract 100% of 

vehicle strain data. Because the bridge experiences high volume of traffic for no more 

than 5% of the day, the event extraction and strain compilation programs were deemed 

adequate for the purposes of this research. 

 Finally, because strain events with exceptionally high levels of strain were of the 

greatest interest to this research, every high-level strain event recorded over the five 

weeks of monitoring was hand-checked prior to drawing the conclusions in Section 3.4. 

This was done by opening the individual file for each event and plotting a graph of strain 

over time to verify that the maximum strains had been accurately extracted. If necessary, 

the raw, continuous TDMS file was consulted to give context to the data. 
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3.4  Short-Term Strain Monitoring Results 

3.4.1 Strain Summations 

It was discovered that Girders 4 (Sensor B1978) and 7 (Sensor B1987) 

experienced the highest strains. These girders regularly experienced strains 185% to 

250% higher than strains in adjacent girders. As the magnitude of the strains in Girders 4 

and 7 increased, the difference in strains between adjacent girders also increased.  

Girders 3 (Sensor B1985), 5 (Sensor 1984), 6 (Sensor B1985), and 8 (Girder 

1988) experienced the second-highest strains. Each of Girders 3-8 is directly beneath the 

traffic lanes. The lowest strains at the bottom of a girder were recorded when Sensor 

B1988 was placed beneath Girder 1, an exterior girder. When the sensors were placed at 

the neutral axis of the girders, they experienced little to no strains. Figure 27 shows a 

typical strain event for a single vehicle in the north (left) and south (right) lanes. 

 
Figure 27. Typical strain event for the north (left) and south (right) lanes. 

Between January 14 and February 3 (three weeks), the strain transducers recorded 

35,843 events. In the two-week period from July 30-August 12, the strain transducers 

recorded 19,053 events. However, during the summer Girder 7 was not monitored, which 
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meant that several vehicles likely crossed the Nibley Bridge in the south lane without 

triggering an event. 

Analyzing the wintertime data shows that 9.0% of events recorded in the south 

lane did not trigger an event in Girder 6 (the only south-lane girder monitored during the 

summertime). Assuming that this ratio is constant year-round suggests that an additional 

1052 events in the south lane were not recorded by the datalogger during the summer. 

This gives an estimated 20,105 total events during the summer recording period. 

Graphs showing the magnitude of the recorded strains are shown in Figure 28 

(summer) and Figure 29 (winter). Both figures show the largest strain that was recorded 

by any sensor for each event. Each figure subdivides the recorded strains into individual 

weeks. 
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Figure 28. Graph of strain magnitudes between July 30 and August 12. 
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Figure 29. Graph of strain magnitudes between January 14 and February 3. 

Figures 28 and 29 show that the traffic flow is relatively consistent throughout the 

day and that the majority of strains do not exceed 5.0 με. Traffic flow decreases at night, 

with comparatively little traffic between the hours of midnight and 5:00 am. There was a 
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noticeable rise in strains in the 10-20 με range during the winter; this is attributable to 

additional school buses crossing the bridge (note that in Figure 29 there are clusters of 

strain in the 10-20 με range when buses would be arriving at and leaving the school). 

There are also several strains significantly higher than the rest; these strains will be 

discussed further below. 

During the summer, the Nibley Bridge had an annual average daily traffic of 1436 

vehicles/day. During the winter, the bridge had an annual average daily traffic of 1706 

vehicles/day. This corresponds to an 18.85% increase in traffic while school is in session. 

The majority of events were observed to last about 3.25 seconds. This appears 

reasonable, as it corresponds to a vehicle speed of 22.6 mph (26.4 kph). The speed limit 

on the bridge is 25 mph (40.2 kph). However, some events lasted as long as thirteen 

seconds. These events mostly correspond with larger vehicles accelerating after turning 

off the nearby intersection or roundabout. 

3.4.2 Distribution of Strains throughout the Day 

Further analysis of Figures 28 and 29 resulted in Figures 30 and 31. These figures 

show the distribution of strains throughout the day, regardless of their magnitude. During 

the summer, traffic flow was relatively consistent throughout the day and corresponded 

with anticipated trends relating to traffic patterns. For example, the largest percentage of 

traffic occurred between 5:00 pm-6:00 pm, which corresponds to employees returning 

home from work.   
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Figure 30. Distribution of strains throughout the day between July 30-August 12. 

  
Figure 31. Distribution of strains throughout the day between January 14 and February 3. 

During the winter, the highest traffic volumes corresponded with school 

beginning at 8:00 am and letting out at 2:45 pm. On days when school was in session, an 

average of 480 vehicles crossed the bridge in the half hour before school started (7.69% 

of the day’s traffic). An average of 469 vehicles crossed the bridge within half an hour of 

school letting out (7.50% of the day’s traffic). From this data, it can be that concluded 

that traffic flow was more concentrated while school is in session, resulting in multiple 

vehicles using the bridge at once and larger strains in the bridge girders. 
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3.4.3 Analysis of Large Strain Events 

 Figures 28 and 29 also reveal that several large vehicles crossed the bridge on a 

semi-regular basis. Table 2 shows the largest strain values recorded for in each girder for 

both monitoring periods. 

Table 2. Largest recorded strain values for each girder. 

Largest 

Recorded 

Strain (με) 

Girder Number & Associated Sensor 

1 2 3 4 5 6 7 8 9 10 
B1988 B1980 B1986 B1978 B1984 B1985 B1987 B1988 B1979 N/A 

Summer 7.24 18.55 30.87 59.26 40.46 40.46 N/A N/A N/A N/A 

Winter N/A 15.94 28.22 52.78 26.70 20.35 26.31 13.66 10.72 N/A 

Overall 7.24 18.55 30.87 59.26 40.46 40.46 26.31 13.66 10.72 N/A 

While the largest values recorded in Table 2 tend to not vary significantly 

between the summer and winter, larger strains occurred during the summer in every 

monitored girder. This is likely due to the increased use of heavy construction equipment 

during the summer months. 

Table 2 also shows that, to an extent, the assumption of symmetry in strains 

between girders is valid. The largest exception to this assumption is Girders 4 and 7. 

When these two girders were monitored simultaneously during the winter, the difference 

between the recorded maximums is 26.47 με. Potential reasons why the strains in Girder 

4 are so much higher are discussed further below. 

While Table 2 tabulates the largest strain value seen in each girder, Table 3 

presents the largest twenty strain values caused in any girder. Each strain value has been 

checked for accuracy by plotting a graph of the event to see whether it appeared accurate. 

It is important to note that every strain in Table 3 occurred in Girder 4 (Sensor B1978). 
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Table 3. Twenty largest recorded strain values for all girders. 

  Time of Vehicle Crossing Microstrain Caused by Vehicle 

  3 Aug 2017 — 2:47:58 PM 59.26 με 

  3 Aug 2017 — 1:15:25 PM 57.01 με 

  3 Aug 2017 — 2:02:33 PM 55.42 με 

  2 Aug 2017 — 7:15:42 AM 55.31 με 

  3 Aug 2017 — 12:12:32 PM 53.38 με 

  2 Aug 2017 — 11:46:29 AM 53.30 με 

  4 Aug 2017 — 11:59:41 AM 52.98 με 

  4 Aug 2017 — 2:03:47 PM 52.91 με 

  29 Jan 2018 — 2:38:59 PM 52.78 με 

  31 Jul 2017 — 6:40:37 AM 52.78 με 

  31 Jul 2017 — 1:40:55 PM 52.76 με 

  31 Jul 2017 — 10:23:31 AM 52.27 με 

  2 Aug 2017 — 12:43:30 PM 51.96 με 

  29 Jan 2018 — 12:51:29 PM 51.89 με 

  7 Aug 2017 — 9:48:30 AM 51.78 με 

  9 Aug 2017 — 11:07:16 AM 51.57 με 

  4 Aug 2017 — 11:07:10 AM 51.50 με 

  15 Jan 2018 — 10:29:46 AM 50.66 με 

  9 Aug 2017 — 12:17:55 PM 50.62 με 

  7 Aug 2017 — 1:01:39 PM 50.52 με 

Because Girder 4 falls directly underneath the north lane, it experiences the 

largest strains of any girder due to westbound traffic. However, its strains are exceedingly 

bigger than the largest strains in the corresponding south-lane girder. Four possible 

explanations are presented as to why Girder 4 experienced larger strains than other 

girders.  

First, the strain transducer attached to Girder 4 (Sensor B1978) could need 

calibration. However, we know that Girder 7, the corresponding girder in the south lane, 

regularly experiences strains 185% to 250% higher than strains in its neighboring girders. 

This ratio is similar for the north lane as well, suggesting that Sensor B1978’s readings 

may be correct. 
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Second, the traffic light to the west of the bridge provides vehicles an easy way to 

turn south onto Utah State Road 165. Because UT-165 has a posted speed limit of 55 

mph (88.51 kph), large vehicles turning left need to use a traffic signal to give them time 

to make the turn and accelerate. The traffic light near the Nibley Bridge is the only signal 

for 1.19 miles (1.92 km) to the north and 0.75 miles (1.20 km) to the south. Because the 

Utah Department of Transportation is currently doing roadwork on UT-165 to the south 

of Ridgeline High School, there are multiple construction vehicles which use this 

intersection to turn south onto UT-165. Vehicles turning south would cross the north lane 

of the bridge, but not the south lane. 

Third, the girders in the south lane may have a better joint connection than the 

girders in the north lane. If so, Girder 7 would distribute more load into its neighboring 

girders than Girder 4, resulting in higher comparative strains in Girder 4. A difference in 

the degree of composite behavior could potentially be caused by discrepancies in the way 

the girders were installed or damage in the connectors by excessive loading. 

Fourth, trucks could be retrieving material from an area to the east of the bridge 

and transporting it to an area to the west of the bridge. If this is true, trucks crossing the 

bridge would be heavier when they crossing the north lane, and lighter when they 

returned using the south lane. 

 Referring back to Figures 28 and 29 shows that multiple large events often 

occurred in a single day. On other days, there were few, if any, large events. Reviewing 

Table 3 shows that many events with similar magnitudes of strain occurred on the same 
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day. Because of this, it is likely that the largest strains for each day were caused by the 

same vehicle.  

This conclusion is supported by Figure 32, which plots two large events from July 

31, 2017 (left) against two large events from January 29, 2018 (right). Even though the 

events on both sides produced similar magnitudes of strain in the bridge, they appear 

drastically different. Note that the two events shown for August 3 are similar in both 

shape and the time it took to cross the bridge, suggesting that they were caused by the 

same vehicle. The same applies to the two events from January 31. Incidentally, the 

vehicle on the left likely had four axles (because there are four peaks within the event), 

while the vehicle on the right likely only had two axles. 

 
Figure 32. Comparison of large strain events between days. 

The largest recorded strain event occurred at 2:47:58 PM on August 3, 2017 (See 

Figure 33). The vehicle took 8.3 seconds to cross the bridge and caused a strain of 59.26 
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με. While the exact type of vehicle that caused this strain event is unknown, analysis of 

Figure 33 shows that it was likely a double trailer dump truck with six axles crossing the 

north lane. Given the magnitude of strain it caused, it would have been carrying a heavy 

load, likely for construction purposes. 

 
Figure 33. Largest recorded strain event. 

3.4.4 Comparison of Large Strains with Design Loading  

 In order to compare strain magnitudes with a vehicle of a known weight, a live 

load test was conducted using an International 7700 dump truck. The axle configuration 

of the truck is shown in Figure 34; an image of the dump truck used is shown in Figure 

35. 
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Figure 34. Axle configuration of the International 7700 dump truck. 

 
Figure 35. Image of the International 7700 dump truck used. 

 The dump truck was driven over the bridge along five different load paths. Each 

load path placed the front-right tire of the dump truck directly over Girders 2, 3, 4, 5, and 

6. These load paths were chosen because the test took place on July 18, 2017 and the 

corresponding girders were the only ones being monitored at the time (A load path over 
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Girder 1 was not tested, as the truck would have had to drive up onto the sidewalk). The 

dump truck drove along each load path twice, and the results were averaged for each load 

path. 

The dump truck caused the largest strain in the bridge when it was positioned with 

its right tire directly over Girder 5, placing it approximately in the center of the bridge. 

When positioned there, the truck caused a maximum strain of 33.12 με in Girder 5, but 

only 13.14 με in Girder 4. When the truck remained in the north lane, it caused a 

maximum strain of approximately 30.29 με in Girder 4. A more detailed analysis and 

report on the live load test results will be published at a future date. 

While a more detailed analysis of the live load test incorporating a finite element 

model will be conducted in the future, it can be shown using statics that the dump truck 

caused a maximum moment of approximately 412.57 kip-feet (559.37 kN-m) in the 

bridge. Assuming that the relationship between the maximum moment caused by a 

vehicle and the maximum strain induced in the bridge is linear, the strain caused by the 

dump truck can be used to approximate the strain caused by other types of loading. 

For example, an HS-20 truck would create a moment of 604.61 kip-feet (819.74 

kN-m) in the bridge. The ratio between the two moments is 1.465, meaning that an HS-20 

truck should cause a maximum strain of 42.23 με in Girder 4 (30.29 με * 1.465 = 42.23 

με) if it were driven across the north lane. The controlling HL-93 design loads (consisting 

of an HS-20 truck plus a lane load of 650 lbs/foot (9340.10 N/m)) would cause an 

approximate strain of 62.59 με in the bridge.  
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The calculated moments above assume a partial fixity of 90% at the ends of the 

bridge girders. However, the fixity of the bridge makes relatively little difference to the 

moment ratios. For example, the moment ratio between the HS-20 truck and the dump 

truck is 1.394 if the bridge if the completely pinned and 1.486 if the bridge is completely 

fixed. For the HL-93 design loads and the dump truck, these ratios are 2.067 if pinned 

and 2.066 if fixed. 

Because the moments and strains caused by an HS-20 truck and the controlling 

HL-93 design loads are an integral part of bridge design, it is significant to note that the 

traffic at Nibley Bridge regularly exceeded the strains that the AASHTO truck loadings 

should cause. For example, if an HS-20 truck crossed the Nibley Bridge in the north lane, 

it could be expected to cause a strain of 42.23 με in Girder 4. During the five weeks of 

recording, 58 vehicles caused a strain greater than 42.23 με. This accounts for 0.18% of 

all vehicles that crossed the bridge in the north lane during this period.  

The HL-93 design loads would be expected to induce a strain of 62.59 με in 

Girder 4. While no events ever exceeded 62.59 με, the maximum recorded strain in 

Girder 4 was 59.26 με. This comes within 5.61% of exceeding the design loads for the 

bridge. Considering the relatively short monitoring window of five weeks, it is safe to 

assume that the design loads could be periodically exceeded every year. 

These findings are consistent with the studies on which the bridge design code is 

based. According to Nowak and Collins, the current bridge code is based off of surveys 

on highway loadings in sixteen different locations. In these surveys, approximately 

0.003% of vehicles exceeded HL-93 loading for a 90-foot (27.43-meter) bridge. With 
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54,896 recorded events over 5 weeks, the Nibley Bridge could only expect to see a single 

event exceed the HL-93 loading.  

It is to be expected that the Nibley Bridge did not see any events exceed the HL-

93 loading. Because it is in a rural area, the Nibley Bridge sees less traffic than the 

highway loading surveys. The monitoring window was also smaller for this project than 

for the surveys used to create the bridge code. Thus, the Nibley Bridge can be expected to 

see similar results on a smaller scale than the highway surveys. 

 There is also the possibility that the data includes larger strains than would be 

considered normal for the Nibley Bridge. As noted, the Utah Department of 

Transportation was doing construction on a portion of UT-165 near the Nibley Bridge 

during the monitoring window. Because of this, an abnormally high number of 

construction vehicles could be skewing the data. 

3.4.5 Vehicle Strain Comparisons 

 Using the video recorded by the GoPro video monitoring done in Section 3.3.4, 

strain events were associated with the different vehicle types that caused them. Table 4 

shows strain data corresponding to each vehicle type. Figures 36-39 graphically show 

strain events associated with typical sedans, school buses, semis, and dump trucks. 

“Typical” events were found by calculating the median for the maximum strain values 

caused by each vehicle type, then choosing an event whose maximum value was close to 

the median value. 
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Table 4. Vehicle strain data. 

Vehicle  

Type 
Mean (με) 

Median 

(με) 

Standard 

Deviation 

(με) 

Minimum 

(με) 

Maximum 

(με) 
# Samples 

Sedans 2.417 2.282 0.551 1.099 4.529 100 

Minivans 2.874 2.882 0.457 1.893 3.716 17 

Jeeps 2.882 2.887 0.401 2.124 3.409 8 

SUVs 3.029 3.054 0.540 2.034 4.269 29 

Suburbans 3.249 3.237 0.504 2.322 4.654 32 

Vans 3.315 3.237 0.404 2.912 3.833 6 

Pickup Trucks 3.454 3.372 0.566 2.582 5.051 27 

Delivery Trucks 5.733 5.882 0.556 5.000 6.168 4 

Semi Truck 13.350 12.542 2.265 11.599 15.908 3 

School Buses 13.729 13.649 1.949 11.212 16.581 11 

Dump Trucks 39.218 42.621 7.808 30.286 44.748 3 

 

 
Figure 36. Strain event from a sedan.  
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Figure 37. Strain event from a semi truck and trailer 

 
Figure 38. Strain event from a school bus.  
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Figure 39. Strain event from a dump truck.  

 The data in Table 4 shows that there is little variation in the strains caused by 

smaller vehicles; sedans, minivans, jeeps, SUVs, suburbans, vans, and pickup trucks all 

had mean strains that fell between 2.42–3.45 με. Most school buses tended to cause a 

strain of 13.73 με, while semis caused a strain of 13.35 με. Dump trucks caused the 

highest strain of all, 39.22 με. However, it should be noted that the sample size for both 

semi trucks and dump trucks was limited. Given the variability in gross vehicle weight 

for both vehicle types, it is expected that the strain caused by each vehicle would vary 

greatly as well.  

Figures 36, 37, 38, and 39 also demonstrate that as a vehicle’s size and weight 

increases, it becomes possible to distinguish the strains caused by each vehicle axle. This 

is partially because the increased spacing between the axles prevents the axles from 
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effectively acting as a single force and partially because larger vehicles cross the bridge 

at a lower speed, allow for more points to be captured per axle. 

3.4.6 Frequency Histograms 

The data from all five weeks of recording was combined and analyzed to create 

frequency histograms of the strains in each girder. Figures 40-50 show these frequency 

histograms. The histograms have been divided into bins with a range of 1.0 με each. Each 

histogram uses this spacing between 0-10 με. After approximately 7 με, the bins level out 

and most bins afterwards account for less than 0.1% of the events.  

After 10 με, the graphs contain a bin between 10-42.2 με. A strain of 42.2 με 

(corresponding with an HS-20 truck) has been included for comparison purposes. The 

final bin, extending from 42.2-59.3 με, recorded the percentage of events whose strains 

exceed that of an HS-20 truck. 

It is important to note that each histogram shows the strain in the girder for every 

event where any sensor crossed the 1.0 με threshold. This is why the bins from 0-1 με 

contain the highest percent of events for every girder. If a light vehicle crosses the Nibley 

Bridge in the south lane, it will not cause noticeable strain in the girders on the north end 

of the bridge. However, it will still contribute to the histograms for the north girders. 

Thus, the high percentages in the 0-1 με range are not due to exceptionally light vehicles; 

rather, they are related to the positioning of the vehicles on the bridge. 
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Figure 40. Frequency histogram of recorded strains in Girder 1.  

       
Figure 41. Frequency histogram of recorded strains at the bottom of Girder 2. 

       
Figure 42. Frequency histogram of recorded strains at the centroid of Girder 2. 
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Figure 43. Frequency histogram of recorded strains at the bottom of Girder 3.  

       
Figure 44. Frequency histogram of recorded strains at the centroid of Girder 3. 

       
Figure 45. Frequency histogram of recorded strains in Girder 4.  
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Figure 46. Frequency histogram of recorded strains in Girder 5. 

       
Figure 47. Frequency histogram of recorded strains in Girder 6. 

       
Figure 48. Frequency histogram of recorded strains in Girder 7. 
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Figure 49. Frequency histogram of recorded strains in Girder 8. 

       
Figure 50. Frequency histogram of recorded strains in Girder 9. 

As expected, the sensors located at the centroids of Girders 2 and 3 recorded zero 

strain 99.9% of the time. This is because there is no strain due to moment at the elastic 

neutral axis of a girder. The events where the strains are greater than 1.0 με are likely due 

to either excessive noise in the sensors or errors in the data processing programs. 

The monitored exterior girder, Girder 1, also experienced little to no strains. This 

is because Girder 1 lies directly beneath the sidewalk, where there are little heavy loads. 

Girder 1’s largest recorded strain, 7.24 με, was the result of an even larger strain in 
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Girder 4, 52.78 με. In fact, the three outside girders along each side of the bridge all 

experienced their strains as a result of higher loading in a nearby girder. Analysis shows 

that 97.70% of strains in Girders 1, 2, 3, 8, and 9 above 5.0 με were caused by larger 

strains in other girders.  

The histograms show that the level of strain that a girder experiences is a direct 

function of where the girders are positioned in relation to the traffic lanes. The girders 

directly beneath the traffic lanes experienced much higher levels of strain than girders 

that were positioned farther away. The histograms also reflect the symmetry of the 

bridge. Girders 4 and 7 have similar histograms, as do Girders 5 and 6, Girders 2 and 9, 

etc. 

After analysis of Figures 40-50 was complete, a frequency histogram (Figure 51) 

and normalized distribution plot on probability paper (Figure 52) were created using the 

maximum strain in any girder on the bridge for each event. Unlike Figures 40-50 above, 

Figures 51 and 52 do not consider the positioning of the vehicle on the bridge. Instead, 

the data is directly related to the gross vehicle weight (GVW) of the vehicles crossing the 

Nibley Bridge. Because the event extraction program ignored strains below 1.0 με, none 

of the maximum strains were below 1.0 με. 
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Figure 51. Frequency histogram of maximum recorded event strains in any girder. 

Figure 51 shows that the vast majority of vehicles (95.62%) cause less than 5.0 με 

strain in the bridge. The frequency of strain events flattens out after approximately 7 με. 

However, there are clusters of vehicles at approximately 12.5 με, 22.5 με, 42.5 με, and 

52.5 με. The cluster of vehicles at 12.5 με most likely corresponds to school buses and 

semis crossing the bridge. Likewise, the clusters of vehicle strains at 22.5 με, 42.5 με, and 

52.5 με likely correspond to construction equipment. 

Figure 52 plots the distribution of the maximum strains in the bridge on normal 

probability paper. From this figure, it can be shown that the vehicles on the bridge caused 

a mean strain of 2.67 με with a standard deviation of approximately 0.886 με. It also 

reveals a large variation in the intensity of strains that occur on the Nibley Bridge.  
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Figure 52. Maximum bridge strains plotted on normal probabality paper. 

Comparing Figure 52 against Figure 53 reveals that the Nibley Bridge traffic data 

collected closely resembles the lower leg of similar traffic studies done by the Federal 

Highway Administration (FHWA). This is to be expected, as many of the largest strains 

that occur on highway bridges are not present in rural Nibley. It also serves to validate 

the findings of this project by showing that the collected data compares well with 

previously collected data. (While the horizontal axis of Figures 52 and 53 are different, 
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the maximum event strain and gross vehicle weight are directly correlated, allowing for a 

direct comparison). 

            
Figure 53. GVW of trucks suveyed on roads from 16 different states, annotated (Nowak and Collins 2013). 

3.4.7 Girder Distribution Factors 

Using the 54,896 data points collected during the summer and winter, girder 

distribution factors (GDFs) were calculated for the north and south lanes. This was done 

by first sorting the events by the lane in which they occurred. Then, average strain values 

were calculated for each girder. The symmetry of the bridge was used to fill in gaps in the 

data. Finally, the girder distribution factors were calculated using Equation 2. The 

multiple presence factor, m, equals 1.2 when a single lane is loaded and 1.0 when both 

lanes are loaded. The results are shown graphically in Figures 54 and 55. 

 GDF𝑖 = m
ε𝑖

∑ ε𝑖
 

Nibley Bridge  

Data 

Equation 2. 
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Figure 54. Girder distribution factors for north lane.  

  
Figure 55. Girder distribution factors for south lane. 

Figures 54 and 55 show that the girders directly below the traffic lanes typically 

carried the majority of the load. The fourth girders in from each end typically carried 
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approximately 32.3% of the load by themselves. All other girders carried less than 25% 

of the load, and the girders on the farthest side of the bridge from the loaded lane 

typically did little to carry the load. 

The calculated girder distribution factors for the south lane appear to be slightly 

skewed to favor the girders on the north end of the bridge. In Figure 55, Girder G6 takes 

a higher share of the load than its symmetric girder, Girder 5, does in Figure 54. The 

girder distribution factor for Girder 4 in the south lane is higher than that of Girder 5, 

which seems incorrect. This could support the theory that Sensor B1978 attached to 

Girder 4 has malfunctioned and needs to be calibrated. 

By adding the average strains from each lane together, girder distribution factors 

for multiple loaded lanes can be calculated. The girder distribution factor for loading 

multiple lanes is shown in Figure 56. As can be seen, loading multiple lanes does not 

significantly impact the girder distribution factors for the worst-case girders, Girders 4 

and 7. Table 5 numerically contains the data shown in Figures 54, 55, and 56. 
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Figure 56. Girder distribution factors for multiple loaded lanes. 

Table 5. Girder distribution factors. 

Girder G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

North 

Lane 
0.0728 0.1082 0.2134 0.3916 0.1793 0.0945 0.0681 0.0292 0.0235 0.0193 

South 

Lane 
0.0225 0.0275 0.0442 0.0774 0.0711 0.2509 0.3849 0.1603 0.0963 0.0648 

Multiple 

Lanes 
0.0814 0.1163 0.2215 0.4034 0.2130 0.2817 0.3648 0.1527 0.0970 0.0682 

 Comparing the controlling girder distribution factors from Table 5 against the 

AASHTO LRFD Bridge Design Specifications (4th Edition) reveals that the girder 

distribution factors for a single lane are appropriately conservative. For a bridge with the 

Nibley Bridge’s specifications, the code requires a GDF of 0.4014 for a single loaded 

lane; the controlling single-lane GDF was 0.3916.  
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However, the AASHTO design GDF for when multiple lanes are loaded is 

0.5506. The controlling measured GDF for this scenario was only 0.4034. Thus, the 

girder distribution factor for multiple loaded lanes is overly conservative by 36.51%. 
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CHAPTER 4 

DRONE MODELING 

4.1  Drone Description 

4.1.1 Factors Influencing Drone Selection 

Originally developed for military use, unmanned aerial vehicles (UAVs) or 

“drones” experienced a surge of growth in the commercial sector in the late 2000s. 

Today, drones have become commonplace in many industries including agriculture, 

construction, and real estate. There are currently a variety of commercial drones on the 

market manufactured by multiple different companies, including Dà-Jiāng Innovations 

(DJI), Parrot SA, and Xiaomi Inc. However, due to the unique nature and functions of 

bridges, not every drone is a suitable candidate for bridge inspection and modeling. 

One of the main limitations of using drones for bridge inspection and modeling is 

that most drones on the current market cannot capture images of the underside of a 

bridge. This is because most commercial drones are designed to capture aerial footage of 

the ground below the UAV and cannot rotate their cameras to capture pictures higher 

than the horizontal plane (See Figure 57). Thus, these drones cannot look directly vertical 

to take pictures of the underside of bridge girders.  
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Figure 57. Gimbal Pitch Range of Typical Commerical Drones. 

The market is currently expanding to meet these needs. For example, the senseFly 

Albris and the DJI Matrice 210 are both capable of looking directly up. However, quotes 

acquired for these drones priced them at $20,000 and $9,853 respectively, which was 

outside the budget for this project. 

Another feature that factors into selection of the drone is the limitations of current 

GPS technology. For the most accurate modeling results, the drone should be capable of 

geotagging the images that it captures. Geotagging refers to the process whereby the 

drone records the latitude, longitude, and elevation at each point an image is taken and 

appends this location data to the image data. When the photos are imported into modeling 

software, the software uses this data to pinpoint the precise location where the images 

were taken. 

When a drone flies underneath a bridge, especially when the bridge deck is made 

with reinforced or prestressed concrete, it tends to lose GPS signal. Some drone software 

includes a built-in failsafe, where if the drone loses GPS signal it will fly directly 
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upwards and return to its takeoff point. If the drone is underneath a bridge deck, this can 

cause the UAV to strike the structure, damaging the drone.  

Currently, if the drone does lose GPS signal, the best-case scenario is that the 

drone continues to take pictures without geotagging the image. Although this makes it 

harder for the software to recognize the spatial location where each image was taken, it 

allows the pilot to continue to fly the drone underneath the bridge. 

A third factor in drone selection is the maximum distance that the drone can be 

away from the surface being inspected. This distance is based off of the horizontal sensor 

density (LH, pixels) and horizontal field of vision (HFOV, degrees) of the camera 

attached to the drone. It can be calculated using Equation 3, where D is the maximum 

viewing distance and PPI is the required image resolution:  

 

In their 2015 study, Lattanzi and Miller determined that a minimum resolution of 

20 pixels per inch (0.8 pixels per mm) was required for successful reconstruction of 

concrete structures. Thus, the drone chosen should be able to take photos at the required 

resolution based on the appropriate distance for the given bridge. If the distance is lower 

than a few feet, it can be difficult to maneuver the drone around the structure without 

crashing the drone into the bridge. However, a larger HFOV allows the camera to capture 

more of the surrounding details per image, which can aid in the modeling process. 

Related to the previous factor is the standard camera attached to the drone. Most 

drones come with a standard optical camera; however, some higher-end drones offer 

interchangeable cameras that can be detached from the drone mount. This allows the 

Equation 3 (Lattanzi and Miller 2015). 
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operator to attach an optical camera with a different zoom lens, infrared, or thermal 

camera. If necessary, a drone with this feature could be a valuable asset to a bridge 

inspection project. 

Finally, drone stabilization, maneuverability, and obstacle avoidance should be 

taken into account. A drone’s ability to stabilize itself will insure that pictures are non-

blurry and keep wind from blowing the drone off-course. Maneuverability is critical 

because it allows the drone to navigate around vegetation, power lines, and other 

structures that surround many typical bridges. Finally, some drones now feature auxiliary 

sensors that can keep the drone from crashing into obstacles mid-flight in case of user 

error. 

4.1.2 Features of the Selected Drone 

The drone selected for this project was the DJI Phantom 4 Pro (See Figure 58). 

The Phantom 4 Pro was selected due to the compatibility of DJI drones with third-party 

software and because it is representative of the many commercial drones on the market. 

The cost for this model was $1500, with an additional $200 spent on extra batteries, 

propeller guards, etc. 
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Figure 58. DJI Phantom 4 Pro (Dà-Jiāng Innovations 2017). 

The Phantom 4 Pro is a quadcopter UAV with a 20 MP camera attached on the 

underside of the drone. The gimbal can rotate the camera between 0° and -90°. With 

HFOV=60° and LH=5400 pixels (a 20 MP image is 3600 x 5400 pixels), the camera has a 

maximum viewing distance of 38.5 feet (11.7 m). For this drone, the camera is non-

detachable. 

The Phantom 4 Pro contains infrared sensors on each side of the drone, which 

allow it to detect obstacles and automatically brake to prevent collisions. This was useful 

while maneuvering through the tight areas surrounding and underneath each bridge. The 

GPS system is accurate ±1.64 feet (0.5 m) vertically and ±4.92 feet (1.5 m) horizontally. 

The drone is able to continue to fly and capture images without GPS signal. Additional 

specs for the Phantom 4 Pro can be found in Appendix B. 

The Phantom 4 Pro also comes with a remote control pad (See Figure 59). While 

users can fly the drone solely using the remote control pad, the controller has ports that 
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allow the operator to connect a phone or tablet into the control pad. DJI’s downloadable 

Android and Apple apps then allow the operator to view the field of vision of the drone’s 

camera on the screen of the device.  

           
Figure 59. Remote Control Pad for the DJI Phantom 4 Pro (Dà-Jiāng Innovations 2017). 

This feature is particularly useful during image capture, as it allows the inspector 

to focus in on problem areas of the bridge. Connecting a device to the remote control pad 

also allows third-party apps to control the drone in-flight, allowing the drone to 

automatically fly grid and orbit patterns for 3D modeling purposes. 

4.1.3 Drone Mapping Apps 

While several drone mapping apps exist, all perform the same primary function: 

the user sets boundaries on an area to be mapped, then the app takes control of the drone 
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and flies it over the selected area. During flight, the app uses the drone to take the 

pictures required for a three-dimensional model.  

The advantage of using an app is that a computer is able to take photos more 

consistently and evenly spaced than a human operator. However, a certified remote pilot 

is still required to supervise the flight, and the drone operator should be able and ready to 

take control of the drone at any point during the operation. 

After experimenting with third-party drone mapping apps, the decision was made 

to use DroneDeploy’s Android app to automatically guide the drone inflight. A 

screenshot of the DroneDeploy flight-planning software as viewed in a web browser is 

shown in Figure 60. 

     
Figure 60. Screenshot of the DroneDeploy Flight-Planning Software (DroneDeploy Labs 2017). 

The above screenshot shows an early version of the flight over the Nibley Bridge. 

As shown in the figure, the drone will take off and proceed to the point labeled “Start”. 

start 
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From there, it will proceed due east (right) along the horizontal line, automatically taking 

pictures of the ground with the camera angled straight down.  

When the drone reaches the boundary line, the drone will turn, proceed to the next 

horizontal line, and continue the pattern. The drone will continue along the back-and-

forth grid pattern until it has covered all of the ground within the boundary lines. 

Once the drone has completed its back-and-forth pattern, it will proceed to the 

edge of the circle shown in Figure 60. It will then descend several feet and adjust its 

camera angle to an angle between -90° and 0° (The exact distance and angle depends on 

the flight altitude and perimeter of the boundaries). The drone will then fly in a circle, or 

orbit, facing inward, automatically taking pictures of the object at the center.  

Flying an orbit around the bridge allows the drone to capture oblique imagery. 

Oblique imagery (side shots of an object taken slightly from above) is critically important 

to the modeling process because it allows for a more detailed reconstruction of the sides 

of the model. 

Several settings must be considered prior to attempting a flight via a drone 

mapping app. Care must be taken when setting the altitude and boundaries to ensure that 

the drone will not collide with any obstacles midflight. The spacing of the lines in the 

back-and-forth pattern can be adjusted to force the drone to increase or decrease the 

number of passes over the object. The frequency at which the drone takes pictures can 

also be adjusted. Finally, it is advisable to perform an additional manual flight after the 

automated flight is complete. Doing so will allow the operator to focus in on problem 

areas and capture pictures from angles where the drone mapping app did not fly. 
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4.2  Modeling Software Description 

4.2.1 Modeling Software Attributes 

Two main methodologies exist to recreate structures digitally: dense structure 

from motion (DSfM) and image mosaicing (IM). Both of these methodologies have 

inherent pros and cons that should be considered prior to any modeling project. 

DSfM modeling uses photos taken of the structure by a drone to create a digital 

model of the structure. This is done by first loading the images into the software and 

selecting the software’s equivalent of “Create Model”. The software then compares the 

location of thousands of identifiable points relative to each other in each image. For 

example, the software may identify a corner of a deck slab, bolts on a steel member, or 

striping on a road. Using these points as a reference in conjunction with any GPS data 

appended to the image, the software identifies the location and angle at which the image 

was taken, as shown in Figure 61.  

 
Figure 61. Geolocated images in Pix4D. 
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Once the camera location and angle of each image has been determined, the 

modeling software then creates a three-dimensional point cloud of the structure by again 

comparing the location of each identifiable point between the various images. It then 

calculates the location of the point, resulting in a cluster of unconnected points as shown 

in Figure 62. 

 
Figure 62. Three-dimensional point cloud of a structure in Pix4D. 

Finally, the modeling software uses Poisson meshing to connect the points in the 

three-dimensional point cloud and create a blank three-dimensional mesh. It then 

combines and projects the images onto the structure to color it and add texture. A finished 

3D model is shown in Figure 63. 
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Figure 63. Finished three-dimensional model in Pix4D. 

DSfM modeling has an advantage over IM modeling in that it can create a model 

using solely images. However, the resulting model is only as accurate as the algorithms 

the software uses to create it. For example, can be difficult for DSfM software to recreate 

smooth surfaces and thin objects (e.g. a roadway surface or the wire in a chain-link fence, 

respectively). 

Image mosaicing or IM modeling, on the other hand, uses a pre-existing base 

model of a structure in its modeling process. This allows the modeling software to skip 

creating a three-dimensional point cloud and mesh, instead directly projecting the images 

onto the model. This usually creates a cleaner-looking model in comparison to the DSfM 

process.  

However, creating the base model for IM modeling requires knowledge of the 

exact measurements of the bridge as constructed. The time required to collect these 
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measurements and create the 3D base model can outweigh the benefit of this method of 

modeling in practice, especially if an organization monitors and inspects several bridges. 

Because three-dimensional models of the bridges investigated in this study do not 

exist, this study focused solely on DSfM modeling. Most of the commercially available 

software for creating 3D models from drone images uses DSfM modeling, which worked 

well for this project. 

4.2.2 Modeling Software Used 

 In order to test a broad variety of modeling software available on the market, 

several different brands of software were tested. The testing included three different 

brands of modeling software: Pix4D, DroneDeploy, and Agisoft PhotoScan. Models were 

created of all three bridges using all three software products. Each model was created 

using the exact same photographs of each bridge. If the software placed a limit on the 

maximum number of photos that could be used for a project, the best photos of each 

bridge were used. 

4.2.2.1 Pix4D 

Pix4D is a desktop-based modeling software, although browser-based modeling is 

available. It was first developed in 2011 by its parent company, Pix4D SA. There are no 

limitations on the number of photos that can be used to create a model in Pix4D. 

However, including too many photos significantly increases the processing time required 

to generate the model. Additionally, Pix4D allows pictures to be included in a model 

even if they are not geotagged. 
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One of Pix4D’s unique features is the ability to manually add “tie points”, 

Pix4D’s term for the easily identifiable points discussed above. While the software 

automatically identifies as many points as possible, the ability to manually add tie points 

allows the user to increase the accuracy of the model. For example, identifying the corner 

of an overhang in multiple photos can allow the software to recognize that the overhang 

exists. However, the time that it takes to add these points makes it impractical to do more 

than a handful of manual tie points per model. Manually added tie points are not a 

substitute for good photography practices.  

 Another useful feature of the Pix4D app is its ability to use videos to create a 

model. The software does this by separating individual video frames into still images. 

However, this often results in thousands of images, which can result in extremely slow 

processing times if video is used extensively in model creation. 

Pix4D has a free mobile app that can be used to control a drone in a similar 

manner as the DroneDeploy app described in Section 4.1.3. However, after several 

attempts, the Pix4D app was unable to communicate with the Phantom 4 Pro drone. 

Because of this, the DroneDeploy Android app was used to fly the overhead back-and-

forth pattern. However, because each software used the same images to create models, 

this did not have an impact on the final results. 

4.2.2.2 DroneDeploy 

DroneDeploy is a browser-based modeling software. It is the newest of the three 

modeling software brands selected for this project, having first been released in 2013.  



87 

Because DroneDeploy is a browser-based modeling software, photos used to 

create a 3D model are uploaded to DroneDeploy’s server, which then processes the data 

and creates the model. Because photos are stored on their server, DroneDeploy limits 

uploads to 500 pictures per model. It also recommends using only 3.0 GB of pictures per 

model.  

It was found that for this project, the 3.0 GB limit effectively limited each model 

to approximately 388 pictures. Additionally, images used to create a model in the 

DroneDeploy software must be geotagged, meaning that the supplementary pictures 

taken using a Nikon D90 camera could not be included in the DroneDeploy models. 

The DroneDeploy app was the only app tested in this research that was able to 

communicate with the Phantom 4 Pro drone. For the most part, the app was able to 

function well. One useful feature of the app was that if the app crashed, the drone would 

continue to fly its mission and would reconnect to the app once it was reopened. One 

drawback of the app was that if the mission parameters were set too high (by increasing 

the required overlap between pictures beyond approximately 80%), the drone would take 

off but remain motionless in the air while taking pictures of the same spot repeatedly. 

Another drawback was that all flights using the app needed to be planned using an 

internet connection. This limited the versatility of the app and made it difficult to make 

changes to the flight plan in the field. 

4.2.2.3 Agisoft PhotoScan 

Agisoft PhotoScan is a desktop-based modeling software similar in many ways to 

Pix4D. However, while Pix4D and DroneDeploy are specifically designed to process 
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images taken using a drone, PhotoScan is a more general modeling software. It has also 

been around for longer than the other two software brands, having first been released by 

Agisoft LLC in 2010. 

Agisoft PhotoScan has the ability to use images that are not geotagged, which 

allowed supplementary pictures taken using a camera to be included in the model. There 

is also no limitation on the number of images that can be included in the model. 

However, including too many photos has a diminishing return and can significantly 

lengthen the time it takes the software to process the model. Agisoft PhotoScan does not 

have an app able to control drones in-flight. 

One of Agisoft PhotoScan’s most useful features is the ability to crop finished 

models. As shown later, finished models usually contained errors. For example, the 

algorithms in all three versions of software often created shapes floating in the air above 

the bridge deck. The ability to crop the model allowed these shapes to be deleted, giving 

the model a clean, crisp look. Cropping the model also allows the user to delete nearby 

obstacles (such as trees) that may make viewing the bridge difficult.  

4.3  Drone Flights and Testing 

Three bridges near Utah State University were selected to be modeled for this 

project: the Nibley Bridge, the Trenton Bridge, and the Elwood Bridge. At each bridge, 

hand measurements were taken of any defects in the bridge (cracks, flaking, etc.). 

Artificial “cracks” were also created by applying masking tape to the bridge surface, 

drawing lines with a marker, and then measuring the lines (See Figure 64). Finally, four 
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coins (a dime, penny, nickel, and quarter) were placed on the bridge deck for comparison 

in the finished model. 

      
Figure 64. Artifical “crack” at the Trenton Bridge. 

A similar flight pattern was followed at each bridge. First, the DroneDeploy 

Android app was used to automatically fly the Phantom 4 Pro drone in a back-and-forth 

pattern and capture aerial footage directly over the bridge. The app also controlled the 

drone for a single oblique orbit in order to capture pictures of the side of the bridge. 

Following the flight controlled by the DroneDeploy Android App, the DJI Android app 

was used to manually fly the drone and capture supplemental images. 

A limited number of additional images were also taken using a Nikon D90 camera 

with an 18‑105 mm zoom lens. This allowed pictures to be taken in areas where it was 
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difficult to fly the drone, such as the underside of the bridge. The resulting images from 

the drone and camera were then loaded into the modeling software for analysis.  

4.3.1 Nibley Bridge 

The first bridge modeled for this project was the same bridge in Nibley, Utah, that 

was being monitored for periodic loading. A comprehensive description of the Nibley 

Bridge is given in Section 3.1. Figure 65 shows an image of the Nibley Bridge captured 

using the Phantom 4 Pro drone. 

     
Figure 65. Photograph of the Nibley Bridge. 

This was a difficult bridge to model due to the volume of traffic crossing the 

bridge (an important consideration when picking a bridge to model). Federal law 

prohibits flying a UAV above moving vehicles and pedestrians not taking part in the 



91 

flight, which meant that the drone could not fly above the bridge deck while either was 

on the bridge.  

To help guarantee a safe flight experience, the decision was made to fly the drone 

at least 25 feet (7.62 m) above the bridge deck. Flying the drone at a higher altitude 

decreased the resolution of the photos of the bridge. The high volume of traffic also 

invalidated several oblique photos taken by the drone, as moving vehicles/pedestrians can 

confuse the modeling software (See Section 4.5.2.1). 

Surrounding vegetation was also an issue. Several trees border the Nibley Bridge 

to the north and south. There is also a light pole to the southeast of the bridge. This meant 

that the boundaries of the automatic flight had to be decreased in order to avoid a 

collision. It also made it difficult to capture oblique photos from the direction of the trees. 

The flight path for this bridge consisted a single back-and-forth pattern at 25 feet 

above the bridge deck and three oblique orbits at different heights around the bridge. The 

drone was also flown along each side of the bridge only a few feet above the water, in 

order to capture images looking underneath the bridge. The flight was completed by 

taking several photos of the bridge deck from a higher altitude and by flying close to the 

cracks being measured and taking pictures. 

4.3.2 Trenton Bridge 

The Trenton Bridge (National Bridge Inventory Structure Number 005034C) is a 

steel truss bridge located near Trenton, UT (41°56’20.20” N 111°56’26.00”W). 

Constructed in 1925, this 151-foot (46-meter) bridge carries a county road over the Bear 

River. The Trenton Bridge was selected in order to see how well the software could 
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model a steel truss as opposed to a concrete girder bridge. Figure 66 shows a photograph 

of the Trenton Bridge. 

 
Figure 66. Photograph of the Trenton Bridge. 

Given the rural location of the Trenton Bridge, there was a relatively low volume 

of traffic compared to the bridge in Nibley. This resolved many of the concerns about 

traffic flow. The largest obstacles associated with this bridge stemmed from the overhead 

truss of the bridge itself and from a string of power lines that run over the river 

approximately 45 feet south of the bridge. Additionally, while setting the drone up for 

flight it was discovered that the batteries were only charged at 60% capacity, which 

limited the drone’s flight time and the number of photos that were taken of this bridge.  

 The flight path for the Trenton Bridge consisted of a single back-and-forth pattern 

to capture aerial footage at 35 feet (approximately 10 feet above the truss), followed by 

an oblique orbit. The drone was flown along each side of the truss in order to capture 
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more detail from the side, followed by a handful of oblique images captured by flying the 

drone manually. 

4.3.3 Elwood Bridge 

The Elwood Bridge is a steel girder bridge located in Elwood, UT (41°38'50.17"N 

112° 8'28.65"W). Built in 2001, the bridge spans the Corinne Canal and provides farmers 

access to their fields from 5200 W. This bridge was specifically chosen because of the 

attributes listed in the following paragraph, which made the Elwood Bridge an ideal 

candidate for 3D modeling. Figure 67 shows a photograph of the Elwood Bridge 

 
Figure 67. Photograph of the Elwood Bridge. 

After flying the Nibley and Trenton Bridges, the decision was made to find a 

bridge that had no surrounding obstacles, a low volume of traffic, and a short span. 

Because the Elwood Bridge crosses a rural canal and is surrounded by fields, the 
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surrounding landscape is completely flat with no potential obstacles for several hundred 

feet. The Elwood Bridge carries a dirt road and is intended solely for access by farmers, 

so traffic on the bridge was non-existent during the drone’s flight. Finally, the short span 

of 24 feet (7.32 m) allowed the drone to capture more overlapping pictures, potentially 

upping the quality of the model. 

More pictures were captured of the Elwood Bridge than any other bridge. The 

DroneDeploy app was not functioning properly on the day of the test, so the back-and-

forth pattern was flown manually at four different heights: 1 foot, 3 feet, 8 feet, and 15 

feet (0.30 m, 0.91 m, 2.44 m, and 4.57 m). This was followed by image capture during 

three oblique orbits at varying heights. Several close-up photos were taken of each side of 

the bridge, followed by images of the underside of the bridge taken just above the water 

level from each side. 

4.4  Modeling Results 

 This section consists of three parts. First, an evaluation is provided of each 

modeling software examining specific strengths and weaknesses of each individual 

program. Second, models of each of the three bridges are compared qualitatively. 

Components unique to each bridge and how the software modeled them are addressed. 

Third, a quantitative assessment of the three brands of software is conducted using 

measurements taken at each bridge. 

It should be noted that several models were created of each bridge by varying 

which photos were input into each software. For example, it was discovered that the 

Pix4D model of the Nibley Bridge looked most correct when lower-quality photos were 
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eliminated from the model. A good-faith effort was made to create the best bridge model 

using each software within the time constraints of the project. The models presented for 

each bridge are the “best” models created.   

4.4.1 Evaluation of Individual Software Results 

4.4.1.1 Pix4D 

The most common error in Pix4D models was the creation of floating objects. 

These consisted of irregularly-shaped objects that did not exist in real life, but were 

created in the model. The floating objects could be floating in the air above the model or 

attached to the model itself. Pictures of several floating objects are shown in Figure 68. 
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Figure 68. Floating objects from various Pix4D models. 

Floating objects could be created by a variety of factors. Many were the result of 

including low-quality photographs in the model. These low-quality photographs typically 

included shots of the sky and/or horizon. As used in this paper, the term “horizon” 

includes the horizon line and objects a significant distance away from the bridge.  

Floating objects were also often caused by water surfaces, because most water 

surfaces lack identifiable points for the software to reference. If the water was 

exceptionally still, the reflection of the bridge in the water could also cause floating 

objects. 
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Sometimes the floating objects were not the result of a discernable user error. 

Floating objects commonly occurred around skeletal objects like traffic poles and steel 

truss members. They occurred to a lesser extent where the Pix4D software had difficulty 

processing a planar surface or where an object protruded out of a smooth surface. Some 

floating objects simply reflect the limitations of using a computer algorithm to recreate a 

three-dimensional model from two-dimensional images. 

Another large drawback to the Pix4D software was the amount of time it took to 

create a model. In order to create the best-looking model, the processing options were set 

to the highest-quality settings. Also, as many quality pictures as possible were used to 

create the model. Under these conditions, it typically took the software about 24 hours to 

completely process a model. Because the desktop version of Pix4D was used, when the 

software was processing a model it often consumed the majority of the available RAM on 

the computer, slowing the computer down significantly. 

While it was usually able to recreate the shape of a structure, the Pix4D software 

would also frequently superimpose images in the wrong location. For example, when 

creating the model of the Nibley Bridge, the software superimposed an image of the 

underside of the bridge onto the exterior of the north concrete parapet (Figure 69). The 

incorrectly superimposed images were usually photos taken at an odd angle or from an 

unexpected location.  
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Figure 69. Incorrectly superimposed image on the Pix4D Nibley Bridge model. 

The Pix4D software also struggled with creating planar surfaces. Where a smooth 

surface existed in real life, the modeling software would often create a surface that 

appeared choppy and disjointed. For example, the bridge deck in Figure 70 should appear 

relatively smooth. Instead, the model appears rough and uneven. 

 
Figure 70. Deck Surface of the Pix4D Nibley Bridge model. 
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4.4.1.2 DroneDeploy 

The DroneDeploy software, however, did particularly well modeling flat surfaces. 

Other software used often had difficulty when multiple points were coplanar. This would 

often lead to flat surfaces such as bridge decks being modeled appearing choppy and 

disjointed in the models. However, the DroneDeploy software did a relatively good job of 

modeling flat surfaces, as evidenced by its model of the Nibley Bridge deck in Figure 71. 

 
Figure 71. Flat Deck Surface of the DroneDeploy Nibley Bridge model. 

However, DroneDeploy did have serious issues when it came to modeling skeletal 

structures. This included items such as metal traffic barriers, chain link fences, power 

poles, etc. If the item was less than about one foot (0.30 m) thick, the DroneDeploy 

software had difficulty creating a continuous member. Often, the software would simply 

eliminate the skeletal object from the model entirely. 

This proved most problematic when modeling the Trenton Bridge. While the 

DroneDeploy software did better than expected modeling the lower truss members, it 

could not adequately model the skinnier lateral bracing and sway bracing at the top of the 

bridge. This is shown in Figure 72, which compares an actual photo of the Trenton 

Bridge on the left to the DroneDeploy model on the right. 
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Figure 72. Comparison of Trenton Bridge trusses to DroneDeploy model trusses. 

Another area where the DroneDeploy software had problems was processing any 

water running beneath the bridge. Where water existed, the model would usually create 

disjointed blobs at various depths beneath the bridge (See Figure 73). This is likely due to 

the fluid nature of water, as well as the lack of identifiable points in water. If the water 

was exceptionally still, the software would also occasionally try to model an inverted 

bridge based off the bride’s reflection in the water. While these issues alone do not 

hamper the ability to inspect a bridge using a model created from drone images, they do 

result in a messy-looking model. 
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Figure 73. Water underneath the DroneDeploy Elwood Bridge model. 

One final modeling aspect that the DroneDeploy software handled well was 

recognizing that a gap existed between the underside of the bridge and the water below. 

Early attempts during this project to create models from drone photos often resulted in 

models where the sides of the bridge connected directly down into the water (See Figure 

74). As the research progressed, experience piloting the drone combined with knowledge 

of best model photography practices resolved most of this issue. As shown later, the 

DroneDeploy software did the best job of recognizing the gap beneath the bridge and 

incorporating it into the model. 
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Figure 74. Early model of the Elwood Bridge. 

4.4.1.3 Agisoft PhotoScan 

The Agisoft PhotoScan software provided the highest surface resolution of the 

three modeling software programs. Whereas other programs created texture for their 

models by coloring the triangle mesh, Agisoft PhotoScan appears to have superimposed 

individual pixels onto the model. This gave the Agisoft PhotoScan software a crisp, high-

resolution look. The increased resolution aided in creating lifelike models and was 

especially helpful when a specific area of the bridge needed to be closely inspected. 

The Agisoft PhotoScan software struggled, however, at creating a successful gap 

underneath the bridge. This is likely due in part to the lack of easily identifiable points in 

the water beneath the bridge; any given point on the waters’ surface is roughly identical 

to a nearby point. This theory is supported by Figure 75, which shows the Agisoft 

PhotoScan model of the Elwood Bridge. 
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Figure 75. Water underneath the Agisoft PhotoScan Elwood Bridge model. 

In Figure 75, a wall of water extends from the bottom of the bridge down to the 

canal’s surface. The wall pulls away, however, from the bridge abutments. This is 

because the program is able to compare points across multiple photos to determine the 

location of abutments. However, the software has no way of telling how far away the 

water’s surface is from the camera, because even from different angles all water points 

appear similar. Because the oblique photos show water directly adjacent to the bridge 

girder (See Figure 67 in Section 4.3.3), it assumes that the water must connect directly to 

the bridge girder. This creates the phenonemon shown in Figure 75. 

Agisoft PhotoScan also had issues modeling flat water surfaces. However, unlike 

the DroneDeploy software, Agisoft PhotoScan was able to create a continuous water 

surface. Instead, the water surface was not planar; its elevation greatly varied. In Figure 

76, the elevation of the water changes so that it forms a wave several feet high. 
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Figure 76. Agisoft PhotoScan Trenton Bridge model. 

The Agisoft PhotoScan software also suffered from the same floating object 

problems as the Pix4D software. This included the incorporation of sky around skinny 

members (shown in Figure 76), as well as other types of floating objects. However, 

Agisoft PhotoScan’s cropping feature allowed for the many of the floating objects to be 

removed. If the floating object was attached to the structure, however, cropping it out 

would leave a hole in the model where the floating object attached. For this reason, 

floating objects attached to the model were not cropped out. 

4.4.2 Qualitative Comparison of Software Results 

4.4.2.1 Nibley Bridge 

The Nibley Bridge presented several unique challenges to the modeling software. 

The I-shape of the girders created a thin flange on the outside of the exterior of the 

girders for the software to model and made it near impossible to model the spaces 

between the interior girders. Meanwhile, the large shaded area underneath the bridge 

combined with the dense surrounding vegetation made it difficult to model the gap 
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between the underside of the bridge and the river below. Screenshots of the 3D models 

compared against a photo of the actual bridge are shown in Figure 77. 

 
Figure 77. Photograph of the Nibley Bridge (top left) compared against screenshots of the Pix4D (top 

right), DroneDeploy (bottom left), and Agisoft PhotoScan (bottom right) models. 

Each modeling software was able to recreate the bridge deck. However, the 

results of the underside of the bridge greatly varied. The DroneDeploy software was able 

to model the gap between the bridge and the river most successfully. The Pix4D and 

Agisoft PhotoScan software both struggled at successfully recreating this gap. 

Screenshots of the underside of the bridge from all three models are shown in Figure 78. 
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Figure 78. Screenshots of the underside of the Nibley Bridge Pix4D (top), DroneDeploy (center), and 

Agisoft PhotoScan (bottom) models. 

As can be seen in Figure 78, the Pix4D model struggled significantly with floating 

objects, not only beneath the bridge but above the concrete parapets as well. It was 

discovered that the Pix4D software could adequately model the gap underneath the bridge 

if all pictures of the bottom of the bridge or of any portion of the sky were removed. 

However, the alternate model then contained no information about the underside of the 

bridge, defeating the purpose of creating the model.  
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The Agisoft PhotoScan software had issues with floating objects that extended 

from the underside of the bridge to the surface of the water. The DroneDeploy software, 

however, successfully recreated the basic shape of the underside of the bridge. While the 

DroneDeploy software did have some small floating objects, they were very minor 

compared to the other modeling software and did not impede inspection of the bottom of 

the bridge. 

Because the drone camera could not look directly up into the gap between the 

individual girders, none of the models accurately recreated the shape of the gap shown in 

Figure 79. The Agisoft PhotoScan software was able to recognize that a space existed 

between the girders and attempted to recreate the gap. It was most successful with the 

girders closest to the edge, because the gap between these girders was documented best in 

drone photos. The DroneDeploy model simply modeled the underside of the bridge as a 

flat surface. The Pix4D software was able to recognize that gaps existed and attempted to 

recreate them; however, it was not as successful as the Agisoft PhotoScan software. 

       
Figure 79. Gap between Nibley Bridge girders 

Another qualitative metric was the recreation of the outside exterior girder. Figure 

80 shows screenshots of Girder 10 (the southern exterior girder) from all three models. 
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While all three brands of software were able to recreate the basic shape of the flange, the 

quality of the finished product varied. DroneDeploy’s ability to recreate smooth surfaces 

helped it create the most accurate model of the exterior girder, while the Agisoft 

PhotoScan software struggled to recreate the overhang of the top flange, giving it the 

least accurate exterior girder model. 

            
Figure 80. Screenshots of Girder 10 from the Pix4D (top left), DroneDeploy (top right), and Agisoft 

PhotoScan (bottom left) Nibley Bridge models. 

4.4.2.2 Trenton Bridge 

The Trenton Bridge presented two main challenges to the modeling software. 

First, because the Trenton Bridge is a steel truss bridge, it is primarily composed of 
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skinny members. Thus, this bridge was a good test of the software’s ability to model 

skinny members. 

 The second modeling challenge was human-caused. Because the Trenton Bridge 

was photographed relatively early in the research process, the majority of the oblique 

photos of the bridge contain large amounts of sky and/or horizon in them. It was learned 

later that photos of the sky cause large amounts of floating objects in the finished model.  

Efforts to rephotograph the Trenton Bridge were hampered by winter. Because 

snow on the ground covers the identifiable points needed to create a model, a new model 

based on photos taken with snow on the ground would not be high quality. Thus, the 

decision was made to use the existing photographs to model the Trenton Bridge. 

Screenshots of all three models are shown in Figure 81. 

 

  
Figure 81. Photograph of the Trenton Bridge (top left) compared against screenshots of the Pix4D (top 

right), DroneDeploy (bottom left), and Agisoft PhotoScan (bottom right) models. 
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For the Pix4D and DroneDeploy models, all pictures of the sky and horizon were 

removed prior to creating the model. However, it was discovered that the Agisoft 

PhotoScan software was better able to reconstruct the truss members if the photographs 

of the sky and horizon were included in the model. This is why the Agisoft PhotoScan 

model has more floating objects than models created using other software programs. 

Removing photos containing the horizon resulted in fewer photographs available 

to create the Pix4D and DroneDeploy models. The number of photos used was already 

limited due to the short drone battery life of the Trenton Bridge flight. The limited battery 

life during this flight also meant that no pictures were taken of the underside of this 

bridge using the drone. Thus, none of the models contained an adequate reconstruction of 

the underside of the Trenton Bridge. 

The skinniest members of the Trenton Bridge are the sway bracing and top lateral 

bracing members. Figure 82 shows a side-by-side comparison of the sway bracing, while 

Figure 83 shows a side-by-side comparison of the top lateral bracing. In both figures, it is 

apparent that each modeling software struggled modeling skinny members. However, 

each software modeled the skinny members in a different way.  
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Figure 82. Trenton Bridge sway bracing from a drone photograph (top) the Pix4D (top center), 

DroneDeploy (bottom center), and Agisoft PhotoScan (bottom) models. 
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Figure 83. Trenton Bridge top lateral bracing from the Pix4D (left), DroneDeploy (center), and Agisoft 

PhotoScan (right) models. 

The Pix4D software was able to recreate the basic shape of the sway and the top 

lateral bracing with the greatest accuracy. There was a limited quantity of floating objects 

encasing the members, and a cross-section of any given recreated member would not 

geometrically resemble the actual cross-section of the member. However, the program 

generally recognized that the truss consisted of several independent skinny members. 

The DroneDeploy software, as noted in Section 4.4.1.2, struggled significantly to 

recreate continuous skinny members. In fact, it almost completely failed to recreate any 

portion of the interior sway brace shown in Figure 82. The software did better at 

recreating the bracing joints, where multiple members connected at a plate. Because the 

joints were wider than the truss members, the program was able to detect and model the 

bracing joints. 
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The Agisoft PhotoScan had an interesting approach to model the sway bracing. 

While it may appear from Figure 82 that the software has created a near-perfect replica of 

the sway bracing, the software did not actually model the individual truss members. 

Instead, the entire sway brace is a thin, rectangular slice spanning the width of the bridge. 

An image of the truss is then superimposed over the slice. 

Similarly, the Agisoft PhotoScan software was not able to recreate the lateral truss 

bracing. Where it was able to detect the bracing, the software usually created an 

irregularly-shaped floating object. This is due partially because the Agisoft PhotoScan 

model incorporated pictures of the horizon, which can contribute to the creation of 

floating objects in the model.  

Interestingly, all three versions modeling software overlaid “phantom” images of 

the bracing onto the concrete deck below. This is likely due to the fact that the bracing 

was very close to the drone in relation to the bridge deck. If the drone were to take a 

photo of the deck while hovering over a brace and move even a short distance, the brace 

would no longer be in the picture. Repetition of this phenomenon over time would lead to 

“disappearing” braces and result in the phantom image shown in Figure 84. 
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Figure 84. “Phantom” image of the top lateral bracing from the DroneDeploy Trenton Bridge model. 

 Finally, the vertical truss members of the Trenton Bridge provided an opportunity 

to evaluate each software’s ability to model larger skinny members. The vertical truss 

members of the Trenton Bridge are built-up members consisting of two steel channels 

connected by a lattice. A photograph of the vertical truss member is shown in Figure 85, 

alongside screenshots of vertical truss members from each modeling software. 
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Figure 85. Photograph of a Trenton Bridge vertical truss member (left) compared against screenshots of the 

Pix4D (center left), DroneDeploy (center right), and Agisoft PhotoScan (right) models. 

The Pix4D software was able to recreate the vertical truss member most 

accurately. The resulting member looks correct in both shape and image overlay. The 

DroneDeploy software was able to model the vertical truss member more successfully 

than the skinner members in Figures 82 and 83. However, a cross-section of the resulting 

member would not match a cross-section of the actual member. The Agisoft PhotoScan 

software had the most difficulties recreating the vertical truss members. This is due in 

part to the images of the horizon included in the model. None of the software programs 

were able to recognize that the vertical truss members were in fact hollow and made of 

multiple connected steel components. 
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4.4.2.3 Elwood Bridge 

 The models of the Elwood Bridge were of particular interest for this research. 

Because it was the last bridge to be photographed, the best drone photography practices 

were used to capture the images that went into these models. Additionally, because the 

Elwood Bridge is much smaller than the other bridges, it had a significantly higher 

number of photos of each component of the bridge. It was therefore expected that the 

Elwood Bridge would have the highest-quality models of the three bridges selected. 

Figure 86 shows screenshots of each of the models compared to an actual photograph of 

the bridge.  

  
Figure 86. Photograph of the Elwood Bridge (top left) compared against screenshots of the Pix4D (top 

right), DroneDeploy (bottom left), and Agisoft PhotoScan (bottom right) models.  

Because the Elwood Bridge was chosen specifically so that the drone could fly as 

close to the deck as possible, of specific interest was whether, in ideal conditions, the 
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modeling software would successfully retain the resolution of the drone photographs in 

the finished model. Figure 87 compares a portion of the deck from each model to a 

photograph taken while the drone hovered approximately three feet above the same area 

of the deck. The photograph shows a section of the concrete deck covered in patches of 

dirt and gravel and marked with tire tracks.  

 
Figure 87. Photograph of the Elwood Bridge deck (top left) compared against screenshots of the deck from 

the Pix4D (top right), DroneDeploy (bottom left), and Agisoft PhotoScan (bottom right) models. 

Figure 87 shows that there is an appreciable downgrade in resolution from 

photograph to model, even in the best model. As noted in Section 4.4.1, the Agisoft 

PhotoScan software was able to preserve more of the original resolution and texture of 

the drone images than other software programs. The DroneDeploy model was able to 

retain the basic shape of the original markings, but the image was segmented into 

fragments.  
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The Pix4D model experienced a total loss of resolution/texture because the 

software incorrectly superimposed an image of a different segment of deck over the 

analyzed location (a phenomenon described in Section 4.4.1). However, in other areas the 

Pix4D model had an intermediate resolution between the DroneDeploy and Agisoft 

PhotoScan models. When compared to models of the other bridges, flying the drone 

closer to the bridge deck did result in an appreciable upgrade in the surface resolution of 

the model.  

Models of the underside of the Elwood Bridge had varied results, which are 

shown in Figure 88. The Pix4D software modeled the underside of the bridge as a rough, 

uneven surface with texturing that roughly approximated the actual bottom of the bridge. 

Limitations on the number of photos that could be uploaded to the DroneDeploy software 

meant that only the best pictures could be used in the model. This led to the discarding of 

the majority of the pictures of the underside of the bridge for this specific model. Because 

of this, the DroneDeploy software did not have sufficient data to reconstruct the 

underside of the Elwood Bridge. The Agisoft PhotoScan software was unable to recreate 

the bottom of the bridge for reasons noted in Section 4.4.1.3. 
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Figure 88. Screenshots of the underside of the Elwood Bridge Pix4D (top), DroneDeploy (center), and 

Agisoft PhotoScan (bottom) models. 

The difficulty modeling the underside of the Elwood Bridge is thought to stem 

from two causes. First, the bridge superstructure is located only a few feet above the 
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water surface of the canal. This does not leave very much space for light to penetrate and 

illuminate the underside of the bridge girders. In the majority of pictures taken of the 

Nibley Bridge, the contrast between the shadow and bright sun makes the underside of 

the bridge appear extremely dark. This makes it difficult for the software to distinguish 

between individual points to create the 3D model. 

Second, because the drone’s camera could not look higher than a horizontal plane, 

virtually every photo of the underside of the bridge girders also contained shots of the 

horizon. These photos had to either not be used in the model or included in the model, 

where they would cause floating objects. 

Finally, Figure 89 compares the models of the flange bracing along the exterior 

bridge girders. As shown by the top left image in Figure 89, the outer flanges on each 

edge of the bridge were periodically braced by thin strips of steel. 
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Figure 89. Photograph of the Elwood Bridge flange bracing (top left) compared against screenshots of the 

flange bracing from the Pix4D (top right), DroneDeploy (bottom left), and Agisoft PhotoScan (bottom 

right) models. 

The Agisoft PhotoScan model was unable to recreate the gap between the bracing 

in the girder and instead inserted triangular-shaped wedges where they should be placed. 

The DroneDeploy model was able to recreate the flange bracing most accurately, 

consistently recreating the gap between the girder and brace. This allowed for the unique 

point of view shown in Figure 89. The Pix4D software achieved an intermediary result. 

All programs did better at modeling the flange bracing on the south side of the bridge, 

which was better illuminated than the flange bracing on the north side. 
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4.4.3 Quantitative Comparison of Software Results 

4.4.3.1 Defects 

As noted at the beginning of Section 4.3, one actual bridge defect was identified 

prior to photographing each bridge. Three artificial “cracks” were also created at each 

bridge by applying masking tape to the bridge surface and drawing cracks of various 

lengths and thicknesses onto the tape. Measurements were taken of the dimensions of 

both the real and artificial defects. 

Once the models were finished, each model was inspected to determine whether 

the individual defects were visible in the finished model. It was found that the majority of 

the defects (69.4%) were either not present in the finished model or were too low-

resolution to measure. The software did best at modeling defects if one of two conditions 

were met: 1) the drone flew exceptionally close to the bridge (i.e. the Elwood Bridge) or 

2) the defect was exceptionally large (i.e. the pothole in the Trenton Bridge). No defects 

appeared in the models of the Nibley Bridge. 

All six models with visible defects were exported into object (.obj) files. The 

object files were then loaded into MeshLab, a free three-dimensional modeling program. 

Loading the models into MeshLab allowed the models to be scaled to the correct size and 

measured. (While Pix4D has the ability to measure model dimensions in-program, 

DroneDeploy and Agisoft PhotoScan do not). 

It was discovered that while each model was proportionally correct, the initially-

measured distances in each model did not match the real-life dimensions of each bridge. 

To correct this, multiple real-life measurements from each bridge (typically the bridge 
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length) were compared against the corresponding measurements from each model. The 

ratios from the measurements were averaged for each model and used to scale the bridge 

to the appropriate size. These scale factors are shown in Table 6. 

Table 6. Scale factors for each model. 

Bridge/Software Scale Factor 

Trenton Bridge  

Pix4D 3.318 

DroneDeploy 3.309 

Agisoft PhotoScan 3.660 

Elwood Bridge  

Pix4D 3.326 

DroneDeploy 3.256 

Agisoft PhotoScan 2.109 

A total of five different defects were visible between the six models, one defect 

from the Trenton Bridge and all four defects from the Elwood Bridge. The Trenton 

Bridge’s defect was a large pothole in the concrete deck located 48.46 feet (14.77 m) 

from the west abutment. The Elwood Bridge’s defects consisted of 1) a numeral “1” 

etched into the concrete deck (the last numeral in the date), 2) an artificial crack drawn 

with a pen and taped to the bridge deck, 3) an artificial crack drawn with a marker and 

taped to the bridge deck, and 4) an artificial crack drawn with a marker and taped to the 

southeast wing wall. Photographs of all five defects are shown in Figure 90.   
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Figure 90. Defects in the Trenton and Elwood Bridges; Defect 1: a pothole (top left); Defect 2: a numeral 1 

(top right); Defect 3: a pen-drawn crack (bottom left); Defect 4: a marker-drawn crack (bottom center); 

Defect 5: a marker-drawn crack (bottom right). 

The length of each defect was measured in each model. The results are given in 

Table 7. However, not all defects were present in every model. Where Table 7 reads 

“N/A”, the defect was not present in the finished model.  

Table 7. Comparison of bridge defect measurements 

Defect 
Actual 

Length 
Pix4D DroneDeploy 

Agisoft 

PhotoScan 

Trenton Bridge     

Defect 1 (Pothole) 
27 inch 

(68.58 cm) 

27.67 in 

(70.29 cm) 

27.79 inch 

(70.59 cm) 

27.52 inch 

(69.89 cm) 

Elwood Bridge     

Defect 2 (Numeral) 
3.37 inch 

(8.56 cm) 

2.37 inch 

(6.02 cm) 

3.4 inch 

(8.64 cm) 

3.18 inch 

(8.07 cm) 

Defect 3 (Crack) 
1.92 inch 

(4.88 cm) 
N/A N/A 

1.91 inch 

(4.86 cm) 

Defect 4 (Crack) 
2.23 inch 

(5.66 cm) 
N/A 

1.68 inch 

(4.26 cm) 

2.24 inch 

(5.7 cm) 

Defect 5 (Crack) 
2.1 inch 

(5.33 cm) 

2.17 inch 

(5.52 cm) 
N/A 

2.1 inch 

(5.34 cm) 
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The wider the defect, the better the software was at recreating that defect in the 

three-dimensional model. This is demonstrated by the fact that all three software models 

were able to recreate Defects 1 and 2, the largest defects. Only two software models 

contained Defects 4 and 5, which were only 0.05 inches (0.13 cm) thick. Only one 

software model contained Defect 3, which was only 0.02 inches (0.04 cm) thick. 

It should be noted that because 5.5 months passed between taking the drone 

photographs and measuring the finished model, there was some ambiguity as to where the 

pothole’s (Defect 1’s) measurements were originally taken from. However, all three 

models were measured from the same points. Given the precision of the measurements 

for Defect 1 in Table 7, it is probable that they are accurate.  

Another issue to note is that the Pix4D software modeled the pothole (Defect 1) as 

a smooth surface without any depth. While the depth of the pothole was not measured as 

part of this research, a successful recreation of this defect would include a representation 

of its depth. The DroneDeploy and Agisoft PhotoScan software both modeled the pothole 

with depth. The width of the pothole was not measured on the models.  

It should also be noted that Defects 1 and 4 were partially obscured in the 

DroneDeploy models. The location of the beginning of the pothole was approximated for 

Defect 1. For Defect 4, the measurement was taken as it appeared on the model. This is 

why the DroneDeploy measurement for Figure 71 is shorter than the real-life 

measurement. It is unknown why the Pix4D measurement of Defect 2 is shorter than the 

real-life measurement. 
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Table 7 clearly demonstrates that, so long as the model is able to recreate a defect 

discernably, it is possible to get accurate measurements from a model created using drone 

imagery. In the majority of circumstances, the measurement was off by less than 0.1 

inches (0.25 cm). On average, the model measurement only differed from the actual 

measurement by 2.06%. 

However, there are several factors that could potentially impede accurate 

measurements on a model outside of a controlled research setting. First, the two major 

outliers in the data set, Pix4D’s measurement of Defect 2 and DroneDeploy’s 

measurement of Defect 4, differed from their respective real-life values by 29.62% and 

24.81%. For this research, real-world measurements were taken and compared against the 

model measurements to test whether they were accurate. In practice, there would be no 

way of knowing the accuracy of a model measurement. 

Second, the same researcher who took the original measurements also measured 

the models. This could have potentially skewed the bridge measurements towards being 

more accurate, as all of the data was in one place and being compared against each other. 

Third, even when the defects could be measured, they were usually very low-

resolution. Determining exactly where the defect began and ended was extremely 

difficult. This is shown in Figure 91, which contains screenshots of some of the defects 

measured in various models. 
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Figure 91. Screenshots of defects from each model; Defect 3, Agisoft PhotoScan model (left); Defect 4, 

DroneDeploy model (center); Defect 5, Pix4D model (right). 

As noted when discussing the Elwood Bridge models in Section 4.4.2 and 

demonstrated by Figure 91, there was a noticeable loss of resolution when the software 

converted still images into a three-dimensional model. Often the shape of the crack was 

fragmented into a small cluster of pixels. 

Usually, the skinniest defects were only discernable because it was known 

beforehand that the defects existed and where they were at on the bridge. It is 

questionable if even an experienced bridge inspector could have located the defects on 

the model without prior knowledge of their location. The loss of image resolutions 

remains one of the chief roadblocks to recreating and accurately measuring defects on a 

three-dimensional model. 

4.4.3.2 Coins 

A dime, a penny, a nickel, and a quarter were also placed face up on the bridge 

deck prior to photographing the bridge. This allowed for a side-by-side evaluation of 

whether the software could recreate specific details of the bridge, and how high the 

resolution of the recreated details would be. The modeled coins are shown in Figures 92, 

93, and 94, where they are compared against a drone photograph of the same coins. The 
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coins appear in the order stated above. If a software’s results are not included in a figure, 

that software did not recognizably recreate the coins in its model. 

 
Figure 92. Drone photograph of coins placed on the Nibley Bridge (top); coins from the Pix4D model 

(center) and DroneDeploy model (bottom). 

  
Figure 93. Drone photograph of coins placed on the Trenton Bridge (top); coins from the Pix4D model 

(center) and DroneDeploy model (bottom). 
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Figure 94. Drone photograph of coins placed on the Elwood Bridge (top); coins from the DroneDeploy 

model (center) and Agisoft PhotoScan model (bottom). 

As can be seen in the figures, the coin models are most accurate and detailed in 

the Elwood Bridge models and least accurate in the Trenton Bridge models. Recall from 

Section 4.3 that the drone flew 25 feet (7.62 m) above the Nibley Bridge deck, 35 feet 

(10.67 m) above the Trenton Bridge deck, and 1 foot (0.30 m) above the Elwood Bridge 

deck (the photograph in Figure 94 was taken at 3 feet (0.91 m)). Flying the drone closer 

to the deck not only resulted in a better quality drone photograph; it also allowed the 

models to recreate the coins at a higher resolution as well. Hence, the distance the drone 

took pictures above the deck significantly influenced the resolution of the coins in the 

model. 
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4.5  Drone Modeling Conclusions and Recommendations 

4.5.1 Conclusions 

 The primary conclusion of this research is that models based off of images 

captured by standard, commercially available drones are not yet suitable for bridge 

inspections. This is based off of the models’ inability to recreate the majority of identified 

defects and the significant loss of resolution between the drone images and the finished 

models. Until these issues are resolved, three-dimensional models will be unable to attain 

the level of measurement accuracy necessary to conduct a bridge inspection.  

However, this research also concludes that the existing technology is heading in 

the right direction. Currently, three-dimensional modeling of bridges is a new field, one 

that is growing and changing rapidly. Much of the technology used in this research was 

not available a decade ago. As the industry grows to meet this niche field, the price of 

drones built specifically to conduct bridge inspections is expected to drop. Modeling 

software can also be developed that is specifically tailored to model bridges. This will 

address and resolve several of the difficulties encountered in this research. 

There are two primary roadblocks that modeling software must overcome before 

three-dimensional models can be used to aid bridge inspections. First, the modeling 

software must be able to accurately recreate the shape of bridge components. This not 

only includes accurately recreating members’ shapes (See Figure 85 in Section 4.4.2.2); 

the software needs to stop creating floating objects. This is because floating objects make 

viewing the bridge difficult and warp bridge members to the point they can no longer be 

inspected. 
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Second, the software must be able to recreate 3D-model textures accurately and at 

higher resolutions than at present. Because the model texture is how the drone 

photographs are superimposed onto the blank model, if the model texture is wrong than it 

can result in a defect being the wrong size or being omitted from the model entirely. If 

the model texture is too low-resolution, it makes it extremely difficult to locate defects on 

the model and obtain accurate measurements. 

 Until modeling technology reaches the capability to better process drone imagery 

of bridges, drones can still be used independently of modeling software to aid in bridge 

inspections. While the screenshots of the bridge models were usually low-resolution, the 

raw drone images usually clearly documented bridge defects.  

It is anticipated that drones will be most helpful when used in conjunction with 

other bridge inspection methods. They are particularly well suited for situations where 

one or more bridge components are difficult to access. This is especially true on large 

bridges with long spans (as opposed to the relatively short bridges considered in this 

study). Consider, for example, the Perrine Bridge near Twin Falls, Idaho, shown in 

Figure 95.  
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Figure 95. Perrine Bridge (Owens, n.d.). 

The Perrine Bridge is approximately 1,500 feet long (457.2 m) long and stands 

486 feet (148.13 m) above the Snake River. Its main arch is too far below the deck for 

under bridge inspection vehicles to access. The arch could be examined by lowering 

inspectors down on ropes; however, this carries human risk. A drone could inspect 

components of the bridge arch both easily and safely. For this reason, drones are 

particularly well suited to inspect these types of large bridges.  

The primary difficulty of using pure drone imagery is that it is difficult to measure 

defect dimensions from a single photograph. To calculate defect dimensions from a 

single photograph, one must know the distance between the drone’s camera and the 

defect. Alternately, the ratio between the defect and an object in the photograph of known 

dimensions could be used. Because neither the drone-to-defect distance nor a ratio is 

typically known, at present drones are best used in conjunction with other established 

bridge inspection methods. 
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4.5.2 Recommendations 

4.5.2.1 Recommendations for Drone Selection 

 The following recommendations are intended to aid in the selection of a drone for 

a bridge inspection project. 

• Having a drone camera that can look directly upwards should be considered 

paramount for a drone bridge inspection project. Without it, it is near impossible 

to collect good data about the underside of the bridge’s superstructure. 

• Consideration should be given into the quality of the camera attached to the 

drone. It should be ascertained that the drone camera will capture images at high-

enough resolution to adequately display bridge defects. 

• Consideration should be given into purchasing extra batteries for the drone. More 

batteries allow the operator more flight time at each location. More flight time 

allows the drone to take more photos, which can upgrade the quality and accuracy 

of the model. 

• Having a drone with sensors that prevent it from crashing into obstacles is very 

useful. This is because it allows the drone operator to take close-up photos of the 

bridge while minimizing the chance that the drone will fly to close and crash into 

the structure. It also can be cost-effective, as it helps prevent costly drone 

replacements. 

• Some drone models will automatically return to home if they lose GPS signal. If 

this feature is included in a drone, it should be verified that the feature can be 
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turned off to prevent a drone from flying directly upwards into an obstacle (such 

as the bottom of a bridge deck). 

4.5.2.2 Recommendations for Bridge Suitability 

Before beginning a drone bridge inspection project, the suitability of the bridge 

for drone image capture should be determined. This includes evaluations of whether a 

drone will be able to adequately capture images of bridge components, as well as whether 

the software will be able to create a quality model of the bridge. The following 

recommendations are intended to help in this evaluation. 

• The minimum altitude of the drone flight above the bridge deck should be 

considered. The higher the drone flies above the bridge deck, the lower resolution 

photographs of the deck will be. The minimum altitude above the bridge deck is 

typically dictated by the obstacles surrounding the bridge, including vehicular 

traffic, overhead bridge trusses, vegetation, power poles, and buildings. If the 

minimum altitude of the flight is too high above the bridge deck to provide an 

adequate photograph resolution, the bridge is not suitable for drone image 

capture. 

• If heavy traffic regularly crosses the bridge, the bridge will need to be closed 

while the drone flies over the deck in order to comply with federal aviation law. 

This is because federal aviation law does not permit drones to fly directly above 

vehicles in motion or pedestrians not directly involved in the drone’s flight. 

• If vegetation exists near the bridge, it will be difficult to maneuver the drone to 

capture pictures. It may be impossible to capture photos from some angles. If the 
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vegetation is flush with the bridge, the drone will be unable to capture up-close 

images of that area. Where vegetation is present, caution should be taken when 

allowing an app to control the drone and automatically take pictures of the bridge. 

This recommendation also applies to areas with overhead obstacles (power lines, 

street lamps, etc.). 

• If the drone images will be included in a model, the area surrounding the bridge 

should be free of large patches of snow. Photographs containing large areas of 

snow will cause several of the same problems that pictures of the water or sky 

cause in 3D models. 

• Bridges made of large, basic shapes (e.g. box girder bridges) will generally have 

better models than bridges with skinny or complicated members (e.g. truss 

bridges or girder bridges). 

4.5.2.3 Recommendations for Image Capture 

The following recommendations apply to drone operators and the end-users of 

3D-modeling software. The quality of the model is most often a direct function of the 

drone photography practices that captured the images included in the model. If followed, 

these recommendations are intended to result in the best-quality model of a given bridge. 

• As noted in Section 4.5.1, the quality of the photos taken by the drone is far more 

important than the quantity of pictures taken. Including sub-standard photos in a 

3D model usually had a greater negative impact than including more photos had a 

positive impact. Using too many photographs in a model noticeably increased the 

model processing time as well. The photos to be included in a model should be 
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reviewed prior to beginning the modeling process, and low-quality photos should 

be removed. 

• Pictures taken with a drone should only contain stationary objects. If an object 

moves while photos are being taken, the modeling software will identify the 

object in one photo but will be unable to find the object in the same location in 

subsequent photos. This can confuse the software and lead to errors in the model. 

Pictures containing moving objects (including vehicles, pedestrians, and the drone 

operator) should be removed prior to modeling.  

• Care should be taken to avoid taking photographs that include the sky and/or 

horizon in the background. As defined earlier, the “horizon” consists of the 

horizon line and objects that are a considerable distance away from the bridge. 

Including photos containing the sky or horizon in a model greatly increases the 

number of floating objects. Except where absolutely necessary, images containing 

shots of the sky or horizon should be removed prior to modeling the bridge. 

• Photos that are overexposed or contain sun glare (see Figure 96) should be 

removed prior to starting the modeling process. The differences in shade and 

contrast between overexposed and regular pictures can confuse the modeling 

software in a similar manner as moving objects. This also applies to images 

containing sun glare. 
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Figure 96. Overexposed photograph of the Elwood Bridge containing sun glare. 

• Drone pictures should be taken from the proper distance away from the object. If 

the drone is too far away, the resolution of the finished model will be low. If the 

drone is too close to the object, there may not be enough identifiable points in the 

photograph to help orient the picture in the model.  

• When flying the drone manually, it is possible (using DJI’s in-flight control app) 

to have the drone automatically take a photo every two seconds. It is highly 

recommended that the drone operator use this capability because it speeds up the 

image capture process, allows the drone operator to focus on flying the drone, and 

captures more photos per flight. 

• Oblique images are extremely important to creating a successful model of a 

bridge. These images allow the modeling software to more accurately recreate the 

sides of the bridge, model the gap underneath the bridge, and recreate the area 

underneath an overhang. While flying the drone, care should be taken to capture 

oblique pictures from multiple viewpoints and angles. 
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• If a bridge defect is readily apparent, the drone operator should capture as many 

detailed photos of the defect as possible. This includes close-up photos of the 

defect, as well as photos that show where the defect is located in relation to other 

bridge components. 

• The drone operator should take care to capture photos of every part of the bridge. 

This includes photos of the underside of the bridge. If too few photos exist of a 

bridge component, it will not be included in the model. Capturing photos of 

bridge components from different angles is helpful as well.  

• When using the DroneDeploy app to automatically capture overhead photos, 

increasing the overlap between the photos can result in a higher-quality model. 

However, increasing the overlap too high can result in the drone essentially 

hovering over the same spot, taking photos without moving. 

• It was observed that the three software programs rarely used pictures taken with 

the Nikon D90 camera in the model, even when they were included in the model. 

This was because the photos taken using the Nikon D90 camera were taken at 

variable focal lengths and were not geotagged. If supplemental pictures are taken 

with a camera, a camera with a constant focal length (no zoom lens) and 

geotagging capabilities should be used. 

4.5.2.4 Recommendations for Modeling Software Improvement 

The following recommendations are intended to be ways in which the modeling 

software itself could be improved. They are intended for companies producing the 

software rather than the end-user. 
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• The two largest areas for improvement, eliminating floating objects and 

improving model resolution, were evaluated in detail in Section 4.5.1. These 

conclusions will not be reexamined in this section. However, these remain the two 

areas in need of greatest improvement.  

• While images of many bridge components can be taken without including the 

horizon in the model, for some components including the horizon in photographs 

is unavoidable (e.g. when capturing images of the underside of the bridge). 

Because of this, the software could be further improved to process images 

containing the sky and horizon in the background without creating as many errors 

in the model. 

• Another area for improvement is the software programs’ ability to model water. 

Whether the modeling software connected the water to the underside of the 

bridge, created floating objects where the water should be, or failed to recreate the 

water altogether, none of the software programs used in this research were able to 

accurately recreate water surfaces if the water was more than a few feet deep. 

While measures can be taken to avoid including sky in the background of the 

model, it is inevitable that pictures of bridges spanning water will contain images 

of the water. Thus, modeling software for bridges needs to be capable of handling 

water in a model. 

• The software could do better at recognizing that a gap exists between the 

superstructure of the bridge and the river beneath. Often, especially in early 

models, the software was unable to recognize that the gap existed (see Figures 74 
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and 75 in Section 4.4.1). Software designed for bridge modeling could begin the 

model with the assumption that a gap exists, allowing for a better model. 

• The software could be improved to better recognize and model skinny bridge 

members (for example, trusses). 

• Another area where the software was often deficient was creating smooth surfaces 

in the model. If a smooth surface was choppy (as in Figure 70 of Section 4.4.1.1), 

the software was already starting with an inaccurate base model before the texture 

was ever applied. This could potentially result in distortion of defects and bridge 

geometry. 

• One useful feature would be the ability to annotate defects and other problem 

areas in-software. This feature already exists in third-party software. Figure 97 

shows an image from an archaeology site model uploaded to Sketchfab, an online 

software for sharing 3D models. Important areas are easily identified with 

numbers. Clicking on the numbers zooms in on the area and provides a short, 

user-provided description. 
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Figure 97. Screenshot of Ortli excavation site (low-poly) from Sketchfab (agisoft 2014). 

This feature would be tremendously useful for bridge inspections. The ability to 

annotate where defects are located would allow notes to be maintained about the 

location and extent of the defects. It would also allow for easier monitoring of 

defects over time as new models are created. The annotation could also be linked 

to all of the images in which that defect appears for evaluation of the higher-

quality drone images.  

• Another useful feature would be the ability to measure three-dimensional models 

in the software that they were originally produced. This would mean that models 

would not need to be exported to MeshLab in order to be measured, simplifying 

and expediting the measuring process. 

• The ability to crop a finished model was one of the most useful features of the 

Agisoft PhotoScan software. A good bridge modeling software would include this 

feature, as it allows for non-essential features such as vegetation to be removed 
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from the model. Removing non-essential features allows for easier inspection of 

the bridge model because the removed features do not block views bridge 

components. 

• As explained in Section 4.1.3, the DroneDeploy Android app was used to map the 

bridge deck looking directly down from above. With the advent of sensors that 

can tell how close the drone is to the ground, drone mapping apps could also 

include flying patterns that vary the drone’s height, flying the drone up-and-down 

to map the side of a bridge while looking horizontally. 

4.5.2.5 Recommendations for Regulatory Improvement 

As noted in the Minnesota Department of Transportation’s (MnDOT) 2015 research 

project, Federal Aviation Administration (FAA) regulations on drones can be restrictive. 

While the process to become registered to fly a drone has been simplified over the last 

several years, several obstacles remain to the widespread use of drones to inspect bridges. 

This includes the following: 

• Flying drones for research purposes is treated the same as commercial use and is 

regulated by 104 CFR Part 107. This can be overly restrictive because it requires 

researchers to obtain a remote pilot certificate before they can fly a drone. The 

remote pilot certification process can take a significant amount of time and 

includes a test, application, and a background check. The amount of time spent 

trying to become certified can be problematic, especially if a research project is 

on a tight schedule. In the case of this project, more time was spent trying to get 
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the certificate (3 weeks) than was actually spent flying the drone (about 12 hours 

including practice flights).  

• 104 CFR 107.39 forbids flying drones over pedestrians and moving vehicles. 

While it is possible to receive a Part 107 Waiver, only seven companies in the 

United States have been able to obtain one. Without a waiver, flying a drone 

above a bridge deck necessitates that no traffic be on the bridge. For bridges with 

regular use, this necessitates either a partial or a full bridge-closure, which 

negatively affects the economic advantages of using drones for bridge inspection. 

For bridges with less traffic, the drone operator must halt the drone flight and 

move the drone away from the bridge whenever a vehicle approaches. This can 

interrupt the automatic flight program and unnecessarily uses battery life. It can 

also be difficult to fly the drone to a safe distance in the space of time between 

when a vehicle comes into view and when the vehicle crosses the bridge. 
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CHAPTER 5 

CONCLUSION 

5.1  Summary of Conclusions 

5.1.1 Summary of Conclusions for Short-Term Strain Monitoring Research 

Based on the measured data, the traffic on the Nibley Bridge regularly exceeded 

HS-20 truck loading, with recorded strains of up to 59.26 με. The largest loading events 

approached (but did not exceed) the HL-93 design loads. Because the monitoring took 

place over a relatively narrow span of time, it was theorized that the maximum strains 

experienced by the bridge girders could be even higher than the measured values. 

It was discovered that the largest strains were typically concentrated into a small 

number of days per week. On any given day, the largest strains were of similar 

magnitudes, and the shape of the strain events indicated that the strains were caused by 

vehicles with similar axle configurations (See Figure 32). Because of these similarities, it 

was theorized that the largest strain events on any given day were likely caused by the 

same vehicle crossing the Nibley Bridge multiple times that day. 

It was found that the girders immediately under the traffic lanes experienced the 

highest magnitude of strains. Adjacent girders experienced progressively less strain the 

farther they were placed from the loaded traffic lane. The girders farthest from the loaded 

traffic lane (the exterior girders and girders underneath in the opposite lane) typically 

experienced little to no strain. 

As expected, the distribution of strain events followed established traffic patterns, 

with the number of strain events picking up throughout the day and decreasing at night. 
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The highest number of strain events occurred just before school started and right after 

school let out. During these periods, multiple vehicles used the bridge at once, resulting 

in higher strains in the bridge girders. 

The majority of vehicles (95.62%) caused less than 5.0 με of strain in any girder 

on the bridge. These values reflect smaller vehicles crossing the Nibley Bridge; vehicles 

smaller than a pickup truck typically caused a strain of 2.42–3.45 με. School buses 

typically caused a strain of around 13.65 με, while heavily laden construction equipment 

caused the largest strains but had highly variable strain magnitudes. 

5.1.2 Summary of Conclusions for Drone Modeling Research 

The drone modeling area of the research concluded that standard, commercially 

available drones can be an effective tool to aid in bridge inspections. The effectiveness of 

the drone depends on the size and length of the bridge, as well as how difficult it is to 

inspect bridge members using other methods. Other factors such as heavy vegetation and 

high traffic levels also affect whether using a drone would be appropriate for a bridge 

inspection project.  

It was also concluded that three-dimensional models created using images 

captured using a non-specialized drone are not yet suitable for bridge inspections. This 

conclusion is primarily due to the low resolution of the models created for this project. 

The low model resolution made it difficult to locate and measure bridge defects. The low 

resolution also often meant that defects were either not present or were indiscernible in 

the finished model. 
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 The conclusion about the suitability of bridge models for bridge inspections was 

also due to the programs’ inability to accurately model some bridge members. The 

creation of “floating objects” added geometry to the bridge that did not actually exist. It 

also distorted some bridge members and obscured others from view. Some software 

failed to model flat surfaces accurately, while others could not accurately recreate skinny 

members. 

The final conclusion of this area of research is that both drone and 3D modeling 

technology is heading in the right direction. The rapid growth of this industry may 

address several of the issues raised in this research over the next several years. As the 

market grows, drones and software specializing in inspecting and modeling bridges 

should be developed. Future developments in this field could allow for the accurate 

creation and measurement of bridge models. 

5.2  Recommendations for Additional Research 

5.2.1 Recommendations for Additional Short-Term Strain Monitoring Research 

• The data used in this study was collected over a five-week span. Future research 

could collect data over a longer period in order to confirm and expand upon this 

research. 

• Continuous video monitoring could be used to increase the sample sizes of large 

vehicles shown in Table 3 in Section 3.3.5.5. 

• The live load test data collected in Section 3.3.5.4 could be analyzed using a 

finite-element model. The results could be used to verify the conclusions drawn in 
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Section 3.3.5.4 and improve the accuracy of the girder distribution factors 

presented in Section 3.3.5.7. 

• Future research could place additional strain transducers on Girder 4 in order to 

verify the readings of Sensor B1978. 

5.2.2 Recommendations for Additional Drone Modeling Research 

• The majority of this research focused on using drone imagery to create a bridge 

model, then conducting a bridge inspection on said model. Future research could 

instead focus on identifying and measuring defects from raw drone imagery. 

• Only three bridges were modeled as part of this research. Future research could 

examine a greater variety of bridge types, span lengths, etc. 

• A licensed bridge inspector could inspect a bridge prior to capturing drone 

imagery. Once a 3D model has been created, a separate licensed bridge inspector 

could inspect the bridge model. The results of the two inspections could then be 

compared. 

• Future research could attempt to model larger bridges (such as the Perrine Bridge) 

in order to evaluate the feasibility of using drones to inspect and model larger 

bridges. 

• This research focused on inspecting bridges using a standard, non-specialized, 

commercially available drone. Tests could be conducted using a drone 

specifically designed for bridge inspections and compared against this research. 
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• Future research could place “artificial” easily identifiable points around the bridge 

in the form of colored cones in order to examine whether this would improve the 

quality of the 3D model. 

• The drone imagery from this research was captured around midday. Future 

research could examine whether capturing drone imagery closer to dawn/dusk 

would reduce the contrast underneath the bridge and allow for easier modeling of 

the underside of the bridge. 

• Future research could determine recommended limits for the maximum/minimum 

number of photos per model. 

• Because this field is advancing rapidly, this research should be revisited 

periodically to determine whether new technology has resolved the problems 

encountered in this research. 
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APPENDIX A 

Event Extraction VBA Program 

Sub ExtractEvents() 

Dim Threshold As Double 

Dim MaxStallTime As Double 

Dim NormalDataPath As String 

Dim EventDataPath As String 

Dim TestSpecificationName As String 

Dim PointsPerSecond As String 

Dim FileLength As Double 

 

Dim mybook As Workbook, BaseWks As Worksheet, CalcMode As Long 

Dim MyFiles() As String, FilesInPath As String 

 

Dim TimeFormula As String 

Dim NumberEvents As Double 

Dim FNum As Double 

Dim StartCell As Double 

Dim StopCell As Double 

Dim StartTime As Double 

Dim FirstEvent As Double 

Dim EventRow As Double 

Dim Filename As String 

Dim BeforeEventTime As Double 

Dim AfterEventTime As Double 

Dim CompareTime As Double 

Dim IgnoreTime As Double 

 

 

'****************************************************************** 

'****************************************************************** 

 

Threshold = Worksheets("Main").Range("D16").Cells(1, 1).Value 

MaxStallTime = Worksheets("Main").Range("D17").Cells(1, 1).Value 

BeforeEventTime = Worksheets("Main").Range("D18").Cells(1, 

1).Value 

AfterEventTime = Worksheets("Main").Range("D19").Cells(1, 

1).Value 

CompareTime = Worksheets("Main").Range("D20").Cells(1, 1).Value 

IgnoreTime = Worksheets("Main").Range("D21").Cells(1, 1).Value 

NormalDataPath = Worksheets("Main").Range("D24").Cells(1, 

1).Value 

EventDataPath = Worksheets("Main").Range("D25").Cells(1, 1).Value 

TestSpecificationName = Worksheets("Main").Range("D31").Cells(1, 

1).Value 

PointsPerSecond = Worksheets("Main").Range("D32").Cells(1, 

1).Value 

FileLength = Worksheets("Main").Range("D33").Cells(1, 1).Value 

TimeofYear = Worksheets("Main").Range("D35").Cells(1, 1).Value 
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'****************************************************************** 

'****************************************************************** 

 

FileLength = PointsPerSecond * 3600 * FileLength + 1 

MaxStallTime = MaxStallTime * PointsPerSecond 

BeforeEventTime = BeforeEventTime * PointsPerSecond 

AfterEventTime = AfterEventTime * PointsPerSecond 

CompareTime = CompareTime * PointsPerSecond 

IgnoreTime = IgnoreTime * PointsPerSecond 

    

' Add a slash after path names if needed. 

If Right(NormalDataPath, 1) <> "\" Then 

NormalDataPath = NormalDataPath & "\" 

End If 

If Right(EventDataPath, 1) <> "\" Then 

EventDataPath = EventDataPath & "\" 

End If 

 

' If there are no TDMS files in the folder, stop program. 

FilesInPath = Dir(NormalDataPath & "*.tdms*") 

If FilesInPath = "" Then 

MsgBox "No TDMS files found" 

Exit Sub 

End If 

 

' Fill the myFiles array with the list of TDMS files in the 

folder. 

FNum = 0 

Do While FilesInPath <> "" 

FNum = FNum + 1 

ReDim Preserve MyFiles(1 To FNum) 

MyFiles(FNum) = FilesInPath 

FilesInPath = Dir() 

Loop 

 

' Change application properties. 

With Application 

CalcMode = .Calculation 

.Calculation = xlCalculationManual 

.ScreenUpdating = False 

.EnableEvents = False 

.CalculateBeforeSave = False 

End With 

 

' Loop through all files in the myFiles array. 

If FNum > 0 Then 

For FNum = LBound(MyFiles) To UBound(MyFiles) 

Set mybook = Nothing 

On Error Resume Next 

On Error GoTo 0 

 

'**********************Open TDMS File 

Code*********************** 

'Get TDM Excel Add-In 
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Dim obj As COMAddIn 

Set obj = 

Application.COMAddIns.Item("ExcelTDM.TDMAddin") 

 

'Confirm only importing "Description" properties for 

Root 

Call obj.Object.Config.RootProperties.DeselectAll 

Call 

obj.Object.Config.RootProperties.Select("Descri

ption") 

 

'Show the group count as property 

Call 

obj.Object.Config.RootProperties.Select("Groups

") 

 

'Select all the available properties for Group 

Call obj.Object.Config.GroupProperties.SelectAll 

 

'Import custom properties 

obj.Object.Config.RootProperties.SelectCustomProperti

es = True 

obj.Object.Config.GroupProperties.SelectCustomPropert

ies = True 

obj.Object.Config.ChannelProperties.SelectCustomPrope

rties = True 

 

'Import the selected file 

Call obj.Object.ImportFile(NormalDataPath & 

MyFiles(FNum)) 

 

'Record down the current workbook & Select Correct 

Sheet 

Set mybook = ActiveWorkbook 

'Range("D3") = (Left(Range("D2").Cells(1, 1).Value, 

Len(Range("D2")) - 4)) 

Range("A3") = (Left(Range("A2").Cells(1, 1).Value, 

Len(Range("A2")) - 29)) 

Range("A3") = (Right(Range("A3").Cells(1, 1).Value, 

Len(Range("A3")) - 14)) 

Range("A3") = Replace(Range("A3").Cells(1, 1).Value, 

"_", "/", , 2) 

Range("A3") = Replace(Range("A3").Cells(1, 1).Value, 

"_", " ", , 1) 

Range("A3") = Replace(Range("A3").Cells(1, 1).Value, 

"_", ":", , 2) 

Range("A3").Select 

Selection.NumberFormat = "0.00" 

 

StartTime = Range("A3") 

ActiveSheet.Next.Select 

StartCell = 1 

StopCell = 1 
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'****************************************************

************ 

 

'Prepare Times 

TimeFormula = "=M2+1/3600/24/" & PointsPerSecond 

Worksheets(TestSpecificationName).Range("M2").Cells(1

, 1).Value = StartTime 

Worksheets(TestSpecificationName).Range("M3").Cells(1

, 1).Value = TimeFormula 

Range("M3").Select 

Selection.AutoFill Destination:=Range(Cells(3, 13), 

Cells(FileLength, 13)), Type:=xlFillDefault 

 

 

'Insert Event Detection Formula & Accidental Trigger 

Prevention 

Worksheets(TestSpecificationName).Range(Cells(FileLen

gth + 1, 2), Cells(FileLength + 1 + IgnoreTime, 

9)).Value = -999 

ActualCell = 2 + CompareTime 

 

'Start Formula 

Worksheets(TestSpecificationName).Range("S1").Cells(A

ctualCell, 1).Value = "=MIN(B2:B" & ActualCell 

& ")" 

Range("S1").Cells(ActualCell, 1).Select 

Selection.AutoFill 

Destination:=Range(Cells(ActualCell, 19), 

Cells(ActualCell, 26)), Type:=xlFillDefault 

Range(Cells(ActualCell, 19), Cells(ActualCell, 

26)).Select 

Selection.AutoFill 

Destination:=Range(Cells(ActualCell, 19), 

Cells(FileLength, 26)), Type:=xlFillDefault 

 

Worksheets(TestSpecificationName).Range("AB1").Cells(

ActualCell, 1).Value = "=B" & ActualCell & "-S" 

& ActualCell 

Range("AB1").Cells(ActualCell, 1).Select 

Selection.AutoFill 

Destination:=Range(Cells(ActualCell, 28), 

Cells(ActualCell, 35)), Type:=xlFillDefault 

Range(Cells(ActualCell, 28), Cells(ActualCell, 

35)).Select 

Selection.AutoFill 

Destination:=Range(Cells(ActualCell, 28), 

Cells(FileLength, 35)), Type:=xlFillDefault 

 

Worksheets(TestSpecificationName).Range("Q1").Cells(A

ctualCell, 1).Value = "=IF(OR(AB" & ActualCell 

& ">" & Threshold & ",AC" & ActualCell & ">" & 

Threshold & ",AD" & ActualCell & ">" & 

Threshold & ",AE" & ActualCell & ">" & 

Threshold & ",AF" & ActualCell & ">" & 
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Threshold & ",AG" & ActualCell & ">" & 

Threshold & ",AH" & ActualCell & ">" & 

Threshold & ",AI" & ActualCell & ">" & 

Threshold & "),1,0)" 

Worksheets(TestSpecificationName).Range("K1").Cells(A

ctualCell, 1).Value = "=IF(AND(Q" & ActualCell 

& "=1,SUM(Q" & ActualCell - IgnoreTime & ":Q" & 

ActualCell & ")=1),1,0)" 

 

 

Range("Q1").Cells(ActualCell, 1).Select 

Selection.AutoFill 

Destination:=Range(Cells(ActualCell, 17), 

Cells(FileLength, 17)), Type:=xlFillDefault 

Range("K1").Cells(ActualCell, 1).Select 

Selection.AutoFill 

Destination:=Range(Cells(ActualCell, 11), 

Cells(FileLength, 11)), Type:=xlFillDefault 

 

Range("K1").Cells(1 + CompareTime, 1).Value = "Start 

Triggers (Filtered)" 

Range("L1").Cells(1 + CompareTime, 1).Value = "Stop 

Trigger" 

Range("Q1").Cells(1 + CompareTime, 1).Value = "All 

Start Triggers" 

Range("R1").Cells(1 + CompareTime, 1).Value = "                     

Minimums" 

Range("AB1").Cells(1 + CompareTime, 1).Value = 

"Differences" 

 

 

'Stop Formula 

Worksheets(TestSpecificationName).Range("L1").Cells(A

ctualCell, 1).Value = "=IF(OR(B2-B" & 2 + 

CompareTime & ">" & Threshold - 0.25 & ",C2-C" 

& 2 + CompareTime & ">" & Threshold - 0.25 & 

",D2-D" & 2 + CompareTime & ">" & Threshold - 

0.25 & ",E2-E" & 2 + CompareTime & ">" & 

Threshold - 0.25 & ",F2-F" & 2 + CompareTime & 

">" & Threshold - 0.25 & ",G2-G" & 2 + 

CompareTime & ">" & Threshold - 0.25 & ",H2-H" 

& 2 + CompareTime & ">" & Threshold - 0.25 & 

",I2-I" & 2 + CompareTime & ">" & Threshold - 

0.25 & "),-1,0)" 

Worksheets(TestSpecificationName).Range("L1").Cells(A

ctualCell, 1).Select 

Selection.AutoFill 

Destination:=Range(Cells(ActualCell, 12), 

Cells(FileLength, 12)), Type:=xlFillDefault 

Worksheets(TestSpecificationName).Range("A1").Cells(F

ileLength, 12).Value = -1 

 

Worksheets(TestSpecificationName).Range("N1").Cells(1

, 1).Value = "# Events" 
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Worksheets(TestSpecificationName).Range("N2").Cells(1

, 1).Value = "=SUM(K:K)-N5" 

Worksheets(TestSpecificationName).Range("N4").Cells(1

, 1).Value = "# Duplicate Triggers" 

Calculate 

 

NumberEvents = 

Worksheets(TestSpecificationName).Range("N2").C

ells(1, 1).Value 

'MsgBox ("Initial Calculations Complete for File " & 

FNum & ". " & vbCrLf & "Approximately " & 

NumberEvents & " Events Found.") 

 

'Finalize Times 

Range(Cells(2, 1), Cells(FileLength, 1)) = 

Range(Cells(2, 13), Cells(FileLength, 

13)).Value 

Range(Cells(2, 13), Cells(FileLength, 13)).Clear 

 

'Find an Event Start 

Range("K1").Cells(StartCell, 1).Select 

Columns("K:K").Select 

Columns("K:K").Find(What:="1", After:=ActiveCell, 

LookIn:=xlValues, LookAt:=xlPart, 

SearchOrder:=xlByRows, SearchDirection:=xlNext, 

MatchCase:=False, SearchFormat:=False).Activate 

StartCell = ActiveCell.Row 

Range("L1").Cells(StartCell, 1).Select 

'Columns("L:L").Select 

Repeat: 

Columns("L:L").Find(What:="-1", After:=ActiveCell, 

LookIn:=xlValues, LookAt:=xlPart, 

SearchOrder:=xlByRows, SearchDirection:=xlNext, 

MatchCase:=False, SearchFormat:=False).Activate 

StopCell = ActiveCell.Row 

If StopCell < StartCell Then GoTo Repeat 

 

FakeEventCounter = 0 

FirstEvent = StartCell 

EventRow = StartCell 

BaseValue1978 = Cells(StartCell - CompareTime, 

2).Value 

If TimeofYear = "Summer" Then 

BaseValue1985 = Cells(StartCell - CompareTime, 

6).Value 

Else 

BaseValue1985 = Cells(StartCell - CompareTime, 

8).Value 

End If 

BaseValue1988 = Cells(StartCell - CompareTime, 

9).Value 

mybook.Sheets(TestSpecificationName).Activate 

 

'Copy Event Data into New Files 



158 

Do 

'Copy Event Data 

MyRange = 0 

If StopCell - StartCell + BeforeEventTime 

< MaxStallTime Then 

MyRange = Range(Cells(StartCell - 

BeforeEventTime, 1), 

Cells(StopCell + 

AfterEventTime, 9)) 

MinValueRange = 

Range(Cells(StartCell, 19), 

Cells(StartCell, 26)) 

Else 

MyRange = Range(Cells(StartCell - 

BeforeEventTime, 1), 

Cells(StartCell + 

MaxStallTime - 

BeforeEventTime, 9)) 

MinValueRange = 

Range(Cells(StartCell, 19), 

Cells(StartCell, 26)) 

End If 

 

'Create & Set Up New Workbook 

Set BaseWks = 

Workbooks.Add(xlWBATWorksheet).Work

sheets(1) 

Worksheets("Sheet1").Range("A1").Cells(1, 

1).Value = "Time" 

Worksheets("Sheet1").Range("A1").Cells(1, 

2).Value = "B1978" 

Worksheets("Sheet1").Range("A1").Cells(1, 

3).Value = "B1979" 

Worksheets("Sheet1").Range("A1").Cells(1, 

4).Value = "B1980" 

Worksheets("Sheet1").Range("A1").Cells(1, 

5).Value = "B1984" 

Worksheets("Sheet1").Range("A1").Cells(1, 

6).Value = "B1985" 

Worksheets("Sheet1").Range("A1").Cells(1, 

7).Value = "B1986" 

Worksheets("Sheet1").Range("A1").Cells(1, 

8).Value = "B1987" 

Worksheets("Sheet1").Range("A1").Cells(1, 

9).Value = "B1988" 

Worksheets("Sheet1").Range(Cells(1, 1), 

Cells(1, 9)).Font.Bold = True 

Worksheets("Sheet1").Range("K1").Cells(1, 

1).Value = "Mins:" 

Worksheets("Sheet1").Range("K2").Cells(1, 

1).Value = "=B2-K$1" 

Worksheets("Sheet1").Range(Cells(1, 11), 

Cells(1, 18)).Font.Italic = True 
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Worksheets("Sheet1").Range("K1").Cells(1, 

1).HorizontalAlignment = xlRight 

 

'Paste Data Into New Workbook 

If StopCell - StartCell < MaxStallTime 

Then 

BaseWks.Range(Cells(2, 1), 

Cells(StopCell - StartCell + 

BeforeEventTime + 

AfterEventTime + 1, 

9)).Select 

BaseWks.Range(Cells(2, 1), 

Cells(StopCell - StartCell + 

BeforeEventTime + 

AfterEventTime + 1, 9)).Value 

= MyRange 

Else 

BaseWks.Range(Cells(2, 1), 

Cells(MaxStallTime + 1, 

9)).Select 

BaseWks.Range(Cells(2, 1), 

Cells(MaxStallTime + 1, 

9)).Value = MyRange 

End If 

BaseWks.Range(Cells(1, 11), Cells(1, 

18)).Value = MinValueRange 

BaseWks.Range("A1").Cells(BeforeEventTime 

+ 2, 1).NumberFormat = "mm/dd/yyyy 

hh:mm:ss.ss;@" 

If Filename = 

Replace(Replace(CStr(BaseWks.Range(

"A1").Cells(BeforeEventTime + 2, 

1)), "/", "-"), ":", ";") Then 

Filename = 

Replace(Replace(CStr(BaseWks.

Range("A1").Cells(BeforeEvent

Time + 2, 1)), "/", "-"), 

":", ";") & " (2)" 

Else 

Filename = 

Replace(Replace(CStr(BaseWks.

Range("A1").Cells(BeforeEvent

Time + 2, 1)), "/", "-"), 

":", ";") 

End If 

    

'Save And Exit 

BaseWks.SaveAs Filename:=EventDataPath & 

Filename, 

FileFormat:=xlOpenXMLWorkbook 

BaseWks.Activate 

ActiveWorkbook.Close savechanges:=False 

 

0:                  'Next Workbook 
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mybook.Sheets(TestSpecificationName).Acti

vate 

Range("K1").Cells(StartCell, 1).Select 

Columns("K:K").Find(What:="1", 

After:=ActiveCell, 

LookIn:=xlValues, LookAt:=xlPart, 

SearchOrder:=xlByRows, 

SearchDirection:=xlNext, 

MatchCase:=False, 

SearchFormat:=False).Activate 

StartCell = ActiveCell.Row 

If StartCell - EventRow <= 

PointsPerSecond * 10 And StartCell 

- EventRow > -1000 Then 

ComparisonValue1978 = 

Cells(StartCell, 2).Value 

If TimeofYear = "Summer" Then 

ComparisonValue1985 = 

Cells(StartCell, 

6).Value 

Else 

ComparisonValue1985 = 

Cells(StartCell, 

8).Value 

End If 

ComparisonValue1988 = 

Cells(StartCell, 9).Value 

BaseValue1978 = Cells(StartCell, 

2).Value 

If TimeofYear = "Summer" Then 

BaseValue1985 = 

Cells(StartCell, 6 + 

17).Value 

Else 

BaseValue1985 = 

Cells(StartCell, 8 + 

17).Value 

End If 

BaseValue1985 = Cells(StartCell, 9 

+ 17).Value 

 

If ComparisonValue1978 - 

BaseValue1978 > Threshold * 

1.6 Or ComparisonValue1985 - 

BaseValue1985 > Threshold * 

1.6 Then  'Megaevent 

Protection 

FakeEventCounter = 

FakeEventCounter + 1 

GoTo 0 

ElseIf ComparisonValue1978 - 

BaseValue1978 + 0.2 < 

ComparisonValue1988 - 

BaseValue1988 And 
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ComparisonValue1985 - 

BaseValue1985 + 0.2 < 

ComparisonValue1988 - 

BaseValue1988 Then 

'Sidewalk Sensor 

FakeEventCounter = 

FakeEventCounter + 1 

GoTo 0 

'ElseIf 

WorksheetFunction.Max(Cells(E

ventRow, 2).Value, 

ComparisonValue1978) - 

WorksheetFunction.Min(Range(C

ells(EventRow, 2), 

Cells(StartCell, 2))) < 0.5 

And 

WorksheetFunction.Max(Cells(E

ventRow, 7).Value, 

ComparisonValue1985) - 

WorksheetFunction.Min(Range(C

ells(EventRow, 7), 

Cells(StartCell, 7))) < 0.5 

Then    'Prevents the tail 

end of the event being 

classified as an event 

'FakeEventCounter = 

FakeEventCounter + 1 

'GoTo 0 

End If 

End If 

Range("L1").Cells(StartCell, 1).Select 

Columns("L:L").Find(What:="-1", 

After:=ActiveCell, 

LookIn:=xlValues, LookAt:=xlPart, 

SearchOrder:=xlByRows, 

SearchDirection:=xlNext, 

MatchCase:=False, 

SearchFormat:=False).Activate 

StopCell = ActiveCell.Row 

EventRow = StartCell 

If EventRow > 73000 Then 

qwerty = 1 

End If 

 

Loop Until EventRow = FirstEvent 

 

 

' Save & Close TDMS File 

Range("A2").NumberFormat = "mm/dd/yyyy hh:mm:ss;@" 

Worksheets(TestSpecificationName).Range("N5").Cells(1

, 1).Value = FakeEventCounter 

Filename = Replace(Replace(CStr(Range("A2")), "/", "-

"), ":", ";") 
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mybook.SaveAs Filename:=EventDataPath & "Normal 

Recording File " & Filename, 

FileFormat:=xlOpenXMLWorkbook 

mybook.Close savechanges:=False 

    

' Open The Next Normal Recording File. 

Next FNum 

End If 

 

 

' Restore the application properties. 

With Application 

.ScreenUpdating = True 

.EnableEvents = True 

.Calculation = xlAutomatic 

.CalculateBeforeSave = True 

End With 

MsgBox "Events Have Been Extracted." 

 

End Sub 
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Strain Compilation VBA Program 

Sub Compile_Maximum_Event_Strains() 

Dim MyPath As String, FilesInPath As String 

Dim MyFiles() As String 

Dim FNum As Long 

Dim mybook As Workbook, BaseWks As Worksheet 

Dim CalcMode As Long 

Dim MyDate As String 

 

'****************************************************************** 

'****************************************************************** 

 

MyPath = Worksheets("Main").Range("D16").Cells(1, 1).Value 

PointsPerSecond = Worksheets("Main").Range("D23").Cells(1, 

1).Value 

BeforeTime = Worksheets("Main").Range("D24").Cells(1, 1).Value 

  

'****************************************************************** 

'****************************************************************** 

BeforeTime = BeforeTime * PointsPerSecond 

 

' Add a slash after MyPath if needed. 

If Right(MyPath, 1) <> "\" Then 

MyPath = MyPath & "\" 

End If 

 

' If there are no xlsx files in the folder, stop program. 

FilesInPath = Dir(MyPath & "*.xlsx*") 

If FilesInPath = "" Then 

MsgBox "No xlsx files found" 

Exit Sub 

End If 

 

' Fill the myFiles array with the list of Excel files in the 

folder. 

FNum = 0 

Do While FilesInPath <> "" 

FNum = FNum + 1 

ReDim Preserve MyFiles(1 To FNum) 

MyFiles(FNum) = FilesInPath 

FilesInPath = Dir() 

Loop 

 

xsx = LBound(MyFiles) 

yxy = UBound(MyFiles) 

 

' Change application properties. 

With Application 

CalcMode = .Calculation 

.Calculation = xlCalculationManual 

.ScreenUpdating = False 

.EnableEvents = False 

End With 
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' Add a new workbook with one sheet; set up headers. 

Set BaseWks = Workbooks.Add(xlWBATWorksheet).Worksheets(1) 

Worksheets("Sheet1").Range("A1").Cells(1, 1).Value = "Time of 

Trigger (i.e. when the first sensor hits 2 µe)" 

Worksheets("Sheet1").Range("A1").Cells(1, 2).Value = "B1978" 

Worksheets("Sheet1").Range("A1").Cells(1, 3).Value = "B1979" 

Worksheets("Sheet1").Range("A1").Cells(1, 4).Value = "B1980" 

Worksheets("Sheet1").Range("A1").Cells(1, 5).Value = "B1984" 

Worksheets("Sheet1").Range("A1").Cells(1, 6).Value = "B1985" 

Worksheets("Sheet1").Range("A1").Cells(1, 7).Value = "B1986" 

Worksheets("Sheet1").Range("A1").Cells(1, 8).Value = "B1987" 

Worksheets("Sheet1").Range("A1").Cells(1, 9).Value = "B1988" 

Worksheets("Sheet1").Range("A1").Cells(1, 11).Value = "Drift" 

'Worksheets("Sheet1").Range("A1").Cells(1, 13).Value = 0 

'Worksheets("Sheet1").Range("A1").Cells(1, 14).Value = 2 

'Worksheets("Sheet1").Range("A1").Cells(1, 15).Value = 4 

'Worksheets("Sheet1").Range("A1").Cells(1, 16).Value = 6 

'Worksheets("Sheet1").Range("A1").Cells(1, 17).Value = 8 

'Worksheets("Sheet1").Range("A1").Cells(1, 18).Value = 10 

'Worksheets("Sheet1").Range("A1").Cells(1, 19).Value = 12 

'Worksheets("Sheet1").Range("A1").Cells(1, 20).Value = 14 

'Worksheets("Sheet1").Range("A1").Cells(1, 21).Value = 16 

'Worksheets("Sheet1").Range("A1").Cells(1, 22).Value = 18 

'Worksheets("Sheet1").Range("A1").Cells(1, 23).Value = 20 

'Worksheets("Sheet1").Range("A1").Cells(1, 24).Value = "Infinity" 

 

Worksheets("Sheet1").Range(Cells(1, 1), Cells(1, 24)).Font.Bold = 

True 

BaseWks.SaveAs fileName:="C:\Users\jake\Desktop\Master File", 

FileFormat:=xlOpenXMLWorkbook 

 

' Loop through all files in the myFiles array. 

If FNum > 0 Then 

For FNum = LBound(MyFiles) To UBound(MyFiles) 

Set mybook = Nothing 

On Error Resume Next 

Set mybook = Workbooks.Open(MyPath & MyFiles(FNum)) 

On Error GoTo 0 

 

'Select Correct Sheet & Copy Data Out 

MyDate = Range("A1").Cells(2 + BeforeTime, 1) 

Value1 = WorksheetFunction.Max(Range(Cells(2 + 

BeforeTime, 2), Cells(450, 2))) - 

Range("K1") 

Value2 = WorksheetFunction.Max(Range(Cells(2 + 

BeforeTime, 3), Cells(450, 3))) - 

Range("L1") 

Value3 = WorksheetFunction.Max(Range(Cells(2 + 

BeforeTime, 4), Cells(450, 4))) - 

Range("M1") 

Value4 = WorksheetFunction.Max(Range(Cells(2 + 

BeforeTime, 5), Cells(450, 5))) - 

Range("N1") 
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Value5 = WorksheetFunction.Max(Range(Cells(2 + 

BeforeTime, 6), Cells(450, 6))) - 

Range("O1") 

Value6 = WorksheetFunction.Max(Range(Cells(2 + 

BeforeTime, 7), Cells(450, 7))) - 

Range("P1") 

Value7 = WorksheetFunction.Max(Range(Cells(2 + 

BeforeTime, 8), Cells(450, 8))) - 

Range("Q1") 

Value8 = WorksheetFunction.Max(Range(Cells(2 + 

BeforeTime, 9), Cells(450, 9))) - 

Range("R1") 

 

'Paste Data into Master Sheet 

Windows("Master File").Activate 

Worksheets("Sheet1").Range("A2").Cells(FNum, 1).Value 

= MyDate 

Worksheets("Sheet1").Range("A2").Cells(FNum, 2).Value 

= Value1 

Worksheets("Sheet1").Range("A2").Cells(FNum, 3).Value 

= Value2 

Worksheets("Sheet1").Range("A2").Cells(FNum, 4).Value 

= Value3 

Worksheets("Sheet1").Range("A2").Cells(FNum, 5).Value 

= Value4 

Worksheets("Sheet1").Range("A2").Cells(FNum, 6).Value 

= Value5 

Worksheets("Sheet1").Range("A2").Cells(FNum, 7).Value 

= Value6 

Worksheets("Sheet1").Range("A2").Cells(FNum, 8).Value 

= Value7 

Worksheets("Sheet1").Range("A2").Cells(FNum, 9).Value 

= Value8 

 

' Close TDMS File 

mybook.Close savechanges:=False 

    

' Open the next workbook. 

Next FNum 

End If 

 

 

'Drift Column 

Worksheets("Sheet1").Range("K2").Cells(1, 1).Value = 

"=IF(AND(B2<2,C2<2,D2<2,E2<2,F2<2,G2<2,H2<2,I2<2),1,0)" 

Range("K2").Select 

Selection.AutoFill Destination:=Range(Cells(2, 11), Cells(FNum, 

11)), Type:=xlFillDefault 

 

'Create tally table 

'Worksheets("Sheet1").Range("N2").Cells(1, 1).Value = 

"=IF(AND($B2>=M$1,$B2<N$1,$K2<>1),1,0)" 

'Range("N2").Select 
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'Selection.AutoFill Destination:=Range("N2:X2"), 

Type:=xlFillDefault 

'Range("N2:X2").Select 

'Selection.AutoFill Destination:=Range(Cells(2, 14), Cells(FNum, 

24)), Type:=xlFillDefault 

'Worksheets("Sheet1").Range("A1").Cells(1, 26).Value = "0–2" 

'Worksheets("Sheet1").Range("A1").Cells(1, 27).Value = "2–4" 

'Worksheets("Sheet1").Range("A1").Cells(1, 28).Value = "4–6" 

'Worksheets("Sheet1").Range("A1").Cells(1, 29).Value = "6–8" 

'Worksheets("Sheet1").Range("A1").Cells(1, 30).Value = "8–10" 

'Worksheets("Sheet1").Range("A1").Cells(1, 31).Value = "10–12" 

'Worksheets("Sheet1").Range("A1").Cells(1, 32).Value = "12–14" 

'Worksheets("Sheet1").Range("A1").Cells(1, 33).Value = "14–16" 

'Worksheets("Sheet1").Range("A1").Cells(1, 34).Value = "16–18" 

'Worksheets("Sheet1").Range("A1").Cells(1, 35).Value = "18–20" 

'Worksheets("Sheet1").Range("A1").Cells(1, 36).Value = "20+" 

'Worksheets("Sheet1").Range("A1").Cells(1, 37).Value = "Sum:" 

Worksheets("Sheet1").Range("A1").Cells(1, 39).Value = "# of 

Drifts" 

'Worksheets("Sheet1").Range("A1").Cells(2, 26).Value = 

"=SUM(N:N)-N1" 

'Worksheets("Sheet1").Range("A1").Cells(2, 27).Value = 

"=SUM(O:O)-O1" 

'Worksheets("Sheet1").Range("A1").Cells(2, 28).Value = 

"=SUM(P:P)-P1" 

'Worksheets("Sheet1").Range("A1").Cells(2, 29).Value = 

"=SUM(Q:Q)-Q1" 

'Worksheets("Sheet1").Range("A1").Cells(2, 30).Value = 

"=SUM(R:R)-R1" 

'Worksheets("Sheet1").Range("A1").Cells(2, 31).Value = 

"=SUM(S:S)-S1" 

'Worksheets("Sheet1").Range("A1").Cells(2, 32).Value = 

"=SUM(T:T)-T1" 

'Worksheets("Sheet1").Range("A1").Cells(2, 33).Value = 

"=SUM(U:U)-U1" 

'Worksheets("Sheet1").Range("A1").Cells(2, 34).Value = 

"=SUM(V:V)-V1" 

'Worksheets("Sheet1").Range("A1").Cells(2, 35).Value = 

"=SUM(W:W)-W1" 

'Worksheets("Sheet1").Range("A1").Cells(2, 36).Value = 

"=SUM(X:X)" 

'Worksheets("Sheet1").Range("A1").Cells(2, 37).Value = 

"=SUM(Z2:AJ2)" 

Worksheets("Sheet1").Range("A1").Cells(2, 39).Value = "=SUM(K:K)" 

Worksheets("Sheet1").Range(Cells(1, 26), Cells(1, 39)).Font.Bold 

= True 

Worksheets("Sheet1").Range("Y5").Cells(1, 1).Value = "'<—Values 

set up for Sensor B1978" 

 

' Restore the application properties. 

With Application 

.ScreenUpdating = True 

.EnableEvents = True 

.Calculation = xlAutomatic 
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End With 

 

'Freeze Header Row/Timestamp Column 

Range("B2").Select 

ActiveWindow.FreezePanes = True 

 

'Clean up time data 

'Columns("A:A").Select 

'Selection.Replace What:="-", Replacement:="/", LookAt _ 

:=xlPart, SearchOrder:=xlByRows, MatchCase:=False, 

SearchFormat:=False, _ 

ReplaceFormat:=False 

'Selection.Replace What:=".", Replacement:=":", LookAt _ 

:=xlPart, SearchOrder:=xlByRows, MatchCase:=False, 

SearchFormat:=False, _ 

ReplaceFormat:=False 

'Range("A1").Select 

 

'Set the column width in the new workbook. 

Windows("Master File").Activate 

ActiveWorkbook.Save 

BaseWks.Columns.AutoFit 

Columns("A:A").ColumnWidth = 25 

Columns("A:A").HorizontalAlignment = xlLeft 

Columns("Y:Y").ColumnWidth = 8.43 

MsgBox "Data Extraction Complete." 

Worksheets("Sheet1").Range(Cells(2, 1), Cells(FNum, 

1)).NumberFormat = "m/d/yyyy h:mm:ss AM/PM" 

End Sub 
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APPENDIX B 

The following specifications are taken from DJI’s website (Dà-Jiāng Innovations 2018): 

Aircraft 

Weight (Battery & Propellers 

Included) 

1388 g 

Diagonal Size (Propellers Excluded) 350 mm 

Max Ascent Speed S-mode: 6 m/s 

P-mode: 5 m/s 

Max Descent Speed S-mode: 4 m/s 

P-mode: 3 m/s 

Max Speed S-mode: 45 mph (72 kph) 

A-mode: 36 mph (58 kph) 

P-mode: 31 mph (50 kph) 

Max Tilt Angle S-mode: 42° 

A-mode: 35° 

P-mode: 25° 

Max Angular Speed S-mode: 250°/s 

A-mode: 150°/s 

Max Service Ceiling Above Sea Level 19685 feet (6000 m) 

Max Wind Speed Resistance 10 m/s 

Max Flight Time Approx. 30 minutes 

Operating Temperature Range 32° to 104°F (0° to 40°C) 

Satellite Positioning Systems GPS/GLONASS 

Hover Accuracy Range Vertical: 

±0.1 m (with Vision Positioning) 

±0.5 m (with GPS Positioning) 

Horizontal: 

±0.3 m (with Vision Positioning) 

±1.5 m (with GPS Positioning) 

 

Vision System 

Vision System Forward Vision System 

Backward Vision System 

Downward Vision System 

Velocity Range ≤31 mph (50 kph) at 6.6 feet (2 m) above ground 

Altitude Range 0 - 33 feet (0 - 10 m) 

Operating Range 0 - 33 feet (0 - 10 m) 
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Obstacle Sensory Range 2 - 98 feet (0.7 - 30 m) 

FOV Forward: 60°(Horizontal), ±27°(Vertical) 

Backward: 60°(Horizontal), ±27°(Vertical) 

Downward: 70°(Front and Rear), 50°(Left and Right) 

Measuring Frequency Forward: 10 Hz 

Backward: 10 Hz 

Downward: 20 Hz 

Operating Environment Surface with clear pattern and adequate lighting 

(lux>15) 

 

Camera 

Sensor 1’’ CMOS 

Effective pixels: 20M 

Lens FOV 84° 8.8 mm/24 mm (35 mm format equivalent) 

f/2.8 - f/11 auto focus at 1 m - ∞ 

ISO Range Video: 

100 - 3200 (Auto) 

100 - 6400 (Manual) 

Photo: 

100 - 3200 (Auto) 

100- 12800 (Manual) 

Mechanical Shutter Speed 8 - 1/2000 s 

Electronic Shutter Speed 8 - 1/8000 s 

Image Size 3:2 Aspect Ratio: 5472 × 3648 

4:3 Aspect Ratio: 4864 × 3648 

16:9 Aspect Ratio: 5472 × 3078 

PIV Image Size 4096×2160(4096×2160 24/25/30/48/50p) 

3840×2160(3840×2160 24/25/30/48/50/60p) 

2720×1530(2720×1530 24/25/30/48/50/60p) 

1920×1080(1920×1080 24/25/30/48/50/60/120p) 

1280×720(1280×720 24/25/30/48/50/60/120p) 

Still Photography Modes Single Shot 

Burst Shooting: 3/5/7/10/14 frames 

Auto Exposure Bracketing (AEB): 3/5 bracketed frames 

at 0.7 EV Bias 

Interval: 2/3/5/7/10/15/20/30/60 s 

Video Recording Modes H.265 

C4K:4096×2160 24/25/30p @100Mbps 

4K:3840×2160 24/25/30p @100Mbps 
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2.7K:2720×1530 24/25/30p @65Mbps 

2.7K:2720×1530 48/50/60p @80Mbps 

FHD:1920×1080 24/25/30p @50Mbps 

FHD:1920×1080 48/50/60p @65Mbps 

FHD:1920×1080 120p @100Mbps 

HD:1280×720 24/25/30p @25Mbps 

HD:1280×720 48/50/60p @35Mbps 

HD:1280×720 120p @60Mbps 

 

H.264 

C4K:4096×2160 24/25/30/48/50/60p @100Mbps 

4K:3840×2160 24/25/30/48/50/60p @100Mbps 

2.7K:2720×1530 24/25/30p @80Mbps 

2.7K:2720×1530 48/50/60p @100Mbps 

FHD:1920×1080 24/25/30p @60Mbps 

FHD:1920×1080 48/50/60 @80Mbps 

FHD:1920×1080 120p @100Mbps 

HD:1280×720 24/25/30p @30Mbps 

HD:1280×720 48/50/60p @45Mbps 

HD:1280×720 120p @80Mbps 

Max Video Bitrate 100 Mbps 

Supported File Systems FAT32 (≤32 GB); exFAT (>32 GB) 

Photo JPEG, DNG (RAW), JPEG + DNG 

Video MP4/MOV (AVC/H.264; HEVC/H.265) 

Supported SD Cards Micro SD 

Max Capacity: 128GB 

Write speed ≥15MB/s, Class 10 or UHS-1 rating 

required 

Operating Temperature Range 32° to 104°F (0° to 40°C) 

 

Charger 

Voltage 17.4 V 

Rated Power 100 W 

 

App / Live View 

Mobile App DJI GO 4 

Live View Working Frequency 2.4 GHz ISM, 5.8 GHz ISM 

Live View Quality 720P @ 30fps 
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Latency Phantom 4 Pro: 220 ms (depending on conditions and 

mobile device) 

Phantom 4 Pro +：160 - 180 ms 

Required Operating Systems iOS 9.0 or later 

Android 4.4.0 or later 

 

Gimbal 

Stabilization 3-axis (pitch, roll, yaw) 

Controllable Range Pitch: -90° to +30° 

Max Controllable Angular Speed Pitch: 90°/s 

Angular Vibration Range ±0.02° 

 

Infrared Sensing System 

Obstacle Sensory Range 0.6 - 23 feet (0.2 - 7 m) 

FOV 70° (Horizontal), ±10° (Vertical) 

Measuring Frequency 10 Hz 

Operating Environment Surface with diffuse reflection material, and 

reflectivity > 8% (such as wall, trees, humans, etc.) 

 

Remote Controller 

Operating Frequency 2.400 - 2.483 GHz and 5.725 - 5.825 GHz 

Max Transmission Distance 2.400 - 2.483 GHz (Unobstructed, free of interference) 

FCC: 4.3 mi (7 km)  

CE: 2.2 mi (3.5 km) 

SRRC: 2.5 mi (4 km) 

5.725 - 5.825 GHz (Unobstructed, free of interference) 

FCC: 4.3 mi (7 km) 

CE: 1.2 mi (2 km) 

SRRC: 3.1 mi (5 km) 

Operating Temperature Range 32° to 104°F (0° to 40°C) 

Battery 6000 mAh LiPo 2S 

Transmitter Power (EIRP) 2.400 - 2.483 GHz 

FCC: 26 dBm 

CE: 17 dBm 

SRRC: 20 dBm 

MIC: 17 dBm 

5.725 - 5.825 GHz 

FCC: 28 dBm 
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CE: 14 dBm 

SRRC: 20 dBm 

MIC: - 

Operating Current/Voltage 1.2 A@7.4 V 

Video Output Port GL300E: HDMI 

GL300F: USB 

Mobile Device Holder GL300E: Built-in display device (5.5 inch screen, 

1920×1080, 1000 cd/m2, Android system, 4 GB RAM

＋16 GB ROM)  

GL300F: Tablets and smart phones 

 

Intelligent Flight Battery 

Capacity 5870 mAh 

Voltage 15.2 V 

Battery Type LiPo 4S 

Energy 89.2 Wh 

Net Weight 468 g 

Charging Temperature Range 41° to 104°F (5° to 40°C) 

Max Charging Power 160 W 
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