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FULLY DISCRETE SECOND-ORDER LINEAR SCHEMES FOR
HYDRODYNAMIC PHASE FIELD MODELS OF BINARY VISCOUS

FLUID FLOWS WITH VARIABLE DENSITIES∗
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Abstract. We develop spatial-temporally second-order, energy stable numerical schemes for two
classes of hydrodynamic phase field models of binary viscous fluid mixtures of different densities. One
is quasi-incompressible while the other is incompressible. We introduce a novel energy quadratization
technique to arrive at fully discrete linear schemes, where in each time step only a linear system needs
to be solved. These schemes are then shown to be unconditionally energy stable rigorously subject to
periodic boundary conditions so that a large time step is plausible. Both spatial and temporal mesh
refinements are conducted to illustrate the second-order accuracy of the schemes. The linearization
technique developed in this paper is so general that it can be applied to any thermodynamically
consistent hydrodynamic theories so long as their energies are bounded below. Numerical examples
on coarsening dynamics of two immiscible fluids and a heavy fluid drop settling in a lighter fluid
matrix are presented to show the effectiveness of the proposed linear schemes. Predictions by the
two fluid mixture models are compared and discussed, leading to our conclusion that the quasi-
incompressible model is more reliable than the incompressible one.
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1. Introduction. The phase field method, as a very popular interface captur-
ing method, has been widely used to study a variety of interfacial dynamic prob-
lems [7, 9, 10, 12, 17, 19, 20, 32, 36, 37, 38, 41, 46, 48, 49, 58, 59, 60, 61, 62, 63].
Its basic idea is to employ an order parameter, or the phase variable, to distinguish
distinct material phases in the multiphasic material system, which varies continuously
over thin interfacial layers and is mostly uniform in bulk phases. The set of govern-
ing equations in the phase field model can be derived variationally from its energy
functional guided by the generalized Onsager principle [52], where phase variables
are transported by advection-diffusion-reaction equations (usually the Cahn–Hilliard
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equation or the Allen–Cahn equation) and are coupled with the fluid momentum
balance equation (Navier–Stokes equation) as well as the mass conservation equation.
Compared to other mathematical and computational technologies available for study-
ing multiphasic materials such as the front-tracking and level-set methods [35, 43, 47],
the phase field method exhibits a clear advantage in its simplicity in model formula-
tion, ease of numerical implementation, and the ability to include essential interfacial
physics. The most attractive numerical feature of this method is that the interface
is not tracked explicitly, but instead is implicitly defined through the level surface of
the continuous phase field function.

For binary fluid mixtures with components A and B, one commonly uses a phase
variable φ ∈ [0, 1] to represent the volume fraction of fluid A. The volume fraction of
fluid B is then given by 1− φ. The transition layer given by {x | 0 < φ < 1} denotes
the interfacial region between the two bulk phases. We acknowledge that there are
other phase field models, developed for viscous fluids, that are formulated using mass
fractions [42]. For historical reasons, most mixing energies are calculated in terms
of the volume fraction instead of the mass fraction in the literature for multiphasic
polymeric fluids [18, 21]. Therefore, the phase field model with a volume fraction
formulation is easier to formulate with a free energy calculated from polymer physics.

Consider a smooth domain Ω ⊂ R2 occupied by the fluid mixture; the free energy
of the mixture system is given by

(1.1) F [φ] =

∫
Ω

(γ1

2
|∇φ|2 + f(φ)

)
dx,

where γ1 is a parameter measuring the strength of the conformational entropy and
f(φ) is the bulk energy density functional, which will be discussed in detail in the
next section.

A classical phase field model for two incompressible, viscous fluids with the same
density was introduced by Hohenberg and Halperin [34]. It consists of the following
system of PDEs:

ρ(∂tv + v · ∇v) = −∇p+∇ · τ − φ∇µ,(1.2a)

∇ · v = 0,(1.2b)

∂tφ+∇ · (φv) = ∇ ·
(
λ∇µ

)
,(1.2c)

where v is the mass-average velocity, p is the hydrostatic pressure, τ = 2ηD is the
viscous stress tensor with the shear viscosity η and the strain rate tensor D = 1

2 (∇v+

∇vT ), µ = δF
δφ is the chemical potential given by µ = f ′(φ) − γ1∆φ, and λ is the

mobility coefficient that can be a function of phase variable φ. The model (1.2) has
been successfully used to simulate complicated mixing flows involving incompressible
fluid components with matched densities [11]. Gurtin et al. showed thermodynamic
consistency of the model [33]. Gong et al. developed a fully discrete energy stable
scheme for the model [24], where the discrete energy law is conserved exactly. There
are lots of energy stable schemes and convergence analyses related to model (1.2) or
its simplified version in the literature. Interested readers can refer to [4, 13, 14, 15, 16]
for details.

However, the model (1.2) may not be used if the two incompressible fluid com-
ponents have different densities. For binary fluid problems with a small density dif-
ference, a common practice is to use the Boussinesq approximation, where the small
density difference is neglected except in the gravitational force [40]. This approach,

D
ow

nl
oa

de
d 

04
/1

3/
18

 to
 1

29
.1

23
.1

24
.1

01
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B140 YUEZHENG GONG, JIA ZHAO, XIAOGANG YANG, AND QI WANG

however, is no longer valid for large density differences. Several quasi-incompressible
phase field models for the case of different densities have been developed and discussed
in [3, 10, 17, 42, 44, 45], in which the models in [3, 44] consider phenomenological
modifications of the momentum equation. In addition, the model in [44] is not frame-
indifferent to rotations in the coordinate system. The thermodynamically consistent
versions have been investigated analytically in [1, 2], where existence of strong local-
in-time solutions and weak solutions are shown. Benchmark computations for the
models of [3, 10, 17] were carried out by Aland and Voigt [6]. In [30], a numerical
method that preserves a discrete energy law is developed for the quasi-incompressible
model of [42], in which the mass fraction is used as the phase variable.

More recently, a new quasi-incompressible model for binary fluid flows with dif-
ferent densities was developed by Shen et al. and Aki et al. [5, 45] and for multiphasic
fluid flows by Li and Wang [39] using volume fractions as phase field variables. For
binary fluid mixtures, the model consists of the following coupled PDEs:

ρ(∂tv + v · ∇v) = −∇p+∇ · τ − φ∇µ,(1.3a)

∇ · v = a∇ ·
(
λ∇(µ+ ap)

)
,(1.3b)

∂tφ+∇ · (φv) = ∇ ·
(
λ∇(µ+ ap)

)
,(1.3c)

where a = 1− ρ1
ρ2

, ρ1,2 are constant mass densities of fluids A and B, ρ = ρ1φ+ρ2(1−φ)

is the total mass density, and τ = 2ηD + νtr(D)I with the shear viscosity η =
η1φ + η2(1 − φ) and the volumetric viscosity ν = ν1φ + ν2(1 − φ). The definitions
of other variables are the same as those in model (1.2). The model given in (1.3)
differs from the quasi-incompressible Navier–Stokes–Cahn–Hilliard (NSCH) system
developed in [42] in that the volume fraction of one fluid component, rather than the
mass concentration of the component, is used as the phase variable. In addition, the
two models are derived with different energy functionals. A discontinuous Galerkin
finite element method [23] and a new structure-preserving algorithm [26] were de-
veloped for model (1.3), where the corresponding discrete energy dissipation law is
preserved. An alternative approach was taken to modify the compressible models into
an incompressible version [3], where the momentum equation is approximated using
the volume-average velocity instead of the mass-average velocity. Specifically, the in-
compressible hydrodynamic phase field model for fluid mixtures of variable densities
consists of the following equations:

ρ∂tv + a · ∇v = −∇p+∇ · τ − φ∇µ,(1.4a)

∇ · v = 0,(1.4b)

∂tφ+∇ · (φv) = ∇ ·
(
λ∇µ

)
,(1.4c)

where v is the volume-average velocity, τ = 2ηD and a = ρv+(ρ2−ρ1)λ∇µ. The other
variables are the same as in the above quasi-incompressible model. The model given
in (1.4) has been studied numerically in [22, 28, 29], where the numerical methods
developed are energy stable.

However, the numerical schemes developed so far for model (1.3) or model (1.4) in
the literature are either linear, first order in time, or, even if they can reach second-
order accuracy in time, they are nonlinear so that a highly nonlinear system has
to be solved iteratively [22, 28, 29, 30, 31]. The nonlinear systems usually require
sophisticated implementation and a smaller time step to ensure convergence of the
numerical solver. In this paper, we propose a novel linearization strategy (inspired by
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a recently developed energy quadratization strategy [50, 51, 53, 54, 56, 57, 64, 65]) to
develop fully discrete schemes that are linear and second order in time and space. The
advantage of our proposed schemes includes (1) it is easy to implement (only a Krylov
subspace solver is necessary); (2) the linearization strategy employed is so general that
it works for both model (1.3) and model (1.4) without any restrictions on the specific
form of the bulk energy; (3) the proposed schemes preserve the corresponding discrete
energy dissipation law at any time-step size and thus are unconditionally energy stable.
Several numerical examples, including drop dynamics of viscous fluid drops immersed
in another viscous fluid matrix and mixing dynamics of binary polymeric (viscous)
solutions, will be presented to show the accuracy and efficiency of the new schemes. In
our numerical studies, we show that the two models in fact describe distinct transient
dynamics for binary fluid mixtures of two incompressible fluid components at large
density differences. In particular, the numerical examples show that model (1.4) is
insensitive to the density difference while model (1.3) is sensitive to it. In addition,
one can show that model (1.4) is in fact an approximation of model (1.3) by violating
the balance of linear momentum [55]. We therefore believe that model (1.3) should be
the choice when density differences are large. Of course, a more detailed comparison
between the model and carefully designed experiments should be carried out to justify
it. But this is beyond the scope of the current paper.

The model in (1.3) based on the mass-average velocity is called the PFM model,
while the model in (1.4) based on the volume-average velocity is called the PFV
model in this paper [55]. We note that both models satisfy an energy dissipation
law. But, the kinetic energy in the PFV model is not the real kinetic energy, given
the fact that the velocity field employed is the volume-average velocity. In addition,
the PFV model does not satisfy the linear momentum balance law that is supposedly
formulated using the mass-average velocity [55]. These discrepancies between the
models perhaps contribute to the difference in the model predictions in the numerical
experiments that we show in the paper.

The remainder of this paper is organized as follows: in section 2, we introduce
some notations to simplify the subsequent presentation. In sections 3 and 4, both a
traditional structure-preserving algorithm and an energy quadratization method are
developed for the quasi-incompressible hydrodynamic model and the incompressible
hydrodynamic model, respectively. Section 5 is devoted to the numerical test of
the linear schemes and to show some numerical examples involving drop dynamics
and coarsening dynamics. Finally, we finish the paper with a concluding remark in
section 6.

2. Notations. For immiscible binary fluids, one choice of the bulk energy density
is given by a double-well repulsive potential,

(2.1) f(φ) = γ2φ
2(1− φ)2,

where γ2 measures the strength of the repulsive potential. In fact, the Cahn–Hilliard
equation using double-well bulk potential cannot ensure φ ∈ [0, 1]. In order to control
numerically φ ∈ (−ε, 1 + ε) for a small positive number ε, we propose a second-order
smooth modified bulk energy density as

(2.2) f(φ) = γ2

(
φ2(1− φ)2 + f1(φ)

)
,

where

(2.3) f1(φ) =

{
0 φ ∈ [0, 1],

Nφ4(1− φ)4 otherwise,
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with N a positive parameter. When N = 0, the modified potential (2.2) reduces to
the double-well potential given in (2.1).

For miscible binary polymeric blends, f(φ) is given by the Flory–Huggins free
energy density

(2.4) f(φ) = γ2

(
φ

N1
lnφ+

(1− φ)

N2
ln(1− φ) + χφ(1− φ)

)
,

where N1 and N2 are the polymerization indices for phase A and phase B, respectively,
χ is the mixing parameter, and γ2 measures the strength of the bulk potential.

We define the inner product (·, ·) and norm ‖ · ‖ for functions as follows:

(2.5) (f, g) =

∫
Ω

fgdx, (F,G) =
∑
m,n

∫
Ω

Fm,nGm,ndx, ‖F‖ = (F,F)
1
2 ,

where Ω = [0, Lx]× [0, Ly] is the domain of the fluid flow, f and g are scalar functions,
and F and G are second-order tensor functions defined in Ω. With the periodic
boundary condition, we have the following integration-by-parts formulas:

(2.6) (f, ∂αg) + (∂αf, g) = 0, α = x or y,

(2.7) (f,∇ · v) + (∇f,v) = 0,

and

(2.8) (v,∇ · F) + (∇v,F) = 0.

By a simple calculation, it is readily shown that

(2.9) (u,F · v) = (uv,F),

where u, v are vector-valued functions and F is a matrix-valued function.
For a positive integer Nt, we define the time step as ∆t = T/Nt, tn = n∆t, 0 ≤

n ≤ Nt. For positive integers Nx, Ny, we define the space steps as hx = Lx/Nx, hy =
Ly/Ny, xj = jhx, 0 ≤ j ≤ Nx−1, yk = khy, 0 ≤ k ≤ Ny−1. To approximate periodic
boundary conditions, we let x−1 = −hx, xNx = Nxhx, y−1 = −hy, yNy = Nyhy. A
grid function f = {fj,k| − 1 ≤ j ≤ Nx,−1 ≤ k ≤ Ny} is called periodic if

(x-periodic) f−1,k = fNx−1,k, f0,k = fNx,k; (y-periodic) fj,−1 = fj,Ny−1, fj,0 = fj,Ny
.

Next, we define the following discrete operators:

δ+
t f

n =
fn+1 − fn

∆t
, fn+ 1

2 =
fn+1 + fn

2
, f

n+ 1
2 =

1

2
(3fn − fn−1),

δ+
x fj,k =

fj+1,k − fj,k
hx

, δ−x fj,k =
fj,k − fj−1,k

hx
, δxfj,k =

δ+
x + δ−x

2
fj,k,

δ+
y fj,k =

fj,k+1 − fj,k
hy

, δ−y fj,k =
fj,k − fj,k−1

hy
, δyfj,k =

δ+
y + δ−y

2
fj,k,

∇+
h =

(
δ+
x

δ+
y

)
, ∇−h =

(
δ−x
δ−y

)
, ∇h =

∇+
h +∇−h

2
, ∆h = δ+

x δ
−
x + δ+

y δ
−
y .
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The discrete inner product and norm are defined, respectively, for tensor valued func-
tions as follows:

(F,G)h =
∑
m,n

Nx−1∑
j=0

Ny−1∑
k=0

(Fm,n)j,k(Gm,n)j,khxhy, ‖F‖h = (F,F)
1
2

h .

The following summation-by-parts formulas are analogous to the integration-by-parts
formulas (2.6)–(2.8)

(f, δ−α g)h + (δ+
α f, g)h = 0,(2.10)

(f, δαg)h + (δαf, g)h = 0,(2.11)

(f,∇−h · v)h + (∇+
h f,v)h = 0,(2.12)

(f,∇+
h · v)h + (∇−h f,v)h = 0,(2.13)

(f,∇h · v)h + (∇hf,v)h = 0,(2.14)

(v,∇+
h · F)h + (∇−h v,F)h = 0,(2.15)

(v,∇−h · F)h + (∇+
h v,F)h = 0,(2.16)

(v,∇h · F)h + (∇hv,F)h = 0,(2.17)

where α = x or y. In addition, we have

(2.18) (u,F · v)h = (uv,F)h.

3. Numerical approximations to the quasi-incompressible model. In
this section, we first reformulate the quasi-incompressible model (1.3) into an equiv-
alent form. Then we develop energy stable numerical schemes to solve it.

3.1. Model reformulation.

3.1.1. Equivalent system. Multiplying (1.3b) and (1.3c) by ρ2 and ρ1 − ρ2,
respectively, then adding the results, we obtain the mass conservation

(3.1) ∂tρ+∇ · (ρv) = 0.

Multiplying (3.1) by v/2, then adding the result to Eq. (1.3a) and using the identity

∇ · (ρvv) = ρv · ∇v +∇ · (ρv)v,

we obtain

(3.2)
√
ρ∂t(
√
ρv) +

1

2

(
ρv · ∇v +∇ · (ρvv)

)
= −∇p+∇ · τ − φ∇µ.

Let u =
√
ρv. Replacing all v with u√

ρ in system (1.3), we obtain the following

equivalent form:

∂tu +
1

2

(
u · ∇

(
u
√
ρ

)
+

1
√
ρ
∇ · (uu)

)
=

1
√
ρ

(−∇p+∇ · τ − φ∇µ),(3.3a)

∇ ·
(

u
√
ρ

)
= a∇ ·

(
λ∇(µ+ ap)

)
,(3.3b)

∂tφ+∇ ·
(

1
√
ρ
φu

)
= ∇ ·

(
λ∇(µ+ ap)

)
,(3.3c)
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where the stress tensor is τ = 2ηD + νtr(D)I and the strain rate tensor is

D =
1

2

(
∇ u
√
ρ

+
(
∇ u
√
ρ

)T)
.

Theorem 3.1. With periodic boundary conditions, the solution of system (3.3)
satisfies the following energy dissipation law:

(3.4)
dE

dt
= −(λ, |∇(µ+ ap)|2)− 2(η, |D|2)− (ν, |tr(D)|2),

where E is the total energy of (3.3) defined as

(3.5) E =
1

2
‖u‖2 +

γ1

2
‖∇φ‖2 + (f(φ), 1).

Proof. According to (2.8) and (2.9), we have

(3.6)

(
u,u · ∇

(
u
√
ρ

)
+

1
√
ρ
∇ · (uu)

)
= 0,

and

(3.7)

(
u
√
ρ
,∇ · τ

)
= −

(
∇(

u
√
ρ

), τ

)
= −2(η, |D|2)− (ν, |tr(D)|2).

Computing the inner product of (3.3a) with u, then using (3.6), (2.7), and (3.3b), we
have

(u, ∂tu) =

(
u
√
ρ
,−∇p+∇ · τ − φ∇µ

)
=

(
∇ ·
(

u
√
ρ

)
, p

)
+

(
u
√
ρ
,∇ · τ

)
−
(

1
√
ρ
φu,∇µ

)
= −(λ∇(µ+ ap), a∇p) +

(
u
√
ρ
,∇ · τ

)
+

(
∇ ·
(

1
√
ρ
φu

)
, µ

)
.(3.8)

Computing the inner product of (3.3c) with µ, we obtain

(3.9) (µ, ∂tφ) +

(
µ,∇ ·

(
1
√
ρ
φu

))
= −(λ∇(µ+ ap),∇µ),

where (2.7) is used. Adding (3.8) and (3.9) gives

(3.10) (u, ∂tu) + (µ, ∂tφ) = −(λ, |∇(µ+ ap)|2) +

(
u
√
ρ
,∇ · τ

)
.

Combining (3.7) and (3.10), we have

dE

dt
= (u, ∂tu) + γ1(∇φ,∇φt) + (f ′(φ), φt)

= (u, ∂tu) + (µ, φt)

= −(λ, |∇(µ+ ap)|2)− 2(η, |D|2)− (ν, |tr(D)|2),

which leads to (3.4).
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Remark 3.1. The theorem also holds for the following boundary conditions:

(3.11) u|∂Ω = 0, ∇φ · n|∂Ω = 0, ∇(µ+ ap) · n|∂Ω = 0.

Throughout this paper, the results are proved with the periodic boundary conditions;
but the results involving PDEs and semidiscrete PDEs are valid equally well with
(3.11).

3.1.2. Equivalent system based on energy quadratization. We reformu-
late the model further into an equivalent model with a quadratic energy functional
by introducing a new variable q =

√
f(φ) where we assume f > 0;

∂tu +
1

2

(
u · ∇

(
u
√
ρ

)
+

1
√
ρ
∇ · (uu)

)
=

1
√
ρ

(−∇p+∇ · τ − φ∇µ),(3.12a)

∇ ·
(

u
√
ρ

)
= a∇ ·

(
λ∇(µ+ ap)

)
,(3.12b)

∂tφ+∇ ·
(

1
√
ρ
φu

)
= ∇ ·

(
λ∇(µ+ ap)

)
,(3.12c)

∂tq = g(φ)∂tφ,(3.12d)

where the chemical potential µ is reexpressed as µ = 2qg(φ)− γ1∆φ, g(φ) = f ′(φ)

2
√
f(φ)

.

Remark 3.2. For a free energy density f(φ) bounded below, we can replace f(φ)
with f(φ) +C0, where C0 is a large enough positive number such that f(φ) +C0 > 0
without affecting dynamics of the system. For example, for the Flory–Huggins free
energy, we take C0 = γ2( 1

N1
+ 1
N2

) and modify the free energy density (2.4) as follows:

(3.13) f(φ) = γ2

(
φ

N1
lnφ+

(1− φ)

N2
ln(1− φ) + χφ(1− φ)

)
+ C0.

For φ ∈ (0, 1) and N1, N2, γ2, χ > 0, it is readily seen that the modified free energy
density (3.13) satisfies f(φ) > 0.

Remark 3.3. The choice of the intermediate variable q is not unique. For example,
for the free energy density (2.1), we can take q =

√
γ2φ(1 − φ) and then g(φ) =√

γ2(1−2φ). For more complicated free energy functionals, we may need to introduce
additional new intermediate variables.

Theorem 3.2. With periodic boundary conditions, the solution of system (3.12)
satisfies the energy dissipation law (3.4), where the energy of (3.12) is defined as

(3.14) E =
1

2
‖u‖2 +

γ1

2
‖∇φ‖2 + ‖q‖2.

Proof. The proof is straightforward and is thus omitted.

3.2. Numerical approximations. In this section, we present fully discrete
second-order numerical schemes to solve PDEs (3.3) and (3.12).

3.2.1. A nonlinear energy stable scheme. Applying the central difference
scheme in space and the Crank–Nicolson-type method in time to system (3.3), we
obtain
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δ+
t unj,k +

1

2

(
u
n+ 1

2

j,k · ∇h

((
1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

)
+

(
1
√
ρ

)n+ 1
2

j,k

∇h ·
(
u
n+ 1

2

j,k u
n+ 1

2

j,k

))

=

(
1
√
ρ

)n+ 1
2

j,k

(
−∇hp

n+ 1
2

j,k +∇h · τn,n+1
j,k − φn+ 1

2

j,k ∇hµ
n,n+1
j,k

)
,

(3.15a)

∇h ·

((
1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

)
= a∇h ·

(
λ
n+ 1

2

j,k ∇h
(
µn,n+1
j,k + ap

n+ 1
2

j,k

))
,

(3.15b)

δ+
t φ

n
j,k +∇h ·

((
1
√
ρ

)n+ 1
2

j,k

φ
n+ 1

2

j,k u
n+ 1

2

j,k

)
= ∇h ·

(
λ
n+ 1

2

j,k ∇h
(
µn,n+1
j,k + ap

n+ 1
2

j,k

))
,

(3.15c)

where

Dn,n+1
j,k =

1

2

∇h(( 1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

)
+∇h

((
1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

)T ,

τn,n+1
j,k = 2η

n+ 1
2

j,k Dn,n+1
j,k + ν

n+ 1
2

j,k tr(Dn,n+1
j,k )I,

µn,n+1
j,k =

δf

δ(φn+1
j,k , φnj,k)

− γ1∆hφ
n+ 1

2

j,k ,
δf

δ(a, b)
=

{
f(a)−f(b)

a−b if a 6= b,

f ′(a) if a = b,

and j = 0, 1, . . . , Nx − 1, k = 0, 1, . . . , Ny − 1, n = 0, 1, . . . , Nt − 1.

Theorem 3.3. Under the assumption of the periodic boundary condition, scheme
(3.15) preserves the discrete energy dissipation law

δ+
t E

n + (λn+ 1
2 , |∇h(µn,n+1 + apn+ 1

2 )|2)h + 2(ηn+ 1
2 , |Dn,n+1|2)h

+ (νn+ 1
2 , |tr(Dn,n+1)|2)h = 0,(3.16)

where En is the discrete energy defined as

En =
1

2
‖un‖2h +

γ1

2
‖∇+

h φ
n‖2h + (f(φn), 1)h.

Proof. According to (2.17) and (2.18), we have
(3.17)(

un+ 1
2 ,un+ 1

2 · ∇h

((
1
√
ρ

)n+ 1
2

un+ 1
2

)
+

(
1
√
ρ

)n+ 1
2

∇h · (un+ 1
2 un+ 1

2 )

)
h

= 0,

and
(3.18)((

1
√
ρ

)n+ 1
2

un+ 1
2 ,∇h · τn,n+1

)
h

= −2(ηn+ 1
2 , |Dn,n+1|2)h − (νn+ 1

2 , |tr(Dn,n+1)|2)h.

Computing the discrete inner product of (3.15a) with un+ 1
2 , then using (3.17), (2.14),

and (3.15b), we deduce
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(un+ 1
2 , δ+

t un)h =−
(
λn+ 1

2∇h(µn,n+1 + apn+ 1
2 ), a∇hpn+ 1

2

)
h

+

((
1
√
ρ

)n+ 1
2

un+ 1
2 ,∇h · τn,n+1

)
h

+

(
∇h ·

((
1
√
ρ

)n+ 1
2

φn+ 1
2 un+ 1

2

)
, µn,n+1

)
h

.(3.19)

Computing the discrete inner product of (3.15c) with µn,n+1, we obtain

(µn,n+1, δ+
t φ

n)h +

(
µn,n+1,∇h ·

((
1
√
ρ

)n+ 1
2

φn+ 1
2 un+ 1

2

))
h

= −
(
λn+ 1

2∇h(µn,n+1 + apn+ 1
2 ),∇hµn,n+1

)
h
,(3.20)

where (2.14) was used. Adding (3.19) and (3.20) leads to

(un+ 1
2 , δ+

t un)h + (µn,n+1, δ+
t φ

n)h = − (λn+ 1
2 , |∇h(µn,n+1 + apn+ 1

2 )|2)h

+

((
1
√
ρ

)n+ 1
2

un+ 1
2 ,∇h · τn,n+1

)
h

.(3.21)

Using (2.12), (3.18), (3.21), and the identity

δ+
t (un · vn) = δ+

t un · vn+ 1
2 + un+ 1

2 · δ+
t vn,

we have

δ+
t E

n = (un+ 1
2 , δ+

t un)h + γ1(∇+
h φ

n+ 1
2 ,∇+

h δ
+
t φ

n)h + (δ+
t f(φn), 1)h

= (un+ 1
2 , δ+

t un)h − γ1(∆hφ
n+ 1

2 , δ+
t φ

n)h +

(
δf

δ(φn+1, φn)
, δ+
t φ

n

)
h

= (un+ 1
2 , δ+

t un)h + (µn,n+1, δ+
t φ

n)h

= − (λn+ 1
2 , |∇h(µn,n+1 + apn+ 1

2 )|2)h − 2(ηn+ 1
2 , |Dn,n+1|2)h

− (νn+ 1
2 , |tr(Dn,n+1)|2)h.

Remark 3.4. If only the time discretization is carried out, it can be readily shown
that the semidiscrete scheme is energy stable even for the physical boundary condition.

Remark 3.5. In scheme (3.15), the mass-average velocity is computed by

(3.22) vnj,k =
unj,k√
ρnj,k

.

Remark 3.6. Multiplying (3.15b) and (3.15c) by ρ2 and ρ1−ρ2, respectively, then
adding the results, we obtain the discrete mass conservation law:

(3.23) δ+
t ρ

n
j,k +∇h ·

(
ρ
n+ 1

2

j,k

(
1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

)
= 0.

Remark 3.7. The time discretization in this scheme is the analogue of the energy
dissipation preserving time discretization used in [30].
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Scheme (3.15) is unconditionally energy stable. However, it is fully implicit and
nonlinear. To solve it, a nonlinear iteration scheme has to be designed, which may
destroy the unconditional stability, leaving a constraint on the time step. In the
following, we revise it to develop a linear, energy stable method based on the energy
quadratization technique.

3.2.2. A linear, energy stable scheme. Applying the central difference scheme
in space and the linear-implicit Crank-Nicolson-type method in time to system (3.12),
we obtain

(3.24a)

δ+
t unj,k +

1

2

u
n+ 1

2

j,k · ∇h

( 1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

+

(
1
√
ρ

)n+ 1
2

j,k

∇h ·
(
u
n+ 1

2

j,k u
n+ 1

2

j,k

)

=

(
1
√
ρ

)n+ 1
2

j,k

(
−∇hp

n+ 1
2

j,k +∇h · τn,n+1
j,k − φn+ 1

2

j,k ∇hµ
n,n+1
j,k

)
,

(3.24b)

∇h ·

( 1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

 = a∇h ·
(
λ
n+ 1

2

j,k ∇h(µn,n+1
j,k + ap

n+ 1
2

j,k )
)
,

(3.24c)

δ+
t φ

n
j,k +∇h ·

( 1
√
ρ

)n+ 1
2

j,k

φ
n+ 1

2

j,k u
n+ 1

2

j,k

 = ∇h ·
(
λ
n+ 1

2

j,k ∇h(µn,n+1
j,k + ap

n+ 1
2

j,k )
)
,

(3.24d)

δ+
t q

n
j,k = g(φ)

n+ 1
2

j,k δ+
t φ

n
j,k,

(3.24e)

where

Dn,n+1
j,k =

1

2

∇h
( 1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

+∇h

( 1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

T
 ,

τn,n+1
j,k = 2η

n+ 1
2

j,k Dn,n+1
j,k + ν

n+ 1
2

j,k tr(Dn,n+1
j,k )I,

µn,n+1
j,k = 2q

n+ 1
2

j,k g(φ)
n+ 1

2

j,k − γ1∆hφ
n+ 1

2

j,k ,

and j = 0, 1, . . . , Nx − 1, k = 0, 1, . . . , Ny − 1, n = 1, . . . , Nt − 1.

Theorem 3.4. Scheme (3.24) preserves the discrete energy dissipation law

δ+
t E

n + (λ
n+ 1

2 , |∇h(µn,n+1 + apn+ 1
2 )|2)h + 2(ηn+ 1

2 , |Dn,n+1|2)h

+ (νn+ 1
2 , |tr(Dn,n+1)|2)h = 0,(3.25)

where the discrete energy is defined as

(3.26) En =
1

2
‖un‖2h +

γ1

2
‖∇+

h φ
n‖2h + ‖qn‖2h.
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Proof. Analogous to the proof of Theorem 3.3, we have

(un+ 1
2 , δ+

t un)h + (µn,n+1, δ+
t φ

n)h =− (λ
n+ 1

2 , |∇h(µn,n+1 + apn+ 1
2 )|2)h

− 2(ηn+ 1
2 , |Dn,n+1|2)h − (νn+ 1

2 , |tr(Dn,n+1)|2)h.(3.27)

By a direct calculation, we have

δ+
t E

n = (un+ 1
2 , δ+

t un)h + γ1(∇+
h φ

n+ 1
2 ,∇+

h δ
+
t φ

n)h + (2qn+ 1
2 , δ+

t q
n)h

= (un+ 1
2 , δ+

t un)h − γ1(∆hφ
n+ 1

2 , δ+
t φ

n)h + (2qn+ 1
2 g(φ)

n+ 1
2 , δ+

t φ
n)h

= (un+ 1
2 , δ+

t un)h + (µn,n+1, δ+
t φ

n)h

= −(λ
n+ 1

2 , |∇h(µn,n+1 + apn+ 1
2 )|2)h − 2(ηn+ 1

2 , |Dn,n+1|2)h

− (νn+ 1
2 , |tr(Dn,n+1)|2)h.

This completes the proof.

Remark 3.8. In scheme (3.24), the mass-average velocity can also be computed
by (3.22).

Remark 3.9. The discrete mass conservation law also holds:

(3.28) δ+
t ρ

n
j,k +∇h ·

(
ρ
n+ 1

2

j,k (
1
√
ρ

)

n+ 1
2

j,k

u
n+ 1

2

j,k

)
= 0.

Remark 3.10. If we replace all (·)
n+ 1

2 with (·)n in (3.24), we obtain a two-level
energy stable scheme, which is still linear implicit but is of order 1 in time. In the
numerical experiments, we use the two-level scheme to compute the initial data for the
second level values of the three-level scheme (3.24), which does not affect the overall
accuracy of second-order scheme (3.24).

Remark 3.11. The advantage of scheme (3.24) compared with scheme (3.15) is its
linearity. However, we remark the energy stability is derived for the energy defined in
(3.26), which may lead to complications to obtain an Hm estimate for the numerical
solution. One remedy is to redefine q such that the bulk energy is represented by
αφ2 + q2, where α is a positive parameter. This will be explored in our subsequent
studies on error estimates.

4. Numerical approximations to the incompressible model. Here, we
present the incompressible model and then reformulate it into an equivalent system.
Then, we propose numerical approximations for the equivalent system.

4.1. Model reformulation and its equivalent system.

4.1.1. Equivalent system. Multiplying (1.4b) and (1.4c) by ρ2 and ρ1 − ρ2,
respectively, then adding the results, we obtain

(4.1) ∂tρ+∇ · a = 0.

Multiplying (4.1) by v/2, then adding the result to Eq. (1.4a) and noticing the
identity

∇ · (va) = a · ∇v + (∇ · a)v,

we obtain

(4.2)
√
ρ∂t(
√
ρv) +

1

2

(
a · ∇v +∇ · (va)

)
= −∇p+∇ · τ − φ∇µ.D
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Let u =
√
ρv. Replacing all v with u√

ρ in the system (1.4), we obtain the following

equivalent form:

∂tu +
1

2

(
b · ∇

(
u
√
ρ

)
+

1
√
ρ
∇ · (ub)

)
=

1
√
ρ

(−∇p+∇ · τ − φ∇µ),(4.3a)

∇ ·
(

u
√
ρ

)
= 0,(4.3b)

∂tφ+∇ ·
(

1
√
ρ
φu

)
= ∇ · (λ∇µ),(4.3c)

where b = a√
ρ = u + 1√

ρ (ρ2 − ρ1)λ∇µ.

Remark 4.1. If b = u in (4.3a) (or a = ρv in (4.2)), model (4.3) reduces to
another phase field model proposed in [44].

Theorem 4.1. With periodic boundary conditions, the solution of system (4.3)
satisfies the following energy dissipation law:

(4.4)
dE

dt
+ (λ, |∇µ|2) + 2(η, |D|2) = 0,

where E is the total energy of (4.3) defined as

(4.5) E =
1

2
‖u‖2 +

γ1

2
‖∇φ‖2 + (f(φ), 1).

Proof. The proof is similar to that of Theorem 3.1 and is thus omitted.

4.1.2. Energy quadratization reformulation. As in the previous section, we
introduce a new variable q =

√
f(φ) and rewrite system (4.3) as follows:

∂tu +
1

2

(
b · ∇

(
u
√
ρ

)
+

1
√
ρ
∇ · (ub)

)
=

1
√
ρ

(−∇p+∇ · τ − φ∇µ),(4.6a)

∇ ·
(

u
√
ρ

)
= 0,(4.6b)

∂tφ+∇ ·
(

1
√
ρ
φu

)
= ∇ ·

(
λ∇µ

)
,(4.6c)

∂tq = g(φ)∂tφ,(4.6d)

where µ = 2qg(φ)− γ1∆φ, g(φ) = f ′(φ)

2
√
f(φ)

.

Theorem 4.2. With periodic boundary conditions, the solution of system (4.6)
satisfies the following energy dissipation law:

(4.7)
dE

dt
+ (λ, |∇µ|2) + 2(η, |D|2) = 0,

where E is the total energy of (4.6) defined as

(4.8) E =
1

2
‖u‖2 +

γ1

2
‖∇φ‖2 + ‖q‖2.

Proof. The proof is similar to that of Theorem 3.2 and is thus omitted.

4.2. Numerical approximations. Here we present two energy stable numeri-
cal schemes to solve the incompressible model.

4.2.1. Nonlinear energy stable scheme. Applying the central difference
scheme in space and the Crank–Nicolson-type method in time for the system (4.3),
we obtain
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δ+
t unj,k +

1

2

(
b
n+ 1

2

j,k · ∇h

((
1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

)
+

(
1
√
ρ

)n+ 1
2

j,k

∇h · (u
n+ 1

2

j,k b
n+ 1

2

j,k )

)

=

(
1
√
ρ

)n+ 1
2

j,k

(
−∇hp

n+ 1
2

j,k +∇h · τn,n+1
j,k − φn+ 1

2

j,k ∇hµ
n,n+1
j,k

)
,(4.9a)

∇h ·

((
1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

)
= 0,(4.9b)

δ+
t φ

n
j,k +∇h ·

((
1
√
ρ

)n+ 1
2

j,k

φ
n+ 1

2

j,k u
n+ 1

2

j,k

)
= ∇h · (λ

n+ 1
2

j,k ∇hµ
n,n+1
j,k ),(4.9c)

where

bnj,k = unj,k +
1√
ρnj,k

(ρ2 − ρ1)λnj,k∇hµnj,k, µnj,k = f ′(φnj,k)− γ1∆hφ
n
j,k,

Dn,n+1
j,k =

1

2

∇h(( 1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

)
+∇h

((
1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

)T ,

τn,n+1
j,k = 2η

n+ 1
2

j,k Dn,n+1
j,k , µn,n+1

j,k =
δf

δ(φn+1
j,k , φnj,k)

− γ1∆hφ
n+ 1

2

j,k ,

and j = 0, 1, . . . , Nx − 1, k = 0, 1, . . . , Ny − 1, n = 0, 1, . . . , Nt − 1.

Theorem 4.3. The scheme (4.9) preserves the discrete energy dissipation law

(4.10) δ+
t E

n + (λn+ 1
2 , |∇hµn,n+1|2)h + 2(ηn+ 1

2 , |Dn,n+1|2)h = 0,

where En is the discrete energy defined as

En =
1

2
‖un‖2h +

γ1

2
‖∇+

h φ
n‖2h + (f(φn), 1)h.

Proof. The proof is similar to that of Theorem 3.3 and is thus omitted.

4.2.2. Linear, energy stable scheme. Applying the central difference scheme
in space and the linear-implicit Crank–Nicolson-type method in time to system (4.6),
we obtain

δ+
t unj,k +

1

2

b
n+ 1

2

j,k · ∇h

( 1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

+

(
1
√
ρ

)n+ 1
2

j,k

∇h ·
(
u
n+ 1

2

j,k b
n+ 1

2

j,k

)
(4.11a)

=

(
1
√
ρ

)n+ 1
2

j,k

(
−∇hp

n+ 1
2

j,k +∇h · τn,n+1
j,k − φn+ 1

2

j,k ∇hµ
n,n+1
j,k

)
,

(4.11b)

∇h ·

( 1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

 = 0,

(4.11c)
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δ+
t φ

n
j,k +∇h ·

( 1
√
ρ

)n+ 1
2

j,k

φ
n+ 1

2

j,k u
n+ 1

2

j,k

 = ∇h ·
(
λ
n+ 1

2

j,k ∇hµ
n,n+1
j,k

)
,

(4.11d)

δ+
t q

n
j,k = g(φ)

n+ 1
2

j,k δ+
t φ

n
j,k,

(4.11e)

where

bnj,k = unj,k +
1√
ρnj,k

(ρ2 − ρ1)λnj,k∇hµnj,k, µnj,k = 2qnj,kg(φnj,k)− γ1∆hφ
n
j,k,

Dn,n+1
j,k =

1

2

∇h
( 1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

+∇h

( 1
√
ρ

)n+ 1
2

j,k

u
n+ 1

2

j,k

T
 ,

τn,n+1
j,k = 2η

n+ 1
2

j,k Dn,n+1
j,k , µn,n+1

j,k = 2q
n+ 1

2

j,k g(φ)
n+ 1

2

j,k − γ1∆hφ
n+ 1

2

j,k ,

and j = 0, 1, . . . , Nx − 1, k = 0, 1, . . . , Ny − 1, n = 1, . . . , Nt − 1.

Theorem 4.4. Scheme (4.11) preserves the discrete energy dissipation law

(4.12) δ+
t E

n + (λ
n+ 1

2 , |∇hµn,n+1|2)h + 2(ηn+ 1
2 , |Dn,n+1|2)h = 0,

where the discrete energy is defined as

En =
1

2
‖un‖2h +

γ1

2
‖∇+

h φ
n‖2h + ‖qn‖2h.

Proof. The proof is similar to that of Theorem 3.4 and is thus omitted.

Remark 4.2. For scheme (4.11), the volume-average velocity is computed by (3.22).

Remark 4.3. If we replace all (·)
n+ 1

2 with (·)n+ 1
2 in (4.11), we obtain a new energy

stable scheme, which is of second order in time but is nonlinear.

Remark 4.4. If we replace all (·)
n+ 1

2 with (·)n in (4.11), we obtain a two-level
energy stable scheme, which is linear-implicit but of order 1 in time. In the numerical
experiments, we use the two-level scheme to compute the initial data for the second-
level values of the three-level scheme (4.11).

5. Numerical results. In this section, we present several numerical studies to
test the accuracy and to show the efficiency of our proposed linear energy stable
schemes. In particular, by proposing a specific solution and calculating the numerical
errors with respect to different temporal and spatial steps, a second-order spatial-
temporal convergence rate is established. The new linear, energy stable schemes
are applied to the two models to showcase their differences. Although our proposed
numerical schemes don’t have any constraints on the choice of the bulk potential, we
focus on the double-well potential (2.2) in the studies for simplicity. Readers who are
interested in the linearization strategy and related simulations for the Flory–Huggin
potential should refer to our work in [25, 26].

For periodic boundary conditions, we solve the linear system (3.24) or (4.11) by
using a simple fixed-point iteration method similar to the method used in Ref. [24].
In this iteration process, we make the variable coefficient linear terms explicit while

D
ow

nl
oa

de
d 

04
/1

3/
18

 to
 1

29
.1

23
.1

24
.1

01
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LINEAR SCHEMES FOR HYDRODYNAMIC PHASE FIELD MODELS B153

retaining the implicit constant linear terms. In every iteration step, the linear system
is solved by the fast Fourier transform (FFT) algorithm.

Here we take the scheme (3.24) as an example to show the iteration method.
For the sake of simplicity, we set λ constant and denote ρm = max (ρ1, ρ2), ηm =

max (η1, η2), νm = max (ν1, ν2), and u := un+ 1
2 ,u := un+ 1

2 , etc. Let ψ = 1√
ρ and

v = ψu, linear scheme (3.24) can be written as

∇hp = ηm∆hv + (ηm + νm)∇h(∇h · v) + g,(5.1a)

∇h · v = aλ∆hµ+ a2λ∆hp,(5.1b)

2

∆t
(φ− φn) +∇h ·

(
φv
)

= λ∆hµ+ aλ∆hp,(5.1c)

where the spatial subscripts were omitted for simplicity, ∆h = ∇h · ∇h, and

g(v, τ̃ , µ) = ∇h · τ̃ − φ∇hµ−
2

ψ∆t

(
v

ψ
− un

)
− 1

2

(
u

ψ
· ∇hv +∇h ·

(
v

ψ
u

))
,

τ̃(v) = (η − ηm)(∇hv +∇hvT ) + (ν − νm)(∇h · v)I,

µ(φ, q) = 2g(φ)q − γ1∆hφ,

q(φ) = qn + g(φ)(φ− φn).

Note that g is regarded as a function of v, τ̃ , µ, etc. Taking the discrete divergence
on both sides of (5.1a), then using (5.1b), we obtain

(5.2)
(

1− a2λ(2ηm + νm)∆h

)
∆hp = aλ(2ηm + νm)∆

2

hµ+∇h · g.

Given the initial iteration v0 = ψun and φ0 = φn, we compute (φs+1,vs+1) for s ≥ 0.
Step 1: 

(
1− a2λ(2ηm + νm)∆h

)
∆hp1 = aλ(2ηm + νm)∆

2

hµ
(
φs+1, q(φs)

)
+∇h · g

(
vs, τ̃(vs), µ(φs, q(φs))

)
,

2
∆t (φs+1 − φn) +∇h ·

(
φvs

)
= λ∆hµ

(
φs+1, q(φs)

)
+ aλ∆hp1.

Step 2:

(
1− a2λ(2ηm + νm)∆h

)
∆hp2 = aλ(2ηm + νm)∆

2

hµ
(
φs+1, q(φs+1)

)
+∇h · g

(
vs, τ̃(vs), µ(φs+1, q(φs+1))

)
,

2
∆tρmvs+1 +∇hp2 = ηm∆hvs+1 + (ηm + νm)∇h(∇h · vs+1)

+ g
(
vs, τ̃(vs), µ(φs+1, q(φs+1))

)
+ 2

∆tρmvs.

At step 1, we apply the FFT algorithm to first eliminate p1 and then compute φs+1.
Similarly, we calculate vs+1 from step 2. For more details, please refer to [24].

5.1. Mesh refinement test. In order to test the convergence rate of the pro-
posed schemes, we consider the two reformulated models (3.12) and (4.6) with the
double-well free energy (2.1) in a rectangular domain Ω = [0, 2π]2. We make the
following functions exact solution of the system modified by some appropriate forcing
functions:
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(5.3)



u1 =
√
ρ sin(x) cos(y) sin(t),

u2 =
√
ρ cos(x) sin(y) sin(t),

φ = cos(x) cos(y) cos(t),

p = sin(x) sin(y) sin(t),

q =
√
γ2φ(1− φ),

where ρ = (ρ1 − ρ2)φ + ρ2. Here we note that g(φ) =
√
γ2(1 − 2φ). The parameter

values are chosen as

(5.4) ρ1 = η1 = ν1 = 1, ρ2 = η2 = ν2 = 3, γ1 = 0.01, γ2 = 1, λ = 10−4.

We choose the number of spatial grids as Nx = Ny and compare the numerical solution
with the exact solution at t = 1. We compute L2 and L∞ errors of velocity v1, phase
variable φ, and new variable q by varying the grid size in space and time. From Tables
1–6, we observe that both linear schemes are second-order accurate in time and space
for all variables.

5.2. Comparison of coarsening dynamics between the two models. Next,
we study coarsening dynamics using the double-well potential given in (2.2). Here, we
use periodic boundary conditions and Nx = Ny = 129 mesh points in each direction
in space. The initial condition is chosen as

(5.5) φ = 0.5 + 0.4 sin(4πx) sin(4πy).

The parameter values are chosen as

(5.6) γ1 = 10−2, γ2 = 102, η1 = η2 = 1, λ = 10−7, N = 107.

Table 1
Mesh refinement test of scheme (3.24) for v1 (or v2).

τ N Error Order CPU(s)

L∞ L2 L∞ L2

0.1 16 2.5114e-02 8.1123e-02 - - 0.4
0.05 32 5.8939e-03 1.8862e-02 2.0912 2.1046 2.6
0.025 64 1.4221e-03 4.5426e-03 2.0512 2.0539 26.5
0.0125 128 3.5139e-04 1.1210e-03 2.0168 2.0187 322.4

Table 2
Mesh refinement test of scheme (3.24) for φ.

τ N Error Order

L∞ L2 L∞ L2

0.1 16 7.0439e-02 1.1247e-01 - -
0.05 32 1.9881e-02 2.8863e-02 1.8250 1.9623
0.025 64 5.1474e-03 7.2673e-03 1.9495 1.9897
0.0125 128 1.2985e-03 1.8204e-03 1.9870 1.9972

Table 3
Mesh refinement test of scheme (3.24) for q.

τ N Error Order

L∞ L2 L∞ L2

0.1 16 1.4655e-01 1.7039e-01 - -
0.05 32 4.1967e-02 4.5579e-02 1.8041 1.9024
0.025 64 1.0913e-02 1.1600e-02 1.9432 1.9743
0.0125 128 2.7560e-03 2.9132e-03 1.9854 1.9934
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Table 4
Mesh refinement test of scheme (4.11) for v1 (or v2).

τ N Error Order CPU(s)

L∞ L2 L∞ L2

0.1 16 2.5279e-02 8.1334e-02 - - 0.6
0.05 32 5.9683e-03 1.9013e-02 2.0825 2.0969 3.8
0.025 64 1.4476e-03 4.6073e-03 2.0436 2.0450 39.7
0.0125 128 3.5627e-04 1.1335e-03 2.0226 2.0232 480.7

Table 5
Mesh refinement test of scheme (4.11) for φ.

τ N Error Order

L∞ L2 L∞ L2

0.1 16 7.1873e-02 1.1328e-01 - -
0.05 32 2.0516e-02 2.9130e-02 1.8087 1.9593
0.025 64 5.3402e-03 7.3405e-03 1.9418 1.9885
0.0125 128 1.3500e-03 1.8397e-03 1.9839 1.9964

Table 6
Mesh refinement test of scheme (4.11) for q.

τ N Error Order

L∞ L2 L∞ L2

0.1 16 1.4936e-01 1.7230e-01 - -
0.05 32 4.3266e-02 4.6246e-02 1.7875 1.8975
0.025 64 1.1312e-02 1.1785e-02 1.9353 1.9723
0.0125 128 2.8631e-03 2.9620e-03 1.9822 1.9924

Here, we conduct several numerical experiments by varying the density ratio
ρ1 : ρ2, while keeping the other parameter values unchanged. The simulation results
by comparing model (3.12) with model (3.3) are shown in Figure 1. The energy decay
curve with time is shown in Figure 2. Some interesting phenomena are observed.

First, in the quasi-incompressible model, when the density ratio is 10:1, fluid
phase 1 forms drops within the matrix of the other fluid phase shown in Figure 1(a).
The drops form quickly in this simulation such that the total energy decays quickly to
a saturated level. Likewise, when the density ratio is reversed to 1:10, the heavy fluid
component forms drops within the lighter fluid component shown in 1(b). From the
energy curve in Figure 2, we observe that the coarsening dynamics in this case is the
slowest. At t = 1000, the fluid matrix phase has not reached a quasi-steady state. In
both cases, the heavy fluid component exists in the form of drops in the matrix of the
lighter fluid component. This symmetry in morphology is well exhibited in the figure.
When the density ratio is 1, the PFM model reduces to an incompressible model and
the phases are separated into stripe patterns. At the moment when stripes form,
the energy drops a step in time. In contrast, we observe that coarsening dynamics
predicted by the incompressible model (PFV) is less sensitive to the change of the
density ratio as shown in Figures 1(e) and 1(f). Regardless of the density ratio, it’s
always the second fluid component that forms drops within the matrix of the first
fluid component in the two case studies presented. In fact, the corresponding energy
curves in Figure 2 are indistinguishable with respect to the two density ratios 1:10 and
10:1. They do not show morphological symmetry given the symmetric initial profile.
This result seems to be unphysical, which indicates the model is not physically valid.

In addition, by investigating the energy curves in Figure 2, we observe that there
does not exist a linear correlation between dynamics predicted by these two models.
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Fig. 1. Coarsening dynamics. In the PFM model, the density ratio has dramatic effects on
the coarsening dynamics. The PFV model gives similar dynamics for both fluid components. Its
dynamics is less correlated with the density ratio. However, different density does induce the different
coarsening rate shown in the energy decay curve in time. Here, we use a standard heat color map
to plot the volume fraction of fluid 1, φ, where red represents 1 and blue represents 0 in (f).

For the PFM model, the case of ρ1 > ρ2 seems to predict faster dynamics initially than
the case of ρ2 > ρ1. This in fact can be seen from the effective mobility parameter
in transport equations for different phases, which are density ratio dependent in the
PFM formulation. In the PFV formulation, mobility parameters in the transport
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Fig. 2. Energy as a function of time for the coarsening dynamics in Figure 3. Near t = 800,
the PFV model predicts a coarsening transition for density ratio 10:1, indicating the PFV model is
also inherently affected weakly by the density difference.

equations for different phases are identical. But, when the density ratio is 10:1 and
after t = 800, the morphology coarsens to form larger drops of fluid 2 within fluid 1,
indicated by the step drop in the energy curve. These simulations show that dynamics
predicted by the PFM model is quite different in the beginning for different density
ratios, whereas dynamics predicted by the PFV model may be similar initially, but it
can have different coarsening transition later on.

Next, we study coarsening dynamics of two drops of fluid 1 immersed in the matrix
of fluid 2. Again, the two models predict quite different dynamics. The parameter
values used in the numerical study are chosen as

(5.7) γ1 = 10−2, γ2 = 102, η1 = η2 = 1, λ = 10−7.

The initial condition is given by
(5.8)

φ(t = 0)= max

(
1+ tanh 0.15−R1

ε

2
,

1+ tanh 0.15−R2

ε

2
,

1+ tanh ε−R3

ε

2

tanh 0.25−R4

ε +1

2

)
,

where
(5.9)

R1 =
√

(x− 0.5Lx)2 + (y − 0.25Ly)2, R2 =
√

(x− 0.5Lx)2 + (Y − 0.75Ly)2,

(5.10) R3 = |x− 0.5Lx|, R4 = |y − 0.5Ly|, ε = 0.01, Lx = Ly = 1,

and v(t = 0) = 0. The initial condition for pressure is not necessary. Here, we use
the periodic boundary condition once again.

The two drops initially connected by a thin liquid bridge always break up into
separate drops as predicted by the PFM model, as the density difference is large.
The results for density ratios 10:1 and 1:10 are depicted in Figures 3(a) and 3(b),
respectively. Similar to the case depicted in Figure 1, the PFM model with ρ1 6= ρ2

predicts faster dynamics initially. However, it would be trapped in a local minimum,
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Fig. 3. Drop dynamics with respect to variable density ratios. (a–b) Results are obtained from
the PFM model with ρ1 = 10, ρ2 = 1; ρ1 = 1, ρ2 = 10, respectively; (d–e) Results are obtained from
the PFV model with ρ1 = 10, ρ2 = 1; ρ1 = 1, ρ2 = 10, respectively. When ρ1 = ρ2, the PFV and the
PFM models are identical. Here, we use the standard heat color map to plot the volume fraction of
fluid 1, φ, where red represents 1 and blue represents 0.

thus in the long term the energy drop is not as dramatic as that in the PFV model.
In the equal density case and in the PFV model, the two drops eventually merge into
a large drop so that the final energy level is lower. The drop dynamics is shown in
Figure 3 and the energy decay curve as a function of time is shown in Figure 4.

When the density difference is not that large, the drop dynamics predicted by the
PFM model resembles that predicted by the PFV model in that two drops are not
clearly separated before they merge into a large one. See Figure 5 for the cases of 1:2,
2:1, 5:1, respectively. The case of 1:5 is similar to the case of 1:10 where two drops
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Fig. 4. Energy as a function of time for the drop dynamics simulation in Figure 3. The cases
where the two drops coalesce into a large one show lower energy levels while the ones keeping separate
drops show higher energy levels.

Fig. 5. Drop dynamics with the PFM model. This is the continuation from Figure 3. Here
different density ratios are investigated for the PFM model alone. (a) ρ1 : ρ2 = 1 : 2; (b) ρ1 : ρ2 =
1 : 5; (c) ρ1 : ρ2 = 2 : 1; (d) ρ1 : ρ2 = 5 : 1. At small density differences, small drops coalesce into
a large one in the time frame we simulate.
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Fig. 6. Energy as a function of time for the drop dynamics simulation with the PFM model
in Figures 3 and 5. The energy drops to the same level if one large drop forms at the end of the
simulation. Analogously, the energy converges to the same value when two drops remain.

are clearly separated at the end of the computation (t = 150). Figure 6 depicts all
the energy curves for the cases calculated using the PFM model up to t = 150. Once
again, the simulations reveal a strong dependence of the drop coalescent dynamics on
the density difference in the PFM model.

Then, we use random initial conditions to study coarsening dynamics. Specifically,
the initial profile is given by

(5.11) φ = 0.3 + 10−3rand(0, 1).

The parameter values are chosen as

(5.12) γ1 = 10−1, γ2 = 103, η1 = η2 = 1, λ = 10−5, N = 107,

and Lx = Ly = 1, Nx = Ny = 128. The velocity is initially assumed to be zero.
Here, we use the same initial profile of φ generated by the random number gen-

erator for all the runs, such that all the initial conditions in Figure 7 are identical,
which is required to make the comparison meaningful. The numerical simulations are
summarized in Figure 7 and the energy plot is shown in Figure 8. We observe that
the PFM model with ρ1 > ρ2 gives the fastest dynamics whereas the PFM model
with ρ1 < ρ2 gives the slowest dynamics. The PFV model yields similar dynamics
for the two different density ratios, i.e., the dynamics predicted by PFV model is not
sensitive to the density ratio. At the time we stop our computations, four results yield
a similar energy level while the PVM model with ρ1 > ρ2 shows a lower energy level
than the other four.

5.3. Comparison of drop falling dynamics between the two models. In
this subsection, we study transient dynamics of a heavy drop falling in the light fluid
predicted by the two models comparatively. To consider the effect of gravity, an extra
gravity force F is added in the momentum equation with

(5.13) F = ρgŷ, ρ = ρ1φ+ ρ2(1− φ).
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Fig. 7. Coarsening dynamics with a random initial condition. In this figure, we compare the
coarsening dynamics between the two models at two sets of density ratios. The coarsening dynamics
for the PFM model with density ratio 10 : 1 is the fastest.

The periodic boundary condition in the x direction is used. In the y direction, we
implement the Dirichlet boundary condition for the velocity field v|y=0 = v|y=Ly

= 0
and the Neumann boundary condition for φ:

(5.14) ∇φ · n|y=0,y=1 = 0, ∇µ · n|y=0,y=1 = 0.

We remark that the modification of the boundary condition in the numerical
solver invalidates our theoretical proof for energy stability of the numerical schemes
with the periodic boundary condition. However, our numerical results indicate that
the revised scheme is still energy stable. To solve the fully coupled linear system, we
use the GMRES solver implemented in [8] with the preconditioner developed in [27]
for the Navier–Stokes equation.
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Fig. 8. Energy as a function of time for the coarsening dynamics in Figure 7.

Fig. 9. Heavy fluid drop falling in a light fluid matrix. Here, we use ρ1 = 5, ρ2 = 1. The
phase boundary defined by φ = 0.5 is plotted with a thick black line. The color circles are the
streamlines. (a) Numerical results at t = 0, 0.5, 0.8, 1, 1.5 for the PFM model are shown, respectively.
(b) Numerical results at t = 0, 0.5, 0.8, 1, 1.5 for the PFV model are depicted, respectively. They
predict comparable drop shapes when density difference is small.
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Fig. 10. Heavy fluid drop falling in a light fluid matrix. Here, we use ρ1 = 10, ρ2 = 1.
The phase boundary defined by φ = 0.5 (i.e., the interface) is plotted with a thick black line. The
streamlines are shown as colored circles. (a) The PFM model prediction at t = 0, 0.3, 0.5, 0.8, 1,
respectively. (b) The PFV model prediction at t = 0, 0.3, 0.5, 0.8, 1, respectively. The two models
predict different shapes for the drop at later time.

We use Lx = 2, Ly = 4, Nx = 256, Ny = 512, and the parameter values are
chosen as

(5.15) η1 = η2 = 0.1, γ1 = 10−2, γ2 = 102, λ = 10−4, g = 9.8.

The initial profile is chosen as

(5.16) φ =
1

2

(
1 + tanh

0.2−R
0.01

)
, R =

√
(y − 0.8Ly)2 + (x− 0.5Lx)2, v = 0.

Here, we conduct two simulations with ρ1 = 5, ρ2 = 1 shown in Figure 9 and ρ1 =
10, ρ2 = 1 shown in Figure 10, respectively. The vorticity, velocity, pressure field, and
divergence of velocity for Figure 10 are shown in Figure 11. We observe that when
the density difference is small, the two models predict qualitatively similar dynamics.
However, when the density difference is large, shapes of the falling drop are quite
different. The corresponding velocity fields are also shown to be different.

6. Concluding remarks. In this paper, we present a novel linearization (energy
quadratization) strategy to develop two spatial-temporal, second order, fully discrete,
linear schemes for a quasi-incompressible model and an incompressible model of a
binary viscous fluid mixture of different densities. Mesh refinements are conducted to
verify the accuracy of the new schemes. The fully discrete linear schemes are shown to
be unconditionally energy stable with respect to periodic boundary conditions such
that a relatively large time step is plausible. As a corollary, the time-discretized,
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Fig. 11. Vorticity, divergence of velocity field (∇ · v), and pressure for simulations in Figure
10 at t = 1 . The arrows in (a) and (c) represents the velocity field. (a–c) vorticity, divergence
of velocity field, and pressure at t = 1 for Figure 10(a) with the PFM model; (d)–(f) vorticity,
divergence of velocity field, and pressure at t = 1 for Figure 10(b) with the PFV model.

semidiscrete schemes are also unconditionally energy stable, subject to appropriate
physical boundary conditions. Several numerical results are presented to illustrate
the efficiency of our numerical schemes. The linearization idea is rather general and
useful so that it can be applied to study a broad class of hydrodynamic models as
well. The upshot of the numerical studies is that the two models predict qualitatively
similar dynamics when density difference is small; however, they yield quite different
dynamics when the density difference is large. In the latter case, we believe the quasi-
incompressible model is more accurate physically since the linear momentum is not
conserved in the incompressible model.
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