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Abstract. Spatial variation in fish densities across river networks suggests that the influence of food and
habitat resources on assemblages varies greatly throughout watersheds. Conceptual models predict that
in situ primary production should vary with river characteristics, but the influence of autochthonous resource
availability on the capacity for river reaches to support fish is poorly understood. We estimated primary pro-
duction throughout the South Fork and Middle Fork of the John Day River, Oregon, by measuring diel cycles
in dissolved oxygen (DO) during July 2013. Using these data, we (1) evaluated the extent to which juvenile
salmonid abundance and resource limitation correlated with areas of high gross primary production (GPP),
(2) developed models to predict GPP from both site-level measurements and remotely sensed data, and (3)
made predictions of GPP across the entirety of the Middle Fork John Day River (MFJD) network and assessed
the utility of these spatially continuous predictions for describing variation fish densities at broad scales. We
produced reliable estimates of GPP at sites where DO loggers were deployed using measurements of solar
exposure, water temperature, and conductivity measured at each site, as well as surrogates for these data esti-
mated from remote sensing data sources. Estimates of GPP across fish sampling sites explained, on average,
58–63% of the variation in juvenile salmonid densities during the summer sampling period, and 51–83% dur-
ing the fall sampling period, while continuous network predictions of GPP explained 44% of the variation in
fish densities across 29 km of the MFJD. Further, GPP explained nearly half of the variation in juvenile steel-
head dietary resource limitation, as inferred from bioenergetics modeling results. These results comprise a
first effort at quantifying variation in autochthonous production across an entire river network and, impor-
tantly, provide a much-needed food-web context for guiding more effective fish and habitat management.
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INTRODUCTION

Primary production is a principle source of
energy for consumers and a dominant control on
the structure and function of ecosystems globally.
In freshwaters in particular, major ecosystem
properties, such as species richness (Gu�egan et al.

1998, Dodson et al. 2000), secondary production
(Downing et al. 1990, Finlay 2011), and food-web
structure (Takimoto and Post 2013), vary pre-
dictably with increasing autochthonous produc-
tion. Aquatic primary production, in turn, ranges
widely across scales due to variation in the avail-
ability/presence of nutrients and light (Mulholland
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et al. 2001) or the strength of cascading trophic
interactions (Strong 1992, Borer et al. 2005),
among other factors. Given its influential role,
understanding how primary production, and its
association with aquatic biota, varies across space
is fundamental to contemporary ecosystem theory
and effective watershed management (Woodward
and Hildrew 2002, Barqu�ın et al. 2015).

Existing work provides a basis for describing
spatial variability in productivity in relative
terms, particularly for streams. The seminal river
continuum concept (Vannote et al. 1980), for
example, posits that aquatic primary production
forms the dominant energy base in mid-sized
streams, relative to smaller headwater streams or
larger lowland rivers in which allochthonous
resources prevail. Although these predictions
have some empirical support (Finlay 2011, but see
Winterbourn et al. 1981), riverscape-scale models
of food-web structure and ecosystem function
remain largely conceptual and provide little
insight into productivity in specific numerical
terms, despite the fact that well-developed tools
exist for quantifying aquatic production and
ecosystem metabolism at local scales (e.g.,
Demars et al. 2015). This is in stark contrast to the
state of knowledge for terrestrial ecosystems, for
which a wealth of data on primary production
exists and supports a variety of biological assess-
ments at different spatial and temporal scales (see
�S�ımov�a and Storch 2017 for a recent review).
Despite gaps in knowledge, there is a pressing

need for accurate estimates of aquatic production
both at local scales and for entire stream net-
works, particularly within a river-restoration con-
text. Firstly, restoration practitioners increasingly
recognize that the success or failure of particular
management strategies can depend on how
system changes interact with or are mediated by
the structure and function of biological communi-
ties (e.g., Power et al. 1996, Bellmore et al. 2017).
Accordingly, Naiman et al. (2012) provide a
recent and compelling argument in favor for pur-
suing river restoration with an explicit ‘food-web
perspective’ in mind. Secondly, efforts to recover
endangered fish (e.g., Pacific salmon, Oncor-
hynchus sp., in the U.S. Pacific Northwest) rely
heavily on assumptions about the capacity of par-
ticular habitats to support fish (e.g., Wheaton
et al. 2018), often with little data on the inherent
productivity of habitats. Thus, quantitative insight

into primary production for entire riverscapes
offers a powerful means to estimate fish produc-
tion or carrying capacity at unprecedented scales
(e.g., McGarvey and Johnston 2011). More locally,
however, a spatially explicit and continuous view
of productivity can shape the where and what for
specific on-the-ground restoration actions, for
example, helping to distinguish sites that may be
good candidates for physical habitat restoration
(e.g., woody debris addition; Roni et al. 2014) vs.
nutrient addition (e.g., salmon carcass addition;
Collins et al. 2015).
While there are obvious benefits to integrating

productivity considerations into watershed restora-
tion and fisheries management, lotic fish ecologists
have historically viewed habitat through a physical
rather than biotic (or combined) habitat lens
(Wurtsbaugh et al. 2015). This emphasis, which
contrasts with research traditions in standing
waters, is perhaps a result of three factors. First,
physical disturbance (e.g., floods, drought-related
low-flow extremes) is a hallmark feature of
streams, and indeed influences fish populations
and communities, in some systems (Jensen and
Johnsen 1999, Sabo et al. 2010), to such an extent
that there may be little reason to consider biotic
habitat attributes, such as productivity. The second
reason is historical—an early emphasis on physical
factors in studies of stream fish–habitat relation-
ships, spurred in part by policy needs (e.g., Minns
et al. 2011), may simply have narrowed the scope
of inquiry for the discipline in general (Graham
and Dayton 2002). A final, practical reason is that
stream food webs are inherently complex, which
poses significant challenges to efforts aimed at
assessing habitat productivity in a manner that is
meaningful to fish, tractable, and cost-effective. At
their base, for instance, stream food webs are
fueled by a mix of both in-stream and riparian pri-
mary production (e.g., Jardine et al. 2012). Once
basal energy pools are assimilated and available to
fish via secondary (invertebrate) production, the
strength of in-stream trophic pathways may be
diminished by terrestrial invertebrate subsidies
(e.g., Baxter et al. 2005). This complexity is further
compounded by a potentially high degree of spa-
tiotemporal variability in energy flow and food-
web structure in riverine systems (Woodward and
Hildrew 2002, Finlay and Kendall 2007, Kiffney
et al. 2014). In sum, reliably estimating habitat pro-
ductivity is a difficult and costly task.

 ❖ www.esajournals.org 2 March 2018 ❖ Volume 9(3) ❖ Article e02131

SAUNDERS ET AL.



Nonetheless, fish-habitat restoration efforts are
likely to be more effective if productivity consid-
erations are factored into the planning and
design process, as different strategies will be pre-
scribed under an assumption of biotic vs. abiotic
habitat limitation (Rosenfeld 2003). Yet, strategies
for recovering populations of threatened or
endangered Pacific salmon in the Columbia
River Basin, where a large-scale and costly habi-
tat-restoration program is currently underway,
are formulated largely without a food-web or
productivity context (Naiman et al. 2012). To
address this deficiency, here we present an
approach that allows for the accurate and
cost-effective estimation of stream-habitat pro-
ductivity at both local and network scales. More
specifically, our goal was to develop a tool for
making spatially explicit predictions of habitat
productivity that could be used to inform habitat
recovery efforts and limiting factor analyses
centered around two anadromous salmonids of
concern (steelhead/rainbow trout, Oncorhynchus
mykiss; and Chinook salmon, Oncorhynchus tsha-
wytscha) in two tributaries to the John Day River
Basin, Oregon: the Middle Fork John Day River
(MFJD) and Murderers Creek. The specific objec-
tives of our study were fourfold: (1) to quantify
spatial variation in gross primary productivity
(GPP) across the MFJD and Murderers Creek
watersheds; (2) to evaluate relationships between
GPP and three physicochemical predictors (i.e.,
light, temperature, and conductivity) that were
measured in situ but that can also be acquired
for any point in the river network from existing
geospatial data sets; (3) to link spatial patterns in
primary production to the distribution and abun-
dance of O. mykiss and Chinook salmon; and (4)
to make continuous, spatially explicit predictions
of GPP for the MFJD and Murderers Creek
stream networks. In doing this work, we focused
exclusively on the MFJD and Murderers Creek
watersheds, but we provide a framework that
can be readily adapted to any watershed.

METHODS

Study area
To describe watershed-scale variation in GPP

and evaluate its importance to juvenile salmonids,
we first evaluated the feasibility of predicting
GPP at the reach and network scales using a

multiple regression approach and readily avail-
able data on solar exposure, water temperature,
and water chemistry from either habitat monitor-
ing programs or remotely sensed data source.
Subsequently, we leveraged data on salmonid
densities from the Integrated Status and Effective-
ness Project (ISEMP) to determine the extent to
which juvenile salmonids were associated with
primary production at the reach scale (i.e., mea-
sured GPP) and network scale (i.e., predicted
GPP). We identified 24 sites in two semi-arid
watersheds in the John Day River Basin, Oregon,
USA, wherein we collected data on diel oxygen
concentrations, fish populations, and aquatic and
riparian habitats (Fig. 1). The MFJD and Murder-
ers Creek watersheds are both monitored annu-
ally under ISEMP and the Columbia Habitat
Monitoring Program (CHaMP) to assess fish
populations and aquatic habitat conditions
(Bouwes et al. 2011, CHaMP 2013). These pro-
grams provide detailed information on the abun-
dance and growth of anadromous and resident
O. mykiss and juvenile Chinook salmon, as well
as physicochemical conditions (e.g., water tem-
perature, alkalinity, and conductivity), riparian
structure, and channel structure. To leverage these
existing data sets, we selected study sites to esti-
mate primary production and investigate relation-
ships between primary production and fish
populations from those previously sampled by
CHaMP and ISEMP. To maximize contrast and
independence among sites, we further con-
strained site selection within this frame to ensure
a range of geomorphic reach types (based on the
River Styles classification; Brierley and Fryirs
2005, O’Brien et al. 2017) and land use, channel
width, and vegetation cover conditions were
reflected in our study.
Study sites were selected in the MFJD (n = 16)

and Murderers Creek (n = 8) watersheds. Our
MFJD sites were located in the MFJD Intensively
Monitored Watershed (IMW; Bennett et al. 2016),
a sub-basin of the MFJD in which salmonid popu-
lations and aquatic habitats have been intensively
sampled as part of the Integrated Status and
Effectiveness Monitoring Program (Bennett et al.
2016, Wheaton et al. 2018). The MFJD IMW
constitutes an 827-km2 watershed, ranging in ele-
vation from ~1050 m to 1900 m. Riparian vegeta-
tion in the MFJD watershed takes two
predominate forms. Where channel gradient is
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low (~1.0–1.5%), vegetation is dominated herba-
ceous vegetation with patchy willow (Salix spp.),
redosier dogwood (Cornus sericea), and alder
(Alnus spp.). Where channel gradients exceed
2.0%, vegetation is dominated by mature pon-
derosa pine (Pinus ponderosa), lodgepole pine
(Pinus contorta), Douglas fir (Pseudotsuga men-
ziesii), or western larch (Larix occidentalis), and
channel margins are more continuously vege-
tated with shrub species. Murderers Creek is a
tributary to the South Fork John Day River
(SFJD), draining a watershed area approximately
344 km2 that ranges in elevation from ~890 m to

1790 m. Vegetation on Murderers Creek is domi-
nated by ponderosa pine in high-elevation
reaches, while low-elevation sections of the creek
flow through open valleys vegetated with herba-
ceous vegetation with a narrow corridor or of
shrub species along stream banks.
Middle Fork John Day River and Murderers

Creek provide habitat for an evolutionarily signifi-
cant unit of O. mykiss, listed as threatened under
the U.S. Endangered Species Act (ESA), and one
of the last robust wild populations of spring Chi-
nook salmon in the Columbia River Basin (Carmi-
chael et al. 2001). In addition to the previously

Fig. 1. Map of study area with sites where primary production, fish, and habitat were sampled shown as white
circles.
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mentioned salmonid species, longnose dace (Rhi-
nichthys cataractae), redside shiner (Richardsonius
balteatus), longnose sucker (Catostomus catostomus),
mountain whitefish (Prosopium williamsoni), and
sculpin (Cottus spp.) are present throughout vari-
ous portions of the study area. For more detailed
information on the study area and fish popula-
tions present, see McMillan et al. (2012), Tattam
et al. (2013), and Weber et al. (2014).

Stream food webs supporting salmonid popu-
lations are fueled by both autochthonous (pri-
mary production) and allochthonous (detritus
and invertebrate inputs) energy sources (Vannote
et al. 1980, Wipfli and Baxter 2010). Therefore,
for GPP to influence salmonid populations, sec-
ondary production of aquatic invertebrates using
this resource would need to be present in suffi-
cient densities to represent a reliable prey
resource for salmonids. Previous studies within
the John Day watershed established that detritiv-
orous and grazing macroinvertebrates were
abundant throughout the watershed (Li et al.
1994, Tait et al. 1994). Further, Tait et al. (1994)
demonstrated significant relationships between
solar exposure and riparian vegetation, and den-
sities of aquatic invertebrates. Here, we selected
study reaches across a range of riparian vegeta-
tion communities that would support secondary
production derived from aquatic and detrital
pathways and having average July and August
water temperatures that support salmonid popu-
lations (12–22°C; Appendix S1).

Field measurements
Primary production.—We measured primary

production using a single-station, open-channel
method (Grace and Imberger 2006). In each
watershed, we recorded dissolved O2 (DO) and
water temperature continuously at 10-min inter-
vals using miniDOT loggers (Precision Measure-
ment Engineering, Vista, California, USA).
Sampling in the MFJD was conducted during 29
June–8 July 2013, and sampling in Murderers
Creek was conducted during 10–18 July 2013. In
the MFJD, where we were unable to concurrently
measure DO and water temperature owing to
logger availability, we deployed miniDOT log-
gers randomly at eight of the 16 previously
selected sites during one of two consecutive 5-d
periods. Loggers were deployed at all sites for

several days (five in MFJD, eight in Murderers
Creek) to ensure that diel DO profiles were
recorded for at least two days with consistent,
optimal production conditions (i.e., minimal
cloud cover; initially assessed optically by W.C.
Saunders; verified with solar radiation data; data
not provided). Between consecutive deployments
and following deployment at Murderers Creek,
we submerged all loggers in a 5-gallon bucket
with constant aeration for 16 h to verify consis-
tency among loggers and accuracy of measure-
ments under conditions that approach 100%
oxygen saturation.
We used data from miniDOT loggers to calcu-

late diel change in DO concentration and subse-
quently used a modified version of the daytime
regression method to estimate primary produc-
tion (Grace and Imberger 2006, Atkinson et al.
2008, Grace et al. 2015). We used the BAyesian
Single-station Estimation program (BASE; Grace
et al. 2015) to simultaneously estimate primary
production, stream respiration, and reaeration for
each 10-min period during which DO was mea-
sured in the field. Gross primary production was
modeled as a function of solar input (I, measured
model input; notation follows Grace et al. 2015),
the ability of primary producers to use incident
light (p), and a light use efficiency factor (A).
Stream respiration (R) was corrected for water
temperature (T, measured model input) using a
temperature-dependence factor (h). Reaeration (K)
was also temperature-corrected and depended on
the deficit or surplus of DO (D, calculated as the
difference between measured O2 concentration
and O2 concentration at 100% saturation, derived
from field measurements). Thus, unlike other
open-channel metabolism approaches requiring
field methods for estimating K, reaeration is a
computational solution in BASE. Dissolved oxy-
gen concentrations at 100% saturation were cor-
rected for water salinity (measured once at each
site) and barometric pressure. The BASE program
uses a Markov chain Monte Carlo (MCMC)
method (chain length = 10,000 iterations, burn-
in = 1000 iterations used here) to estimate values
for the model parameters p, A, R, h, and K (i.e.,
those not measured in the field; see Grace et al.
2015). For subsequent statistical analysis, we aver-
aged estimates of GPP from daily models fit with
the BASE program for which the r2 > 0.7 and pos-
terior predictive check (PPC) fell between 0.1 and
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0.9, to ensure a high correlation between mea-
sured and modeled DO data as well as overall
model fit (Kery 2010). We converted estimates of
GPP from the BASE program (g O2�L�1�d�1) to
aerial rates (g O2�m�2�d�1) based on the mean
water depth calculated from a stream cross sec-
tion located at the location of the miniDOT logger
deployment.

Solar radiation (watt/m2) was measured at 10-
min intervals at two permanent weather stations
(CS300-L Pyranometer; Campbell Scientific,
Logan, Utah, USA) located along the MFJD and
used as an index of light intensity. Weather sta-
tions were located in wide valleys with an un-
obstructed view of the sky. To account for
vegetation and topographic shading at individ-
ual sites, we calculated site-specific solar radia-
tion data by discounting all solar radiation
measurements, collected at 10-min intervals at
the nearest weather station, by the average solar
access, measured within sites using a SunEye 110
(Solmetric Corporation, Sebastopol, California,
USA). We verified that solar radiation data col-
lected in the MFJD were appropriate for use in
Murderers Creek by comparing hourly measure-
ments of solar radiation collected in the Murder-
ers Creek watershed on 15 July 2013 during
0430–2030 h (510 Solar Irradiance Meter; Test
Products International, Beaverton, Oregon,
USA). The use of centralized solar radiation mea-
surements likely proved sufficient (based on
minimum model fit criteria) owing to the stan-
dardization of when DO data were collected,
relative proximity (65 km), and similarity in
elevation and aspect of the two watersheds stud-
ied (Fig. 1). Barometric pressure was measured
concurrently with solar radiation at each of the
two permanently established weather stations
(Vaisala Weather Transmitter WXT520; Campbell
Scientific). We verified the accuracy of barometric
pressure measurements recorded in the MFJD
watershed for use in the Murderers Creek water-
shed using a Brunton ADC Pro meter (Brunton,
Louisville, Colorado, USA) and following the
same procedure used to validate solar radiation.
Water salinity was measured at each site at the
time of miniDOT logger deployment (EC400;
Extech Instruments Corporation, Nashua, New
Hampshire, USA).

Physical measurements.—The CHaMP program
measures a wide array of physical and chemical

attributes at each of its monitoring sites. We pro-
vide a brief description of the methods used to
measure site attributes used in this study here.
However, Bouwes et al. (2011) provide in-depth
details for all sampling protocols. Site visits con-
ducted by the CHaMP program occurred during
July–August, but were not conducted in conjunc-
tion with DO sampling (within 3–4 weeks after
DO sampling). Solar access, used to correct for
site-specific topographic and vegetation shading
(see Primary production), was measured at each
site using a Solmetric SunEye by capturing
images of the portion of the sky with solar expo-
sure at 11 locations spaced evenly throughout the
study site. We calculated the average solar access
for each site as the mean of each individual esti-
mate of solar access for the period of May–Octo-
ber. Site-specific solar access data for the Big
Boulder Creek sampling site were not available,
so we used estimates of solar access from a
CHaMP site located on a nearby tributary, Camp
Creek. For estimation of GPP from DO data, we
used water temperature measurements provided
by the miniDOT loggers. However, to predict
GPP from individual site characteristics (see Sta-
tistical analysis), we calculated mean July water
temperatures from hourly water temperature
measurements recorded by TidbiT temperature
loggers deployed at each site (Onset Computer
Corporation, Bourne, Massachusetts, USA). Water
conductivity (EC400; Extech Instruments Corpo-
ration) and alkalinity (Alkalinity Test Kit; LaMotte
Company, Chestertown, Maryland, USA) were
measured by the CHaMP program 100–300 m
above the location of the logger deployment.
Fish populations.—To evaluate the relationships

between GPP and juvenile O. mykiss and Chi-
nook populations (hereafter referred to as salmo-
nid populations) in the MFJD and Murderers
Creek watersheds, we used two independent
data sets on fish abundance (mark–recapture and
snorkeling), fish consumption, and distribution
collected during the summer 2013. First, at indi-
vidual sample sites we used mark–recapture
data on individual fish collected by the ISEMP
program during summer (July) and fall (October)
2013. Densities (fish/m) of O. mykiss and juvenile
Chinook salmon and growth rates of O. mykiss
>60 mm total length (TL) were determined by
implanting individuals with passive integrated
transponder tags (PIT tags), and conducting a
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two-pass Lincoln-Peterson mark–recapture esti-
mate of abundance, modified by Chapman
(1951), during the summer and fall sampling
periods. Fish densities were standardized by the
length of the survey reach, as juvenile salmonids
are strongly associated with bank-attached fea-
tures (e.g., under cut banks, woody debris,
streamside vegetation, gravel bars; see Cramer
and Ackerman 2009a, b). Additionally, we evalu-
ated both continuous (site width) and categorical
(tributary vs. mainstem) stream size variables in
our analysis of fish density (see Statistical analy-
sis) to account for any width-related influence on
local abundance. Summer growth of O. mykiss
was determined by the change in mass for fish
captured in the same reach during July and Octo-
ber sampling (n = 273 individuals). Using these
data and a bioenergetics modeling approach
(e.g., Hansen et al. 1993, Hartman and Kitchell
2008), we estimated the degree of resource limi-
tation experienced by O. mykiss at sites of vary-
ing productivity. More specifically, we inferred
limitation using model estimates of the propor-
tion of the theoretical maximum consumption
value (Pval; ranging from 0 to 1) consumed by
fish. We estimated Pval for individual fish recap-
tured at sites in the MFJD and Murderers Creek
watersheds by scaling theoretical estimates of
maximum consumption (a function of fish size
and water temperature; see Hansen et al. 1993)
to empirically derived consumption rates consis-
tent with observed growth rates, temperature,
and diet during the study period. We ran bioen-
ergetics models using observed data on site-spe-
cific water temperature, diet data from Weber
et al. (2014), and bioenergetic parameters from
the literature (From and Rasmussen 1984, Rand
et al. 1993, Myrick 1998, Van Winkle et al. 1998).
Pval provides a normalized measure of fish con-
sumption that integrates across the entire energy
budget of a fish normalized across size and tem-
perature, and thus provides a relative measure of
fish performance that is comparable among pop-
ulations or streams. This approach has recently
been used to evaluate the importance of prey
availability and environmental factors on salmo-
nid performance at regional (e.g., Weber et al.
2014) and global scales (e.g., Budy et al. 2013).
Data on salmonid densities (fish/m) were avail-
able for 19 sites during summer 2013 and 16 sites
during fall 2013, while data on resource

limitation were estimated from observed individ-
ual growth rates at 15 sites.
To test whether network predictions of GPP (see

Network prediction of GPP) were associated with
fish densities, we used spatially extensive snorkel
data collected by Blanchard (2015). For more
details on survey protocols, see O’Neal (2007) and
Blanchard (2015). Snorkel-based estimates of fish
densities were conducted during July–August
2013 at or close to base flow conditions. Snorkel
estimates of salmonid densities were calibrated at
12 CHaMP sites that were concurrently sampled
with electrofishing gear, and densities estimated
with mark–recapture sampling. Snorkeling was
conducted in 51 locations, consisting of 2–6 con-
secutive 100- to 300-m reaches, throughout the
MFJD and all major salmonid-bearing tributaries
in the study area (total survey area, 30.74 km). Sal-
monid densities were estimated for each reach
and, for subsequent analysis purposes, averaged
within prediction segments associated with our
network GPP model (see GPP–Fish relationships).
Preliminary screening of data revealed outliers

in both our abundance and growth data sets that
warranted censoring some observations from
further analysis. First, extreme temperatures
(>25°C) in the mainstem MFJD caused a 10-fold
increase in juvenile Chinook between 29 June
and 3 July 2013 in the lower reaches of Vinegar
and Granite Boulder creeks (Blanchard 2015),
which likely provide thermal refugia (e.g., Bilby
1984, Sutton and Soto 2012). Additionally, we
excluded growth estimates from one mainstem
site in the MFJD owing to a limited number of
recaptured fish and their small size.

Statistical analysis
We evaluated the potential to predict GPP at

monitoring sites as a function of (1) in situ mea-
surements and (2) globally available (GIS) analogs
of site-level measurements, with the ultimate goal
of predicting GPP continuously throughout a
stream network as a means of describing spatial
variability in potential food resources available to
juvenile salmonids. Subsequently, we used a linear
modeling approach to evaluate the importance of
GPP in describing spatial variation in salmonid
densities and growth in the MFJD and Murderers
Creek at sites where DO was measured for esti-
mating GPP. Finally, we determined whether con-
tinuous predictions of GPP throughout the MFJD
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River network were associated with salmonid
densities.

Site-specific prediction of GPP.—We used multi-
ple linear regression to examine abiotic factors
controlling GPP across sample sites in the two
study watersheds and develop a predictive model
for GPP at specific monitoring sites. Although the
factors controlling GPP are complex, and poten-
tially synergistic (e.g., Beaulieu et al. 2013), much
of the research to date points to light availability
(e.g., Mulholland et al. 2001, Roberts et al. 2007),
temperature (e.g., Demars et al. 2011, Griffiths
et al. 2013), and nutrient availability (e.g., Lam-
berti and Steinman 1997, Bernot et al. 2010) being
among the primary drivers of potential GPP in
lotic systems. Our goal was to determine whether
we could predict GPP at sites where DO loggers
were deployed using proxies for these three con-
trolling factors that can be easily measured as
part of a fish or aquatic habitat monitoring pro-
gram (e.g., CHaMP). As part of its annual moni-
toring, CHaMP collects data on two proxies for
stream nutrients (i.e., alkalinity and conductivity;
Biggs and Price 1987, Jacoby et al. 1991). We con-
structed independent models to predict GPP at
monitoring sites using each of these nutrient
proxies, as well as the average summer solar
exposure (SunEye data, measured as a percent-
age) and the average water temperature during
DO logger deployment. A primary assumption of
multiple regression is that measurements are
independent, which spatial data often violate. We
accounted for spatial patterns in the independent
variable by incorporating predictor variables that
might drive flow-connected (temperature and
nutrients) and landscape-based (solar radiation)
spatial autocorrelation in GPP. While it may be
possible to build predictive network models
based on autocorrelation structures (e.g., SSN
models; Isaak et al. 2014), which inherently add-
ress non-independence, such models are data-
intensive, beyond the capabilities of our sample
size and spatial coverage of observations, and
na€ıve of mechanisms driving spatial covariance.
By including spatially varying predictors that
influence GPP, our approach inherently addresses
autocorrelation issues, and arguably offers more
mechanistic approach.

We based inferences about the ability to
make site-specific predictions of GPP based on the
top-performing model, selected using Akaike’s

information criterion corrected for small sample
size (AICc; Burnham and Anderson 2002), among
a set of 11 candidates which ranged in complexity
from single- to three-predictor models. We vali-
dated our top-performing model using a jackknif-
ing procedure (Dixon 1993) wherein we iteratively
removed individual sites from the data set, refit
models to the remainder, and predicted GPP for
the withheld site. We assessed the validity of our
site-scale predictive model for GPP by quantifying
the correlation between the mean jackknifed GPP
predictions and mean daily GPP estimates from
DO logger data. We validated that the assump-
tions of multiple regression were met by visually
inspecting residual plots to assess linearity and
homoscedasticity, and normal quantile plots to
assess normality.
Network prediction of GPP.—We constructed a

model to predict GPP continuously across the
network and evaluated how well predictions
from this model correlated with fish densities
throughout the O. mykiss-bearing portion of the
MFJD watershed. We used multiple linear regres-
sion to model observed GPP as a function of
accumulated solar radiation, mean July water
temperature, and conductivity (base on site-scale
model selection results; see Results). In contrast
to site-scale models, which used field measure-
ments, independent variables were calculated
using remotely sensed (GIS) data sources so that
we could predict GPP continuously throughout
the river network.
To account for reductions in solar radiation

resulting from topographic and near-stream veg-
etative shading, we created a hybrid elevation
model based on a 10-m digital elevation model
(DEM; USDA NRCS Geospatial Data Gateway
[https://datagateway.nrcs.usda.gov]) and vegeta-
tion height data (2011 Existing Vegetation Height
[EVH]; LANDFIRE land cover data [https://
www.landfire.gov]). We converted LANDFIRE
EVH data (30 m resolution) to a 10-m DEM
wherein elevation values within 10 m of MFJD
streamlines were set equal to 0 m (i.e., to repre-
sent solar access in open channels). We merged
these data with the bare earth DEM to form a
final DEM from which to estimate total accumu-
lated solar radiation (positive integer). Solar radi-
ation accumulated during the period 1 July–31
August was calculated at points spaced 250 m
apart along the MFJD stream network following
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the procedure outlined by Rich et al. (1994) and
Fu and Rich (2002), using the Solar Radiation
toolbar in ArcGIS 10.1 (ESRI 2012). Data were
log-transformed for analysis.

We calculated mean July water temperature
for river segments as the average of daily mean
water temperature (DMWT) for July modeled for
the John Day River by McNyset et al. (2015).
McNyset et al. (2015) predicted DMWTas a func-
tion of land surface temperature, measured by
the U.S. National Aeronautics and Space Admin-
istration’s (NASA) Moderate Resolution Imaging
Spectroradiometer (MODIS) satellites. We pre-
dicted mean July water temperatures for every
confluence-to-confluence stream reach. We used
Olson and Hawkins’ (2012) random forest model
to predict conductivity as a function of geologic,
climatic, soil, topographic, atmospheric deposi-
tion, and groundwater variables. We estimated
conductivity at points spaced 500 m apart along
the stream network. We merged data for all inde-
pendent variables in both the MFJD and Murder-
ers Creek watersheds onto a single stream layer
that we segmented into 1-km reaches. For solar
radiation and conductivity, which we estimated
at a finer spatial resolution, we averaged all
available data to produce a single estimate for
each independent variable for each 1-km river
segment.

We validated the network-scale GPP model
using the jackknifing procedure described above,
only this time by quantifying the correlation
between the mean GPP values for 1-km predic-
tion segments and the mean DO logger-based
GPP estimates for the corresponding segment.
Residual and normal quantile plots were visually
assessed to determine whether multiple regres-
sion assumptions were met. Following valida-
tion, we predicted GPP for the O. mykiss-bearing
portion of the MFJD using parameter estimates
derived from fitting the multiple regression
model to the entire data set of DO logger data.

GPP–Fish relationships.—We used multiple lin-
ear regression to evaluate factors influencing sal-
monid densities (combined density of O. mykiss
and juvenile Chinook, fish/m) measured when
oxygen was sampled (summer) and during the
fall, independently. To account for the potential
influence of channel width on fish densities, we
constructed linear models including GPP, and
site location (categorical variable representing

tributary and mainstem reaches, also a proxy for
size) or bankfull channel width (continuous vari-
able) as potential independent variables. We des-
ignated sites as either tributary or mainstem sites
since (1) use of tributary habitat by juvenile Chi-
nook is typically lower than that of mainstem
habitat (Quinn 2011), (2) these river reaches pro-
vide greater surface area per unit length than
tributary reaches, and (3) we hypothesized that
GPP would play a greater role in influencing sal-
monid densities in mainstem sites owing to
reduced riparian vegetation. Designation of sites
in the headwaters of both the MFJD and Murder-
ers Creek as either mainstem or tributary habitat
was based on the average bankfull width (<5 m
is tributary; mainstem otherwise). This cutoff
was based on the average bankfull width of
tributaries in the MFJD watershed. We included
bankfull channel width as an independent vari-
able since both GPP (independent variable) and
salmonid density (response variable) were
expected to be influenced by channel size, and
we sought to determine whether GPP was a bet-
ter predictor of fish densities than channel width
alone. We determined the ability of models to
explain variation in salmonid density based on
coefficients of determination (r2) and AICc. We
evaluated the significance of independent vari-
ables by determining the sum of the AICc model
weights for all models incorporating parameters
for specific variables (cumulative wi). Lastly, to
investigate relationships over a broader spatial
extent and range of GPP and fish abundance con-
ditions, we evaluated the relationship between
estimates of GPP derived from our network
model and snorkeling estimates of fish density
using linear regression.

RESULTS

Throughout the MFJD and Murderers Creek
basins, estimates of GPP ranged from 0.007 to
3.639 g O2�m�2�d�1 (Appendix S1), a nearly 400-
fold difference between our most and least pro-
ductive sites. On average, estimates of GPP were
similar in the MFJD (mean = 1.045 g O2�m�2�d�1,
SE = 0.323) and Murderers Creek (mean =
0.779 g O2�m�2�d�1, SE = 0.191; t = 0.56, P = 0.6).
Estimates of GPP were about sixfold greater
at mainstem sites (mean = 1.839 g O2�m�2�
d�1, SE = 0.321) than at tributary sites
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(mean = 0.253 g O2�m�2�d�1, SE = 0.083; t = 5.54,
P < 0.001). On average, GPP increased by 0.211 g
O2�m�2�d�1 with each 1-m increase in bankfull
width (t = 5.65, P < 0.001). At these sites, mean
July water temperature ranged from 11.9 to
21.5°C (mean = 16.7, SE = 2.6), solar access ran-
ged from 48% to 99% (mean = 68.6, SE = 14.0),
conductivity ranged from 49 to 390 lS
(mean = 183, SE = 106), and alkalinity ranged
from 44 to 332 ppm (mean = 127, SE = 80.0). We
observed fish densities ranging from 0.01 to 3.26
fish/m during the spring sample period and 0.28
to 3.47 fish/m during the fall.

Predicting GPP from site measurements
Physicochemical variables explained a signifi-

cant portion of variation in mean daily GPP across
sites, and when combined in a predictive model
performed well for the two basins. Among the 11
candidate models considered, the top model for
predicting GPP included site-level measurements
of temperature, solar exposure, and conductivity
(Table 1). However, this model ranked similarly
to a reduced model with only solar access and
water temperature (DAICc = 0.75) and one with
solar access, water temperature, and alkalinity
(DAICc = 1.64). Overall, the most important
variables, among those included in the analysis,
in describing differences in GPP measurements
were solar access (cumulative wi = 0.95) and
mean July water temperature (cumulative wi =
0.75). Between the two proxies for nutrient
availability, conductivity (cumulative wi = 0.48)
was a more important variable than alkalinity

(cumulative wi = 0.22). However, given the small
distinction between the three top models, our data
indicate that both nutrient surrogates were of
minor importance for predicting GPP across the
MFJD and Murderers Creek. We ultimately used
the top-ranked model for predictive purposes, in
which mean daily GPP was positively associated
with solar access (slope = 0.0387; SE = 0.0135)
and mean July water temperature (slope = 0.135;
SE = 0.073) and weakly associated with conduc-
tivity (slope = �0.0016; SE = 0.001). Linear
regression between field measurements of and
jackknifed GPP predictions indicated that there
was a strong correlation between observed GPP
and modeled GPP values (r2 = 0.53; Fig. 2A),
with an RMSE = 0.716. However, predicted val-
ues of GPP tended to be lower than observations
at sites where measured GPP was highest
(Fig. 2A).

Predicting GPP from globally available variables
Using remotely sensed estimates of solar radia-

tion, July water temperature, and conductivity, we
fit a multiple regression model, analogous to the
top site-level model, to predict mean daily GPP
throughout the entire O. mykiss-bearing portion of
the MFJD stream network; it explained 45% of the
variation in the observed GPP values (P = 0.001;
Fig. 2B). Similar to the site-level model, GPP
values were positively correlated with July water
temperature (slope = 0.322, SE = 0.075) and log-
transformed solar radiation (slope = 0.59,
SE = 0.353) and only weakly influenced by con-
ductivity (slope = �0.0007, SE = 0.002). However,

Table 1. Model selection results for the 11 models evaluated to predict mean daily gross primary production
with independent variables measured at monitoring sites during 2013.

Model �2 LogL AICc DAICc wi

Solar access + temperature + conductivity 39.48 49.7 0 0.329
Solar access + temperature 43.19 50.45 0.75 0.226
Solar access + temperature + alkalinity 41.13 51.34 1.64 0.145
Solar access + conductivity 44.23 51.49 1.79 0.134
Solar access + alkalinity 45.98 53.24 3.54 0.056
Solar access 48.67 53.27 3.57 0.055
Temperature 50.14 54.73 5.03 0.027
Temperature + conductivity 48.75 56.01 6.31 0.014
Temperature + alkalinity 48.85 56.11 6.41 0.013
Alkalinity 63.89 68.49 18.79 0
Conductivity 65.2 69.79 20.09 0

Note: The �2 log-likelihood (�2 LogL), Akaike’s information criterion adjusted for small sample size (AICc), difference in
AICc (DAICc), and Akaike weights (wi) are shown for each model.
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removing conductivity parameter from the
network model resulted in a DAICc = �0.2, indi-
cating relatively high support for both models, so
we retained this variable for making GPP predic-
tions across the river network to maintain consis-
tency with the site-level model. Results from
jackknife validation revealed that the network pre-
diction model performed nearly as well as the
model using site-based independent variables

(slope = 0.836, r2 = 0.43, RMSE = 0.788). In its net-
work-scale application, this model produced pre-
dictions that ranged from �0.67 to 2.61 g O2�
m�2�d�1 across the MFJD (Fig. 3).
Because GPP predictors were themselves mod-

eled variables, we evaluated the goodness of fit of
the network models for each of the three indepen-
dent predictors. Overall, models used to predict
temperature, solar radiation, and conductivity
across the MFJD and Murderers Creek networks
performed reasonably well. Prediction from net-
work model used to predict stream temperature,
which was calibrated using temperature logger
data in both watersheds, accounted for the major-
ity of the variation in reach-scale measurements
(r2 = 0.73, P < 0.001). Predictions of solar radia-
tion (r2 = 0.43, P < 0.001) and conductivity (r2 =
0.31, P = 0.005), which lack watershed-scale
calibration, explained a smaller but still signifi-
cant proportion of the variation in reach-scale
measurements.

GPP–Fish relationships
Salmonid densities and the degree of resource

limitation ofO. mykisswere significantly positively
correlated with GPP measured at monitoring sites
across the MFJD and Murderers Creek basins. The
top model for describing variation in salmonid
density at monitored sites during both summer
and fall fish sampling periods included parameters
for average daily GPP and tributary/mainstem
designation. The average daily GPP was signifi-
cantly correlated with the total density of salmo-
nids (fish/m) estimated during both summer and
fall sampling periods (Fig. 4). However, associa-
tions between mean daily GPP and juvenile salmo-
nid densities were stronger for mainstem sites,
during both summer (tsummer = 3.82, Psummer =
0.007, r2summer = 0.63) and fall (tfall = 5.46, Pfall =
0.003, r2fall = 0.83) sampling periods, than for
tributary sites (tsummer = 3.24, Psummer = 0.02,
r2summer = 0.58; tfall = 2.68, Pfall = 0.04, r2fall = 0.51).
Models that included the categorical tributary/
mainstem variable ranked higher than models that
included bankfull width as a continuous variable
to account for stream size (DAICc = 8.3). The top
model for salmonid density during the summer
sampling period included an interaction be-
tween tributary/mainstem designation and GPP
(DAICc = 2.1), while the top model for the fall
sampling period included an additive effect of site

Fig. 2. Linear regressions of mean daily gross pri-
mary production (GPP) observed at monitoring sites
against mean GPP predicted after jackknifing the top-
performing model predicting GPP based on solar access,
water temperature, and conductivity, using site-level
measurements of predictors (A) or predictors from
remotely sensed data sets (B). Dotted lines show 1:1 line.
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designation and GPP (DAICc = 2.0; Fig. 4). Esti-
mates of Pval for of O. mykiss during summer
were also positively correlated with average daily
GPP (t = 3.42, P = 0.005, r2 = 0.45; Fig. 5).

Predictions of GPP using our network predic-
tion model explained 44% of the variation in
snorkeling estimates of fish densities conducted
throughout 29.24 km of the MFJD (Fig. 6). Fur-
ther, network predictions of GPP explained more
variation in fish densities than temperature alone
and the GPP model was more strongly sup-
ported (DAICc = �5.2).

DISCUSSION

Across the MFJD River and Murderers Creek,
GPP during mid-summer varied by greater than
two orders of magnitude, ranging from relatively
unproductive reaches (~0.01–3.6 g O2�m�2�d�1)
characteristic of cool, well-shaded streams to
moderately productive open-canopy systems
(~2.0–3.6 g O2�m�2�d�1; Mulholland et al. 2001,

McTammany et al. 2007, Griffiths et al. 2013).
Furthermore, across the two watersheds GPP
was strongly correlated with both density and
consumption rates of juvenile salmonids. Our
study represents one of the more extensive sur-
veys to evaluate within-watershed spatial varia-
tion in GPP (n = 24; see Marcarelli et al. 2011)
and is unique in that a primary goal was to eval-
uate linkages between rates of GPP and densities
of juvenile salmonids in riverine ecosystems
(Wurtsbaugh et al. 2015). We demonstrate that
relatively simple models constructed from either
site-level measurements of physicochemical
stream attributes (such as those commonly col-
lected by large-scale habitat monitoring pro-
grams) or surrogates thereof derived from
remotely sensed data sources provide an efficient
means to describe spatial variation in GPP at the
watershed scale. The ability to measure or pre-
dict spatial variation in GPP can provide context
for numerous ecological investigations and pro-
vides a cost-effective means to integrate food

Fig. 3. Map of the MFJD Basin showing gross primary production (GPP) predicted using proxies of solar
access, water temperature, and conductivity derived from remotely sensed data. Channel widths indicate the
magnitude of predicted GPP. Stream reaches highlighted in light gray denote areas surveyed by snorkeling to
estimate salmonid densities.
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web considerations into habitat restoration and
fisheries management (e.g., Naiman et al. 2012).

Modeling gross primary production
Our multiple regression results indicating the

importance of solar irradiance and water tempera-
ture as drivers of spatial variation in GPP corrobo-
rate a now extensive body of literature that

identifies solar inputs and water temperature as
dominant controls on GPP (e.g., Mulholland et al.
2001, Bernot et al. 2010, Griffiths et al. 2013). Most
studies evaluating factors influencing GPP measure

Fig. 4. Linear regression of salmonid density esti-
mates for summer and fall 2013 and gross primary pro-
duction (GPP) at tributary (black lines and symbols) or
mainstem reaches (gray lines and symbols) throughout
the MFJD and Murderers Creek watersheds.

Fig. 5. Linear regression of the average proportion
of maximum consumption (Pval) achieved by
O. mykiss at monitoring sites during summer–fall 2013
against gross primary production (GPP).

Fig. 6. Linear regression of salmonid density esti-
mated with snorkeling during summer 2013 and gross
primary production (GPP) predicted using a network
predictive throughout the MFJD watershed.
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solar irradiance, most frequently photosynthetically
active radiation (PAR; e.g., Roberts et al. 2007,
Beaulieu et al. 2013). However, we demonstrate
that estimates of solar exposure (a measure that
accounts for topographic and vegetative shading as
well as geospatial position) and even canopy cover
(e.g., Bunn et al. 1999, Mosisch et al. 2001) may be
sufficient to describe variability in the amount of
light reaching stream substrates in a watershed-
scale application such as ours. This provides a low-
cost alternative to expensive radiation sensors if
GPP is to be estimated in many locations simulta-
neously. In contrast to recent regional comparisons
of factors controlling GPP that identify nutrient
concentrations (N and P) as potentially important
factors influencing GPP (Lamberti and Steinman
1997, Mulholland et al. 2001, Bernot et al. 2010),
we observed no significant relationship between
either alkalinity or conductivity, proxies for nutrient
concentration, and GPP. The underlying geology
across which survey sites were distributed in the
MFJD and Murderers Creek was relatively homo-
geneous, potentially yielding minor differences in
nutrient concentrations across the survey sites.
Alternatively, although fish populations have been
shown to correlate with both alkalinity and con-
ductivity (e.g., Kwak and Waters 1997), these mea-
sures may be poor surrogates for the nutrients
most important to GPP. Ultimately, the importance
of obtaining precise measurements of nutrient con-
centrations at survey sites likely increases as sites
are distributed more widely and are distributed
across more heterogeneous geology.

An important contribution of our research is
that surrogates for solar input, water tempera-
ture, and conductivity derived from remotely
sensed data were nearly as useful in predicting
GPP as the site-level measurements themselves.
Although the best performing multiple regres-
sion model to predict GPP from remotely sensed
data tended to underpredict GPP at sites where
GPP was measured, it accounted for nearly half
of the variation in observed GPP. Since Fausch
et al. (2002) encouraged fisheries professionals to
develop an understanding of how fish popula-
tions interact with aquatic habitat throughout the
riverscape, researchers have developed network
models for water temperature (e.g., McNyset
et al. 2015, Isaak et al. 2017) and physical habitat
structure (e.g., Beechie and Imaki 2014, O’Brien
et al. 2017), as well as integrating network

models of fish-habitat attributes to predict attri-
butes of fish populations (Barqu�ın et al. 2015,
Wheaton et al. 2018). For example, network
models developed for water temperature have
greatly assisted efforts to model the effects of
climate change (e.g., Isaak et al. 2015, Al-
Chokhachy et al. 2016) and understand spatially
structured fish habitat (Dauwalter et al. 2015).
The development of network models for GPP

is a novel enterprise, with currently no published
examples in the literature to our knowledge.
Although the use of proxies for factors determin-
ing reach-scale rates of GPP derived from remo-
tely sensed data produced predictive models that
were slightly inferior to those based on site-level
measurements of solar exposure, water tempera-
ture, and conductivity, these coarse proxies are
needed to facilitate painting the network-scale
picture of GPP. Our results suggest that simple
models representing a few primary drivers of
GPP may be sufficient to describe the extent of
spatial variation in stream productivity. Further,
the correlation between network predictions of
GPP and fish density estimates collected as part
of a large-scale snorkeling survey in the MFJD
indicates that network models describing spatial
variation in stream productivity may be a power-
ful tool for understanding factors determining
the distribution and abundance of fish through-
out river networks. However, one drawback to
using remotely sensed data as inputs for empiri-
cal models is that much of the data are available
at coarse resolutions and may not accurately rep-
resent local conditions at scales that are most
meaningful to fish. For example, the LANDFIRE
vegetation height data, used to account for
potential reductions in solar radiation owing to
vegetative shading, have a 30 m resolution, a
coarseness that might exceed the width of ripar-
ian areas at some of our sites. Thus, although
geospatial layers facilitate extrapolation to the
network scale, drawing on coarsely resolved GIS
data sets may require that tradeoffs in precision
are made.
While we demonstrate the utility of an empiri-

cal modeling approach to developing network
models for GPP, mechanistic models of GPP (e.g.,
Bellmore et al. 2017) are able to account for time-
series data on stream metabolism and provide a
means to evaluate hypotheses about resource
limitation, interactions among factors controlling
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GPP, and the effects of habitat restoration on pro-
ductivity. Such models may also better inform
our understanding of factors controlling GPP
that vary temporally (e.g., marine-derived nutri-
ents from spawning salmon; Benjamin et al.
2016) and improve empirical attempts to contin-
uously model GPP across riverine networks.
However, owing to their more complex nature,
these models require greater amounts of data
both for parameter estimation and for model
operation, and as a result are often limited in
terms of the number of unique spatial locations
for which they can be parameterized. These limi-
tations make continuous interpolation of model
results more difficult. Another alternative to the
approach we outline here is that with the increas-
ing prevalence of low-cost, accurate DO loggers,
spatial stream network models (SSN; Isaak et al.
2014) may become more feasible for modeling
GPP across riverine networks. Spatial stream net-
work models of GPP could model the effect of
factors controlling rates of GPP (e.g., light, nutri-
ents, water temperature) such as in the present
study, but would also account for any additional
spatial autocorrelation among survey locations
and thus may improve interpolation of model
results. However, potential drawbacks to the
SSN approach are that (1) larger, spatially dis-
tributed data sets are necessary for detecting
underlying autocorrelation structures and (2) the
potential for making model predictions outside
of the original study frame is limited owing to a
lack of information on spatial structure in new
networks. Depending on the study goal, the mul-
tiple regression framework that we present here,
while simple, may be sufficient to reliably iden-
tify regions of relatively high productivity within
a watershed, perhaps even beyond our calibra-
tion. Furthermore, even in cases where more
mechanistic food-web modeling approaches will
be pursued, our approach provides a means for
broadly characterizing a key response variable
(i.e., GPP) to facilitate effective study design.

A number of ecologists have highlighted the
need to develop a more complete understanding
of how food webs are spatially structured across
watersheds (Wipfli and Baxter 2010, McGarvey
and Johnston 2011), as well as integrate this
information into management and restoration
efforts (Naiman et al. 2012, Wurtsbaugh et al.
2015). Numerous studies have documented the

importance of primary production in controlling
food-web structure in aquatic systems (e.g., For-
rester et al. 1999, Bunn et al. 2003, Parker and
Huryn 2013), while others have pointed out that
spatial heterogeneity in the controls of food-web
structure is driven by heterogeneity in both ter-
restrial and aquatic landscapes (e.g., Polis et al.
1997, Thompson and Townsend 2005). Network
models of GPP, and models predicting GPP over
large spatial extents more generally (e.g., Run-
ning et al. 2004, �S�ımov�a and Storch 2017), pro-
vide a basis for testing theories on the influence
of primary production on food-web structure and
species abundance at the landscape/riverscape
scale. Furthermore, spatially continuous predic-
tions of GPP will help identify river reaches that
are likely to subsidize riparian consumers via sec-
ondary production (i.e., emerging aquatic insects;
Jackson and Fisher 1986, Nakano and Murakami
2001, Epanchin et al. 2010). Owing to the consis-
tency with which light, water temperature, and
nutrients are identified as factors controlling GPP
in rivers and the relative simplicity of the model-
ing framework we outlined (in terms of both
model construction and calibration), we believe
that our approach provides a template for
describing spatial variation in productivity across
a wide variety of river networks.

GPP–Fish relationships
Beyond presenting a basis for quantifying GPP

for an entire river network, our work also demon-
strates tight coupling between primary produc-
tion and salmonid abundance. In fact, GPP as a
single variable predictor performed relatively well
compared to many multivariate empirical models
describing fish abundance (Fausch et al. 1988).
Greater densities of juvenile salmonids were
observed at river reaches with relatively high
rates of GPP and may have resulted from
increased secondary production of aquatic inver-
tebrates at these sites, a primary prey resource for
drift-foraging salmonids (e.g., Kiffney et al. 2014).
Indeed, researchers have demonstrated positive
relationships between GPP and invertebrate den-
sities or production (e.g., Fisher and Gray 1983,
Hall et al. 2010, Finlay 2011, Jardine et al. 2012)
and between invertebrate and fish densities (e.g.,
Weber et al. 2014) demonstrating the intermediate
linkage between GPP and fish populations in
river ecosystems. Furthermore, previous studies
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within the John Day watershed have demon-
strated significant relationships between solar
exposure, riparian vegetation, and densities of
aquatic invertebrates (Li et al. 1994, Tait et al.
1994). However, these studies failed to find a sig-
nificant relationship between this prey resource
and salmonid densities, potentially owing to lim-
ited sample size (n = 5–7 study reaches) and dis-
tribution of sampling effort or additional factors
(e.g., water temperatures) being the primary fac-
tor limiting salmonid pupations.

While relationships between GPP and fish
populations have been demonstrated for many
lentic systems (e.g., Downing et al. 1990, Stock-
ner and MacIsaac 1996), there have been rela-
tively few studies evaluating the role of primary
production and supporting fish populations in
lotic systems (Wurtsbaugh et al. 2015). Bilby and
Bisson (1992) observed higher fish densities in
stream reaches traversing clearcuts, where GPP
was greater, than in stream reaches with adjacent
old-growth forest. Jardine et al. (2012) also
observed a strong relationship between aquatic
primary production and the proportion of
energy fish derived from aquatic resources in riv-
ers with limited floodplain connectivity. In addi-
tion to autochthonous production, terrestrial
subsidies to aquatic systems in the form of leaf
litter (Wallace et al. 1997) and terrestrial inverte-
brates (Nakano et al. 1999, Baxter et al. 2004, see
Baxter et al. 2005 for a review) play important
roles in structuring stream food webs. These
allochthonous sources of energy to river food
webs tend to be greatest for smaller channels,
with high edge:perimeter ratios (see Baxter et al.
2005 for a review), and have the strongest influ-
ences on consumers in recipient habitats where
productivity in the donor habitats greatly
exceeds that of the recipient habitat (Polis et al.
1997, Nakano and Murakami 2001). However, in
rivers with high rates of GPP, such as arid and
semi-arid systems with limited canopy coverage
(Lamberti and Steinman 1997), one might expect
relatively strong linkages between autochtho-
nous production and juvenile salmonids (e.g.,
Wilson et al. 2014), such as those observed in the
present study. To date, there have been few com-
prehensive efforts to describe these two sources
of energy for riverine food webs simultaneously
(but see Bellmore et al. 2017), and thus, broad
generalizations of the role of allochthonous vs.

autochthonous resources for structuring river
food webs remain elusive.
The strong correlations observed between esti-

mates of GPP and densities of juvenile salmonids
suggest that when/where the rate of primary pro-
duction is high, greater densities of juvenile sal-
monids can be supported through the duration
of summer, within a reasonable temperature
range (e.g., Tait et al. 1994). Indeed, data on sal-
monid growth between July and October at sites
where estimates of GPP were high suggest that
juvenile salmonids were less food-limited, evi-
dent from consistently higher estimates of Pval
from bioenergetics modeling. However, in addi-
tion to the observed relationship between GPP
and juvenile salmonid distributions, fish in the
MFJD also responded to extreme water tempera-
tures. During an eight-day period beginning 1
July 2013, maximum water temperature
exceeded 25°C in portions of the mainstem MFJD
and large numbers of juvenile salmonids, partic-
ularly Chinook salmon, migrated into the lower
extent of two tributaries where maximum water
temperatures were, on average, three degrees
lower during this time period. Although we
removed the two sites where we observed behav-
ioral thermal regulation by fish, they highlight
the fact that fish distributions across the land-
scape are often influenced by numerous factors
simultaneously (e.g., White et al. 2014). There-
fore, in order to explain spatial variation in fish
densities, fisheries professionals need to make
continuous predictions of both the physical
aspects of fish-habitat and food-web attributes.
Although the approach outlined here provides

a partial picture of the prey resources available
to support riverine fish (i.e., neither detrital path-
ways nor terrestrial invertebrate subsidies were
accounted for), we found that salmonid densities
were closely correlated with estimates of GPP,
even in a watershed where terrestrials contribute
a significant proportion to the diets of juvenile
salmonids (Weber et al. 2014). A primary goal of
this research was to test whether relatively sim-
ple modeling approaches using the type of data
that are routinely gathered by habitat monitoring
programs (e.g., Columbia Habitat Monitoring
Program, USFS Pacfish/Infish Biological Opinion
Monitoring Program) can be used to predict GPP
across river networks. Using this approach, we
were able to identify portions of the MFJD
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watershed characterized by relatively high rates
of GPP. Managers could use this type of informa-
tion to prioritize restoration of physical habitat to
occur in these more productive reaches to ensure
that fish have the necessary prey resources avail-
able to take advantage of restoration actions, or
to determine whether the productive capacity of
habitats would even support more than what is
currently there (see Naiman et al. 2012).
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