
 

 

A Functional Near-Infrared Spectroscopic Investigation of Speech Production During Reading 

 

 

Nick Wana, Allison S. Hancockb, Todd K. Moonc, & Ronald B. Gillamb 

 

 

 
a Department of Psychology, Utah State University, Logan, UT, USA, 84321  
b Emma Eccles Jones Early Childhood Education and Research Center, Utah State University, 

Logan, UT, USA, 84321 
c Department of Electrical and Computer Engineering, Utah State University, Logan, UT, USA, 

84321 

 

Corresponding author: Ronald Gillam, PhD 

Ron.Gillam@usu.edu   

Emma Eccles Jones Early Childhood Education and Research Center 

2610 Old Main Hill 

Logan, UT 84322 

 

 

Wan, N., Hancock, A.S., Moon, T.K., & Gillam, R.B. (2018). A functional near-infrared spectroscopic 

investigation of speech production during reading.  Human Brain Mapping, 39 (3), 1428-1437 00:1-

10. Doi:10.1002/hbm.23932. Epub 2017, Dec 19.   

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/220133907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:nickwan@aggiemail.usu.edu


 

 

Abstract: This study was designed to test the extent to which speaking processes related to 

articulation and voicing influence Functional Near Infrared Spectroscopy (fNIRS) measures of 

cortical hemodynamics and functional connectivity. Participants read passages in three 

conditions (oral reading, silent mouthing, and silent reading) while undergoing fNIRS imaging. 

Area under the curve (AUC) analyses of the oxygenated and deoxygenated hemodynamic 

response function concentration values were compared for each task across five regions of 

interest. There were significant region main effects for both oxy and deoxy AUC analyses, and a 

significant region x task interaction for deoxy AUC favoring the oral reading condition over the 

silent reading condition for two non-motor regions. Assessment of functional connectivity using 

Granger Causality revealed stronger networks between motor areas during oral reading and 

stronger networks between language areas during silent reading. There was no evidence that the 

hemodynamic flow from motor areas during oral reading compromised measures of language-

related neural activity in non-motor areas. However, speech movements had small, but 

measurable effects on fNIRS measures of neural connections between motor and non-motor 

brain areas across the perisylvian region, even after wavelet filtering.  Therefore, researchers 

studying speech processes with fNIRS should use wavelet filtering during preprocessing to 

reduce speech motion artifacts, incorporate a nonspeech communication or language control task 

into the research design, and conduct a connectivity analysis to adequately assess the impact of 

functional speech on the hemodynamic response across the perisylvian region.   
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1. Introduction 

Recent advancements in neuroimaging have provided ways for researchers to examine 

neural mechanisms underlying communication (Quaresima et al. 2012; Dieler et al.  2012). 

Functional Magnetic Resonance Imaging (fMRI) and Functional Near Infrared Spectroscopy 

(fNIRS) are popular non-invasive imaging techniques that have been used to investigate the 

hemodynamics of speech and language. fMRI has excellent spatial resolution, but it has 

restricted use in imaging functional communication due to the unnatural data collection 

environment and artifactual data resulting from speech-motor movements (Krick et al.  2013; 

Hashimoto & Sakai, 2013; Diedrichsen & Shadmehr, 2005). Like fMRI, fNIRS monitors 

changes in brain mechanisms that are associated with cerebrovascular alteration, but it does so 

by measuring near-infrared light absorption through the skull (Boas et al.  2014; Villringer & 

Dirnagl, 1995). Unlike fMRI, fNIRS data can be collected in quiet rooms as participants sit in 

chairs and interact in real time and space with examiners and/or other participants. In addition, 

some researchers have claimed that another important advantage of fNIRS is that its measures of 

cortical hemodynamics are less susceptible to motion artifacts than fMRI, making it a useful 

technology for assessing cortical activation patterns during functional speech and language tasks 

(Dieler et al., 2012; Quaresima et al., 2012; Gervain et al., 2011). This study was designed to test 

the extent to which speaking processes related to articulation and voicing influence fNIRS 

measures of cortical hemodynamics and functional connectivity across the perisylvian region 

during reading. 

Various factors can introduce artifacts into the fNIRS hemodynamic response function 

(HRF). Hair thickness, skin complexion, tissue density, and excessive head movement have been 

shown to interfere with the quality of the fNIRS signal (Khan et al., 2012; Cui et al., 2015).  
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With respect to motion artifacts in fNIRS, head movements can cause vibration of the optical 

sensor devices (referred to as optodes) or decoupling between certain optodes that transmit or 

receive the laser signals and the scalp. Measurements of motion artifacts may appear in particular 

fNIRS channels as high-amplitude, high-frequency (Hz) spikes or as lower amplitude, lower 

frequency oscillations that look more similar to the hemodynamic response function (Brigadoi et 

al., 2014; Cui et al., 2015; Khan et al., 2012). 

 Unlike general motion artifacts, speech-related motion artifacts may or may not result in 

channel-specific changes. For example, speech-related jaw movements can produce contractions 

of the temporalis muscle, resulting in variability in blood flow across multiple cortical regions. 

Additionally, changes in respiration patterns during speech can modify carbon dioxide pressure, 

leading to changes in cerebral blood flow that have the potential to affect the overall variability 

of fNIRS measures (Xu et al., 2011). Comparisons of fNIRS measures collected while walking 

alone versus walking while talking have confirmed that fNIRS is sensitive to cortical activation 

related to talking over and above activations related to walking, at least in orbital frontal cortex 

(Holtzer et al., 2011).  

 There have been a number of investigations of the effects of head and speech related 

movements on the fNIRS signal. Izzetoglu et al. (2010) used Kalman and Weiner filtering 

methods to reduce motion artifacts related to up and down head motions. This investigation was 

limited to activation in one region (orbital frontal cortex) in response to one type of head 

movement. Schoklmann et al. (2010) simultaneously assessed fNIRS measures of cortical 

activity across temporal cortex and EMG measures of temporalis muscle activity associated with 

jaw movements as participants completed functional speech and language tasks.  In their study, 

blocks of spoken or written verbal fluency tasks (name as many words in a particular category as 
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possible) were preceded by 15-sec resting blocks. There was greater temporalis muscle activity 

during the speech task as compared to the writing task, but both speaking and writing yielded 

similar fNIRS activity in the inferior frontal and superior temporal regions of the cortex.  In 

addition, during speaking, correlations between the EMG and fNIRS measures were not 

significant.  These results suggest that fNIRS primarily measured brain activity, and these 

measures were relatively unaffected by speech-related jaw motions leading to contractions of the 

temporalis muscle.     

 Balardin et al. (2017) assessed changes in the the variability of oxygenated (HbO) and 

deoxygenated (HbR) concentration values during three communication-related movements 

(nodding yes, shaking the head no and raising the eyebrows) and during a reading aloud task (to 

assess jaw movements).  These researchers placed a 49-channel optode array over the majority of 

the left hemisphere of 14, right-handed adult males, secured with either chin or chest straps.  

Raising the eyebrows appeared to be the only condition that effected the HbO-HbR relationship 

and the variation of the HbO and HbR concentration values.  Reading aloud appeared to result in 

some degree of variability in the signal, primarily in the inferior frontal and temporal regions, but 

this latter finding could have reflected the linguistic processing that was only required for the 

reading aloud task.  There was no difference in the findings when the optode caps were secured 

with the chin or chest straps.  A silent reading control condition would have made the results 

more interpretable because it would have equated the linguistic processing that occurred in a 

motor movement condition (reading aloud) and a nonmotor condition (reading silently).           

 A number of investigators have suggested that fNIRS may be a useful technology for 

assessing the neural contributions to communication because these measures may be minimally 

susceptible to motion artifacts from speech-related movements (Dieler et al., 2012; Quaresima et 
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al., 2012; Gervain et al., 2011).  However, the degree to which motions associated with speaking 

influence fNIRS measures of the concentration of oxygenated and deoxygenated hemoglobin in 

brain regions that are typically associated with speaking and reading has yet to be completely 

resolved. Filtering techniques such as spline interpolation, wavelet minimum description length 

detrending (MDL), principle component analysis (PCA), Kalman filtering, or correlation-based 

signal improvement (Brigadoi et al., 2014), have been shown to reduce movement artifacts, 

including artifacts that could be related to articulation and voicing. (e.g., Yasumura, Inagaki, & 

Hiraki, 2014; Kubota, Inouchi, Dan, Tsuzuki, Ishikawa, & Scovel, 2008; Takeuchi, Ikeda, & 

Mizumoto, 2012).  Apparently, a strong case for employing these filtering techniques as a 

routine part of the analysis of data from speaking tasks has yet to be made, as some fNIRS 

studies that involve speech production tasks have not employed these techniques (e.g., Yasumura 

et al. 2014; Kubota et al. 2008; Takeuchi et al. 2012). Perhaps a bigger problem with the 

evidence related to speech movements and fNIRS measures is that no study has examined the 

effects of speech movements on the nature of connectivity within the perisylvian network, which 

is highly active during speech and language tasks (AbdulSabur et al.  2014; Catani et al., 2005; 

Simonyan & Fuertinger, 2015). 

Researchers have used various imaging methods to study brain activity during speech and 

language tasks (Salmelin, 2007; Devlin & Watkins, 2007; Price, 2012; Peelle, 2017). Because 

imaging techniques vary spatially, the use of different spatial normalizations can make it difficult 

to determine the exact location of speech and language processes. Nevertheless, it is clear that 

there are a number of brain areas in the perisylvian cortex that are routinely active during studies 

of word reading and speech production. The primary motor area (M1; Hruby et al.  2011), 

supplementary motor area (SMA; Hruby et al., 2011), left inferior frontal cortex (IFC; Hickok & 
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Poeppel, 2000; Hruby et al., 2011; Mechelli, et al. 2003), left superior temporal cortex (STC; 

Hickok & Poeppel, 2000; Hruby et al., 2011; Mechelli et al, 2003), and left inferior parietal 

lobule (IPL; Hickok & Poeppel, 2000; Hruby et al., 2011; Mechelli et al, 2003) have all shown 

activity during reading aloud.  Activity has been documented in these same areas during silent 

word reading, with the exception of M1 (Hickok & Poeppel, 2000; Hruby et al, 2011).  

Additionally, there is mixed support for SMA activity during silent word reading (Hickok & 

Poeppel, 2000; Hruby et al, 2011).  

It is logical that the language areas of IFC, STC, and IPL are active during both silent 

reading and oral reading because both tasks involve grapho-phonological access of the lexicon. It 

would also be logical to assume that motor areas (SMA, M1) are more active during speech 

production tasks than silent reading tasks because jaw movements, tongue movements, and 

movements associated with vocalization require brain-related motor activation that is not 

required during silent reading tasks.  Finally, given articulator and vocalization relationships 

affecting vocal track kinematics (Bouchard et al., 2016) it is reasonable to expect greater degrees 

of neural activation in motor areas during oral reading, which involves movements along the 

entire vocal track, as compared to silent reading and silent mouthing, which involve only 

articulatory movements.  

Similarities or differences in measures of the hemodynamic response function at specific 

locations on the cortex during oral reading, reading with silent mouthing, and silent reading do 

not necessarily relate to network activation patterns among speech- and motor-related areas 

during these tasks. Higher-order analyses, like functional connectivity, have the potential to 

provide additional information about the nature of motor, language, and motor-to-language 

networks during reading. One approach to studying the functional connectivity between brain 
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regions is Granger Causality analysis, which assesses information flow, also referred to as 

“transfer entropy,” from one ROI to another (Barnett et al., 2009; Seth et al., 2015). In Granger 

Causality, the signal from each ROI is used in a statistical model to predict the subsequent 

signals to other ROIs, revealing “information flow” or connectivity between regions. Using 

functional connectivity analyses has the potential to inform our understanding of ways in which 

the underlying processes of speech and language are associated with networks rather than to 

specific regions, and to further identify different processing pathways (Ardila et al., 2016; Price 

et al., 1996).  

This study was designed to further explore the nature of the HRF during speech and non-

speech tasks that included oral reading (lip and jaw movements plus voicing), reading with silent 

mouthing (lip and jaw movements with no voicing) or silent reading (no oral movement and no 

voicing) to determine the degree to which speech movements affect fNIRS measures. The first 

research question was: does the fNIRS signal during oral reading, reading with silent mouthing, 

and silent reading tasks differ significantly in cortical regions that are known to be activated 

during reading? If the fNIRS signal is minimally influenced by speech motor movements, there 

should be no activity differences in language areas (IFC, STC, IPL) across our three tasks.  

However, motor areas such as M1 and SMA should exhibit greater activity during tasks that 

utilize the entire vocal track (oral reading in our case) and less activity during tasks like reading 

with silent mouthing that require only articulatory gestures, or non-motor-producing tasks like 

silent reading. The second question was: does the functional connectivity of the HRF among five 

ROIs (IFC, STC, IPL, M1, SMA) differ for the three reading tasks? Functional connectivity 

using Granger Causality indicates the extent to which hemodynamic activity in a given ROI 

predicts the activity in a subsequent ROI, suggesting a “causal” relationship via transfer entropy 
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(Seth et al., 2015). If fNIRS measures are minimally influenced by speech motor movements, 

then the functional connectivity between the motor areas SMA and M1 should differ as a 

function of task, but not the functional connectivity among non-motor regions.  

2. Methods  

2.1 Participants 

 Seventeen right-handed adults (5F; 20-27yo) who were native English speakers 

participated in this study. Two were excluded due to previous brain injuries disclosed after 

participation. The methods were approved by the Utah State University Institutional Review 

Board. All participants signed approved consent forms and were compensated $20 for their 

participation. Each participant was determined to be right-handed according to the Edinburgh 

Handedness Inventory: Short Form (Veale, 2014).  

2.2 Tasks 

 Participants completed three different types of reading tasks: silent reading (reading the 

passage presented on the screen without any mouth movements), silent mouthing (mimicking 

mouth movements during reading without voicing) and oral reading. The readings were 

nonfiction passages in order to elicit neutral affect and valence. Reading passages that were 

between 148 and 206 words in length were taken from the Classroom Reading Inventory - 

Twelfth Edition (Wheelock & Campbell, 2011). All passages were measured at a 6th grade 

reading level and were controlled for content complexity according to the Harris-Jacobson Wide 

Range Readability Formula (Harris & Sipay, 1985). Participants were seated 20in from the 

screen (18x11in) and paragraphs were displayed in Courier New size 18 font.  

 Each participant completed three reading blocks, with each block containing three, one-

minute reading passages (oral reading, silent reading, and silent mouthing). Within the blocks, 
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each reading task was divided by a 12 second inter-stimulus interval (ISI) consisting of a fixed 

cross on the screen.  Sixty (60) second rest periods were placed before each block and after the 

final reading block. During the rest periods, participants were instructed to look at a fixed cross 

in the middle of the computer monitor and to relax their mind. Three different passage orders 

were used to account for potential order effects. 

2.3 Procedure   

 Participants were trained on each of the tasks prior to beginning the experiment. During 

the training, the participants practiced reading aloud, reading silently while “mouthing” the 

words (moving the articulators without any voicing), and reading silently with no mouth 

movements. Participants were monitored for compliance by the examiner as they practiced 

performing the three reading conditions on a training passage. The training passage was not 

repeated during the experiment. NIRS caps were placed on the participants’ heads after the 

training was completed successfully. 

2.4 fNIRS Data Acquisition 

 fNIRS data was acquired using a Hitachi ETG-4000 system, with each probe set being 

adapted to a 3x5, 44 channel montage. Channels between each transmitter and receiver were 

placed with reference to the 10-20 system. The two probe sets were placed side-by-side on the 

left side of the head, with the nearest corner of the anterior probe set as close to the left canthus 

as possible (Figure 1). This was done to obtain coverage of a large portion of the left hemisphere, 

which is typically involved to a greater extent than the right hemisphere in reading and language 

tasks in right-handed adults (Binder et al., 1997). The two probe sets were inserted into a nylon 

cap and then placed on the participant’s head. A chin strap was used to secure the cap in place to 

reduce cap movement. Prior to recording, a NIR gain quality check was performed to ensure data 
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acquisition was neither under-gained nor over-gained, according to the Hitachi ETG-4000 

calibration guidelines (Hitachi Medical Group, Tokyo). Data were recorded at 695nm and 

830nm.  

2.5 Polhemus 

 Regions of interest (ROIs) were selected via Polhemus PATRIOT digitizer channel 

registration analyses. After the task was completed, participants were instructed to keep the cap 

on while the examiner carefully removed the optodes. A measuring tape was used to find the 

exact center of the head. Measurements in centimeters were taken from the left auricular lobule 

to the right auricular lobule, and from the nasion to the inion. Once the center was determined, a 

magnet was positioned on the center of the head, and the subject was moved so that the inion 

was 10cm away from the transmitter. Using the stylus, 5 head base reference points were 

measured: nasion, left tragus, right tragus, inion, and CZ. After the 5 reference points were 

measured, all other optical fiber points were measured in numerical order starting with probe set 

1 and ending with probe set 2.  Selected ROIs were primary motor cortex (M1), supplementary 

motor area (SMA), inferior frontal cortex (IFC), superior temporal cortex (STC), and inferior 

parietal lobule (IPL). All channels with 50% or greater area overlap within a region were 

averaged together based off of MRIcro registration (Rorden & Brett, 2000). 

2.6 Data Preprocessing 

Following the recommendations by Brigadoi et al. (2014), data were filtered according to 

wavelet minimum description length (MDL: Gaussian lo-pass FWHM at 4s), and were pre-

colored and pre-whitened per Ye et al. (2009) using NIRS-SPM. A 12s rest ISI prior to the onset 

of each task was used as a baseline to remove task-irrelevant noise and signal drift over time (Fu 

et al., 2016) from the task signal. Finally, each ROI was represented as one or multiple channels 
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for each participant, with channel selection for each ROI determined by using a >50% channel 

overlap threshold as reported by the NIRS-SPM registration process (Ye et al., 2009). 

 The period of the waveforms used in the analyses was determined for each participant 

individually. For a signal  assumed to be periodic with period  over some period of time 

 a Fourier series with  harmonics was fit to the signal.  That is, for period  

and corresponding fundamental frequency ,  was represented as the Fourier 

series: 

 

where the coefficients  were chosen to minimize  over the time interval.  

More explicitly,  evenly spaced time instants  in the interval  were 

selected, and the matrix equation shown here was set up. 

 

The coefficients  were selected to minimize the norm of the error.  This was 

done sweeping over possible periods , and the period was selected which resulted in the error 

of minimum norm. The period was then used as the starting and ending time points to calculate 

area under the curve. Area under the curve was computed for the oxygenated and deoxygenated 

waveforms using the standard trapezoid function in Matlab. 

2.7 Analyses 

Preliminary ANOVA indicated no significant differences between the three passage 

orders (p>0.05). Therefore, data were collapsed across order for the remainder of the analyses.  
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We conducted two, two-way within-subjects ANOVAs; one for the oxygenated HRF area under 

the curve and one for the deoxygenated HRF area under the curve, to determine whether the 

fNIRS signal during oral reading, silent mouthing, and silent reading tasks differed significantly 

in cortical regions that are known to be activated during reading,  The within-subjects factors for 

both analyses were task, with three levels (oral, silent mouthing, silent reading) and ROI, with 

five levels (M1, SMA, IFC, STC, IPL). All main effects and interactions were tested using the 

Greenhouse-Geisser correction for potential violations of the sphericity assumption.  Post-hoc 

comparisons were conducted with pairwise tests of simple main effects and paired sample t-tests 

of interactions.  

Time-domain functional connectivity was processed using the Multivariate Granger 

Causality toolbox (Barnett & Seth, 2011; Barnett & Seth, 2014) in order to establish whether 

there were causal pathways across the perisylvian region relating the language areas of IPL, 

STC, and IFC to the motor areas of SMA and M1. This was measured by a log likelihood F, in 

which the full model included the past hemodynamic information of one ROI regressed onto the 

past hemodynamic response of a second ROI. To account for multiple comparisons, significance 

values (p-values) were corrected using false discovery rate. 

3. Results 

3.1 Area Under the Curve  

 The first research question concerned potential differences in oxygenated (HbO) and 

deoxygenated (HbR) concentration values between the three tasks (reading aloud, silent 

mouthing, silent reading) across five regions of interest (M1, SMA, IFC, STC, IPL). Area Under 

the Curve analyses were performed on HbO and HbR waveforms separately, similar to methods 

used by Tak and Chul (2014), Strait and Scheutz (2014) and Pedersen, et al. (2015). Figure 2 
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presents the waveforms for both HbO and HbR signals across all ROIs, time-locked to the onset 

of each task.    

The two-way, repeated measures ANOVA on the HbO waveforms revealed a significant 

main effect for region, F (2.61,62.17) = 3.73, p < .05, ηp
2 = .21. Across the three reading tasks, 

pairwise comparisons indicated significantly greater AUC concentration values (p < .05) for the 

STC region than for the M1 (Cohen’s d = .93) and the SMA (d = 1.49) motor regions. However, 

neither the task main effect nor the region x task interaction were significant. The HbO findings 

were consistent with the hypothesis of no speech-related interference in the fNIRS signal.   

 The two-way, repeated measures ANOVA on the HbR waveforms also revealed a 

significant main effect for region, F (2.49,54.13) = 16.28, p < .001, ηp
2 = .54.  Across the three 

reading tasks, pairwise comparisons indicated significantly greater AUC concentration values (p 

< .05) for all three language regions (IFC, STC, and IPL) than the motor regions (M1 and SMA).  

The task main effect was not significant, but there was a significant region x task interaction, F 

(3.86, 54.13) = 3,98, p < .01, ηp
2 = .22.  Paired-samples t tests were conducted to follow up the 

significant interaction to determine whether there were differences in concentration values for 

the reading aloud vs mouthing tasks or the reading aloud vs. silent reading tasks. There was a 

significant reading aloud vs. silent reading difference favoring reading aloud in the IFC region, t 

(14) = 2.43, p < .05, d = 1.49, and in the STC region, t(14) = 2.99, p < .01, d = 1.59.  There was 

also a significant reading aloud vs. silent mouthing difference favoring the reading aloud task in 

the IFC and STC regions [t(14) = 7.34, p < .001, d = 3.92, and STC,  t(14) = 2.76, p < .05, d = 

1.47, respectively], suggesting that speech motor movements during reading affected the 

concentration of deoxygenated hemoglobin in two non-motor areas (IFC and STC). 

3.2 Connectivity Analysis 
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The second research question concerned whether or not the connectivity between areas 

differed among the three reading tasks. Figure 3 contains a visual representation of the 

significant connectomes for oral reading, silent mouthing, and silent reading (with no mouth 

movements). We report the predictive model with the greatest maximum likelihood function 

between each ROI. Log likelihood F ratios and significance levels are reported in Table 1. 

Causal density between tasks were calculated to determine significance between tasks within a 

connectome (Barnett et al.  2009). 

There were significant language area connectomes and motor area connectomes for all 

three tasks.  As might be expected, significant motor to language area connectomes were 

apparent for the two tasks with motor components (oral reading and silent mouthing) but not for 

the silent reading task.  Oral reading produced a significant language area connectome from IFG 

to STC to IPL, as well as a motor area SMA to M1 connectome. Motor-to-language area 

connectomes were also revealed, with significant bidirectional activity between IFG and SMA, 

STC and SMA, and IPL and SMA. Directional activity from IFG to M1 was also observed. For 

silent mouthing, the motor-language connectome was similar to that in the oral reading task 

network, with bidirectional IFG to SMA and STC to SMA activity as well as directional IFG to 

M1 activity. The bidirectional IPL to SMA connectome was not significant during this task. 

Finally, for silent reading, there were significant language area connectomes and motor area 

connectomes, similar to the previous two tasks. However, the motor-to-language connectome 

had few similarities: the connectome from STC to SMA was apparent, but the IFG to SMA 

connectome was unidirectional from SMA to IFG (versus bidirectional in the previous two 

tasks). In addition, unlike the motor tasks, there was no directional IFG to M1 connectome.  
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Three particular connectomes were of note: 1) All tasks maintained the language area 

connectome, increasing in causal density from oral reading to silent mouthing (causal density = 

0.202, p < .001), and again from silent mouthing to silent reading (causal density = 0.0085, p < 

.001). 2) Connectivity from IFC to SMA had the greatest transfer entropy during the oral reading 

task, with lesser transfer entropy during the silent mouthing task, and no significant transfer 

entropy during the silent reading task (causal density = 0.0075, p < .001). 3) Connectivity 

between motor and language areas decreased in causal density from oral reading to silent 

mouthing (significant IPL-SMA network in oral reading but not in silent mouthing), and again 

from silent mouthing to silent reading (significant IFG-M1 network in silent mouthing but not in 

silent reading). Overall, while many of the connections between the five ROIs are similar across 

the three tasks, there are task related differences in the strength of the connections, particularly 

for those connections involving language-motor area integration.  Furthermore, there was an 

increase in the strength of connectivity among the traditional language areas (IFC, STC, and IPL) 

as motor involvement decreased.  

4. Discussion 

 A number of investigators have suggested that fNIRS may be a useful technology for 

assessing the neural contributions to communication because these measures may be minimally 

susceptible to motion artifacts from speech-related movements (Dieler et al., 2012; Quaresima et 

al., 2012; Gervain et al., 2011).  However, the evidence for this assertion is limited to a small 

number of studies that compared fNIRS measures in limited brain regions following of specific 

types of head movements, with no attention to potential speech motor effects on neural 

connectivity. The aim of this study was to assess potential differences in the extent of 

hemodynamic concentration levels reflecting the neural activity during reading performed under 
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three conditions that varied in the nature of speech motor activity (oral reading, silent mouthing, 

or silent reading). The extent of the hemodynamic response function was represented by area 

under the curve analyses of HbO and HbR concentration values.  Importantly, Granger Causality 

analyses were used to determine whether activation from speech motor tasks during reading 

affected the connectivity of hemodynamic activity within and across five ROIs [primary motor 

cortex (M1), supplementary motor area (SMA), inferior frontal cortex (IFC), superior temporal 

cortex (STC), and the inferior parietal lobule (IPL)].   

 We reasoned that the strongest evidence for a speech motor effect would be revealed by a 

task x region interaction yielding greater hemoglobin concentration values for the oral reading 

condition over the silent reading condition in the three non-motor areas (IFC, STC, and IPL) 

together with high levels of connectivity among language and motor areas during silent reading 

that were similar in nature to the connectivity seen during oral reading and silent mouthing.  Our 

results were not consistent with this hypothesis.  A weaker speech motor effect would be 

revealed by a region x task interaction demonstrating greater concentration values for the oral 

reading condition over the silent reading condition for one or more non-motor areas of IFC, STC, 

and IPL together with decreasing levels of connectivity among language and motor areas from 

oral reading to silent mouthing to silent reading.  The findings related to the HbR waveforms 

during reading aloud, silent mouthing, and silent reading were somewhat consistent with the 

hypothesis of a weak speech motor effect.  Across two of the non-motor regions (IFC and STC), 

there were significantly greater HbR AUC concentration values for the reading aloud task as 

compared to both the silent mouthing task and the silent reading task.   

 Granger Causality, which is a multivariate autoregressive modeling technique, revealed 

task related differences in the strength of the connections between motor and language ROIs. 
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Our Granger Causality analyses indicated strong relationships among the language areas (IFC, 

STC, IPL) and the motor areas (SMA, M1) during oral reading, which decreased in strength in a 

stepwise fashion during reading with silent mouthing and silent reading respectively. 

Furthermore, Granger Causality demonstrated a strong network among language areas during 

silent reading, with decreasing strength of the connections during reading with silent mouthing, 

and further decreases in strength during oral reading. Although waveform analyses revealed that 

the motor areas of M1 and SMA were more active during the motor tasks (oral reading and 

reading with silent mouthing), functional connectivity with Granger Causality indicated a variety 

of connection strengths among ROIs related to the nature of the reading activity. This suggests 

that Granger Causality analyses can contribute important information about the nature of cortical 

neural activity in addition to typical waveform analyses.  

The role of SMA in silent reading was especially interesting.  Previous research has 

indicated some degree of functional connectivity between STC and SMA during speech and 

language tasks (Simonyan et al., 2009; Timmers et al., 2015), suggesting that SMA contributes 

to vocalization and syntax processing when syntax is difficult. But we also found significant bi-

directional connections between SMA and STC during the silent reading condition in which 

there was no vocalization. Some researchers suggest that SMA is not intrinsically involved in 

motor tasks, but can also play a role in task shifting and non-motoric processes of word selection 

(Alario et al., 2006).  Thus, it is possible that the connection between STC and SMA during 

silent reading reflects the role of word identification processes during our reading task 

(Meschyan, & Hernandez, 2006; Price et al., 1996).  Lexical access tasks might provide greater 

insight into the nature of the connections to and from SMA during reading. 
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 Like Brigadoi et al. (2014) we conducted wavelet filtering prior to hemodynamic 

analyses. Our results related to the AUC of the hemodynamic waveform during three reading 

tasks (silent, silent mouthing, and oral) were similar to those reported by Brigadoi and her 

colleagues with one exception.  We found greater HRF functions for deoxy concentration values 

in the non-motor areas of IFC and STC for reading aloud compared to silent mouthing and silent 

reading.  Additionally, Granger Causality analyses revealed fine-grained differences in the 

strength of the connections between language and motor ROIs that were not uncovered via 

traditional waveform analyses.  Therefore, wavelet filtering alone did not eliminate all potential 

effects of speech-related motor activities on fNIRS hemodynamic measures.  

5. Conclusions 

 It has been suggested that fNIRS is especially useful for recording the cortical neural 

response during oral speaking tasks because it is minimally susceptible to motion artifacts, 

including speech motor activity. Previous studies involving speaking tasks have lacked proper 

controls to assess the extent to which neural activation in language areas is specific to language-

related activity or compromised by speech-related hemodynamic flow from adjacent areas. 

Similar to Brigadoi et al (2014), we found that, after wavelet filtering, the fNIRS hemodynamic 

response function was minimally influenced by speech motion during reading aloud as compared 

to reading silently. There is no evidence in this investigation that speech-related motor artifacts 

compromised the nature of hemodynamic activity in non-motor regions.  However, it is clear that 

measures of connection strengths between motor and non-motor ROIs were influenced by speech 

motor activity.  Researchers who plan to use fNIRS to study speech communication should be 

aware that speech-motor activity can affect the nature of neural connections between motor and 

non-motor brain regions.  Based on our results, we recommend three important procedures: (1) 



18 

 

 

wavelet filtering in preprocessing to reduce speech motion artifacts; (2) incorporate a nonspeech 

communication or language control task; (3) conduct a connectivity analysis to adequately assess 

the impact of functional speech on activation across the perisylvian network.       
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Figures 

 

Figure 1. fNIRS 3x5 channel montage placement. 

 



28 

 

 

Figure 2. Average time series of HRF across participants. HbO activity (red) measured by 

maximum amplitude showed a significant main effect for task in M1, SMA, and IPL (p< .05). 

HbR activity (blue) measured by minimum amplitude also showed a significant main effect for 

task in M1, SMA, and IPL (p< .05). Error bars are SE. 
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Figure 3. Functional connectivity during different reading tasks. A. oral reading; B. silent 

mouthing reading; C. silent reading. All connectivity shown is significant (p< .05), with greater 

line thickness showing effect size measured by log-likelihood F among regions.  

 



30 

 

 

Table 1.  Functional connectivity as measured by Granger Causality. 

Task | ROIX to ROIY Log likelihood F p-value  

Oral reading    
 M1 to SMA 0.001833894103  0.1528658339  

 M1 to IFC 0.0003428691835  0.9599471106  

 M1 to STC 0.0006035785481  0.8333839923  

 M1 to IPL 0.0001927602473  0.9925868369  

 SMA to M1 0.004817970059  <0.001 *** 
 SMA to IFC 0.008063720441  <0.001 *** 

 SMA to STC 0.004366067652  0.0006330078012  *** 

 SMA to IPL 0.003417347301  0.005757156152  ** 

 IFC to M1 0.002894619711  0.01826480109  * 

 IFC to SMA 0.04534722899  <0.001 *** 
 IFC to STC 0.009824697601  <0.001 *** 

 IFC to IPL 0.04278216581  <0.001 *** 

 STC to M1 0.001794971241  0.1639595784  

 STC to SMA 0.01337650168  <0.001 *** 

 STC to IFC 0.003632549644  0.003528355773  ** 
 STC to IPL 0.002618861362  0.03279072174  * 

 IPL to M1 0.0006579928495  0.7986356202  

 IPL to SMA 0.003938956021  0.001736152505  * 

 IPL to IFC 0.00686541559  <0.001 *** 

 IPL to STC 0.00406054862  0.001305658486  ** 
Silent mouthing    

 M1 to SMA 0.001958977475  0.1214768956  

 M1 to IFC 0.000288188444  0.9754409981  

 M1 to STC 0.0002878604298  0.9755211658  

 M1 to IPL 0.0005545201863  0.862796092  
 SMA to M1 0.004582593602  0.0003765633056  ** 

 SMA to IFC 0.01489343133  <0.001 *** 

 SMA to STC 0.006991316941  <0.001 *** 

 SMA to IPL 0.001143490785  0.4647152284  

 IFC to M1 0.003092422387  0.01187521682  * 
 IFC to SMA 0.04375029936  <0.001 *** 

 IFC to STC 0.02673826806  <0.001 *** 

 IFC to IPL 0.04278740766  <0.001 *** 

 STC to M1 0.002115370229  0.09029573174   

 STC to SMA 0.01965513765  <0.001 *** 
 STC to IFC 0.01081387916  <0.001 *** 

 STC to IPL 0.00929685315  <0.001 *** 

 IPL to M1 0.001191887104  0.434553156  

 IPL to SMA 0.001911257908  0.1327179053  

 IPL to IFC 0.00985137404  <0.001 *** 
 IPL to STC 0.005664573626  <0.001 *** 

Silent reading     


