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Increased reactivity to stress is maladaptive and linked to abnormal behaviors
and psychopathology. Chronic unpredictable stress (CUS) alters catecholaminergic
neurotransmission and remodels neuronal circuits involved in learning, attention and
decision making. Glial-derived neurotrophic factor (GDNF) is essential for the physiology
and survival of dopaminergic neurons in substantia nigra and of noradrenergic neurons
in the locus coeruleus. Up-regulation of GDNF expression during stress is linked
to resilience; on the other hand, the inability to up-regulate GDNF in response to
stress, as a result of either genetic or epigenetic modifications, induces behavioral
alterations. For example, GDNF-deficient mice exposed to chronic stress exhibit
alterations of executive function, such as increased temporal discounting. Here we
investigated the effects of CUS on latent inhibition (LI), a measure of selective attention
and learning, in GDNF-heterozygous (HET) mice and their wild-type (WT) littermate
controls. No differences in LI were found between GDNF HET and WT mice under
baseline experimental conditions. However, following CUS, GDNF-deficient mice failed
to express LI. Moreover, stressed GDNF-HET mice, but not their WT controls, showed
decreased neuronal activation (number of c-Fos positive neurons) in the nucleus
accumbens shell and increased activation in the nucleus accumbens core, both key
regions in the expression of LI. Our results add LI to the list of behaviors affected
by chronic stress and support a role for GDNF deficits in stress-induced pathological
behaviors relevant to schizophrenia and other psychiatric disorders.

Keywords: c-Fos, chronic stress, glial-derived neurotrophic factor, latent inhibition, nucleus accumbens,
schizophrenia

INTRODUCTION

Stress initiates integrated organismal responses, ranging from biochemical, endocrine and immune
processes to behavioral alterations, in order to adapt and ensure the survival of the individual.
Acute stress usually induces adaptive time-limited responses, i.e., rapid detection of threat through
reallocation of resources to a network promoting vigilance, at the cost of the executive network,
adequate fight-or-flight responses and restoration of homeostasis when threats are no longer
present. On the other hand, persistent changes resulting from long-term chronic stress can have
deleterious implications for the health and survival of the organism (De Kloet et al., 2005; Pardon
and Marsden, 2008; Herman, 2013).

Cognitive dysfunction is a hallmark of chronic stress in both humans (Lupien et al., 2007;
Marin et al., 2011) and experimental animals (Holmes and Wellman, 2009; Moreira et al., 2016).
In rodents, chronic stress impairs performance in spatial learning and memory tasks, novel object
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recognition (for review see Moreira et al., 2016), behavioral
flexibility (Hurtubise and Howland, 2017; Jett et al., 2017) and
decision making (Dias-Ferreira et al., 2009; Buhusi et al., 2016).

The biological underpinnings of stress-induced behavioral
modifications are related to the effects of stress hormones
(CRF, glucocorticoids) and changes in neurotransmission
(Linthorst and Reul, 2008; Joels and Baram, 2009; Herman,
2013). Chronic stress is associated with impaired glutamatergic
neurotransmission (Jett et al., 2017) and altered inhibitory GABA
responses in the prefrontal cortex (McKlveen et al., 2016), as well
as changes in dopamine (DA; Ahmad et al., 2010; Belujon and
Grace, 2015) and norepinephrine release (Arnsten, 2011; Jett and
Morilak, 2013).

Two recent studies (Uchida et al., 2011; Bian et al., 2012)
identified a major role for the Glial-derived neurotrophic factor
(GDNF) in response to chronic unpredictable stress (CUS):
Increased GDNF expression in the nucleus accumbens (Acb) and
the hippocampus promotes resilience and recovery from CUS.
Instead, individuals who cannot up-regulate GDNF during stress
exhibit anxiety, anhedonia and avoidance of social interactions,
possibly due to the negative consequences of chronic stress on
the DA circuits. GDNF, a neurotrophic factor, is particularly
important for the physiology of catecholaminergic neurons.
GDNF and its receptors are required for neuronal development
(Strömberg et al., 1993; Burke, 2006), the expression of Tyrosine
Hydroxylase (the enzyme required for catecholamine synthesis;
Beck et al., 1996) and the DA Transporter (required for high
affinity DA uptake; Lin et al., 1993), the survival of DA
neurons in the substantia nigra (Granholm et al., 2000; Boger
et al., 2006; Pascual et al., 2008; Zaman et al., 2008), and
the survival of noradrenergic neurons in the locus coeruleus
(Zaman et al., 2003; Quintero et al., 2004; Pascual et al., 2011).
Acb-derived GDNF is a retrograde enhancer of DA tone in the
mesocorticolimbic system (Wang et al., 2010). Several lines of
genetically engineered mice have been developed to explore the
role of GDNF and its receptors in DA neuron development and
survival (Pichel et al., 1996; Kramer et al., 2007; Pascual et al.,
2008).

A recent study (Knapman et al., 2010) revealed that
mice highly reactive to stress exhibit reversal learning and
latent inhibition (LI) deficits. LI is defined as the loss of
future associability by a stimulus that has been repeatedly
presented without consequence (Lubow and Moore, 1959).
LI results in slower learning of a new conditioned stimulus
(CS)—unconditioned stimulus (US) association, when the pre-
exposed (PE) stimulus is afterwards presented with consequences.

Given that LI is a process highly dependent on DA (Young
et al., 2005; Weiner and Arad, 2009; Arad and Weiner, 2010),
which in turn is regulated by GDNF levels, here we tested the
hypothesis that stressed GDNF-deficient (heterozygous, HET)
mice would be less able to increase levels of GDNF (due to having
a single functional allele, Griffin et al., 2006) than their wild-type
(WT) littermates, with negative consequences on DA function
and deficits in LI. We also comparatively evaluated neuronal
activation (c-Fos+ cell counts) in brain regions known to be
important for LI expression—Acb and ventral hippocampus
(vHipp)—in GDNF HET mice and their WT littermates.

MATERIALS AND METHODS

Subjects
The subjects were 52 3–4 month-old male GDNF-deficient
(HET, n = 26) mice and their WT (n = 26) littermate controls
from a GDNF colony (Granholm et al., 1997) maintained on
C57BL/6J background for at least 10 generations. Genotypes
were confirmed by PCR amplification from tail biopsy samples.
The mice were further divided into Stress (S, n = 26) and No-
Stress (NS, n = 26) groups. Mice were housed in a temperature-
controlled room under a 12-h light-dark cycle. Mice were
maintained at 85% of their ad libitum weights by restricting
access to food (Teklad Diet 8604, Envigo, Denver, CO, USA). All
experimental procedures were conducted in accordance with the
standards for the ethical treatment and approved by Utah State
University IACUC Committee.

Chronic Unpredictable Stress (CUS)
Stress mice received 21 days of CUS as in Dias-Ferreira et al.
(2009), using the following daily randomly-chosen stressors:
30 min restraint, 10 min forced swim, or 10 min exposure to
an aggressive Balb/c male mouse. We have chosen this 3-week
CUS protocol since stressed C57Bl/6J mice seem to be resilient
to this CUS (e.g., Buhusi et al., 2016), and the aim was to
comparatively evaluate GDNF-deficient mice relative to their
WT littermates. Please note that when exposed to a longer
(8-week), more complex CUS protocol (Monteiro et al., 2015),
C57Bl/6J mice do show changes in anxiety, depressive-like and
exploratory behaviors.

Apparatus
The apparatus consisted in eight standard mouse operant
chambers housed inside sound-attenuating cubicles (Med
Associates, St. Albans, VT, USA) equipped with a house light,
a fan, two nosepokes on the front wall and one nosepoke on the
back wall, a programmable audio generator, a shocker/scrambler
module, a lever, and a standard mouse 20-mg pellet feeder. The
pre-exposed (PE) and non-pre-exposed (NPE) conditioned stimuli
were a 80-dB tone and a 10-Hz click. The US was a 1-s 0.5 mA
footshock.

Latent Inhibition (LI)
LI was assessed using an ‘‘on baseline’’ conditioned emotional
response (CER) procedure consisting of baseline, pre-exposure,
conditioning, rebaseline and test phases (i.e., allowing the
mouse to eat during the all stages of the LI paradigm;
Buhusi et al., 2017). Mice were assigned either to a PE
tone/NPE click or PE click/NPE tone in a counterbalanced
manner. Mice were shaped to nosepoke for food pellets on
an FR1 schedule throughout the LI task, which consisted
of four daily sessions as follows: During the 60-min
pre-exposure session mice received 40 30-s presentations
of the PE stimulus separated by a 60-s inter-stimulus
interval (ISI). During the 30-min conditioning session, the
PE and NPE stimuli were presented for 30 s three times,
separated by a 240-s ISI. The last presentation of the PE
and NPE stimuli was paired with a 1-s, 0.5-mA footshock.
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On the next day mice were given a 60-min rebaseline
session during which mice were reinforced for nosepoking
on an FR1 schedule. During a 30-min test session, mice
were presented with 3-min PE and NPE stimuli with an
8-min ISI. Mouse behavior was video recorded and the
duration of freezing behavior was estimated using FreezeScan
software (CleverSys Inc., Reston, VA, USA; Buhusi et al.,
2017).

c-Fos Immunostaining
To evaluate neuronal activation, we performed c-Fos
immunostaining using standard procedures (Buhusi et al.,
2016). Two hours after the start of the test session 5–9 mice in
each group were deeply anesthetized and transcardially perfused
with a paraformaldehyde solution (4% in 0.1 M phosphate
buffer, pH 7.4). Brains were collected and sectioned on a
vibrating microtome (VT1200S, Leica, Germany). Free-floating
brain sections (50 µm) were incubated with a blocking and
permeabilization solution (5% donkey serum, 0.3% Triton
X-100 in PBS) for 2 h and then incubated overnight at 4◦C
with the c-Fos primary antibody (Cell Signaling Technologies,
1:300 dilution). The sections were rinsed in PBS, 0.1% Tween-20
and incubated for 2 h with Alexa488-conjugated donkey anti
rabbit secondary antibody and NeuroTrace 530/615 (Fisher
Scientific/Invitrogen, Carlsbad, CA, USA). NeuroTrace neuronal
labeling was used to identify the neuroanatomical regions of
interest. The sections were rinsed in PBS before mounting
with Prolong Gold (Fisher Scientific/Invitrogen, Carlsbad, CA,
USA).

Neuronal Activation Analysis
Fluorescence images were acquired on a Zeiss LSM710 laser
scanning confocal microscope using appropriate filter
sets. Analysis of neuronal activation was performed by
counting c-Fos-positive nuclei, in same-size areas in
two sections/region of interest/mouse in the following
areas of interest: prelimbic cortex (PrL: Bregma 2.1–1.54),

ventral hippocampus (vHipp: Bregma −2.92 to −3.40),
nucleus accumbens shell (Acb-shell: Bregma 1.78–1.1),
and nucleus accumbens core (Acb-core: Bregma 1.78–1.10;
Franklin and Paxinos, 2008), by two independent observers
unaware of genotype. Neuronal activation in each region
was averaged over observers and subjected to statistical
analyses.

Statistical Analyses
The estimated duration of freezing behavior in the first
60 s of the presentation of the PE and NPE stimuli during
the conditioning and test sessions was subjected to mixed
ANOVAs with between-subjects variables stress (S, NS) and
genotype (HET, WT), and within-subjects variable pre-exposure
(PE, NPE), followed by post hoc analyses. The latency to
freeze (to the context) during the conditioning and test
sessions was subjected to mixed ANOVAs with between-subjects
variables stress (S, NS) and genotype (HET, WT), and within-
subjects variable session (conditioning, test), followed by post
hoc analyses. The difference in freezing between NPE and
PE, the number of rewards and nosepokes during the test
session, and the neuronal activation (c-Fos+ cell counts in
each brain region) were subjected to two-way ANOVAs with
factors stress (S, NS) and genotype (HET, WT), followed
by LSD post hoc analyses. To further explore data, results
were collapsed over stress and/or genotype (to yield larger
groups), and correlational analyses were conducted between
LI (the difference in freezing to the NPE and PE stimuli)
and neuronal activation (c-Fos+ cell counts) for Acb-shell and
Acb-core. All statistical analyses were conducted at an alpha
level 0.05.

RESULTS

Latent Inhibition
The average freezing duration during the PE and NPE stimuli
during the test session is shown in Figure 1. Analyses

FIGURE 1 | Latent inhibition (LI) by stress and genotype. Average duration of freezing (±SEM) to the pre-exposed (PE) and non-pre-exposed (NPE) stimulus in
glial-derived neurotrophic factor (GDNF) heterozygotes (HET) and wild type (WT) littermate controls under no-stress (left) and chronic unpredictable stress (CUS;
right). A significant LI (significantly larger freezing to NPE than PE) was observed in all groups except in stressed GDNF HET mice. ∗p < 0.05; ∗∗p < 0.01.
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indicated a main effect of pre-exposure (F(1,48) = 52.96,
p < 0.01), suggesting that mice froze longer during the
NPE stimulus than during the PE stimulus (LI). However,
LI was not expressed equally in all groups: Analyses
indicated a significant main effect of stress (F(1,48) = 5.51,
p < 0.05), suggesting that NS mice showed more LI
than S mice. Furthermore, analyses indicated a significant
pre-exposure × stress interaction (F(1,48) = 5.34, p < 0.05),
suggesting that stress increased freezing to the PE stimulus,
but not to the NPE stimulus. A post hoc LSD test indicated
a significant difference in freezing between NPE and PE in
all NS mice (all ps < 0.01), and in the stressed WT mice
(p < 0.05), but not in stressed GDNF HET mice (p > 0.05),
indicating that all mice showed LI except stressed GDNF HET
mice.

Analyses of LI, the difference in freezing between NPE
to PE, supported the above results: a factorial ANOVA with
factors stress and genotype indicated a significant main effect
of stress (F(1,48) = 5.34, p < 0.05). LI was large in NS mice
(13.5 ± 3.9 s in WTs, and 17.4 ± 3.5 s in HETs), but
it decreased in stressed mice (10.3 ± 2.9 s in WTs, and
4.8 ± 2.5 s in HETs). A post hoc LSD test indicated that LI
did not change with stress in WT mice (p > 0.05), but was
significantly decreased in stressed GDNF HET mice relative to
no-stress mice (p < 0.05). Taken together, these results provide
support for a ‘‘two-hit’’ model under which environmental
factors (stress) potentiate the effect of genotype to reveal the
disruption of LI in stressed GDNFHETmice but not in the other
groups.

Unconditioned Freezing
To evaluate the hypothesis that the difference in freezing to
PE and NPE stimuli in Figure 1 may be due to the intrinsic
(unconditioned) differences in freezing to the two stimuli, we
performed analyses of freezing behavior to the PE and NPE
stimuli in the conditioning session, before these stimuli were
paired with footshock. These analyses failed to indicate any
main effects of stimulus (PE/NPE; F(1,48) = 2.07, p > 0.05),
genotype (F(1,48) = 1.49, p > 0.05), stress (F(1,48) = 0.15,
p > 0.05), or any interactions (all Fs < 1.99, p > 0.05),
suggesting no differences in unconditioned freezing to the
PE and NPE stimuli, irrespective of genotype and stress
condition. This result indicates that the differences in freezing
between groups in Figure 1 are not due to differences in
unconditioned freezing, but reflect differences in conditioned
freezing (associability/learning), thus describing true differences
in LI.

Reactivity to Shock
Another possibility is that stressed GDNF HET mice became
more reactive to shock than the other groups. To evaluate
this hypothesis we followed three lines of evidence: first, a
post hoc LSD test of the duration of freezing during the
test session (see ‘‘Latent Inhibition’’ Section) failed to indicate
differences between genotypes in duration of freezing to the
NPE stimulus (all ps > 0.05; see Figure 1); same analyses also
failed to indicate differences in duration of freezing to the

NPE stimulus between unstressed and stressed mice for each
genotype (all ps > 0.05; see Figure 1). Taken together, these
analyses suggest that all mice learned similarly about the NPE
stimuli, thus making it unlikely that they had different reactivity
to shock.

Second, analyses of the latency to freeze in the conditioning
session (before exposure to shock) and in the test session
(after exposure to shock) failed to indicate any effects of
session (F(1,48) = 0.74, p > 0.05), genotype (F(1,48) = 2.21,
p > 0.05), stress (F(1,48) = 2.31, p > 0.05), or any interactions
(all Fs(1,48) < 3.27, all ps > 0.05), suggesting that the propensity
to freeze in the given context did not change after exposure
to shock, and did not vary with stress and genotype, thus
making it unlikely that mice differed in their reactivity to
shock.

Finally, analyses of the number of rewards earned, and
number of nosepoke responses emitted, during the test session
failed to indicate any effects of genotype (all Fs(1,48) < 0.02,
all ps > 0.05), stress (all Fs(1,48) < 3.61, all ps > 0.05),
or stress × genotype interaction (all Fs(1,48) < 0.18, all
ps > 0.05), suggesting that mice responded similarly, and
earned food similarly, irrespective of stress and genotype. These
results indicate that stressed GDNF HET mice nosepoked and
were rewarded similarly with the other mice, thus making it
unlikely that the absence of LI in stressed GDNF HET mice
is due to these mice being more reactive to shock than the
other mice.

In summary, the three lines of evidence indicate that all
groups were similar in nosepoking, earning food, learning about
the context and learning about the NPE stimulus, suggesting
that all groups were similarly reacting to and/or learning about
the footshock. Nevertheless, groups differed in their freezing to
the PE stimulus (see Figure 1): Freezing to the PE stimulus
was significantly smaller than freezing to the NPE stimulus in
all unstressed mice and in the WT stressed mice, but increased
(to levels not significantly different than freezing to the NPE
stimulus) only in the stressed GDNF HET mice, indicative of
impaired LI.

Neuronal Activation
As previously shown in Sotty et al. (1996), we have assessed
neuronal activation during LI through analyses of expression
of the immediate early gene c-Fos in brain regions known to
be relevant to LI through lesion or pharmacological studies
(Yee et al., 1995; Pouzet et al., 2004; Schiller and Weiner,
2004; Gal et al., 2005; Schiller et al., 2006; Ouhaz et al.,
2014). Figure 2A indicates three different patterns of neuronal
activation: first, neuronal activation in vHipp was affected only
by stress (F(1,22) = 5.39, p < 0.05), but not by genotype
(F(1,22) = 0.21, p > 0.05), or interactions (F(1,22) = 1.11,
p > 0.05). Second, Acb-shell was independently affected by
stress (F(1,22) = 4.55, p < 0.05) and genotype (F(1,22) = 5.06,
p < 0.05), but not by the stress × genotype interaction
(F(1,22) = 1.08, p > 0.05). Third, Acb-core activation was not
affected by neither stress alone (F(1,23) = 1.14, p > 0.05) nor
genotype alone (F(1,23) = 0.83, p > 0.05), but was significantly
affected by a stress × genotype interaction (F(1,23) = 4.80,
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p < 0.05). A post hoc LSD test indicated that Acb-core
activation was significantly increased in GDNF-HET mice
relative to the other groups (p < 0.05). Finally, in the present
study, PrL neuronal activation was not affected by either
stress, genotype, or their interaction (all Fs(1,27) < 0.31, all
ps > 0.05). These results indicate that various brain regions
relevant to LI are differentially affected by stress, genotype,
and their interaction, thus supporting a complex ‘‘two-hit’’
stress× genotype model.

To further understand the effect of stress and genotype on
these brain regions, we evaluated the relationship between LI
(the difference in freezing duration to NPE and PE stimuli)
and neuronal activation (number of c-Fos+ cells) in the
nuclei that control the behavioral output (Schmajuk et al.,
1997; Weiner, 2003), Acb-shell and Acb-core, as shown in
Figures 2B–D. Figures 2B,C shows the relationship between
LI and neuronal activation in Acb-shell (Figure 2B) and
Acb-core (Figure 2C) in WT and HET mice when data are
collapsed over the stress variable. Consistent with previous
studies (Sotty et al., 1996), Figure 2B indicates that irrespective
of the stress condition, LI correlated with Acb-shell activation
in WT mice (R2

(10) = 0.53, p < 0.05), but not in GDNF HET

mice (R2
(12) = 0.01, p > 0.05). Similarly, Figure 2C indicates

that irrespective of the stress condition, LI correlated with
Acb-core activation in WT controls (R2

(10) = 0.34, p < 0.05),
but not in GDNF HET mice (R2

(13) = 0.07, p > 0.05). Indeed,
as shown in Figure 2A, stress determined a decrease in
Acb-shell activation and an increase in Acb-core activation
in stressed GDNF HET mice, such that stressed GDNF
HET mice, but not stressed WT mice, showed impaired LI
(Figure 1).

Moreover, Figure 2D shows that the relationship between
LI and Acb-core activation differs in no-stress (NS) and stress
(S) mice when data are collapsed over genotype: Irrespective
of genotype, LI correlated with Acb-core activation in S mice
(R2

(10) = 0.47, p < 0.05), but not in NS mice (R2
(13) = 0.01,

p > 0.05). Indeed, Figure 2A indicates that there was no
significant difference in Acb-core activation in S and NS WT,
which showed LI (Figure 1), while stressed GDNF HET mice
showed an increase in Acb-core activation (Figure 2A), and
failed to show LI (Figure 1). In summary, all three patterns in
Figures 2B–D contributed to the disruption of LI in stressed
GDNF HET mice, and to the significant LI in the other mice, as
shown in Figure 1.

FIGURE 2 | Neuronal activation during LI testing. (A) Average c-Fos+ cell counts (±SEM) in ventral hippocampus (vHipp), nucleus accumbens shell (Acb-shell), and
nucleus accumbens core (Acb-core) in the stress (S) and no-stress (NS) GDNF-deficient mice (HET) and WT littermate controls. Analyses indicated different patterns
of effects of stress and genotype on neuronal activation in these brain regions: vHipp activation was affected only by stress (one-hit), Acb-shell activation was
independently affected by stress and genotype (independent two-hit), while Acb-core activation was affected by the interaction stress × genotype (two-hit
interaction). (B–D) Correlations between LI (difference in freezing duration to the NPE, and PE, stimuli) and neuronal activation (number of c-Fos+ cells) in Acb-shell
(B) and Acb-core (C,D) when data are collapsed across stress (B,C) or genotype (D). ∗p < 0.05.
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DISCUSSION

Using an ‘‘on baseline’’ within-subject CER LI procedure
developed in our lab (Buhusi et al., 2017), the current study
found thatWTmice showed LI, consistent with previous findings
(Gould and Wehner, 1999). Additionally, results indicated that
GDNF HET mice in C57BL/6J background showed LI under
baseline, no-stress conditions. However, after exposure to a
CUS regimen, GDNF HET mice failed to show LI, while WT
littermates continued to show LI. These results are unlikely
to be due to differences in unconditioned freezing to the two
stimuli, or to differences in reactivity to shock, as all mice
froze similarly to the two stimuli (before they were paired with
shock), learned similarly about the NPE stimulus and context,
nosepoked similarly and were rewarded similarly in the FR1 task.
Further studies are required to evaluate whether altered LI as
a consequence of the stress × GDNF-deficit interaction reflects
anomalies in either acquisition or expression of LI.

Neuronal activation analyses (c-Fos+ cell counts) in brain
regions involved in LI indicated that in some brain regions
activity was affected solely by stress (vHipp), while in others
it was affected by both stress and genotype (Acb-shell) or
their interaction (Acb-core). Our results revealing the combined
effects (including an interaction) of stress and genetic factors on
neuronal activation in the Acb support current neurobiological
(Weiner, 2003) and neuro-computational models (Schmajuk
et al., 1997, 1998; Buhusi et al., 1998) of LI.

Neural Substrates of Latent Inhibition
LI is a phenomenon observed both in humans and other
species by which repeated presentation of a neutral stimulus
with no consequences reduces its future associability relative to
learning about other novel stimuli (Lubow and Moore, 1959;
reviewed in Lubow, 1989). Most theories relate LI to selective
attention, i.e., during pre-exposure of an inconsequential CS,
the animal or participant learns not to attend to it (Pearce and
Hall, 1980; Lubow and Gewirtz, 1995; Schmajuk et al., 1997).
Weiner and Feldon (1997) suggested a ‘‘switching’’ theory in

which the nucleus accumbens plays a major role (see Figure 3):
during pre-exposure a CS-noUS association is learned (with
the involvement of the hippocampus), after which the new
CS-US association requires switching controlled by the core of
the nucleus accumbens (with the shell having a modulatory
role; Weiner, 2003; Gray and Snowden, 2005). According to
this theory, LI is disrupted by the change of context between
pre-exposure and conditioning (Lubow et al., 1976), suggesting
that the hippocampus may be important for detecting the
mismatch.

Interestingly, the results of our study support a computational
model suggesting that LI is affected by the interaction between
environmental stimuli and brain insults (Schmajuk et al., 1997;
Buhusi et al., 1998; see Figure 3). In this neural network model
LI depends on the novelty of the PE and NPE stimuli relative
to the context (computed in the VTA and modulating activity
in the accumbens), which relies on learned associations between
stimuli (which in turn depend on normal hippocampal function).
Thus, according to this model, current data could be explained by
genetically-induced alterations in brain function combined with
environmental factors (e.g., decreased expression of GDNF and
inability to up-regulate GDNF expression in the hippocampus
during stress), which interact to alter novelty computation and
activity in the accumbens, and impair LI in stressed GDNF HET
mice.

Although Weiner’s ‘‘switching model’’ and Schmajuk’s
‘‘novelty’’ model describe activity in the same network
(investigated in this article, and shown in Figure 3), the
interpretation of neuronal activity and its behavioral correlates
(Figure 2 in this article) is very different in the two models:
Weiner’s model interprets neuronal activity as reflecting changes
in switching, while Schmajuk’s model interprets neuronal
activity as reflecting changes in novelty. Further studies are
required to evaluate and differentiate these models, although it
is notable that Schmajuk’s ‘‘novelty’’ model already incorporates
and addresses environment × novelty interactions (Buhusi
et al., 1998), thus possibly addressing the data from the current
study.

FIGURE 3 | Modulation of a putative LI circuit by stress or the GDNF genotype. A putative circuit for LI (modified after Schmajuk et al., 1997; Weiner, 2003) indicating
the brain regions where activity was affected by stress and/or genotype. PFC, prefrontal cortex; vHipp, ventral hippocampus; Acb, nucleus accumbens; Acb-core,
nucleus accumbens core; Acb-shell, nucleus accumbens shell.
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As suggested by the above theories, multiple studies have
shown that the Acb and the hippocampus are indeed key
structures in LI acquisition and expression. Lesion studies
revealed opposing roles of Acb-shell and core in LI: lesions of
the Acb-shell impair LI (Weiner et al., 1999), while lesions of
Acb-core or Acb-shell+core are associated with persistent LI
(Weiner et al., 1999; Gal et al., 2005). Our results showing that
stressed GDNF HET mice which have impaired LI also have
decreased c-Fos+ cell counts in the Acb-shell and increased
neuronal activation in the Acb-core are consistent with these
previous findings.

Hippocampal lesions revealed maintenance of LI, but loss of
context specificity of the CR and LI (Good and Honey, 1991;
Honey and Good, 1993; Coutureau et al., 1999), however LI is
disrupted after ventral hippocampal (vHipp)/ventral subiculum
(vSub) NMDA receptor activation (Pouzet et al., 2004; Lodge and
Grace, 2008). Our findings that stress increases c-Fos+ cell counts
in the ventral hippocampus in the LI procedure also support a
role for the increased vHipp activity in the disruption of LI.

The involvement of the prefrontal cortex, which is
bi-directionally connected with the hippocampus and amygdala
and projects to the Acb (Del Arco and Mora, 2008, 2009; see
Figure 3), has also been evaluated in relation to LI, with mixed
results: excitotoxic lesions of the medial prefrontal cortex did not
affect LI (Lacroix et al., 1998), while catecholaminergic depletion
within the medial prefrontal cortex enhanced LI (Nelson et al.,
2010). In our study, assessment of neuronal activation in the
prelimbic cortex (part of the medial prefrontal cortex) during
the LI task has revealed no differences between experimental
groups, consistent with the Lacroix et al.’s (1998) study. The
absence of differences in the prelimbic cortex activation between
experimental groups in the LI task further suggests that in our
study the changes in neuronal activity were not general, but were
rather specific to certain brain areas.

Stress, Latent Inhibition and Schizophrenia
Chronic stress induces changes in gene expression (including
an up-regulation of GDNF expression in resilient individuals,
see Uchida et al., 2011), and alters neuronal morphology and
function in many brain regions, including regions relevant
for the acquisition and expression of LI. For example, after
stress pyramidal neurons in the cortex and hippocampus
exhibit altered dendritic and spine morphology and decreases
in spine density (Cook and Wellman, 2004; Maras and Baram,
2012; Leuner and Shors, 2013; McEwen and Morrison, 2013).
Interestingly, CUS is associated with increased dendritic
complexity in the Acb-core, while decreased dendritic
complexity is found in the Acb-shell (Taylor et al., 2014);
these results may explain the differences in neuronal activation
observed in the two regions of Acb in our study.

Stress also induces alterations in DA neurotransmission,
which is particularly important for the acquisition and expression
of LI (Young et al., 2005; Weiner and Arad, 2009): Rats
exposed to CUS have a decreased DA output in the Acb-shell
accompanied by a decrease in the number of DAT binding
sites (Scheggi et al., 2002). Indeed, stress was shown to
attenuate LI in humans (Braunstein-Bercovitz et al., 2001) or rats

(Hellman et al., 1983), although, in some cases, it may potentiate
it (Melo et al., 2003). Knapman et al. (2010) reported a
reduction in LI in mice highly reactive to stress supporting our
own observation that genetic factors are major contributors to
vulnerability to stress: in our study only stressed GDNF HET
mice, but not stressed WT littermates, failed to show LI.

In vulnerable individuals chronic stress can precipitate
psychiatric disorders (Bale, 2006; Deppermann et al., 2014;
Nestler et al., 2016), including schizophrenia (Aiello et al., 2012;
Holtzman et al., 2012, 2013). SZ is a chronic neuropsychiatric
disorder, characterized by delusions, hallucinations,
disorganized behavior and speech, and attentional control
deficits, symptoms that can lead to severe impairments in
adaptive function and social integration (van Os and Kapur,
2009). Interestingly, disrupted LI is an important feature in SZ,
particularly in drug-naïve patients or during acute episodes
(Baruch et al., 1988; Gray et al., 1995; Williams et al., 1998;
Rascle et al., 2001). Abnormal LI in SZ may be explained by
patients having selective attention deficits and continuing to
attend irrelevant stimuli (Lubow, 1989), having a hyperactive
‘‘switching’’ mechanism (Hemsley, 1993), or a hyperactive
novelty system (Schmajuk et al., 1997; Buhusi et al., 1998).
Impaired LI is thought to underlie the positive symptoms of
SZ (Morris et al., 2013). Drug treatment, using either typical or
atypical neuroleptics, leads to normalization of LI (Leumann
et al., 2002), possibly by modifying neuronal activation threshold
in specific brain areas.

GDNF and Schizophrenia
Several neuropsychiatric diseases are associated with alterations
in GDNF expression levels (Rosa et al., 2006; Tseng et al.,
2013; Tunca et al., 2015); serum levels of GDNF and other
neurotrophic factors are also modified by treatment (Zhang
et al., 2008). Interestingly, although serum GDNF levels are
decreased in SZ (Tunca et al., 2015), genetic association studies
between GDNF and SZ produced mixed results (Lee et al.,
2001; Michelato et al., 2004; Williams et al., 2007). However,
GDNF-receptor genes GFRA1, GFRA2 and GFRA3 are located
in chromosomal regions with suggestive linkage to SZ. A recent
study (Souza et al., 2010) found evidence for genetic associations
between GFRA1 and 3 and schizophrenia, as well as evidence
for GFRA2 variants modulating the therapeutic response to
clozapine. Our results support a role for the GDNF signaling
pathway and its interaction with stress in the development of
abnormal behaviors relevant to SZ and other mental disorders.

CONCLUSION

This study identifies a disruption of LI in stressed
GDNF-deficient mice, providing strong evidence for a role
of chronic stress in LI alterations in individuals with particular
genetic vulnerabilities. The disruption of LI may be the result
of small changes in neuronal function or connectivity related
to genotype which is potentiated as a result of chronic stress.
Our results add LI to the list of behaviors affected by chronic
stress and support a role for GDNF deficits in stress-induced
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pathological behaviors relevant to schizophrenia and other
psychiatric disorders.
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