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Abstract The thickness and bulk composition of continental crust provide important constraints on the
evolution and dynamics of continents. Crustal mineralogy and thickness both may influence gravity
anomalies, topographic elevation, and lithospheric strength, but prior to the inception of EarthScope’s
USArray, seismic measurements of crustal thickness and properties useful for inferring lithology are sparse.
Here we improve upon a previously published methodology for joint inversion of Bouguer gravity anomalies
and seismic receiver functions by using parameter space stacking of cross correlations of modeled
synthetic and observed receiver functions instead of standard H-κ amplitude stacking. The new method is
applied to estimation of thickness and bulk seismic velocity ratio, vP/vS, of continental crust in the
conterminous United States using USArray and other broadband network data. Crustal thickness variations
are reasonably consistent with those found in other studies and show interesting relationships to the history
of North American continental formation. Seismic velocity ratios derived in this study are more robust
than in other analyses and hint at large-scale variations in composition of continental crust. To interpret the
results, we model the pressure-/temperature-dependent thermodynamics of mineral formation for various
crustal chemistries, with and without volatile constituents. Our results suggest that hydration lowers bulk
crustal vP/vS and density and releases heat in the shallow crust but absorbs heat in the lowermost crust
(where plagioclase breaks down to pyroxene and garnet resulting in higher seismic velocity). Hence, vP/vS
variations may provide a useful proxy for hydration state in the crust.

1. Introduction

The formation and evolution of Earth’s continental crust has broad implications for tectonism, dynamics, and
mass transfer processes. Open questions regarding the tectonic, melt and volatile flux processes that form
the crust remain among the outstanding challenges for research in the solid Earth sciences (DePaolo et al.,
2008; Williams et al., 2010). Continental lithosphere is more resistant to subduction than oceanic lithosphere
because of the greater buoyancy (due to greater thickness and lower density) of continental crust, resulting in
a much longer and richer record of Earth history in continental lithosphere than is found in the oceans.

Seismic investigations are an important tool for assessing continental crustal composition and related evolu-
tion and dynamics (Christensen & Mooney, 1995; Hacker et al., 2015; Kern et al., 1996; Miller & Christensen,
1994; Musacchio et al., 1997; Sobolev & Babeyko, 1994), along with sampling of exposed rocks (Hacker et al.,
2015; Rudnick & Fountain, 1995) and xenoliths carried from the middle and lower crust (Mengel et al., 1991;
Weber et al., 2002). The bulk composition of the crust is andesitic with average wt% SiO2 generally decreasing
with depth (Rudnick & Fountain, 1995), reflecting the repeatedmelt fractionation and transport processes that
form typical continental crust (e.g., Solano et al., 2012). Seismic velocity and density of crustal mineral assem-
blages are sensitive to the bulk chemistry but also reflect the metamorphic grade at time of formation (i.e.,
pressure and temperature thermodynamical state) and volatile state (e.g., Guerri et al., 2015; Jones et al., 2015).

The EarthScope Major Research Facilities and Equipment project, funded in 2002 with instrumentation first
installed beginning in 2004, was designed to identify links between surface geology and deep-Earth pro-
cesses. EarthScope’s USArray seismic network, including 400 three-component broadband seismographs
deployed in the Transportable Array (TA) rolling network covering the entire continental United States, serves
as a principal data source for this project. The TA has now completed data collection in the lower 48 United
States and is currently deployed in Alaska. Our imaging of the crust uses seismic receiver functions from
USArray (including the TA) as well as FlexArray and other contributed seismic networks that have been ana-
lyzed for the EarthScope Automated Receiver Survey (EARS) (Crotwell & Owens, 2005; Incorporated Research
Institutions for Seismology Data Management Center (IRIS DMC), 2010).
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Several studies have used EarthScope data to image thickness and velocity properties of continental crust
within the USArray footprint, with most using receiver functions (e.g., Levander & Miller, 2012; Schulte-
Pelkum & Mahan, 2014), ambient noise surface wave tomography (e.g., Lin et al., 2012; Porter et al., 2016),
regional first arrivals (Buehler & Shearer, 2014), or some combination of these (e.g., Afonso et al., 2016;
Schmandt et al., 2015; Shen & Ritzwoller, 2016). Our approach differs slightly from these in that we perform
joint inversion of receiver functions and gravity, coupled with a thermal structure derived from Pn tomogra-
phy (Schutt et al., 2017), to more robustly constrain density variations and seismic velocity ratios vP/vS in the
crust. Lowry and Pérez-Gussinyé (2011), using a similar approach, previously interpreted variations imaged in
bulk crustal vP/vS to primarily reflect variations in abundance of quartz based on petrophysical measurements
compiled by Christensen (1996) (Figure 1). Further noting a strong correlation of low vP/vS to high surface
heat flow and high Cordilleran elevations, they hypothesized a dynamical feedback that began with localiza-
tion of crustal deformation where crust had low ductile strength owing to the presence of quartz and that
lithospheric viscosity was lowered further by advective warming and hydration resulting from the strain.

Water plays an important role in crustal formation by lowering the melting temperature of mantle rocks and
so seems to be a key ingredient in the seeding of thicker crust in ocean island arcs as well as the formation of
more silica-rich continental crust. Water is also an important determinant for ductile rheological strength
(Kohlstedt, 2006) and hence the mobility/stability of continental lithosphere. However, the distributions
and history of hydration state in continental crust and lithosphere are generally enigmatic because of ambi-
guities in separating effects of chemistry, temperature, hydration, and melt in remote sensing by seismic and
electrical imaging, coupled with the extremely sparse in situ sampling by xenoliths (e.g., Jones et al., 2015). In
this paper, we extend an improved inversion based on the approach of Lowry and Pérez-Gussinyé (2011) to
imaging of the entire conterminous United States, and we expand upon earlier interpretations of the signifi-
cance of bulk crustal vP/vS for crustal chemistry and crustal properties bymodeling the pressure, temperature,
chemistry, and hydration state dependence of seismic velocities and density in the crust.

2. Methods

This paper extends an earlier analysis by Lowry and Pérez-Gussinyé (2011) that covered only the western U.S.
data available at that time. The joint inversion of seismic receiver functions, gravity, and spatial statistics used
here to image the USArray footprint (including the conterminous United States and southernmost Canada) is
similar to the methodology described by Lowry and Pérez-Gussinyé (2011). The primary differences are the
addition of newer USArray and other seismic data (Figure 2) and three modifications to the joint inversion
methodology designed to improve performance. First, instead of using EARS parameter space stacks of

Figure 1. The relationship of vP/vS and density to mineral composition (after Lowry & Pérez-Gussinyé, 2011). (a) Rock
density versus vP/vS for various rock types using data from Christensen (1996); the temperature dependence of vP/vS in
anorthite for a 900°C range (cyan curve, after Kono et al., 2008) is comparatively small. The green line shows the
1,600 kg m�3 expected value of ∂ρ/∂κ from regression. (b) Geophysical properties for minerals (from Voigt-Reuss-Hill
averages of anisotropy in Christensen, 1996) demonstrate that vP/vS variation in rocks is dominated by quartz content.
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receiver function amplitudes (Crotwell & Owens, 2005; Zhu & Kanamori, 2000), we built a library of synthetic
receiver functions and stacked cross-correlation coefficients relating synthetic to observed receiver functions
from the EARS database (IRIS DMC, 2010) in the crustal thickness and vP/vS parameter space. Second, we
implemented a stochastic inversion for density parameters associated with crustal thickness, vP/vS, and
thermal contributions to gravity. Finally, we estimated and removed gravity anomalies due to geothermal
variations in the lithosphere using a combination of surface heat flow and Moho temperature estimates
derived from Pn tomography (Schutt et al., 2016, 2017) instead of surface heat flow alone.

2.1. Data

Data for this analysis are from the EarthScope Automated Receiver Survey (EARS) (Crotwell & Owens, 2005;
IRIS DMC, 2010; Trabant et al., 2012), with station locations shown in Figure 1. We used EARS receiver func-
tions only for those seismic events with a radial match for the iterative deconvolution (Ligorría & Ammon,
1999) exceeding 80%.

2.2. Receiver Function Synthetics and Cross-Correlation Stacking

EARS (Crotwell & Owens, 2005) H-κ amplitude stacks were used in the analysis of Lowry and Pérez-Gussinyé
(2011), but here we introduce a new approach to parameter space receiver function analysis. Typical H-κ
stacking approaches to estimating bulk crustal properties (e.g., Zhu & Kanamori, 2000) stack the amplitudes
at arrival times predicted for the PsMoho conversion, the PpPs reverberation, and the PpSs + PsPs reverbera-
tion given a range of assumed crustal thickness and vP/vS. Each of these phase arrivals is weighted equally for
each event in the amplitude stack, but in practice the relative scaling of the receiver function arrival ampli-
tudes depends on the Moho impedance contrast, the ray parameter of the event, and interference from
phases deriving from other impedance contrasts. Hence, we instead compare (via cross correlation) the full
waveform of each receiver function to synthetic receiver functions generated using a synthetic receiver func-
tion code (Ammon, 1991).

A library of synthetic receiver function models was calculated, parameterized by crustal thicknesses ranging
from 20 to 60 with sample mesh 0.25 km, and vP/vS from 1.6 to 2.1 at a 0.025 mesh, for a total of 3,200 models.
Each synthetic model assumes a uniform isotropic crustal layer with P velocity 6.3 km/s. Bulk crustal vP is not
uniform across the U.S., instead ranging from 6.1 to 6.5 km/s based on crustal-scale seismic reflection and

Figure 2. USArray and other seismic stations used in this analysis (stars) on a map of topographic elevation with shaded
relief. All seismic stations in the EARS receiver function database (Crotwell & Owens, 2005; IRIS DMC, 2010; Trabant et al.,
2012) were included in the analysis, including regional networks and some PASSCAL and FLEXArray deployments. Red star
is the location of seismic station TA.N41A used as an example in subsequent figures. Stochastic inversion for density
parameters uses gravity and seismic fields from the entire United States; subgrids used to estimate gravity likelihoods are
exemplified by the red box centered around the star at TA.N41A.
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refraction data (Braile et al., 1989; Pakiser, 1989; Smith et al., 1989).
Building a larger library would be computationally expensive, and
Zhu and Kanamori (2000) note that a 0.1 km/s error in crustal vP
translates to a timing error equivalent to only a 0.5 km error in crustal
thickness. Uppermost mantle velocity varies from 7.7 to 8.4 km/s
(Buehler & Shearer, 2017), but mantle velocity impacts only amplitude
of phases and does not affect arrival time. The cross-correlation
method described here is relatively insensitive to amplitude, so our
synthetics assume a constant 8.0 km/s upper mantle.

The synthetic receiver function modeling approach of Ammon (1991)
specifies a white noise level, C, to prevent numerical singularity of the
deconvolution. We tested values for C ranging from 0.1 to 0.0001 and
settled on 0.0001 as the most robust. The algorithm also specifies a
Gaussian filter width, a. We adopt a = 2.5 s as used by EARS to generate
the observed receiver functions. All observed receiver functions were
resampled to 10 Hz, the sample rate of the synthetic receiver function.

Before cross correlating, the observed and synthetic receiver functions
were aligned to impose coincident timing of the direct P arrival, after
which the direct P arrival in each was masked so that only the later
phase arrivals were included in the cross-correlation calculation
(Figure 3). This is done because the only useful information content
in the P arrival, for our purposes, is the reference time of the receiver
function, and including the P phase degrades the resolving power of
the receiver function correlations (as shown in supporting information

Figure S1). We average the cross correlations for all earthquake events as a function of the crustal thickness
(H) and seismic velocity ratio vP/vS assumed in the synthetic model, analogous to the H-κ parameter space
representation used in amplitude stacking (Zhu & Kanamori, 2000). Like with H-κ stacking, the raw cross-
correlation stacks exhibit several local maxima (Figure 4a). The largest cross-correlation coefficients tend to

Figure 3. Example observed and modeled synthetic receiver functions. (a)
Observed EARS radial receiver functions (gray) for 54 events at site TA.N41A
and the synthetic receiver function that correlated most strongly with the
observed receiver functions (red). The direct P arrival inside the blue rectangle is
not included in cross-correlation calculations. (b) Histogram of the maximum
averaged cross-correlation coefficients found at each of the >3,000 sites in the
study region; the median maximum cross correlation is 0.14.

Figure 4. Example parameter space receiver function analyses at seismic station TA.N41A. (a) Cross correlations of
observed and modeled receiver functions, averaged for 54 earthquake events, as a function of crustal thickness H and
vP/vS assumed in the synthetic model. Local maxima are marked by stars. The global maximum averaged cross correlation
is 0.19 at H = 35 km, vP/vS = 1.93. The local maximum at H = 20 km likely reflects P-to-S conversions at the midcrustal
interface. (b) EARS (Crotwell & Owens, 2005) amplitude stack. Similar to the H-κ amplitude stacking approach (Zhu &
Kanamori, 2000), cross-correlation maxima in Figure 4a are elongate along the vP/vS axis so are more sensitive to crustal
thickness than vP/vS, but secondary maxima of the cross-correlation averages are diminished relative to those of amplitude
stacks and hence less likely to be mistaken for the true model.
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be low, with median maxima around 0.14 (Figure 3). For example, the maximum cross-correlation coefficient
at station TA.N41A is 0.19 at H = 35 km and vP/vS = 1.93 (Figure 4). A secondary local maximum occurs at
H = 45 km and vP/vS = 1.7, and a tertiary maximum occurs at a crustal thickness of 20 km and vP/vS of 1.72.

Averaged cross correlations are low with multiple maxima in part because the real-Earth crust is not a single
uniform layer as our modeling assumes. Converted phases are generated at all impedance contrasts in the
crust and mantle, and both crustal thickness and vP/vS can vary on scales sampled by the conversions and
reverberations from different azimuths of earthquake events at a single site. Cross correlations are signifi-
cantly reduced by differences in the receiver functions for different events with different back azimuths.
For example, we took the receiver function from the largest event recorded at station TA.N41A (an M8.4
event, with the second highest radial match of 98.2%) and compared to all other events using our cross-
correlation approach. The resulting average cross correlation was 0.32. This relatively low correlation of
events is likely some combination of “noise” in the receiver function estimate (loosely characterized in the
EARS receiver functions by radial match of the deconvolution, in which events with match<80% are rejected
(Crotwell & Owens, 2005)) and back azimuth-dependent variations in timing and amplitude related to layer
heterogeneity and anisotropy effects (e.g., Schulte-Pelkum & Mahan, 2014). The additional difference
between a cross correlation of 0.32, representing the maximum theoretically possible for a 1-D, isotropic
Earth model at station TA.N41A, and the 0.19 maximum of our comparison to synthetic models likely relates
to some combination of multiple layering of the real-Earth lithosphere and differences in layer impedance
from that assumed by the synthetic. Regardless, the cross-correlation approach introduced here produces
secondary maxima that are generally much smaller relative to the global maximum than standard H-κ stack-
ing like that used in the joint inversion of Lowry and Pérez-Gussinyé (2011) (Figure 4b).

2.3. Gravity Modeling

The receiver functions observed at a single seismic station are not the only pieces of information that
constrain this problem, as both gravity and the spatial statistics of estimates at neighboring sites afford addi-
tional predictive power. Individual contributions to the total Bouguer gravity anomaly field from crustal thick-
ness H, bulk vP/vS κ, and thermal variations T are scaled by density parameters ΔρMoho for the density contrast
at the Moho, ∂ρ/∂κ for the change in density for given change in vP/vS, and a coefficient of thermal expansion
αv, respectively. Gravity due to crustal thickness variations is modeled as (Lowry & Pérez-Gussinyé, 2011):

eBH ¼ 2πGΔρMoho
eH exp �kH

� �
(1)

in which the overbar indicates the mean of a field, the tilde denotes 2-D Fourier-transformed amplitudes of a
field with the mean removed (e.g., eH ¼ F H x; yð Þ � H

� �
where F{•} denotes the 2-D Fourier transform opera-

tor), G is the universal gravitational constant, and k is the modulus of 2-D wave number associated with each
amplitude. Variations in bulk vP/vS are assumed to be uniformly distributed with depth, and the associated
gravity anomalies are calculated as:

eBκ ¼ 2πG
∂ρ
∂κ

1� exp �kH
� �

k
eK � eM exp �kH

� �� �
(2)

Here eM ¼ F H� H
� �

H� K
� �� �

is a correction factor for mass associated with varying crustal thickness and

vP/vS at the Moho. Finally, gravity anomalies associated with thermal variations are calculated from the
three-dimensional temperature field model described in section 2.7 via:

eBT ¼ ∫
200

0
2πGαvρ zð ÞeT zð Þ exp �kzð Þdz (3)

We derive ρ zð Þ from mean temperatures in the geothermal model combined with expected density for a
mean continental crustal composition (Christensen & Mooney, 1995). Gravity associated with the thermal
boundary layer model is integrated only to a depth of 200 km, beyond which the assumptions of steady state
conduction and constant mantle potential temperature in the thermal modeling (described in a subsequent
section) may no longer be representative of actual temperature variation.

2.4. Stochastic Inversion for Density Parameters

In practice, we do not know the density parameters ΔρMoho, ∂ρ/∂κ, and αv a priori. The green line in Figure 1a,
derived from a weighted regression of the measurements in Christensen (1996), implies ∂ρ/∂κ = 1,600 kg/m3,
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but scatter in the relationship is obviously large. The globally averaged Moho density contrast ΔρMoho

estimated for the Preliminary Preferred Earth Model (Dziewonski & Anderson, 1981) is 480 kg/m3, and
Tenzer et al. (2012) estimated a similar 485 kg/m3 from independent seismic and gravity observations.
However, Martinec (1994) estimated a 280 kg/m3 Moho contrast under the continents, and regional varia-
tions in Pn velocity (e.g., Buehler & Shearer, 2017), coupled with a large possible range of lower crustal
densities for mafic to felsic compositions, imply density contrasts ranging from 160 kg/m3 to 440 kg/m3

(Julià, 2007; Niu & James, 2002).

Instead of assuming density parameters a priori, we estimate them from the relationship of the model
predictions to observed Bouguer gravity over the entire Transportable Array footprint using a stochastic
inversion approach. Lowry and Pérez-Gussinyé (2011) inverted for density parameters from the model
fields using an ordinary least squares approach, but this produces density parameters that are much
lower than those expected based on laboratory and geophysical constraints because the model fields are
cross-correlated, yielding an ill-conditioned matrix. Stochastic inversion stabilizes ill-conditioned problems
analogously to damped least squares but using probabilistic information rather than ad hoc damping.

Stochastic inversion assumes a known expected value, m!� 	
, for the model parameter vector,m!, and a known

parameter covariance matrix, Cm, for the model parameters. We then solve for differences of the true model

parameters from the expected values, Δm!¼ m!� m!� 	
, as Δm!¼ G

¼T
G
¼ þ Cm

¼�1

 ��1

G
¼T

Δ d
!

, in which G

¼ eB!1

H
eB!1

κ
eB!1

T

� �
using amplitudes in equations (1)–(3) with density parameters set to one andΔ d

!¼ eB!obs �

G m!� 	
for observed Bouguer gravity amplitudes eB!obs.

Our analysis uses observed Bouguer gravity anomalies from WGM2012 (Balmino et al., 2011; Bonvalot
et al., 2012). We assign expected values and standard deviations for the density parameters as
hΔρMohoi = 300 ± 60 kg/m3 (Ito & Simons, 2011), h∂ρ/∂κi = 1,600 ± 300 kg/m3 based on the regression of
Christensen (1996) measurements in Lowry and Pérez-Gussinyé (2011), and <αν > = 3.5 × 10�5 ± 3 × 10�6

after Afonso et al. (2005). Some of these density parameters can be expected to covary as well: notably,
the Moho density contrast ΔρMoho is partly a function of the density of the overlying crust, which we parame-
terize as the density derivative with respect to vP/vS and ∂ρ/∂κ. However, a portion of that covariance is

independentlymodeled by the eMcorrection factor in equation (2), soΔρMoho can be conceptualized as a refer-
ence value that should approximate the mean density contrast of the region being modeled. We assume
zero off-diagonal parameter covariances, as we lack laboratory or geophysical measurements suitable to
constrain independently the covariance of (for example) the continental-scale reference value of ΔρMoho with
∂ρ/∂κ. The density parameters are estimated for large-scale grids covering all of the study area (Figure 2) and
are recalculated with each new update to the seismic models of crustal thickness and vP/vS used in the calcu-

lation of gravity models eB!1

H and eB!1

κ , respectively. In later sections we also will examine density parameters
independently calculated for the eastern and western halves of the conterminous U.S.

2.5. Spatial Statistics and Optimal Interpolation

To generate gridded values of crustal thicknessH and seismic velocity ratio κ needed for the gravitymodeling,
wemust interpolate estimates of the seismic properties at irregularly spaced seismic sites to a constant-spaced
grid. For this we use optimal interpolation (OI), also called “kriging,” an interpolationmethod that relies on the
spatial statistics of measured data to estimate the most likely value and uncertainty at an unsampled location
(Davis, 1986). Optimal interpolation uses the variogram statistics of a field, an expression of the expected
value of the difference between measurements as a function of the distance between the measurements.

Variograms of crustal thickness H and vP/vS are estimated directly from the estimates at pairs of individual
seismic stations by binning according to the distance between the stations (Figure 5). Ideally, the variogram
at zero distance reflects the variance of individual measurements, while the variogram at large distances
represents the global variance of the field. A spherical parametric model of the variogram estimates is used
to invert for optimal weights applied to the estimates at sites surrounding an interpolation location, and the
weights plus a Lagrange variable provide an estimate of the variance of the interpolation estimate. In
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addition to affording gridded interpolations of the seismic fields, optimal interpolation expected values and
variance will be used to generate OI likelihood functions at a seismic station location based on the estimates
at nearby sites.

2.6. Joint Inversion With Gravity and OI Likelihood Filters

The joint inversion for crustal thickness and bulk crustal vP/vS is applied iteratively over all of the seismic sta-
tions in the study area (Figure 2). First, a gravity likelihood filter is calculated using a 640 × 640 km window
centered at the station slated for update, Si. The crustal thickness H and vP/vS κ for station Si are treated as
unknown variables, while prior estimates of H and κ at surrounding stations are temporarily held fixed. For
each possible combination of (H, κ)j in the parameter space at station Si, we interpolate (H, κ) at Si and the
surrounding sites to a 20 km spaced grid. The grids are used to model the gravity via equations (1)–(3) using
density parameters derived from stochastic inversion of the larger grid as described in section 2.4. The L2
norm, R, of the difference between observed and modeled gravity is calculated for each assumed (H, κ)j,
and contours of the misfit are used to calculate associated confidence intervals (1� α) via the likelihood ratio
method (Beck & Arnold, 1977):

R2 ≤ R2min 1þ M
Ng�M

F�1
α M;Ng �M
� �
 �

(4)

Here Rmin is the global minimum gravity L2 norm,M is the number of model parameters (i.e., two correspond-
ing to H and κ at the seismic site Si), Ng is the number of gravity observations, F�1 is the inverse of the
F-cumulative distribution function, and α is probability. The likelihood of the model given the data corre-
sponds to the probability density function described by (1 � α) after normalization to yield an integral over
the parameter space equal to one. An example gravity likelihood function for station TA.N41A (without
normalization) is given in Figure 6b.

Optimal interpolation provides estimates of both the expected values (hHi, hκi) and standard deviations
(σH, σκ) of interpolated fields. To create the OI likelihood filter, we interpolate estimates of crustal thickness
and vP/vS at the nearest 150 seismic sites to the location of seismic station Si. The COI confidence interval of
any arbitrary (H, κ)j in the 2-D parameter space (where COI represents a real-valued multiple of normalized σ)
can be calculated via:

C2
OI H; κð Þjð Þ ¼ Hj � Hh i

σH


 �2

þ κj � κh i
σκ


 �2

Figure 5. Root-variograms of (a) crustal thickness and (b) vP/vS corresponding to the root-mean-square difference between
measurements as a function of distance. Red circles are derived from all of the raw measurements after binning by
distance between measurements; blue circles depict a spherical parametric model (approximating the observed distri-
bution) that was used for optimal interpolation.
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which has corresponding probability density function

α ¼ 1
2π

exp �C2
OI

2


 �
:

An example OI likelihood function (without the normalization constant) is shown in Figure 6a.

Finally, both likelihood functions are multiplied by the stacked cross correlations between modeled and
observed receiver functions. This multiplication of probability density functions is thus essentially a
Bayesian approach to inversion. In practice, the normalization constants are neglected, as they affect only
the scaling and not the shape or maxima of the resulting product, which is why likelihoods in Figure 6 are
shownwith amaximum of one. The crustal thickness and vP/vS at station Si are then updated to themaximum
of the likelihood-filtered cross-correlation stack (Figure 6d).

2.7. Thermal Model

As was done in Lowry and Pérez-Gussinyé (2011), we use a geothermal model patterned after Lowry et al.
(2000) to reduce potential bias of mass estimates in the gravity modeling by anticorrelation of the thermal
and crustal thickness fields (e.g., due to coupled crustal thinning and advective warming of the lithosphere
by extensional strain). The earlier analysis used surface heat flow and surface heat production to estimate
geotherms throughout the study region, where in our analysis we use both surface heat flow and an estimate
of Moho temperature derived from Pn velocity tomography and mineral physics (Schutt et al., 2016, 2017) as
our observables. Measurements of spatially varying surface heat production were not used in this model after
analyses showed that aerospectral gamma radiation measurements of (shallow: <1 m) surface heat

Figure 6. Example parameter space likelihoodmaps for joint inversion at seismic station TA.N41A. (a) Optimal interpolation
likelihood, (b) gravity likelihood, (c) the combined likelihood of OI and gravity, and (d) receiver function cross-correlation
stack after likelihood filtering (compare with Figure 4 the raw cross-correlation stack at TA.N41A).
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production yielded no improvement in the agreement of surface heat flow and Pn geotherm models (Berry
et al., 2014). There are large discrepancies between the Moho temperatures predicted by conductive thermal
modeling of surface heat flow and those measured from Pn that cannot be removed by varying thermal para-
meters describing thermal conductivity or radioactive heat production (Berry et al., 2015), so for this analysis
we calculate two 1-D geotherms at eachmap location. One geotherm, Tq(z), parameterized a conductive ther-
mal length scale, lcon, for the diffusive error function based on the surface heat flow; the other, TPn(z), chose
lcon to match the Pn Moho temperature, but both used otherwise identical parameters to describe
temperature-dependent thermal conductivity, depth-dependent distribution of radioactive heat production,
and mantle potential temperature. The final geotherm was a crude linear combination of the two using

T zð Þ ¼ 1� z
H

� 
Tq zð Þ þ z

H

� 
TPn zð Þ

in the crust and T(z) = TPn(z) in the mantle. This effectively forces the final geotherm to be more similar to the
shallow observations in the shallow crust, where transients, topographically driven hydrologic flow, and other
nonsteady state and advective processes are known to perturb heat flow observations (e.g., Ehlers, 2005;
Smith & Chapman, 1983) and more similar to the deep temperature measured at depth. Gravity modeling
of this temperature model was found to significantly reduce gravity residuals in our models relative to
geotherms derived from surface heat flow alone, lending confidence that the model is indeed an improve-
ment. We discuss a possible mechanism for the observed discrepancy between deep and shallow heat trans-
fer observations in section 4.

3. Results

We ran the joint inversion algorithm described in section 2 for more than 10 iterations over all of the >3,000
seismic sites in the study region (Figure 2). The results after multiple iterations significantly reduce the spatial
variance of crustal thickness and vP/vS parameters relative to the estimates derived from raw cross-correlation
stacks, particularly in the case of vP/vS. Measurement standard deviations (i.e., the zero-distance bin of vario-
grams in Figure 5) decreased from 9.7 to 4.0 km for crustal thickness and 0.16 to 0.07 for vP/vS, while global
standard deviations dropped from 11.8 to 8.7 km and 0.17 to 0.08, respectively. The jointly inverted estimates
of crustal thickness are shown draped over topographic relief in Figure 7, and our vP/vS estimates are shown
in Figure 8.

Our estimates of crustal thickness (Figure 7) are qualitatively similar to results of other studies of using differ-
ent methods (e.g., Braile et al., 1989; Prodehl, 1970; Schmandt et al., 2015; Shen & Ritzwoller, 2016). A quanti-
tative comparison to the model of Schmandt et al. (2015), which used common conversion point stacking of
receiver functions in combination with Rayleigh wave modeling of velocity, yields a mean difference of
1.7 km with standard deviation of 4.0 km (which is roughly equal to our method’s measurement uncertainty
in Figure 5). The averaged regional crustal thickness is 38.9 km. The thinnest crust in the western U.S. is asso-
ciated with oceanic-derived accretionary terranes and highly extended lithosphere in rift zones. Thicknesses
less than 30 km occur along the Pacific coastline, in the southern Basin and Range province, in the northern-
most part of the northern Basin and Range, and along the eastern and southern edges of the Columbia
Plateau (which is part of the Siletzia terrane (Schmandt & Humphreys, 2011)). The crust under the Cascade
and Sierra-Nevada mountain ranges and the Snake River plain is slightly thicker, ~35–40 km. The Great
Plains, middle and southern Rocky Mountains, Colorado Plateau, and Wyoming have the thickest
(~45–55 km) crust in the western U.S. One minor difference between our model and other USArray models
(Schmandt et al., 2015; Shen & Ritzwoller, 2016) is that our inversion finds a ~5 km thinner crust along the
southern boundary of the northern Rocky Mountains, isolating the thicker, magmatically inflated Snake
River plain crust to the south (McCurry & Rodgers, 2009) from moderately extended crust in the northern
Rocky Mountains. In the eastern U.S., the thinnest crust (<30 km) is found in the Coastal Plains of the
Mississippi Embayment and where attenuated by Atlantic rifting along the Atlantic coastline, although there
is also surprisingly thin crust (~35 km) straddling the Great Plains/Central Lowlands boundary in the south-
western Superior Province. The crust under the Great Lakes, Illinois Basin, and southern Canada has mostly
intermediate thickness of 37–42 km. The Appalachian Highlands by contrast have crustal thickness up to
50+ km. Of the Precambrian basement provinces, the Yavapai and Granite-Rhyolite provinces have generally
thicker crust than the Mazatzal province.
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Estimates of western U.S. crustal vP/vS have been published previously in Lowry and Pérez-Gussinyé (2011)
using a precursor to this inversion method, Buehler and Shearer (2014) using station terms from Pn/Sn tomo-
graphy, and Steck et al. (2011) from Pg/Sg tomography. The pattern of variations in Figure 8 is (unsurprisingly)
broadly similar to those of Lowry and Pérez-Gussinyé (2011) but with significant differences in the scaling and
some small-scale patterns. Roughly 98% of our vP/vS estimates fall between 1.7 and 1.9, whereas ~15% of the
estimates in Lowry and Pérez-Gussinyé (2011) are over 1.9. We attribute the change to improved character-
ization of the density parameters by the switch to stochastic inversion described in section 2.4. vP/vS is poorly

Figure 7. Map of crustal thickness, draped over shaded topographic relief. The averaged crustal thickness is 38.9 km.
Physiographic province boundaries are shown in red and labeled with black text; white dashed lines with white labels
are Precambrian basement features after Whitmeyer and Karlstrom (2007). AH denotes Appalachian Highlands; B&R: Basin
and Range province; CB: Cheyenne belt; CoPl: Colorado Plateau; CP: Columbia Plateau; GF: Grenville front; GR: Granite-
rhyolite province; IP: Interior Plain; ME: Mississippi embayment; MRM: Middle Rocky Mountains; Mz: Mazatzal; NRM:
Northern Rocky Mountains; RGR: Rio Grande rift; SRP: Snake River plain; SRM: Southern Rocky Mountains; TH: Trans-Hudson
orogeny; Yv: Yavapai.

Figure 8. Map of jointly inverted bulk crustal vP/vS. The averaged vP/vS is 1.79. Physiographic and Precambrian basement
provinces are as in Figure 7.
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constrained by receiver function seismic constraints alone (see, e.g., Figure 4), making the gravity constraint
an important contributor to the final estimate. As a consequence, however, the ∂ρ/∂κ density parameter plays
a pivotal role in “scaling” the pattern of variation of vP/vS. The stochastic inversion approach yields larger den-
sity parameters that are more similar to those one would infer from laboratory measurements (Figure 1),
resulting in a steeper slope for gravity confidence intervals on the (H, κ) parameter space (e.g., Figure 6b)
and a tighter resulting range (and corresponding reduced variance) of vP/vS. Where the models overlap,
the overall pattern of variation of bulk crustal vP/vS is very similar to that of Lowry and Pérez-Gussinyé
(2011) despite the difference in variance, and they differ by only 0.04 ± 0.05 (i.e., within measurement uncer-
tainties). However, the reduced overall variance of this model is encouraging in that the vast majority of esti-
mates fall within the range encompassed by measurements of crustal rocks (Figure 1a). Both Buehler and
Shearer (2014) and Steck et al. (2011) noted some similarities in patterns of their vP/vS estimates to those
of Lowry and Pérez-Gussinyé (2011), but both also noted significant discrepancies, the origins, and signifi-
cance of which are unclear.

The average vP/vS of the study area is 1.79. Low vP/vS (<1.75) is prevalent in the southern Rocky Mountains,
Rio Grande rift, northern Rocky Mountains, and northern Basin and Range provinces. The western half of the
Colorado Plateau has an intermediate vP/vS ~1.8, while the eastern Colorado Plateau is nearer 1.72. The Snake
River plain and oceanic-derived terranes along the Pacific coast have high vP/vS ~1.83–1.88. The northwestern
Basin and Range, central Wyoming, and northeastern Snake River plain have locally much higher vP/vS
than surrounding regions where tomography studies find low shear velocity in the lower crust (Schmandt
et al., 2015; Wagner et al., 2012), suggesting that some high vP/vS may reflect lower crustal melts. vP/vS is
generally high in the northern Great Plains and lower in the southern and eastern Granite Rhyolite provinces
except near strong gravity highs such as those of the southern Oklahoma Aulacogen and the Midcontinent
rift, which have very high vP/vS. The Mississippi Embayment has generally high vP/vS, and high vP/vS pockets
are also observed in the Appalachian Highlands, while eastward from there to the Piedmont vP/vS is
relatively low.

3.1. Model Uncertainty

Uncertainties of the crustal thickness and vP/vS estimates are given in Figures 9 and 10, respectively.
Uncertainties are derived from the optimal interpolation procedure, which in turn uses the variogram spatial
statistics (Figure 5) of themeasurements at individual seismic sites to estimate both the interpolation weights
for the expected value of a field and the estimate uncertainty. The error estimates are not comprehensive in

Figure 9. One sigma uncertainty of crustal thickness. Uncertainty is estimated from optimal interpolation and hence
strongly reflects the variogram statistics (Figure 5) used for interpolation, resulting in uncertainties ~4 km near seismic
sites rising to above 4.8 km at distances beyond 70 km from the nearest station.
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that they neglect potential bias error that may arise from, for example, an incorrect assumption of crustal vP in
generating our synthetic receiver functions. Optimal interpolation variance is given by the sum of the
interpolation weights multiplied by the variogram variance expected for the distance between the
interpolation point and the site associated with that weight, plus a slack variable that results from
requiring interpolation weights to sum to one (e.g., Davis, 1986). The weights are naturally largest for the
nearest sites, so uncertainties in Figures 9 and 10 approximately reflect the variogram estimate (Figure 5)
at the distance corresponding to the nearest seismic site.

3.2. Gravity Models

Estimation of the bulk crustal density and thickness contributions to observed Bouguer gravity is another sig-
nificant result of this analysis. Figure 11 shows the gravity models associated with crustal thickness and vP/vS,
calculated using the final inverted density parameters of ΔρMoho = 244 kg/m3 and ∂ρ/∂(vP/vS) = 1,212 kg/m3.
The density parameter estimates are much larger than those found by Lowry and Pérez-Gussinyé (2011),
which were 115 and 460 kg/m3, respectively. Density parameters found here are much closer to values
expected based on laboratory and geophysical investigations because of the stochastic inversion approach
used in this analysis (section 2.4). The Moho density contrast is nevertheless lower than, for example, the
410 kg/m3 reference value assumed for North America in Mooney and Kaban (2010). Interestingly, the var-
iance of the gravity associated with crustal composition implicit in vP/vS is slightly larger than that associated
with crustal thickness: the root mean square (RMS) of the gravity models is 58.9 mGal from crustal thickness
variation and 60.0 mGal from vP/vS. This suggests that compositional density variations are a very significant
(if not the largest) fraction of the total mass balance and that it must be correctly accounted for in studies of
elevation and lithospheric stress (e.g., Becker et al., 2014).

The residual Bouguer gravity after subtraction of contributions from crustal thickness, bulk compositional
density, and thermal variations is shown in Figure 12. The residual is greatly reduced, with RMS 56 mGal, rela-
tive to the 78mGal RMS of the observed Bouguer gravity and a 112mGal residual associated with the starting
model derived from receiver function cross-correlation stacking. The residual gravity anomalies are likely
dominated by asthenospheric mantle mass variations that our model does not account for (e.g., Becker
et al., 2014, 2015) and sphericity of the Earth, which produces anomalies that differ by up to tens of milligal
from the Cartesian calculations used here on the scale of the conterminous U.S. The largest residuals appear
to be dominated by a systematic pattern of greater asthenospheric mantle buoyancy in the west, resulting in
residual anomalies mostly in the range of �150 to 50 mGal in the western U.S. but in the range �50 to

Figure 10. One sigma uncertainty of vP/vS. Uncertainty is estimated from optimal interpolation and hence strongly reflects
the variogram statistics (Figure 5) used for interpolation, resulting in uncertainties ~0.070 near seismic sites rising to above
0.073 at distances beyond 70 km from the nearest station.
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200 mGal in the east. Schmandt et al. (2015) inferred a ~200 kg/m3 higher ΔρMoho west of �105°E longitude
than in the eastern U.S., based on differences in the slope of crustal thickness versus elevation. We examined
this hypothesis by separately inverting for the density contrast for the two halves and found that gravity is
best fit with a Moho density contrast that is 63 kg/m3 smaller in the east than in the west (Figure 13).
There are other components of our model that might account for our east-west difference not being as
large as that in Schmandt et al. (2015): For example, our crustal vP/vS is noticeably lower on average in the
west than in the east (Figure 8). If a roughly 0.08 mean difference in vP/vS were added to the Moho density
contrast, it would increase the difference in eastern and western ΔρMoho by ~100 kg/m3. On the other
hand, the western U.S. mantle at 60 km depth averages 103°C hotter than in the east in our thermal
model, which would translate to a 12 kg/m3 reduction in the difference in eastern and western ΔρMoho.

Residual anomalies alsomay be amplified bymelts present in the crust. For example, the High Lava Plains and
northwestern Basin and Range exhibit high vP/vS ratio (>1.9) associated with low-observed Bouguer gravity

Figure 11. Modeled Bouguer gravity anomaly associated with (a) crustal thickness and (b) vP/vS. Gravity maps have been
shifted by a datum corresponding to the difference between observed gravity and the (zero mean) models.
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Figure 12. Bouguer gravity. (a) WGM2012 Bouguer gravity anomalies. (b) Modeled gravity anomalies summing the contri-
butions from crustal thickness, crustal composition implicit in vP/vS, and thermal variations. (c) Residual after subtracting
summed model contributions in Figure 12b from measured gravity in Figure 12a.
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where shear wave velocities and electrical conductivity indicate a lower crustal melt fraction as high as 3%
(Meqbel et al., 2014; Wagner et al., 2012). Partial melt raises the vP/vS with no corresponding increase
in crustal density, resulting in a density derivative with opposite sign to the compositional trend that
dominates our estimate of the density derivative. Consequently, the assumed constant density derivative
overestimates the crustal compositional gravity anomaly where melt increases vP/vS.

4. Mineral Physics Modeling

The chemical composition and mineralogical makeup of continental crust has been examined for decades
but remains a significant challenge (Hacker et al., 2015; Rudnick & Fountain, 1995; Rudnick & Gao, 2003).
Sparse (and potentially biased) xenolith sampling of both localities and depth raises questions about how
well the potential variability of deep continental crust is understood. Seismic imaging of the crust clearly
has great potential for illuminating deep crustal variability but is subject to its own limitations and ambigu-
ities (Christensen, 1996; Christensen & Mooney, 1995). However, variations in the seismic velocity ratio vP/vS
of crustal rocks, because of its insensitivity to temperature and comparatively high sensitivity to composition
(and especially quartz content), show some promise as an investigative tool for exploring crustal composi-
tional variation (Christensen, 1996; Lowry & Pérez-Gussinyé, 2011).

To more fully understand the possible implications of vP/vS and associated density variations for deep crustal
composition and mineralogy, we used the thermodynamic model Perple_X (Connolly, 2009). Perple_X’s
thermodynamical modeling of (pressure dependent, temperature dependent, and chemistry dependent)
mineral equations of state calculates the likely assemblage of minerals using a linear programming minimi-
zation of the Gibbs free energy at given entropy and volume. Our modeling assumes crustal chemistries
with weight percentage of components as described in Table 1, assuming three different major element
chemistries corresponding to averages for the upper, middle, and lower crust, based on Rudnick and Gao
(2003). The thermodynamical database is identical to that of Holland and Powell (1998). The mineral solution
(Dale et al., 2000; Holland & Powell, 1996, 1998, 2001, 2003; White et al., 2001) is included in Table S1 of the
supporting information.

Guerri et al. (2015) earlier used Perple_X to examine how hydration state of crustal chemistries influenced
geophysical properties of seismic velocity and density. Although the seismic velocity ratio was not a

Figure 13. Residual Bouguer gravity after estimating the Moho density contrast separately for the eastern and western
United States. Western U.S. gravity anomalies are similar to Figure 12, dominated by negative anomalies in the northern
and middle Rocky Mountains and northern Basin and Range. However, previously large positive anomalies in the eastern
U.S. are greatly reduced, with most less than 100 mGal.
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primary target for their analyses, they did note in passing that
hydration reduces vP/vS. Our modeling is undertaken here to replicate
their result, to examine why vP/vS decreases (e.g., address how
much is related to increased abundance of quartz versus changes to
velocity properties of other minerals), and to more fully understand
how hydration affects other physical properties of the crust
including temperature.

All of our thermodynamical models sampled the crust at 1 km depth
intervals using the weight of the crustal column for pressure and

geotherms derived from our thermal model (section 2.7). In some models, we interpolated smoothly over
depth a changing chemistry based on the layer average chemistries in Table 1; for others we used a constant
midcrustal chemistry in order to more easily distinguish effects of phase boundaries from those of changing
chemistry. Figure 14 shows one example of our modeling in which we used a midcrustal chemistry (i.e., no
change with depth) and modeled the changes that result with and without a 1 wt % water constituent

Table 1
Average Chemistry of Upper, Middle, and Lower Continental Crust From Rudnick
and Gao (2003), Used in Modeling for This Paper

Wt % Na20 MgO Al2O3 SiO2 K2O FeO CaO

Upper crust 3.27 2.48 15.4 66.62 2.8 3.59 5.04
Middle crust 3.39 3.59 15.00 63.5 2.3 5.25 6.02
Lower crust 2.65 7.24 16.9 53.4 0.61 9.59 8.57

Figure 14. Difference in mineralogy and geophysical properties from Perple_X modeling (Connolly, 2009) of a midcrustal
chemistry with and without 1 wt % water (hydratedminus dry). (a) Hydration produces no change in vP/vS of most minerals
except a small decrease in vP/vS of plagioclase, but the aggregate change in vP/vS is large. (b) Changes in density of
individual minerals are also small relative to the aggregate change. (c) The wt % of mineral constituents changes signifi-
cantly, indicating aggregate changes in vP/vS; reflect increased quartz and density is dominated by consumption of garnet
and pyroxene (refer to Figure 1 for properties of these minerals). (d) Temperature change from change of mineral enthalpy,
assuming no change in original entropy.
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included. The thermodynamical modeling predicts that the vP/vS ratio of a dry chemistry increases gradually
with depth from 1.72 to 1.75 (Figure 14a), as the wt % of quartz gradually decreases. Adding a 1 wt % water
constituent significantly reduces plagioclase, orthopyroxene, and microcline in the aggregate while increas-
ing the quartz constituent by up to 10 wt %, resulting in a significant reduction of vP/vS at all depths except
where melt is produced (in this example, below 40 km, but the geotherm used was from the Basin and Range
province where the crust is not that thick). The density is also reduced, but the greatest reduction of density
occurs deep in the crustal column where garnet is consumed by hydration (consistent with the interpretation
of xenoliths from the U.S. Cordillera by Jones et al., 2015).

The model in Figure 14a predicts a bulk crustal vP/vS near 1.75 for a dry crustal column and 1.65 for hydrated.
The average vP/vS ratio from our joint inversion is 1.79, which is more consistent with typical values for crustal
rocks from lab experiments (Christensen, 1996). The lower model vP/vS might reflect some error in the equa-
tions of state relating to the Poisson’s ratio. It is also possible that the chemistry profile from Rudnick and Gao
(2003) adopted in the modeling depicted in Figure 14 is not representative of the mean chemistry of North
American crust or that the equations of state specified in the Perple_X modeling are slightly in error.
Nevertheless, the primary conclusion we draw from the modeling is liable to be true regardless: Hydration
increases the abundance of quartz; consumes pyroxenes, feldspars, and garnets; and consequently reduces
bulk vP/vS and density of the crustal column. Hence, low bulk crustal vP/vS in Figure 8 can be considered indi-
cative of a hydration event at some point during the evolution of the crust.

Another interesting implication of the Perple_X modeling in Figure 14 is that hydration results in a compli-
cated thermal profile for the crust. Above the ~35 km depth where orthopyroxene and plagioclase break
down to form clinopyroxene and garnet, hydration reactions are exothermic and would be expected to raise
crustal temperatures by 10–20°C. Below that phase boundary, however, hydration reactions are endothermic
and would be expected to reduce temperatures by as much as 50°C for 1 wt % water, largely because of the
latent heat of fusion required for melting of garnet that results from the hydration. Hence, hydration of the
entire crustal column would be expected to increase surface heat flow by increasing advective heat transfer
associated with melt and volatile flux, raising temperatures in the shallow crust via reaction thermodynamics,
and simultaneously lowering temperatures in the lower crust and at the Moho where heat is consumed by
melt. A large discrepancy between surface heat flow and Pn-derived Moho temperatures has been observed
under high elevations of the western U.S. Cordillera (Berry et al., 2015), with colder-than-expected Moho
prevalent in regions of the Basin and Range and Rocky Mountains where we observe very low vP/vS.

5. Discussion

Much of what we know about the compositional variation of continental crust is derived from observations of
surface exposures of crystalline basement and sparse xenoliths brought to the surface by volcanism (Hacker
et al., 2015; Rudnick & Fountain, 1995; Weber et al., 2002), and these types of studies suggest that regional
differences in bulk chemistry are small (of order 1%). Many studies have also examined relationships between
mineral composition and seismic velocities (e.g., Christensen & Mooney, 1995; Hacker et al., 2015; Kern et al.,
1996; Miller & Christensen, 1994; Musacchio et al., 1997; Sobolev & Babeyko, 1994), but the temperature and
melt dependence of velocities, plus the wide range of compositions consistent with a given velocity, make
interpretation ambiguous.

The seismic velocity ratio, vP/vS, also is nonunique with respect to composition andmelt, but its relative insen-
sitivity to temperature and high sensitivity to quartz content makes it a potentially valuable tool for investi-
gation of crustal compositional variation (Christensen, 1996; Christensen & Fountain, 1975; Holbrook et al.,
1992; Kern, 1982; Lowry & Pérez-Gussinyé, 2011; Zandt et al., 1995). Guerri et al. (2015) noted that hydration
lowers Poisson’s ratio (and hence vP/vS) based on their results of Perple_X modeling of mineral thermody-
namics similar to that performed here. The thermodynamical modeling of mineralogy described here further
clarifies that hydration increases the abundance of quartz at the expense of pyroxene, feldspar, andmica. This
is also consistent with an observed systematic relationship observed between vP/vS and depth to the subduc-
tion plate interface in Cascadia (Audet & Bürgmann, 2014), which had been interpreted as evidence of
progressive quartz precipitation and mineralization in veins but more likely reflects hydration state of the
overlying crust. Hence, greater quartz abundance evidenced by lower crustal vP/vS may prove a reliable
indicator of hydration history of the crust.
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Viewed from that perspective, Figure 8 can be considered as at least partly reflecting the hydration state of
the crust. This has implications that may extend far beyond just processes of volatile transfer through
the crust. For example, hydration state is one of the primary factors determining rheological strength of rocks
in the ductile flow regime (e.g., Bürgmann & Dresen, 2008; Mackwell, Kohlstedt, & Paterson, 1985). Hydration
also affects density (Figure 14b), most significantly by consuming garnet in lower crustal P-T conditions.

Jones et al. (2015) cited hydration observed in a handful of lower crustal xenoliths as evidence that hydration
and resulting expansion of the lower crust may be responsible for a significant fraction of elevation of the
western United States Cordillera following the Laramide flat slab episode. This interpretation is supported
by the imaging results and modeling described in this paper. Moreover, it raises some interesting possible
implications for the nature of Laramide-style, thick-skin contractional tectonics. The curious nature of such
tectonism, characterized by high-angle thrust faulting at odd and highly variable angles to any presumptive
regional plate-tectonic stress geometry, makes some sense if we recognize that these structures are found
almost exclusively in the vicinity of flat slab style subduction and may actually reflect a response to simulta-
neous weakening and volumetric expansion of lower crustal mineral assemblages by hydration. Such a
hypothesis raises other questions, however, including what volumes of hydrous mass transport are needed
to achieve widespread hydration of a significant fraction of the crust in these regions and how such wide-
spread volatile transport would affect thermal transport through the crust.

The thermodynamical modeling indicates that temperatures are reduced by hydration in the lower crust but
increased in the upper crust (Figure 14d). This is especially intriguing in light of observations that, in regions
of high Cordilleran elevation, Moho temperatures derived from Pn velocities are much lower than one would
anticipate based on conductive thermal modeling of surface heat flow measurements (Berry et al., 2015). If
hydration reaction thermodynamics turns out to be an observable phenomenon, this would provide a poten-
tially useful constraint on the timing of hydration. Much of the low vP/vS observed in Figure 8 is found in
regions where hydration undoubtedly occurred long ago (e.g., in the Appalachian Piedmont to Valley and
Ridge; Interior Plains central lowlands and adjacent to the Midcontinent rift). The timescale for conductive
thermal transport through the lithosphere is roughly 100million years, so observing a thermal signature asso-
ciated with hydration reactions would imply that the hydration event is more recent than that.

6. Conclusions

Receiver function estimates of thickness and seismic velocity ratios, vP/vS, of U.S. continental crust within the
EarthScope footprint are greatly improved by joint inversion with likelihood filters derived from gravity
modeling and spatial statistics. Crustal thickness averaged over the conterminous U.S. is 38.9 km, and aver-
aged vP/vS is 1.79.

Crustal thickness (Figure 7) exhibits many interesting relationships to physiographic and basement provinces,
even in the central and eastern U.S. where these are not forced by active tectonism. Crust is thickest in the
southern Rocky Mountains and Appalachian Highlands, consistent with earlier inferences from seismic refrac-
tion surveys (Braile et al., 1989; Taylor, 1989) as well as with other tomographic and receiver function models
derived from EarthScope data (Schmandt et al., 2015; Shen & Ritzwoller, 2016).

As measured by modeled contributions to the variance of gravity, the largest contributor to mass variation in
the U.S. lithosphere is compositional variation within the crust, followed by variations in crustal thickness and
finally geothermal variations. After subtracting gravity anomalies due to crustal composition, thickness, and
thermal variation from measured Bouguer gravity, most of the residual gravity is likely related to astheno-
spheric mantle density variations (e.g., Becker et al., 2014), although some residual gravity anomalies may
be amplified by the presence of crustal melts. The gravity residual is reduced if we allow for differences in
reference Moho density contrast in the eastern (172 kg/m3) and western (235 kg/m3) United States, similar
to that previously proposed by Schmandt et al. (2015).

Modeling of the thermodynamics of mineral formation suggests that hydration of crustal mineral assem-
blages significantly impacts several geophysical properties that may be observable by geophysical remote
sensing methods. Hydration increases the abundance of quartz (Figure 14c), which reduces the seismic velo-
city ratio in the middle and upper crust (Figures 1 and 14a). Hydration also reduces density in the lower crust
by consuming garnet (Figure 14b), and consequently, water derived from dehydration of the Farallon slab
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during its Laramide phase of flattened geometry (Humphreys et al., 2003) may be partly responsible for post
Laramide elevation of the Intermountain western U.S. (e.g., Jones et al., 2015). Finally, hydration reactions are
exothermic in the upper crust, which would express as enhanced surface heat flow coincident with low crus-
tal vP/vS (as observed by Lowry & Pérez-Gussinyé, 2011). However, hydration is endothermic in the lower crust
where garnets are consumed to form melts, which should cool the Moho and may result in large discrepan-
cies between Pn-derived estimates of Moho temperature and predictions of deep temperature derived from
surface heat flow in regions of high elevation (Berry et al., 2015).
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