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Abstract
With the dramatic growth in the number of application domains that generate probabilistic, noisy
and uncertain data, there has been an increasing interest in designing algorithms for geometric
or combinatorial optimization problems over such data. In this paper, we initiate the study of
constructing ε-kernel coresets for uncertain points. We consider uncertainty in the existential
model where each point’s location is fixed but only occurs with a certain probability, and the
locational model where each point has a probability distribution describing its location. An ε-
kernel coreset approximates the width of a point set in any direction. We consider approximating
the expected width (an ε-exp-kernel), as well as the probability distribution on the width
(an (ε, τ)-quant-kernel) for any direction. We show that there exists a set of O(ε−(d−1)/2)
deterministic points which approximate the expected width under the existential and locational
models, and we provide efficient algorithms for constructing such coresets. We show, however,
it is not always possible to find a subset of the original uncertain points which provides such
an approximation. However, if the existential probability of each point is lower bounded by a
constant, an ε-exp-kernel is still possible. We also provide efficient algorithms for construct
an (ε, τ)-quant-kernel coreset in nearly linear time. Our techniques utilize or connect to
several important notions in probability and geometry, such as Kolmogorov distances, VC uniform
convergence and Tukey depth, and may be useful in other geometric optimization problem in
stochastic settings. Finally, combining with known techniques, we show a few applications to
approximating the extent of uncertain functions, maintaining extent measures for stochastic
moving points and some shape fitting problems under uncertainty.
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1 Introduction

Uncertain Data Models: The wide deployment of sensor monitoring infrastructure and
increasing prevalence of technologies such as data integration and cleaning [15, 18] have
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resulted in an abundance of uncertain, noisy and probabilistic data in many scientific and
application domains. Managing, analyzing, and solving optimization problems over such data
have become an increasingly important issue and have attracted significant attentions from
several research communities including theoretical computer science, databases, machine
learning and wireless networks.

In this paper, we focus on two stochastic models, the existential model and locational
model. Both models have been studied extensively for a variety of geometric or combinatorial
problems, such as closest pairs [34], nearest neighbors [5, 34], minimum spanning trees
[32, 35], convex hulls [6, 24, 49, 52], maxima [3], perfect matchings [32], clustering [16, 26] ,
minimum enclosing balls [43] and range queries [1, 4, 38].
1. Existential uncertainty model: In this model, there is a set P of n points in Rd. Throughout

this paper, we assume that the dimension d is a constant. Each point v ∈ P is associated
with a real number (called existential probability) pv ∈ [0, 1] which indicates that v is
present independently with probability pv.

2. Locational uncertainty model: There are a set P of n points and the existence of each
point is certain. However, the location of each point v ∈ P is a random location in Rd.
We assume the probability distribution is discrete and independent of other points. For a
point v ∈ P and a location s ∈ Rd, we use pv,s to denote the probability that the location
of point v is s. Let S be the set of all possible locations, and let |S| = m be the number
of all such locations.

In the locational uncertainty model, we distinguish the use of the terms “points” and
“locations”; a point refers to the object with uncertain locations and a location refers to a
point (in the usual sense) in Rd. We will use capital letters (e.g., P, S, . . .) to denote sets of
deterministic points and calligraphy letters (P,S, . . .) to denote sets of stochastic points.

Coresets: Given a large dataset P and a class C of queries, a coreset S is a dataset of much
smaller size such that for every query r ∈ C, the answer r(S) for the small dataset S is close
to the answer r(P ) for the original large dataset P . Coresets [46] have become more relevant
in the era of big data as they can drastically reduce the size of a dataset while guaranteeing
that answers for certain queries are provably close. An early notion of a coreset concerns
the directional width problem (in which a coreset is called an ε-kernel) and several other
geometric shape-fitting problems in the seminal paper [7].

We introduce some notations and review the definition of ε-kernel. We assume the
dimension d is a constant. For a set P of deterministic points, the support function f(P, u)
is defined to be f(P, u) = maxp∈P 〈u, p〉 for u ∈ Rd, where 〈., .〉 is the inner product. The
directional width of P in direction u ∈ Rd, denoted by ω(P, u), is defined by ω(P, u) =
f(P, u) + f(P,−u). It is not hard to see that the support function and the directional width
only depend on the convex hull of P . A subset Q ⊆ P is called an ε-kernel of P if for each
direction u ∈ Rd, (1 − ε)ω(P, u) ≤ ω(Q, u) ≤ ω(P, u). For any set of n points, there is an
ε-kernel of size O(ε−(d−1)/2) [7, 8], which can be constructed in O(n+ε−(d−3/2)) time [13, 53].

1.1 Problem Formulations

We focus on constructing ε-kernel coresets when the input data is uncertain. These results
not only provide an understanding of how to compactly represent an approximate convex
hull under uncertainty, but can lead to solutions to a variety of other shape-fitting problems.
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ε-Kernels for expectations. Suppose P is a set of stochastic points (in either the existential
or locational uncertainty model). Define the expected directional width of P in direction u to
be ω(P, u) = EP∼P [ω(P, u)], where P ∼ P means that P is a (random) realization of P.

I Definition 1. For a constant ε > 0, a set S of (deterministic or stochastic) points in Rd is
called an ε-exp-kernel of P, if for all directions u ∈ Rd,

(1− ε)ω(P, u) ≤ ω(S, u) ≤ ω(P, u).

Recall in the deterministic setting, we require that the ε-kernel S be a subset of the
original point set (we call this the subset constraint). It is important to consider the subset
constraint since it can reveal how concisely arbitrary uncertain point sets can be represented
with just a few uncertain points (size depending only on ε). For ε-kernels on deterministic
points, Ω(ε−(d−1)/2) points may be required and can always be found under the subset
constraint [7, 8]. However, in the stochastic setting, we will show this is no longer true. Yet,
coresets without the subset constraint, in fact made of deterministic points, can sometimes
be obtained when no coreset with the subset constraint is possible.

ε-Kernels for probability distributions. Sometimes it is useful to obtain more than just the
expected value (say of the width) on a query; rather one may want (an approximation of) a
representation of the full probability distribution that the query can take.

I Definition 2. For a constant ε, τ > 0, a set S of stochastic points in Rd is called an
(ε, τ)-quant-kernel of P, if for all directions u and all x ≥ 0,

PrP∼P
[
ω(P, u) ≤ (1− ε)x

]
− τ ≤ PrS∼S

[
ω(S, u) ≤ x

]
≤ PrP∼P

[
ω(P, u) ≤ (1 + ε)x

]
+ τ. (1)

In the above definition, we do not require the points in S are independent. So when they
are correlated, we will specify the distribution of S. If all points in P are deterministic and
τ < 0.5, the above definition essentially boils down to requiring (1− ε)ω(P, u) ≤ ω(S, u) ≤
(1 + ε)ω(P, u). Assuming the coordinates of the input points are bounded, an (ε, τ)-quant-
kernel ensures that for any choice of u, the cumulative distribution function of ω(S, u) is
within a distance ε under the Lévy metric, to that of ω(P, u).

ε-Kernels for expected fractional powers. Sometimes, the notion ε-exp-kernel is not
powerful enough for certain shape fitting problems (e.g., the minimum enclosing cylinder
problem and the minimum spherical shell problem) in the stochastic setting. The main
reason is the appearance of the l2-norm in the objective function. So we need to be able to
handle the fractional powers in the objective function. For a set P of points in Rd, the polar
set of P is defined to be P ? = {u ∈ Rd | 〈u, v〉 ≥ 0,∀v ∈ P}. Let r be a positive integer.
Given a set P of points in Rd and u ∈ P ?, we define a function

Tr(P, u) = max
v∈P
〈u, v〉1/r −min

v∈P
〈u, v〉1/r.

We only care about the directions in P? (i.e., the polar of the points in P) for which
Tr(P, u),∀P ∼ P is well defined.

I Definition 3. For a constant ε > 0, a positive integer r, a set S of stochastic points in Rd
is called an (ε, r)-fpow-kernel of P, if for all directions u ∈ P?,

(1− ε)EP∼P [Tr(P, u)] ≤ EP∼S [Tr(P, u)] ≤ (1 + ε)EP∼P [Tr(P, u)].

ESA 2016
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1.2 Our Results
Now, we discuss the main technical results of the paper.

ε-Kernels for expectations. First, we consider ε-exp-kernels under various constraints.
Our first main result is that an ε-exp-kernel of size O(ε−(d−1)/2) exists for both existential
and locational uncertainty models and can be constructed in nearly linear time.

I Theorem 4. P is a set of n uncertain points in Rd (in either locational uncertainty model
or existential uncertainty model). There exists an ε-exp-kernel of size O(ε−(d−1)/2) for P.
For existential uncertainty model (locational uncertainty model resp.), such an ε-exp-kernel
can be constructed in O(ε−(d−1)n logn) time, (O(ε−(d−1)m logm) time resp.), where n is the
number of points and m is the total number of possible locations.

The existential result is a simple Minkowski sum argument. We first show that there
exists a convex polytope M such that for any direction, the directional width of M is exactly
the same as the expected directional width of P (Lemma 10). This immediately implies the
existence of a ε-exp-kernel consisting O(ε−(d−1)/2) deterministic points (using the result in
[7]), but without the subset constraint. The Minkowski sum argument seems to suggest that
the complexity of M is exponential. However, we show that the complexity of M is in fact
polynomial O(n2d−2) and we can construct it explicitly in O(n2d−1 logn) time (Theorem 14).

Although the complexity of M is polynomial, we cannot afford to construct it explicitly
if we are to construct an ε-exp-kernel in nearly linear time. Thus we construct the
ε-exp-kernel without explicitly constructing M . In particular, we show that it is possible
to find the extreme vertex of M in a given direction in nearly linear time, by computing the
gradient of the support function of M . We also provide quadratic-size data structures that
can calculate the exact width ω(P, ·) in logarithmic time under both models in R2.

We also show that under subset constraint (i.e., the ε-exp-kernel is required to be a
subset of the original point set, with the same probability distribution for each chosen point),
there is no ε-exp-kernel of sublinear size (Lemma 15). However, if there is a constant
lower bound β > 0 on the existential probabilities (called β-assumption), we can construct
an ε-exp-kernel of constant size (Theorem 16).

ε-Kernels for probability distributions. Now, we describe our main results for (ε, τ)-quant-
kernels. We first propose a quite simple but general algorithm for constructing (ε, τ)-
quant-kernels, which achieves the following guarantee.

I Theorem 5. An (ε, τ)-quant-kernel of size Õ
(
τ−2ε−3(d−1)/2) can be constructed in

Õ
(
nτ−2ε−(d−1)) time, under both existential and locational uncertainty models.

The algorithm is surprisingly simple. Take a certain number N of i.i.d. realizations,
compute an ε-kernel for each realization, and then associate each ε-kernel with probability
1/N (so the points are not independent). The analysis requires the VC uniform convergence
bound for unions of halfspaces. The details can be found in Section 3.1.

For existential uncertainty model, we can improve the size bound as follows.

I Theorem 6. P is a set of uncertain points in Rd with existential uncertainty. Let
λ =

∑
v∈P(− ln(1− pv)). There exists an (ε, τ)-quant-kernel for P, which consists of a

set of independent uncertain points of cardinality min{Õ(τ−2 max{λ2, λ4}), Õ(ε−(d−1)τ−2)}.
The algorithm for constructing such a coreset runs in Õ(n logO(d) n) time.
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We note that another advantage of the improved construction is that the (ε, τ)-quant-
kernel is a set of independent stochastic points (rather than correlated points as in
Theorem 5). We achieve the improvement by two algorithms. The first algorithm transforms
the Bernoulli distributed variables into Poisson distributed random variables and creates a
probability distribution using the parameters of the Poissons, from which we take a number
of i.i.d. samples as the coreset. Our analysis leverages the additivity of Poisson distributions
and the VC uniform convergence bound (for halfspaces). However, the number of samples
required depends on λ(P), so the first algorithm only works when λ(P) is small. The second
algorithm complements the first one by identifying a convex set K that lies in the convex hull
of P with high probability (K exists when λ(P) is large) and uses a small size deterministic
ε-kernel to approximate K. The points in K = P \K can be approximated using the same
sampling algorithm as in the first algorithm and we can show that λ(K) is small, thus
requiring only a small number of samples. In the appendix (Section 3.2.3), we show such an
(ε, τ)-quant-kernel can be computed in O(n · polylogn) time using an iterative sampling
algorithm. Our technique has some interesting connections to other important geometric
problems (such as the Tukey depth problem) [42], may be interesting in its own right.

ε-Kernels for expected fractional powers. For (ε, r)-fpow-kernels, we provide a linear
time algorithm for constructing an (ε, r)-fpow-kernel of size Õ(ε−(rd−r+2)) in the existential
uncertainty model under the β-assumption. The algorithm is almost the same as the
construction in Section 3.1 except that some parameters are different.

I Theorem 7 (Section 4). An (ε, r)-fpow-kernel of size Õ(ε−(rd−r+2)) can be constructed
in Õ

(
nε−(rd−r+4)/2) time in the existential uncertainty model under the β-assumption.

Applications to Uncertain Function Approximation and Shape Fitting. Finally, we show
that the above results, combined with the duality and linearization arguments [7], can be
used to obtain constant size coresets for the function extent problem in the stochastic setting,
and to maintain extent measures for stochastic moving points.

Using the above results, we also obtain efficient approximation schemes for various shape-
fitting problems in the stochastic setting, such as minimum enclosing ball, minimum spherical
shell, minimum enclosing cylinder and minimum cylindrical shell in different stochastic
settings. We summarize our application results in the following theorems. The details can
be found in Section 5.

I Theorem 8. Suppose P is a set of n independent stochastic points in Rd under either
existential or locational uncertainty model. There are linear time approximation schemes
for the following problems: (1) finding a center point c to minimize E[maxv∈P ‖v − c‖2];
(2) finding a center point c to minimize E[obj(c)] = E[maxv∈P ‖v − c‖2 −minv∈P ‖v − c‖2].
Note that when d = 2 the above two problems correspond to minimizing the expected areas of
the enclosing ball and the enclosing annulus, respectively.

Under β-assumption, we can obtain efficient approximation schemes for the following
shape fitting problems.

I Theorem 9. Suppose P is a set of n independent stochastic points in Rd, each appearing
with probability at least β, for some fixed constant β > 0. There are linear time approximation
schemes for minimizing the expected radius (or width) for the minimum spherical shell,
minimum enclosing cylinder, minimum cylindrical shell problems over P.

ESA 2016
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1.3 Other Related Work
Besides the stochastic models mentioned above, geometric uncertain data has also been
studied in the imprecise model [11, 31, 36, 40, 44, 45, 50]. In this model, each point is
provided with a region where it might be. This originated with the study of imprecision in
data representation [27, 47], and can be used to provide upper and lower bounds on several
geometric constructs such as the diameter, convex hull, and flow on terrains [19, 50].

Convex hulls have been studied for uncertain points: upper and lower bounds are provided
under the imprecise model [20, 41, 44, 50], distributions of circumference and volume are
calculated in the locational model [33, 39], the most likely convex hull is found in the
existential model in R2 and shown NP-hard for Rd for d > 2 and in the locational model [49],
and the probability a query point is inside the convex hull [6, 24, 52]. As far as we know,
the expected complexity of the convex hull under uncertain points has not been studied,
although it has been studied [28] under other random data models.

There is a large body of literature [46] on constructing coresets for various problems,
such as shape fitting [7, 8], shape fitting with outliers [30], clustering [14, 22, 23, 29, 37],
integrals [37], matrix approximation and regression [17, 22] and in different settings, such
as geometric data streaming [8, 13] and privacy setting [21]. Coresets were constructed for
imprecise points [41] to help derive results for approximating convex hulls and a variety of
other shape-fitting problems, but because of the difference in models, these approaches do
not translate to existential or locational models. In the locational model, coresets are created
for range counting queries [1] under the subset constraint, but again these techniques do not
translate because ε-kernel coresets in general cannot be constructed from a density-preserving
subset of the data, as is preserved for the range counting coresets. Also in the locational
model (and directly translating to the existential model) Löffler and Phillips [39] show how
a large set of uncertain points can be approximated with a set of deterministic point sets,
where each certain point set can be an ε-kernel. This can provide approximations similar to
the (ε, τ)-quant-kernel with space O(ε−(d+3)/2 log(1/δ)) with probability at least 1− δ.
However it is not a coreset of the data, and answering width queries requires querying
O(ε−2 log(1/δ)) deterministic point sets.

Recently, Munteanu et al. [43] studied the minimum enclosing ball problem over stochastic
points, and obtained an efficient approximation scheme. Their algorithm and analysis utilize
the results from the deterministic coreset literature [2]. However, they do not directly address
the problem of constructing coresets for stochastic points and it is also unclear how to extend
their technique to other shape fitting problems, such as minimum spherical shells.

Technically, our (ε, τ)-quant-kernel construction bears some similarity to the coreset by
Har-Peled and Wang [30] for handling outliers. From the dual (function extent) perspective,
they want to approximate the distance between two level sets in an arrangement of hyper-
planes, and (the dual of) H in Section 3.2.2 also needs to be (approximately) sandwiched by
two fractional level sets (our hyperplanes have weights). However, we have an important
requirement that the total weight outside (1 + ε)H must be small, which cannot be addressed
by their technique.

2 ε-Kernels for Expectations of Width

We first state our results in this section for the existential uncertainty model. All results can
be extended to the locational uncertainty model, with slightly different bounds (essentially
replacing the number of points n with the number of locations m) or assumptions. We
describe the difference for locational model in the full version.
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For simplicity of exposition, we assume in this section that all points in P are in general
positions and all pvs are strictly between 0 and 1. For any u, v ∈ Rd, we use 〈u, v〉 to denote
the usual inner product

∑d
i=1 uivi. For ease of notation, we write v �u w as a shorthand

notation for 〈u, v〉 > 〈u,w〉. For any u ∈ Rd, the binary relation �u defines a total order of
all vertices in P. (Ties should be broken in an arbitrary but consistent manner.) We call
this order the canonical order of P with respect to u. For any two points u and v, we use
d(u, v) or ‖v − u‖ to denote their Euclidean distance. For any two sets of points, A and B,
the Minkowski sum of A and B is defined as A ⊕ B := {a + b | a ∈ A, b ∈ B}. Recall the
definitions for a set P of deterministic points and a direction u ∈ Rd, the support function
is f(P, u) = maxp∈P 〈u, p〉 and the directional width is ω(P, u) = f(P, u) − f(P,−u). The
support function and the directional width only depend on the convex hull of P .

I Lemma 10. Consider a set P of uncertain points in Rd (in either locational uncertainty
model or existential uncertainty model). There exists a set S of deterministic points in Rd
(which may not be a subset of P) such that ω(u,P) = ω(u, S) for all u ∈ Rd.

Proof. By the definition of the expected directional width of P, we have that ω(P, u) =
EP∼P [ω(P, u)] =

∑
P∼P Pr[P ]

(
f(P, u) + f(P,−u)

)
. Consider the Minkowski sum M =

M(P) :=
∑
P∼P Pr[P ]ConvH(P ), where ConvH(P ) is the convex hull of P (including the

interior). It is well known that the Minkowski sum of a set of convex sets is also convex.
Moreover, it also holds that for all u ∈ Rd (see e.g., [48]) f(M,u) =

∑
P∼P Pr[P ]f(P, u).

Hence, ω(P, u) = ω(M,u) for all u ∈ Rd. J

By the result in [7], for any convex body in Rd, there exists an ε-kernel of size O(ε−(d−1)/2).
Combining with Lemma 10, we can immediately obtain the following corollary.

I Corollary 11. For any ε > 0, there exists an ε-exp-kernel of size O(ε−(d−1)/2).

Recall that in Lemma 10, the Minkowski sum M =
∑
P∼P Pr[P ]ConvH(P ). Since M is

the Minkowski sum of exponential many convex polytopes, so M is also a convex polytope.
At first sight, the complexity of M (i.e., number of vertices) could be exponential. However,
as we will show shortly, the complexity of M is in fact polynomial.

We need some notations first. For each pair (r, w) of points in P consider the hyperplane
Hr,w that passes through the origin and is orthogonal to the line connecting r and w. We call
these

(
n
2
)
hyperplanes the separating hyperplanes induced by P and use Γ to denote the set.

Each such hyperplane divides Rd into 2 halfspaces. For all vectors u ∈ Rd in each halfspace,
the order of 〈r, u〉 and 〈w, u〉 is the same (i.e., we have r �u w in one halfspace and w �u r
in the other). Those hyperplanes in Γ pass through the origin and thus partition Rd into
d-dimensional polyhedral cones. We denote this arrangement as A(Γ).

Consider an arbitrary cone C ∈ A(Γ). Let intC denote the interior of C. We can see
that for all vectors u ∈ intC, the canonical order of P with respect to u is the same (since
all vector u ∈ intC lie in the same set of halfspaces). We use |M | to denote the complexity
of M , i.e., the number of vertices in ConvH(M).

I Lemma 12. Assuming the existential model and pv ∈ (0, 1) for all v ∈ P, the complexity
of M is the same as the cardinality of A(Γ), i.e., |M | = |A(Γ)|. Moreover, each cone
C ∈ A(Γ) corresponds to exactly one vertex v of ConvH(M) in the following sense: the
gradient ∇f(M,u) = v for all u ∈ intC (note that here v should be understood as a vector).

Proof. (sketch) We have shown that M is a convex polytope. We first note that the support
function uniquely defines a convex body (see e.g., [48]). We need the following well known

ESA 2016
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uθ1

uθ2

uθ3

uθ4

uθ5

o

M

v1

v2

v3

v4

v5

C1
C2

C3
C4

C5

Figure 1 The figure depicts a pentagon M in R2 to illustrate some intuitive facts in convex
geometry. (1) The plane can be divided into 5 cones C1, . . . , C5, by 5 angles θ1, . . . , θ5. uθi is the
unit vector corresponding to angle θi. Each cone Ci corresponds to a vertex vi and for any direction
u ∈ Ci, f(M,u) = 〈u, vi〉 and the vector ∇f(M,u) is vi. (2) Each direction θi is perpendicular to
an edge of M . M = ∩5

i=1Hi where Hi is the supporting halfplane with normal vector uθi .

fact in convex geometry (see e.g., [25]): For any convex polytope M , Rd can be divided into
exactly |M | polyhedral cones (of dimension d, ignoring the boundaries), such that each such
cone Cv corresponds to a vertex v of M , and for each vector u ∈ Cv, it holds f(M,u) = 〈u, v〉
(i.e., the maximum of f(M,u) = maxv′∈M 〈u, v′〉 is achieved by v for all u ∈ Cv)1. See
Figure 1 for an example in R2. Hence, for each u ∈ intCv the gradient of of the support
function (as a function of u) is exactly v:

∇f(M,u) =
{∂f(M,u)

∂uj

}
j∈[d]

=
{∂〈u, v〉

∂uj

}
j∈[d]

=
{∂∑j∈[d] vjuj

∂uj

}
j∈[d]

= v, (2)

where uj is the jth coordinate of u. With a bit abuse of notation, we denote the set of cones
defined above by A(M).

Now, consider a cone C ∈ A(Γ). We show that for all u ∈ intC, ∇f(M,u) is a
distinct constant vector independent of u. In fact, we know that f(M,u) = f(P, u) =∑
v∈P PrR(v, u)〈v, u〉, where PrR(v, u) =

∏
v′�uv

(1− pv′)pv. For all u ∈ intC, the PrR(v, u)
value is the same since the value only depends on the canonical order with respect to u,
which is the same for all u ∈ C. Hence, we can get that for all u ∈ intC, ∇f(M,u) =∑

v∈P PrR(v, u)v, which is a constant independent of u. We can also show that the gradient
∇f(M,u) must be different for two adjacent cones C1, C2 (separated by some hyperplane
in Γ) in A(Γ). So ∇f(M,u) is piecewise constant, with a distinct constant in each cone in
A(M). The same also holds for A(Γ). This is only possible if A(Γ) (thinking as a partition
of Rd) partitions Rd exactly the same way as A(M) does. Hence, we have A(Γ) = A(M)
and the lemma follows immediately. J

Since O(n2) hyperplanes passing through the origin can divide Rd into at most O(
(
n2

d−1
)
)

d-dimensional polyhedral cones (see e.g., [9]), we immediately obtain the following corollary.

I Corollary 13. It holds that |M | ≤ O(
(
n2

d−1
)
) = O(n2d−2).

1 The support function for a polytope is just the upper envelope of a finite set of linear functions, thus a
piecewise linear function, and the domain of each piece is a polyhedral cone.
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I Theorem 14. In Rd for constant d, the polytope M which defines f(P, u) for any direction
u can be described with O(n2d−2) vertices in Rd, and can be computed in O(n2d−1 logn) time.
In R2, the runtime can be improved to O(n2 logn).

In fact, we can reduce the construction time to nearly linear time, which leads to
Theorem 4. The details can be found in the full version.

2.1 ε-exp-kernel Under the Subset Constraint
First, we show that under the subset constraint (i.e., the ε-exp-kernel is required to be a
subset of the original point set, with the same probability distribution for each chosen point),
there exists no ε-exp-kernel with small size in general.

I Lemma 15. For some constant ε > 0, there exist a set P of stochastic points such that no
o(n) size ε-exp-kernel exists for P under the subset constraint (for both locational model
and existential model).

In light of the above negative result, we make the following β-assumption: we assume
each possible location realizes a point with probability at least β, for a constant β > 0.

I Theorem 16. Under the β-assumption, in the existential uncertainty model, there is an
ε-exp-kernel in Rd of size O(β−(d−1)ε−(d−1)/2 log(1/ε)) that satisfies the subset constraint.

3 ε-Kernels for Probability Distributions of Width

Recall S is an (ε, τ)-quant-kernel if for all x ≥ 0, PrP∼P
[
ω(P, u) ≤ (1 − ε)x

]
− τ ≤

PrP∼S
[
ω(S, u) ≤ x

]
≤ PrP∼P

[
ω(P, u) ≤ (1 + ε)x

]
+ τ. For ease of notation, we some-

times write Pr
[
ω(P, u) ≤ t

]
to denote PrP∼P

[
ω(P, u) ≤ t

]
, and abbreviate the above as

Pr
[
ω(S, u) ≤ x

]
∈ Pr

[
ω(P, u) ≤ (1 ± ε)x

]
± τ. We first provide a simple linear time al-

gorithm for constructing an (ε, τ)-quant-kernel for both existential and locational models,
in Section 3.1. The points in the constructed kernel are not independent. Then, for existen-
tial models, we provide a nearly linear time (ε, τ)-quant-kernel construction where all
stochastic points in the kernel are independent in Section 3.2.

3.1 A Simple (ε, τ )-quant-kernel Construction
In this section, we show a linear time algorithm for constructing an (ε, τ)-quant-kernel
for any stochastic model if we can sample a realization from the model in linear time (which
is true for both locational and existential uncertainty models).

Algorithm: Let N = O
(
τ−2ε−(d−1) log(1/ε)

)
. We sample N independent realizations from

the stochastic model. Let Hi be the convex hull of the present points in the ith realization.
For Hi, we use the algorithm in [7] to find a deterministic ε-kernel Ei of size O(ε−(d−1)/2).
Our (ε, τ)-quant-kernel S is the following simple stochastic model: with probability
1/N , all points in Ei are present. Hence, S consists of O

(
τ−2ε−3(d−1)/2 log(1/ε)

)
points

(two such points either co-exist or are mutually exclusive). Hence, for any direction u,
Pr[ω(S, u) ≤ t] = 1

N

∑N
i=1 I(ω(Ei, u) ≤ t), where I(·) is the indicator function.

For a realization P ∼ P, we use E(P ) to denote the deterministic ε-kernel for P . So,
E(P ) is a random set of points, and we can think of E1, . . . , EN as samples from the random
set. We first show that S is an (ε, τ)-quant-kernel for E(P ).
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I Lemma 17. Let N = O(τ−2ε−(d−1) log(1/ε)). For any t ≥ 0 and any direction u,

Pr[ω(S, u) ≤ t] ∈ PrP∼P [ω(E(P ), u) ≤ t]± τ.

Proof (Sketch). Let L = O(ε−(d−1)/2). We first build a mapping g that maps each real-
ization E(P ) to a point in RdL, as follows: Consider a realization P of P. Suppose
E(P ) = {(x1

1, . . . , x
1
d), . . . , (xL1 , . . . , xLd )} (if |E(P )| < L, we pad it with (0, . . . , 0)). We

let g(E(P )) = (x1
1, . . . , x

1
d, . . . , x

L
1 , . . . , x

L
d ) ∈ RdL. For any t ≥ 0 and any direction u ∈ Rd,

note that ω(E(P ), u) ≥ t holds if and only if there exists some 1 ≤ i, j ≤ |E(P )|, i 6= j satisfies
that

∑d
k=1(xik − x

j
k)uk ≥ t, which is equivalent to saying that point g(E(P )) is in the union

of the those O(|E(P )|2) halfspaces. We can show that the VC dimension of the union of
O(|E(P )|2) such halfspaces is bounded by O(ε−(d−1) log(1/ε)). Then, the lemma follows
from the VC uniform convergence theorem [51, 10]. J

From the above lemma, it is not difficult to obtain Theorem 5.

3.2 Improved (ε, τ )-quant-kernel for Existential Models
In this section, we show an (ε, τ)-quant-kernel S can be constructed in nearly linear time
for the existential model, and all points in S are independent of each other. The size bound
Õ(τ−2ε−(d−1)) (see Theorem 6) is better than that in Theorem 5 for the general case, and
the independence property may be useful in certain applications. Moreover, some of the
insights developed in this section may be of independent interest (e.g., the connection to
Tukey depth). Due to the independence requirement, the construction is somewhat more
involved. For ease of the description, we assume the Euclidean plane first. All results can be
easily extended to Rd. We also assume that all probability values are strictly between 0 and
1 and 0 < ε, τ ≤ 1/2 is a fixed constant.

Let λ(P) =
∑
v∈P(− ln(1− pv)). In the following, we present two algorithms. The first

algorithm works for any λ(P) and produces an (ε, τ)-quant-kernel S whose size depends on
λ(P). In Section 3.2.2, we present the second algorithm that only works for λ(P) ≥ 3 ln(2/τ)
but produces an (ε, τ)-quant-kernel S with a constant size (the constant only depends
on ε, τ and δ). Thus, we can get a constant size (ε, τ)-quant-kernel by running the first
algorithm when λ(P) ≤ 3 ln(2/τ) and running the second algorithm otherwise.

3.2.1 Algorithm 1: For Any λ(P)
In this section, we present the first algorithm which works for any λ(P). We can think
of each point v associated with a Bernoulli random variable Xv that takes value 1 with
probability pv and 0 otherwise. Now, we replace the Bernoulli random variable Xv by a
Poisson distributed random variable X̃v with parameter λv = − ln(1 − pv) (denoted by
Pois(λv)), i.e., Pr[X̃v = k] = 1

k! λ
k
v e
−λv , for k = 0, 1, 2, . . . . Here, X̃v = k means that there

are k realized points located at the position of v. We call the new instance the Poissonized
instance corresponding to P. We can check that Pr[X̃v = 0] = e−λv = 1− pv = Pr[Xv = 0].
Also note that co-locating points does not affect any directional width, so the Poissonized
instance is essentially equivalent to the original instance for our problem.

The construction of the (ε, τ)-quant-kernel S is as follows: Let A be the probability
measure over all points in P defined by A({v}) = λv/λ for every v ∈ P, where λ := λ(P) =∑
v∈P λv. Let τ1 be a small positive constant to be fixed later. We take N = Õ(τ−2

1 )
independent samples from A (we allow more than one point to be co-located at the same
position), and let B be the empirical measure, i.e., each sample point having probability
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1/N . The coreset S consists of the N sample points in B, each with the same existential
probability 1− exp (−λ/N).

I Theorem 18. Let τ1 = O( τ
max{λ,λ2} ) and N = O( 1

τ2
1

log 1
δ ) = O( max{λ2,λ4}

τ2 log 1
δ ). With

probability at least 1− δ, for any t ≥ 0 and any direction u, we have that Pr
[
ω(S, u) ≤ t

]
∈

Pr
[
ω(P, u) ≤ t

]
± τ.

3.2.2 Algorithm 2: For λ(P) > 3 ln(2/τ )
In the second algorithm, we assume that λ(P) =

∑
v∈P λv > 3 ln(2/τ). When λ(P) is large,

we cannot directly use the sampling technique in the previous section since it requires a large
number of samples. However, the condition λ(P) ≥ 3 ln(2/τ) implies there is a nonempty
convex region K inside the convex hull of P with high probability. Moreover, we can show
the sum of λv values in K = R2 \ K is small. Hence, we can use the sampling technique just
for K and use the deterministic ε-kernel construction for K.

Again consider the Poissonized instance of P. Imagine the following process. Fix a
direction u. We move a sweep line `u orthogonal to u, along the direction u, to sweep through
the points in P . We use Hu to denote the halfplane defined by `u (with normal vector u) and
Hu denote its complement. So P(Hu) = P ∩Hu is the set of points that have been swept so
far. We stop the movement of `u at the first point such that

∑
v∈Hu

λv ≥ ln(2/τ) (ties should
be broken in an arbitrary but consistent manner). One important property about Hu is
that Pr[Hu |= 0] ≤ τ/2. We repeat the above process for all directions u and let H = ∩uHu.
Since λ(P) > 3 ln(2/τ), by Helly’s theorem, H is nonempty. A careful examination of the
above process reveals that H is in fact a convex polytope and each edge of the polytope is
defined by two points in P.

The construction of the (ε, τ)-quant-kernel S is as follows. First, we use the algorithm
in [7] to find a deterministic ε-kernel EH of size O(ε−1/2) for H. One useful property of
the algorithm in [7] is that EH is a subset of the vertices of H. Hence the convex polytope
ConvH(EH) is contained in H. Since EH is an ε-kernel, (1 + ε)ConvH(EH)) (properly shifted)
contains H. Let K = (1 + ε)ConvH(EH) and K = P \ K. See Figure 2.

Now, we apply the random sampling construction over K. More specifically, let λ :=
λ(K) =

∑
v∈K∩P λv. Let A be the probability measure over P ∩K defined by A({v}) = λv/λ

for every v ∈ P ∩ K. Let τ1 = O(τ/λ). We take N = O(τ−2
1 log(1/δ)) independent samples

from A and let B be the empirical distribution with each sample point having probability 1/N .
The (ε, τ)-quant-kernel S consists of the N points in B, each with the same existential
probability 1− exp (−λ/N), as well as all vertices of K, each with probability 1.

I Theorem 19. Let λ = λ(K) and τ1 = O(τ/λ), and N = O
(

1
τ2

1
log 1

δ

)
= O

(
ln2 1/τ
ετ2 log 1

δ

)
.

With probability at least 1− δ, for any t ≥ 0 and any direction u, we have that

Pr
[
ω(S, u) ≤ t

]
∈ Pr

[
ω(P, u) ≤ (1± ε)t

]
± τ. (3)

In summary, we obtain Theorem 6 combining Theorem 18 and Theorem 19.

4 (ε, r)-fpow-kernel Under the β-Assumption

We now show an (ε, r)-fpow-kernel exists in the existential uncertainty model under the
β-assumption. Recall that the function Tr(P, u) = maxv∈P 〈u, v〉1/r −minv∈P 〈u, v〉1/r. For
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EH

H
K = (1 + ε)EH

`′L `L `R `′R

dL dR

EH ⊆ H ⊆ K

v1 v2
v

v′
v′′

H(v1, v2) ⊆ H(v, v′) ∪H(v, v′′)K

H(v, v′)
H(v, v′′)

H(v1, v2)

Figure 2 Construction of (ε, τ)-quant-kernel S. The dashed polygon is H. The inner solid
polygon is ConvH(EH) and the outer one is K = (1 + ε)ConvH(EH). K is the set of points outside K.

ease of notation, we write E[Tr(P, u)] to denote EP∼P [Tr(P, u)]. Our goal is to find a set S
of stochastic points so for all directions u ∈ P?, that E[Tr(S, u)] ∈ (1± ε)E[Tr(P, u)].

Our construction of S is almost the same as that in Section 3.1. Suppose we sample N
(fixed later) independent realizations and take the ε0-kernel for each of them. Suppose they
are {E1, . . . , EN} and we associate each a probability 1/N . We denote the resulting (ε, r)-
fpow-kernel by S. Hence, for any direction u ∈ P?, E[Tr(S, u)] = 1

N

∑N
i=1 Tr(Ei, u) and

we use this value as the estimation of E[Tr(P, u)]. Our result is summarized by Theorem 7.

5 Applications

In this section, we show that our coreset results for the directional width problem readily
imply several coreset results for other stochastic problems, just as in the deterministic setting.
We introduce these stochastic problems and briefly summarize our results below.

5.1 Approximating the Extent of Uncertain Functions
We first consider the problem of approximating the extent of a set H of uncertain functions.
As before, we consider both the existential model and the locational model of uncertain
functions.
1. In the existential model, each uncertain function h is a function in Rd associated with a

existential probability pf , which indicates the probability that h presents in a random
realization.

2. In the locational model, each uncertain function h is associated with a finite set {h1, h2, . . .}
of deterministic functions in Rd. Each hi is associated with a probability value p(hi),
such that

∑
i p(hi) = 1. In a random realization, h is independently realized to some hi,

with probability p(hi).
We use H to denote the random instance, that is a random set of functions. We use h ∈ H
to denote the event that the deterministic function h is present in the instance. For each
point x ∈ Rd, we let the random variable EH(x) = maxh∈H h(x) − minh∈H h(x) be the
extent of H at point x. Suppose S is another set of uncertain functions. We say S is the
ε-exp-kernel for H if (1 − ε)EH(x) ≤ ES(x) ≤ EH(x) for any x ∈ Rd. We say S is the
(ε, τ)-quant-kernel for H if PrS∼S

[
ES(x) ≤ t

]
∈ PrH∼H

[
EH(x) ≤ (1± ε)t

]
± φ. for any

t ≥ 0 and any x ∈ Rd.
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Let us first focus on linear functions in Rd. Using the duality transformation that maps
linear function y = a1x1 + . . . + adxd + ad+1 to the point (a1, . . . , ad+1) ∈ Rd+1, we can
reduce the extent problem to the directional width problem in Rd+1. Let H be a set of
uncertain linear functions (under either existential or locational model) in Rd for constant d.
From Theorem 14 and Corollary 11, we can construct a set S of O(n2d) deterministic linear
functions in Rd, such that ES(x) = E[EH(x)] for any x ∈ Rd. Moreover, for any ε > 0, there
exists an ε-exp-kernel of size O(ε−d/2) and an (ε, τ)-quant-kernel of size Õ(τ−2ε−d).
Using the standard linearization technique [7], we can obtain the following generalization for
uncertain polynomials.

I Theorem 20. Let H be a family of uncertain polynomials in Rd (under either existential
or locational model) that admits linearization of dimension k. We can construct a set M of
O(n2k) deterministic polynomials, such that EM (x) = E[EH(x)] for any x ∈ Rd. Moreover,
for any ε > 0, there exists an ε-exp-kernel of size O(ε−k/2) and an (ε, τ)-quant-kernel
of size min{Õ(τ−2 max{λ2, λ4}), Õ(ε−kτ−2)}. Here λ =

∑
h∈H(− ln(1− ph)).

Now, we consider functions of the form u(x) = p(x)1/r where p(x) is a polynomial and r
is a positive integer. We call such a function a fractional polynomial. We still use H to denote
the random set of fractional polynomials. Let H? ⊆ Rd be the set of points such that for any
points x ∈ H? and any function u ∈ H, we have u(x) ≥ 0. For each point x ∈ H?, we let the
random variable Er,H(x) = maxh∈H h(x)1/r−minh∈H h(x)1/r. We say another random set S
of functions is the (ε, r)-fpow-kernel for H if (1− ε)Er,H(x) ≤ Er,S(x) ≤ Er,H(x) for any
x ∈ H?. By the duality transformation and Theorem 7, we can obtain the following result.

I Theorem 21. Let H be a family of uncertain fractional polynomials in Rd in the existential
uncertainty model under the β-assumption. Further assume that each polynomial admits a
linearization of dimension k. For any ε > 0, there exists an (ε, r)-fpow-kernel of size
Õ(ε−(rk−r+2)). Furthermore, the (ε, r)-fpow-kernel consists of N = O

(
ε−(rk−r+4)/2) sets,

each occurring with probability 1/N and containing O
(
ε−r(k−1)/2) deterministic fractional

polynomials.

5.2 Stochastic Moving Points

We can extend our stochastic models to moving points. In the existential model, each point
v is present with probability pv and follows a trajectory v(t) in Rd when present (v(t) is the
position of v at time t). In the locational model, each point v is associated with a distribution
of trajectories (the support size is finite) and the actual trajectory of v is a random sample
for the distribution. Such uncertain trajectory models have been used in several applications
in spatial databases [54]. For ease of exposition, we assume the existential model in the
following. Suppose each trajectory is a polynomial of t with degree at most r. For each
point v, any direction u and time t, define the polynomial fv(u, t) = 〈v(t), u〉 and let H
include fv with probability pv. For a set P of points, the directional width at time t is
EH(u, t) = maxv∈P fv(u, t) − minv∈P fv(u, t). Each polynomial fv admits a linearization
of dimension k = (r + 1)d − 1. Using Theorem 20, we can see that there is a set M of
O(n2k) deterministic moving points, such that the directional width of M in any direction
u is the same as the expected directional width of P in direction u. Moreover, for any
ε > 0, there exists an ε-exp-kernel (which consists of only deterministic moving points) of
size O(ε−(k−1)/2) and an (ε, τ)-quant-kernel (which consists of both deterministic and
stochastic moving points) of size Õ(ε−kτ−2).
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5.3 Shape Fitting Problems
Theorem 20 can be also applied to some stochastic variants of certain shape fitting problems.
We first consider the following variant of the minimum enclosing ball problem over stochastic
points. We are given a set P of stochastic points (under either existential or locational model),
find the center point c such that E[maxv∈P ‖v − c‖2] is minimized. It is not hard to see that
the problem is equivalent to minimizing the expected area of the enclosing ball in R2. For ease
of exposition, we assume the existential model where v is present with probability pv. For each
point v ∈ P , define the polynomial hv(x) = ‖x‖2−2〈x, v〉+‖v‖2, which admits a linearization
of dimension d+ 1 [7]. Let H be the family of uncertain polynomials {hv}v∈P (hv exists with
probability pv). We can see that for any x ∈ Rd, maxv∈P ‖x− v‖2 = maxhv∈H hv(x). Using
Theorem 20, we can see that there is a setM of O(n2d+2) deterministic polynomials such that
maxh∈M h(x) = E[maxv∈P ‖x−v‖2] for any x ∈ Rd and a set S of O(ε−(d+1)/2) deterministic
polynomials such that (1− ε)E[maxv∈P ‖x− v‖2] ≤ maxh∈S h(x) ≤ E[maxv∈P ‖x− v‖2] for
any x ∈ Rd. We can store the set S instead of the original point set in order to answer the
following queries: given a point v, return the expected length of the furthest point from v.
The problem of finding the optimal center c can be also carried out over S, which can be
done in O(ε−O(d2)) time: We can decompose the arrangement of n semialgebraic surfaces
in Rd into O(nO(d+k)) cells of constant description complexity, where k is the linearization
dimension (see e.g., [9]). By enumerating all those cells in the arrangement of S, we know
which polynomials lie in the upper envelopes, and we can compute the minimum value in
each such cell in constant time when d is constant.

The above argument can also be applied to the following variant of the spherical shell
for stochastic points. We are given a set P of stochastic points (under either existential
or locational model). Our objective is to find the center point c such that E[obj(c)] =
E[maxv∈P ‖v− c‖2−minv∈P ‖v− c‖2] is minimized. The problem is equivalent to minimizing
the expected area of the enclosing annulus in R2. The objective can be represented as a
polynomial of linearization dimension k = d+ 1. Proceeding as for the enclosing balls, we can
show there is a set S of O(ε−(k−1)/2) deterministic polynomials such that (1− ε)E[obj(c)] ≤
ES(x) ≤ E[obj(c)] for any x ∈ Rd. We summarize our results by Theorem 8. We would like
to make a few remarks here.
1. We take the minimum enclosing ball for example. If we examine the construction of set

S, each polynomial h ∈ S may not be of the form h(x) = ‖x‖2 − 2〈x, v〉+ ‖v‖2, therefore
does not translate back to a minimum enclosing ball problem over deterministic points.

2. Another natural objective function for the minimum enclosing ball and the spherical
shell problem would be the expected radius E[maxv∈P d(v, c)] and the expected shell
width E[maxv∈P d(v, c)−minv∈P d(v, c)]. However, due to the fractional powers (square
roots) in the objectives, simply using an ε-exp-kernel does not work. This is unlike the
deterministic setting. 2 We leave the problem of finding small coresets for the spherical
shell problem as an interesting open problem. However, under the β-assumption, we can
use (ε, r)-fpow-kernels to handle such fractional powers, as in the next subsection.

5.4 Shape Fitting Problems (Under the β-assumption)
In this subsection, we consider several shape fitting problems in the existential model under
the β-assumption. We show how to use Theorem 21 to obtain linear time approximation
schemes for those problems.

2 In particular, there is no stochastic analogue of Lemma 4.6 in [7].
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1. (Minimum spherical shell) We first consider the minimum spherical shell problem. Given
a set P of stochastic points (under the β-assumption), our goal is to find the center point
c such that E[maxv∈P ‖v − c‖ −minv∈P ‖v − c‖] is minimized. For each point v ∈ P , let
hv(x) = ‖x‖2 − 2〈x, v〉 + ‖v‖2, which admits a linearization of dimension d + 1. It is
not hard to see that E[maxv∈P ‖v − c‖] = E[maxv∈P

√
hv(c)] and E[minv∈P ‖v − c‖] =

E[minv∈P
√
hv(c)]. Using Theorem 21, we can see that there are N = Õ

(
ε−(d+3)) sets

Si, each containing O
(
ε−(d+1)) fractional polynomial

√
hvs such that for all x ∈ Rd,

1
N

∑
i∈[N ]

(max
Si

√
hv(x)−min

Si

√
hv(x)) ∈ (1± ε)(E[max

v∈P
‖v − x‖]− E[min

v∈P
‖v − x‖]).

(4)

Note that our (ε, r)-fpow-kernel satisfies the subset constraint. Hence, each function√
hv corresponds to an original point in P. So, we can store N point sets Pi ⊆ P, with
|Pi| = O

(
ε−d
)
as the coreset for the original point set. By (4), an optimal solution for

the coreset is an (1 + ε)-approximation for the original problem.
Now, we briefly sketch how to compute the optimal solution for the coreset. Consider all
points in ∪iPi. Consider the arrangement of O

(
ε−O(d)) hyperplanes, each bisecting a pair

of points in ∪iPi. For each cell C of the arrangement, for any point v ∈ C, the ordering
of all points in ∪iPi is fixed. We then enumerate all those cells in the arrangement and
try to find the optimal center in each cell. Fix a cell C. For any point set Pi, we know
which point is the furthest one and which point is the closest one from points in C0. Say
they are vi = arg maxv∈Pi

‖v− x‖ and v′i = arg minv∈Pi
‖v− x‖. Hence, our problem can

be formulated as the following optimization problem:

min
x

1
N

∑
i

(di − d′i), s.t. d2
i = ‖vi − x‖2, d′2i = ‖v′i − x‖2, di, d

′
i ≥ 0,∀i ∈ [N ];x ∈ C0.

The polynomial system has a constant number of variables and constraints, hence can
be solved in constant time. More specifically, we can introduce a new variable t and
let t = 1

N

∑
i(di − d′i). All polynomial constraints define a semi-algebraic set. By using

constructive version of Tarski-Seidenberg theorem, we can project out all variables except
t and the resulting set is still a semi-algebraic set (which would be a finite collection of
points and intervals in R1) (See e.g.,[12]).

2. (Minimum enclosing cylinder, Minimum cylindrical shell) Let P be a set of stochastic
points in the existential uncertainty model under the β-assumption. Let d(`, v) denote the
distance between a point v ∈ Rd and a line ` ⊂ Rd. The goal for the minimum enclosing
cylinder problem is to find a line ` such that E[maxv∈P d(`, v)] is minimized, while that for
the minimum cylindrical shell problem is to minimize E[maxv∈P d(`, v)−minv∈P d(`, v)].
The algorithms for both problems are almost the same and we only sketch the one for
the minimum enclosing cylinder problem.
We follow the approach in [7]. We represent a line ` ∈ Rd by a (2d − 1)-tuple
(x1, . . . , x2d−1) ∈ R2d−1: ` = {p + tq | t ∈ R}, where p = (x1, · · · , xd−1, 0) is the in-
tersection point of ` with the hyperplane xd = 0 and q = (xd, . . . , x2d−1), ‖q‖2 = 1 is the
orientation of `. Then for any point v ∈ Rd, we have that

d(`, v) = ‖(p− v)− 〈p− v, q〉q‖,

where the polynomial d2(`, v) admits a linearization of dimension O(d2). Now, proceeding
as for the minimum enclosing ball problem and using Theorem 21, we can obtain a coreset
S consisting N = O

(
ε−O(d2)) deterministic point sets Pi ⊆ P.
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We briefly sketch how to obtain the optimal solution for the coreset. We can also
decompose R2d−1 (a point x in the space with ‖(xd, . . . , x2d−1)‖ = 1 represents a line in
Rd) into O

(
ε−O(d2)) semi-algebraic cells such that for each cell, the ordering of the points

in S (by their distances to a line in the cell) is fixed. Note that such a cell is a semi-
algebraic cell. For a cell C, assume that vi = arg maxv∈Pi

d(`, vi) for all i ∈ [N ], where
` is an arbitrary line in C. We can formulate the problem as the following polynomial
system:

min
l

1
N

∑
i

di, s.t. d2
i = d2(`, vi), di ≥ 0,∀i ∈ [N ]; ` = (p, q) ∈ C0, ‖q‖2 = 1.

Again the polynomial system has a constant number of variables and constraints. Thus,
we can compute the optimum in constant time. We summarize our results by Theorem 9.

References
1 A. Abdullah, S. Daruki, and J.M. Phillips. Range counting coresets for uncertain data. In

Proceedings 29th ACM Syposium on Computational Geometry, pages 223–232, 2013.
2 Marcel R Ackermann, Johannes Blömer, and Christian Sohler. Clustering for metric and

nonmetric distance measures. ACM Transactions on Algorithms (TALG), 6(4):59, 2010.
3 P. Afshani, P.K. Agarwal, L. Arge, K.G. Larsen, and J.M. Phillips. (Approximate) un-

certain skylines. In Proceedings of the 14th International Conference on Database Theory,
pages 186–196, 2011.

4 P.K. Agarwal, S.-W. Cheng, and K. Yi. Range searching on uncertain data. ACM Trans-
actions on Algorithms (TALG), 8(4):43, 2012.

5 P.K. Agarwal, A. Efrat, S. Sankararaman, and W. Zhang. Nearest-neighbor searching under
uncertainty. In Proceedings of the 31st Symposium on Principles of Database Systems, pages
225–236, 2012.

6 P.K. Agarwal, S. Har-Peled, S. Suri, H. Yıldız, and W. Zhang. Convex hulls under un-
certainty. In Proceedings of the 22nd Annual European Symposium on Algorithms, pages
37–48, 2014.

7 P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Approximating extent measures of
points. Journal of the ACM, 51(4):606–635, 2004.

8 P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Geometric approximation via coresets.
Combinatorial and Computational Geometry, 52:1–30, 2005.

9 P.K. Agarwal and M. Sharir. Arrangements and their applications. Handbook of Compu-
tational Geometry, J. Sack and J. Urrutia (eds.), pages 49–119. Elsevier, Amsterdam, The
Netherlands, 2000.

10 Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations.
cambridge university press, 2009.

11 D. Bandyopadhyay and J. Snoeyink. Almost-Delaunay simplices: Nearest neighbor rela-
tions for imprecise points. In Proceedings of the 15th ACM-SIAM Symposium on Discrete
Algorithms, pages 410–419, 2004.

12 Saugata Basu, Richard Pollack, and M Roy. Algorithms in real algebraic geometry. AMC,
10:12, 2011.

13 T.M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions.
Computational Geometry: Theory and Applications, 35:20–35, 2006.

14 K. Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces
and their applications. SIAM Journal on Computing, 39(3):923–947, 2009.

15 R. Cheng, J. Chen, and X. Xie. Cleaning uncertain data with quality guarantees. Proceed-
ings of the VLDB Endowment, 1(1):722–735, 2008.



L. Huang, J. Li, J.M. Phillips, and H. Wang 50:17

16 G. Cormode and A. McGregor. Approximation algorithms for clustering uncertain data.
In Proceedings of the 27th Symposium on Principles of Database Systems, pages 191–200,
2008.

17 A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and pro-
jective clustering via volume sampling. In Proceedings of the 17th ACM-SIAM symposium
on Discrete algorithm, pages 1117–1126, 2006.

18 X. Dong, A.Y. Halevy, and C. Yu. Data integration with uncertainty. In Proceedings of
the 33rd International Conference on Very Large Data Bases, pages 687–698, 2007.

19 A. Driemel, H. HAverkort, M. Löffler, and R.I. Silveira. Flow computations on imprecise
terrains. Journal of Computational Geometry, 4:38–78, 2013.

20 W. Evans and J. Sember. The possible hull of imprecise points. In Proceedings of the 23rd
Canadian Conference on Computational Geometry, 2011.

21 D. Feldman, A. Fiat, H. Kaplan, and K. Nissim. Private coresets. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing, pages 361–370, 2009.

22 D. Feldman and M. Langberg. A unified framework for approximating and clustering data.
In Proceedings of the 43rd ACM Symposium on Theory of Computing, pages 569–578, 2011.

23 Dan Feldman and Leonard J Schulman. Data reduction for weighted and outlier-resistant
clustering. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 1343–1354. SIAM, 2012.

24 Martin Fink, John Hershberger, Nirman Kumar, and Subhash Suri. Hyperplane seperability
and convexity of probabilistic point sets. In Proceedings Symposium on Computational
Geometry, 2016.

25 P.K. Ghosh and K.V. Kumar. Support function representation of convex bodies, its ap-
plication in geometric computing, and some related representations. Computer Vision and
Image Understanding, 72(3):379–403, 1998.

26 S. Guha and K. Munagala. Exceeding expectations and clustering uncertain data. In
Proceedings of the 28th Symposium on Principles of Database Systems, pages 269–278,
2009.

27 L.J. Guibas, D. Salesin, and J. Stolfi. Constructing strongly convex approximate hulls with
inaccurate primitives. Algorithmica, 9:534–560, 1993.

28 S. Har-Peled. On the expected complexity of random convex hulls. arXiv:1111.5340, 2011.
29 S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median clustering. In

Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pages 291–300,
2004.

30 Sariel Har-Peled and Yusu Wang. Shape fitting with outliers. SIAM Journal on Computing,
33(2):269–285, 2004.

31 M. Held and J.S.B. Mitchell. Triangulating input-constrained planar point sets. Information
Processing Letters, 109(1):54–56, 2008.

32 Lingxiao Huang and Jian Li. Approximating the expected values for combinatorial optimiz-
ation problems over stochastic points. In The 42nd International Colloquium on Automata,
Languages, and Programming, pages 910–921. Springer, 2015.

33 A.G. Jørgensen, M. Löffler, and J.M. Phillips. Geometric computation on indecisive points.
In Proceedings of the 12th Algorithms and Data Structure Symposium, pages 536–547, 2011.

34 P. Kamousi, T.M. Chan, and S. Suri. The stochastic closest pair problem and nearest
neighbor search. In Proceedings of the 12th Algorithms and Data Structure Symposium,
pages 548–559, 2011.

35 P. Kamousi, T.M. Chan, and S. Suri. Stochastic minimum spanning trees in euclidean
spaces. In Proceedings of the 27th Symposium on Computational Geometry, pages 65–74,
2011.

ESA 2016



50:18 ε-Kernel Coresets for Stochastic Points

36 H. Kruger. Basic measures for imprecise point sets in Rd. Master’s thesis, Utrecht Univer-
sity, 2008.

37 M. Langberg and L.J. Schulman. Universal ε-approximators for integrals. In Proceedings
of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, 2010.

38 J. Li and H. Wang. Range queries on uncertain data. Theoretical Computer Science,
609(1):32–48, 2016.

39 M. Löffler and J. Phillips. Shape fitting on point sets with probability distributions. In
Proceedings of the 17th European Symposium on Algorithms, pages 313–324, 2009.

40 M. Löffler and J. Snoeyink. Delaunay triangulations of imprecise points in linear time after
preprocessing. In Proceedings of the 24th Sympoium on Computational Geometry, pages
298–304, 2008. doi:10.1145/1377676.1377727.

41 M. Löffler and M. van Kreveld. Approximating largest convex hulls for imprecise points.
Journal of Discrete Algorithms, 6:583–594, 2008.

42 J. Matoušek. Computing the center of planar point sets. Discrete and Computational
Geometry, 6:221, 1991.

43 A. Munteanu, C. Sohler, and D. Feldman. Smallest enclosing ball for probabilistic data. In
Proceedings of the 30th Annual Symposium on Computational Geometry, 2014.

44 T. Nagai and N. Tokura. Tight error bounds of geometric problems on convex objects with
imprecise coordinates. In Jap. Conf. on Discrete and Comput. Geom., LNCS 2098, pages
252–263, 2000.

45 Y. Ostrovsky-Berman and L. Joskowicz. Uncertainty envelopes. In Abstracts of the 21st
European Workshop on Comput. Geom., pages 175–178, 2005.

46 Jeff M. Phillips. Coresets and sketches. In Handbook of Discrete and Computational Geo-
metry. CRC Press, 3rd edition, 2016. Chapter 49.

47 D. Salesin, J. Stolfi, and L.J. Guibas. Epsilon geometry: building robust algorithms from
imprecise computations. In Proceedings of the 5th Symposium on Computational Geometry,
pages 208–217, 1989.

48 R. Schneider. Convex bodies: the Brunn-Minkowski theory, volume 44. Cambridge Univer-
sity Press, 1993.

49 S. Suri, K. Verbeek, and H. Yıldız. On the most likely convex hull of uncertain points. In
Proceedings of the 21st European Symposium on Algorithms, pages 791–802, 2013.

50 M. van Kreveld and M. Löffler. Largest bounding box, smallest diameter, and related
problems on imprecise points. Computational Geometry: Theory and Applications, 43:419–
433, 2010. doi:10.1016/j.comgeo.2009.03.007.

51 V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability & Its Applications, 16(2):264–280, 1971.

52 Jie Xue, Yuan Li, and Ravi Janardan. On the separability of stochasitic geometric objects,
with applications. In Proceedings Symposium on Computational Geometry, 2016.

53 H. Yu, P.K. Agarwal, R. Poreddy, and K. Varadarajan. Practical methods for shape fitting
and kinetic data structures using coresets. Algorithmica, 52(378-402), 2008.

54 K. Zheng, G. Trajcevski, X. Zhou, and P. Scheuermann. Probabilistic range queries for
uncertain trajectories on road networks. In Proceedings of the 14th International Conference
on Extending Database Technology, pages 283–294, 2011.

http://dx.doi.org/10.1145/1377676.1377727
http://dx.doi.org/10.1016/j.comgeo.2009.03.007

	Introduction
	Problem Formulations
	Our Results
	Other Related Work

	epsilon-Kernels for Expectations of Width
	epsilon-exp-kernel Under the Subset Constraint

	epsilon-Kernels for Probability Distributions of Width
	A Simple (epsilon,tau) Construction
	Improved (epsilon,tau) for Existential Models
	Algorithm 1: For Any Lambda(P)
	Algorithm 2: For Lambda(P)>3ln(2/r)


	(epsilon,r)-fpow-kernel Under the beta-Assumption
	Applications
	Approximating the Extent of Uncertain Functions
	Stochastic Moving Points
	Shape Fitting Problems
	Shape Fitting Problems (Under the beta-assumption)


