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INTRODUCTION 

In the course of studying continua in the plane it has been as ked 

if a given continuum has uncountably many disjoint duplications in the 

plane, and if so, what are the consequences of the existence of such a 

collection. The object of this paper is to study these problems and to 

develop some machinery useful in their resolution. In Section I, we re

view the definition of convergence and homeomorphic convergence of point 

s ets in a metric space S. We then consider the space ,r of all continu

ous functions from a compact metric space P to a separable metric space 

Q under the "sup metric." The famous Borsuk Theorem [3], which sh ows 

that TT is separable, is then proven. As a consequence of the separa

bility of TT , we show that in any uncountable col le ct ion G of compact 

sets in a separable metric space S, there must exist an element of G that 

is converged to by a sequence of elements of G. Furthermore, if the ele

ments of Gare pairwise homeomorphic, then G contains an element which 

is converged to homeomorphically by some sequence in G. These theorems 

prove to be important in the study of disjoint embeddings of continua in 

separable metric spaces. In Section I, as throughout this paper, defini

tions are motivated and illustrated by numerous examples. 

A continuum M may have uncountably many homeomorphic images in a 

given space S. We say that two such images are equivalent if there exists 

a homeomorphism h of S onto itself that takes one image of M onto the 

other. If M lies in a space S, it may be that there are uncountably 

many disjoint pairwise equivalent homeomorphic images of Min S. In 

such a case, Mis said to be thinly embedded in S. In Section II, we 
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introduce and illustrate this concept along with the idea of a contin

uum being slender, thick, and wide. We also give an example of a con

tinuum, in the plane E2 , having uncountably many embeddings (homeomor

phic images) in E2 such that no two are equivalent. 

The examples and definitions in Section II point out that criteria 

are needed for testing a given continuum (or its embedding in a space 

S) to determine which of the classes, thin, slender, wide, or thick, 

the continuum (or its embedding) falls into. Although no such complete 

conditions are known, we develop in Sections III and IV some tests that 

can be used on a particular class of continua, namely the chainable con-

2 tinua. Bing has proven [l] that each chainable continuum is slender in E; 

ie., each chainable continuum has uncountably many disjoint embeddings 

in the plane. His method of proof was to show that each chainable con

tinuum has an embedding in E2 that is chainable-with-nice-links; and 

then he applied a widely misunderstood result of Roberts [8]. In Section 

III, we introduce and illustrate the definition of chainable and chain

able-with-nice-links, and in Section IV, we state and prove the result 

by Roberts. The result by Roberts gives a sufficient condition for a 

continuum to be thinly embedded in E2 • 

We conclude the paper by exhibiting two homeomorphic continua M1 
and M2 where M2 is thinly embedded in E2, but M1 is not. These continua, 

first introduced by Bing [l], illustrate how the Roberts Theorem is of

ten misunderstood. We also include a list of questions that have come 

up during the writing of this paper. These questions may or may not be 

difficult, although we found no immediate answer. 

It is recommended that the reader who is mainly interested in 

embeddings of continua in the plane skip a detailed reading of Section 
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I. In fact, the crucial part of Section I to the paper is the under

standing of the concept of homeomorphic convergence and Theorem B. 
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I. Ca.JVERGrNCE AND H™E~ORPHIC COOVERGrNCE 

Given a sequence of point sets {X }, in a metric spaces, we define n 

the notion of convergence of {Xn} to a point set Lin terms of limit 

inferior (abbreviated "lim inf X ") and limit superior (abbreviated "lim n 

sup X ") of the sequence {X } • n n 

Definition. Let {X } be a sequence of subsets of S. The set "lim n 

inf X " consists of all points y in s, such that each open set containn 

ing y intersects all but a finite number of the sets X. n 

The set "lim sup X " consists of all points y in S such that each n 

open set containing y intersects infinitely many of the sets X. n 

If { X} is a sequence of sets such that lim inf X = lim sup X n n n 

L #¢,then we say that the sequence X converges to the point set L. n 

Figure l demonstrates the case where lim inf X is empty while lim n 

sup X is not. Consequently, Figure 1 illustrates the fact that lim n 

sup X is not necessarily a subset of lim inf X, even though it is the n n 

case that lim inf X c lim sup X • Thus, to show rx } converges, it n n n 

suffices to show lim inf X =Lis not empty and that lim sup X c lim n n 

X, for then {X} converges to L. n n 

.. l im sup X. = AU B 
1 

lim inf X. = ¢ 
1 

Figure l 



lim 

lim 

sup X n 

inf X n 

= L 

= L 

lim sup X.=lim inf X.=L 
l l 

lim sup X. = A 
l 

1 im inf X. = A 
l 

5 

I 

I 

Figure 2 

Xl 

L 
x2 

Figure 3 

I Xl 

x2 

A 

figure 4 
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Figures 2 and 3 illustrate that it is possible to have a sequence 

of arcs as well as simple closed curves converge to a triod. Further

more, it is possible to have a sequence of triods converge to an arc 

(See Figure 4). 

In Figure 1, for each integer n, X is a connected subset of space, 
n 

but the lim sup X fails to be connected. It follows from the next 
n 

theorem that in a compact space no such example exists unless lim inf 

X is empty. n 

Theorem 1. If {X } is a sequence of connected subsets of a compact 
n 

metric space S such that lim inf X I¢, then lim sup X is connected. n n 

Proof. Let lim sup X = L, and suppose that Lis not connected. 
n 

Thus, there exists two mutually separated sets M and N such that L =MUN 

Suppose that Lis not a closed set; that is, there exists a point 

p, which is not in L, such that every open set about p intersects L. 

Let N(p, E ) be such a neighborhood. Then we can find a point q in N(p, E) 

n1. Since qeL, N(p, E ) has a non-empty intersection with an infinite 

collection of X's from {X }. It follows from the definition of lim 
n n 

sup X that p ~ l im sup X = L and, hence, that L is closed. 
n n 

We have that Mand N are disjoint closed sets in a normal space S, 

and hence, we can find disjoint open sets Hand K such that Mand N lie 

entirely within Hand K, respectively. 

Suppose that HUK contains no infinite subsequence of { X } • Then n 

there exists a subsequence {Xk } of{X} such that Xk - (HUK) is non-
n n n 

empty for each integer k • Choose a point a f fXk - (HUK)} and consider 
n n n 

the resulting sequence of points fa}. Since Sis compact, it follows 
n 

that the sequence {a} contains a subsequence which converges to some 
n 

point p. The point p must be an element of lim sup X and, consequently, 
n 



must lie in HUK. This is a contradiction to the fact that p belongs 

to the closed set S - (HUK). 

We now have HUK containing an infinite subsequence {Xk } of the 
n 

connected sets {X }. It therefore follows that the set K contains an 
n 
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infinite collection of connected sets, for if not then points of N fail 

to be elements of lim sup X. 
n It also follows that if¾. is not a 

J 

subset of K then xk. is the union of the non-empty disjoint sets (KnXk_) 
J 

and (HnXk.) which contradicts 
J 

the fact that xk. is connected. The same 
J J 

facts are true of H. 

Let x Elim inf X • Accordingly, x~ lim sup X and, hence, is an 
n n 

element of H. Since the set His open, it follows from the definition 

of lim inf X that H intersects all but a finite number of elements of 
n 

{X } , which contradicts the fact that the open set K contains an infinite 
n 

collection of elements from the sequence {X }. Thus, the Theorem fol
n 

lows. 

We now have examples and theorems illustrating the definition and 

consequences of lim inf X, lim sup X, where {X } is a sequence of sub-
n n n 

sets of S. Another type of convergence which is utilized in this paper 

is that of homeomorphic convergence. 

Definition. A sequence {M.} of sets is said to converge homeomor-
1 

phically to a set M if for each positive number 6 there exists an integer 

N such that if n > N there is a 6 - homeomorphism h of M onto M. A 6 
n n 

homeomorphism h:M • M is a homeomorphism such that d (x, h(x)) < o for 
n 

all X in M • n 

If the sequence {X} converges homeomorphically to X, then for each 
n 

integer n, X is homeomorphic to X. Hence, in Figure 2, since each X 
n n 
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is a triod and Lis an arc, the sequence {X } fails to converge homeo-
n 

morphically to X. Similar arguments can be used to show that these-

quences in Figures 3 and 4 fail to converge homeomorphically t o Land 

A, respectively. 

\ 

\ ,~--1/ 
\(11 

\ 9. 
"j 

A 

Figure 5 

I 
I 

Y1 

Yn 

X 
n 

A 

Figure 6 

The sequence {Y} in Figure 5 converges homeomorphically to A even n 

though each arc Y is knotted. In Figure 6, we have a sequence of arcs n 

{X }, each of which is homeomorphic to A, but for each integer n, X has n n 

a fold which maintains a fixed height as n varies. It is this fold that 

allows us to see that the proper o - homeomorphisms in the definition of 

homeomorphic convergence fail to exist; hence, the sequence {X } fails to 
n 

converge homeomorphically to A even though lim inf X 
n lim sup X = A. n 

This example will be of more importance when we discuss examples offered 

in Sect ion IV. 
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Another important aspect of homeomorphic convergence can be found 

in the following example. 
T 

----.A-----------~-r 

H 

a 
Figure 7 

In Figure 7, we have pictured a continuum M which is made up of 

what we call the "head" H and the "tail" T. Let c5 = 1/n be given and 

suppose that d(a, b) < 6/2. We can now construct a continuum M, (see 

Figure 7) which is homeomorphically close to M, that is, there exists 

a homeomorphism h
1 

such that h1 (M) = M1, and d(x, h1 (x)) < c5 for each 

x £ M
1

• Let c5 = 1/n where n = {l, 2, 3, ••• }. Inductively construct the 

continuum M and the homeomorphism h, so that d (x, h (x)) < c5 for each n n n 

x EM. By construction the sequence {M } converges homeomorphically to n n 

M. 

Theorem 2. If {X} is a sequence of compact subsets of a separable n 

metric space S which converges homeomorphically to X, then the sequence 

fX} converges to X. n 

Proof. Let {h} be a sequence of homeomorphisms satisfying the 
n 

definition of fX } converging homeomorphically to X. It follows that 
n 

for a positive number r_, there exists an N such that, for n ,,, N, 

d(h (x), x) < E for every x E X • This shows that X C lim inf X • n n n 

Let y be an element of lim sup X and suppose that there exists an E n o 
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such that d(y, X) > 2E • Notice that corresponding to E there exists 
0 0 

an N
0 

such that, form > N, d(h (x), x) < E for each x e X, hence, o m o m 

N(y, E ) intersects at most a finite number of X in the sequence ~Xn'-. o n 

Consequently, y is not an element of lim sup Xn' and the sequence ~Xn~ 

converges to X. 

Before proceeding into the Bor suk Theorem, we will con s ider the 

following space TT = {f:f maps the compact set P continuously int o the 

separable metric space Q. } 1 We define a function d: r. x TT • E as 

d(f, g) = sup {p(f(x), g(x)) I x E P } where p is the metric for the space 

Q. It is easily verified that di s a metric for TT . In the remainder 

of the paper, we use "sup metric" to mean the metric d just defined 

above. 

4 f 
p 

3 

2 

g 
1 

Figure 8 

= [ o, 1] Q 

f(x) = 4 

g(x) = X 

= El 

p(f, g) = (f(O), g(O)) = 4 



11 

The following theorem can be found in most topology texts (See [6] 

for example.) We give no proof here, but note that it is a very special 

case of Theorems A, B, and 6 which follow. 

Theorem 3. If every uncountable subset G of a metric space S has 

a limit point, then Sis separable. 

A proof of the converse of Theorem 3 follows. 

Theorem 4. If Sis a separable metric space and C is an uncountable 

subset of S, then some point of C is a limit point of C. 

Proof. Suppose that C fails to contain such a limit point. Let 

pt c. Then there exists a positive number F. such that N(p, E.)n C = {p} . 

Consider the set G = {N(p, c/2) I p E C and c satisfies the condi

tions above}. We now have Gas an uncountable collection of disjoint 

open sets in S which contradicts the fact that Sis separable. Conse

quently, C contains some point g such that g is a limit point of C. 

An observation that will accent the importance of the Borsuk Theorem 

follows. Consider the set TT 
1 

= { f: f is bounded and maps the compact 

set P into the separable metric space QJ , where d is the sup metric iden-

tified previously. We will now show that 1 need not be separable. 1T 

p = [O, l], and Q = El. Consider the set C = {f :f (x) 
('I, (1, 

= 1 for O ,, X ,, 

and f (x) = 0 for (t ,, 
l l 

X :': 1 where ' l is an irrational number greater 

than 1/2 and less than 3/4}. It follows from Theorem 3 that if ·n
1 

is 

separable then the set C, which is uncountable, must contain a point 

Let 

u , 

g which is a limit point of C. But, as Figure 9 illustrates, under the 

sup metric C fails to contain such a point g because C inherits the dis-

t t 1 H l . t bl ere e opo ogy. ence, TT is no separa e. 



Let a1 < a2• 

Then d(f , f ) = d(f
01 

(a 2 ), fa
2 

(a
2

)) = 1 
al a2 

12 

r if 0 5 x::; a
1 

~f f --------- Ct 1 Ci.l 0 .+. if Cl < X < 1 f 1 -
CJ.2 

\ f} if O ... X " Ct - 2 

Ll 2 
0 if u.

2 
" X ,, 1 

a 1 IJ.2 1 

Figure 9 

Theorem (Borsuk). If Pis a compact metric space, Q is a separable 

metric space, and TT is the collection of all continuous functions from 

P to Q with the sup metric, then TT is a separable space. 

Proof. Let the set R = {C1 , c2 , c3 , ••• } represent a countable 

dense subset of Q, and the set B = {B1 , B2 , B
3

, ••• } be a countabl e basis 

for the compact metric space P. 

Let i be the collection of all finite subsets {n
1

, n
2

, ••• , nk } of 

the set N of positive integers such that Pc l'.J B • Notice that z is 
i=l ni 

countable, furthermore, since Pis compact, L is nonempty. Now with 

••• , nk} E. I define the sets W , W , ••• , W by letting 
nl n2 nk 

i-1 
= B - B and in general W = B - { LJ Bn } • 

n2 nl ni ni j=-1 i 

Notice that such a collection of sets is pairwise disjoint and has a 

union which contains P. 

Define 11 = ff I f:P , R where f i s a constant on W J . To show o n. 
1 

that \ 1 is countable, it suffices to see that f a s sumes at most a count-

able number of values on each W or that TI is the finite union of n. ' ,; 
1 



countab le sets. Hence, for a given element a in I: there exists a 

countable collection of functions in TT0 • 
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Since the countable union of countable sets is countable, it follows 

that 1 u TT = cr~i:: Tr
0 

is countable, since I is countable. 

Consider the metric space lj; formed by the union of 1T and Tr 1 with 

the sup norm. We shall now show that lj; is separable by showing that 

TT 1 is a countable dense subset of lj;. Let g~TT • Since g is contin

uous and Pis compact, we have that g is uniformly continuous. Let 

E > 0 be given. Then there exists a positive number o such that if 

p (x,y) < 6 then d (g(x), g(y)) < E/3 • 

••• , Bk be a finite collection of ba s is elements, 
n 

each having diameter less than 6 , which covers P. As before, define 
i-1 

wk = B and w = B -
1 kl ki ki 

{U B } and recall that not only is 
j=l k1 

the collection {wk , ••• , 
1 

W } pairwise disjoint, but the union conta .ins 
kn 

P. 

Choose points xk. ~ wk. for i =l, 2, ... ,nandletC.E. Rbea 
1 

1 1 

· t · Q h th t d ( ( ) C ) < c/3 Let F be the fun ct 1· on 1· n Til po1n rn sue a g xk. , i c.. • 

1 

defined by f(x) = Ci for all xE.Wk .• 
1 

Now for x ~ P we have d (f(x), g(x)) :5. d(f(x), f(xk_))+ d (f(xk_), 
1 1 

g(x~)) + d (g€<ki), g(x)) < 0 + c/3 + '</3 < c if xE.Wki. Thu s , sup 

{d(f(x), g(x)) for all x ~ P} < c and g belongs to the closure of 

Hence, Trl is a countable dense subset of lj;. 

1 
TT • 

The fact that TT is separable falls as a consequence to the fact 

that lj; is a separable metric and that separability is hereditary in 

a metric space. 
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Theorem A. If G is an uncountable collection of compact sets in 

a separable metric space S, then some sequence of elements of G converges 

to an element of G. 

Proof. Let P be a Cantor set. For each G in G = {G I a.EA} there 
a a, 

exists a continuous function f a :P • Ga. of P onto Ga. [6 ]. 

Let TI= {f:f is a continuous map of Pinto S}. By Borsuk Theorem, 

we know that 1r is separable, hence, if we define R = {f a: a,£ A } then R is 

an uncountable subset of TI . It follows from Theorem 3 that R contains 

a point g which is a limit point of R. Since g is a limit point of R 

in the metric space u, it follows that there exists a sequence of points 

{fn } in R which converges to g. 

Corresponding to g is a compact set X in G, where g1P • X. Similarly, 

there is a sequence of compact sets {x } in G so that f maps P contin-n n 

uously onto X. 
n 

We now intend to demonstrate that the sequence {x } converge s to n 

X, that is; lim inf X = lim sup X = X. 
n n 

First we show that X c 1 im inf X • Let x EX and let O be any open 
n 

set containing x. Since the sequence {f } converges to g in TI , we know 
n 

that the sequence of points {f (x)} must then converge to q(x) in S. 
n 

Thus, the point x belongs to lim inf X. 
n 

We now have that X c lim inf X , hence, if the 1 im sup X c X the n n 

sequence {Xn} converges to X. Let y E. 1 im sup Xn, and suppose y ,- X. 

Since Xis compact, there is a positive number E such that d (y, X) > 2E . 

Now there exists an integer N so that for n ~N sup {d(f (x), f(x)) } < E. 
XE:f n 

Thu s , N (y, c) can intersect at most a finite number of {x } , and y cannot n 

be in lim sup X. It follow s that lim sup X = X, from which th e theorem n n 

follows. 
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A consequence of Theorem A follows. 

Theorem 5. If G is an uncountable collection of compact sets in 

a separable metric space S, then there exists a countable subcollection 

G1 of elements of G such that for every g £G - G1 there exists a sequence 

{g } of elements of G1 converging to g. 
n 

Proof. Let G = {Xa I a£ A} and let G1 = {~ I ~ is not converged 

to by a sequence of elements in G }. 
1 Suppose G is an uncountable set. 

It therefore follows from Theorem A that there exists an X ~ G1 such 

that Xis converged to by a sequence of sets in G1• Since such an X 

in G1 contradicts the construction of G1 , it follows that G1 is at most 

countable. 

Theorem A gives us sufficient conditions for convergence of a se

quence {x } of compact subsets of S, where S is a separable metric space. 
n 

The following theorem outlines sufficient conditions for homeomorphic 

convergence of the sequence {X } in S. 
n 

Theorem B. If G is an uncountable collection of pairwise homeomor

phic subsets of a separable metric space S, then some sequence of ele

ments of G converges homeomorphically to an element of G. 

Proof. Let X
0 

E G where G = {X rJ. / a£ A}. For each u. c.. A, there is 

a homeomorphism f of X onto X. Let R = {f 
a o rJ. · rt 

rJ, E. A}. 

Define TT= ff I f is a continuous map of X
0 

into S}. Since R is an 

uncountable subset of ·n it follows from Theorem 3 that R contains a 

point f such that fa is a limit point of R, hence, there exists a 
ao o 

sequence {fa } in R which converges to fa 
i 0 

For convenience in notation, 

we let f 
Cl 

0 

= f' f r.t. 
1 

= f., X 
1 CJ.. 

= X., and X = X for each integer i. 
1 (j, 

1 0 
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-1 For each positive integer n define a function g = f of :X + X. n n n 

Notice that the sequence {g } is a sequence of homeomorphisms between n 

X and X. n 

We now intend to show that the sequence {X } converges homeomorn 

phically to X. Recall that the sequence {f } converges to f in 7T , n 

hence, given a o > 0 there exists an integer N such that for n > N, 

su}C {d(f (x), f(x))} < 0 • 
x " n .0 

x €X such that f(x) = y, 
0 0 0 

y ) = d ( f ( X ) , f ( x ) ) < o. 
n o o 

Consequently, if yE.X, then there exist s an 

hence , for n > N d ( g ( y) , y ) = d ( f o f - l ( y ) , 
n n 

We now have that th e se quence {g } is a sequenc e of c5 -homeomorn 

ph is ms , thus, {X }conv erg es homeomor phi cally t o X. n 

Given a set G with certain properti es in a separable metric space, 

Theorem B guarantees the exist ence of a sequence {x } , where for each 
n 

integer n1Xn ~ G, and a set X £ G such that the sequence {Xn} converges 

homeomorphically to X. The following theorem says that all but a 

countable number of elements in Gare converged to homeomorphically by 

a sequence from G. 

Theorem 6. If G is an uncountabl e coll ection of pairwi se homeo

morphic compact sets in a separable metric space S, then there exi sts a 

countable subcollection G1 of elements of G such that for every g £ G -

1 G there exists a sequence {g } of elements of G converging homeomorphin 

cally to g. 

Proof. Let G = {Xa I 0'.4: A} and let G1 = {x
8 
~ G I x8 is not converged 

to homeomorphically by a sequence of elements in G}. l Suppose G is an 

uncountable set. It therefore follows from Theorem B that there exists 

l X ~ G such that Xis converged to homeomorphically by a sequence of sets 



in G1 • Since such an X in G1 contradicts the construction of G1, it 

follows that G1 is at most countable. 
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In concluding Section I, we will state a theorem which deals with 

a restricted type of continuum M, a continuum M which divides the 

space S into two sets (complementary domains). Ex~nples of such con

tinua are the (n-1)-dimensional spheres S(n-l) in Euclidean n-dimensional 

space Ef1 (n = 2, 3, 4, ••• ), and the singleton sets on the real line E1• 

A consequence of Theorem 7 is that there do not exist uncountably 

many disjoint wild 2-spheres in E3 [2] . Furthermore, Bryant [4] proved 

that there do not exist uncountably many n-cells with disjoint boundaries 

in £1 (n ~ 5) using Theorem 7. 

Theorem 7. Let G be an uncountable collection of disjoint homeo

morphic continua in t1 and suppose that each Ga in G has exactly two 

complementary domains Va and Ua. Then G contains a countable subcol

lection G1 such that for each G in G - G1 there exists two sequences a 

{G } and a. {~.} of elements of Geach converging homeomorphically to Ga 
1 1 

such that Go:. C. Va and ~- C Ua for each i. 
i 1 

Proof. It follows from Theorem 6 that there exists a countable 

se t K such that for every element g of G - K there exists a sequence 

{gn } in G which converges homeomorphically to g. 

Divide the set G - K into two sets U and V where U = {G c G - KI (t 

there exists a seque nce of sets [Grt. J in Urt which converges homeomor -
1 

phically to G } and V = {G £ G - K IG is converged to homeomorphically a u u 

by some sequence {~ . } in G, where ~- C Va for each integer i}. 
1 1 

Since G - K is kno1N11 to be uncountable, it follows that U or V 

is unco unt able since G - K = UVV. Therefore, suppose V is uncountable. 
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Define the set G1 = {Ga E G - K lthere exists a ~ E. G such that 

u a :> UB and there is a homeomorphism f from ~ onto Ga such that 

d(x, f(x)) < 1 for each x E ~ } . Let Ga t U. Then there exists a se-

quence {G } in U which converges homeomorphically to Ga . Notice that, 
a . a 

i I 

for each integer i, Ua ::> ua _. Consequently, Ga E. G
1 

and hence, Uc. G1 • 
i 

Let M1 
= {Ga I G Cl t V but Ga f--G1 

}. Suppose now that M1 is unc ount -

able. It follows from Theorem 6 that there exists a G
0

_ c M
1 

and a se

quence {Ga_ } in M
1 

such that {Ga_ } converge s homeomorphically to Ga • 
i i 

If each Ga ~ U a then G €. G1 • Furthermore, if . a each Ga t Va then 
i i 

V c. V which implies U :::> U , and if o 
a. a a . a 

i i 

homeomorphism f a such that d(f a (x), x) < o 
n n 

= 1 ther e exis ts a o -

for each x c U a and n 2: N. 
n 

Consequently, Ga E G1 for each integer greater than N. 
n 

In either ca se, 

we have a cont r adiction. 

Inductively define a sequ ence of sets {Gi } where,for each integ er 

i,Gi = {Ga ~ G - K I there exists a~£ G, and a homeomorphi sm f 8 :~ • 

Ga such that Ua ~ UB and d(x, f(x)) < 1/i for ea ch x E. ~}. Some of th e 

properties acquired by each G. are that UC G. for each integer i, and 
i i 

G. contains all but a countabl e number of elements from V. 
i 

00 

Let N = ti G .• It follows from above that UC. N and that all but 
I i 

a countable number of elements in V also lie in N. Let Ga ~ N. Let 

E > 0 be given. Then there exists an integer n such that E > 1/n. 

Hence, we can find a~ such that u8 C'U a and d(x, f(x)) < 1/n < E 

for each x E. ~, where f maps ~ homeomorphically to Ga. Consequently, 

every element Ga in N has a sequence of sets converging homeomorphically 

to Ga in Ua . 

A s imilar argument can be used to define a set N
1 where for each 

element Ga in N1 there exists a s equence of sets converging 
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homeomorphically to Ga in Va. Consequently, NI\ N1 
describes a sub

collection of G which contains all but a countable subset of G. Further

more for each Ga in N('\ N
1 

there exists two sequences {cu.} and { ~-} 
l l 

of elements of G, each converging homeomorphically to Ga such that 

G CV 
°i. a 

and ~- C U a for each integer i. 
l 



II. EQUIVALBIT CONTINUA 

We begin Section II by defining the relationship of equivalent 

between two homeomorphic continua x1 and x2 in a spaces. 

20 

Definition. Two homeomorphic continua M1 and M2 in a space Sare 

said to be equivalent (equivalently embedded) in S if there exists a 

homeomorphism h of S onto S such that h(M1) = M2• 

A result that we state without proof is that every two simple 

closed curves in E2 are equivalent in E2 • [9] 

Figure 10 

In Figure 10, we have two continua, M1 and M2 , each of which con

tains a simple closed curve and an arc intersecting at a single point. 

Since M1 and M2 are homeomorphic, it is possible that M1 and M2 are 

equivalent in E2, that is; there exists a homeomorphism h which maps 

2 2 E onto E and h(M1) = M2 • Since his a homeomorphism, it must take 

the simple closed curve of M1 to a simple closed curve in M2 • Further

more, h must map the interior of M1 (Int M1) to the interior of M2 

(Int M2) because h maps the compact set M1 V Int M1 onto a compact set. 

Hence, the arc m2 must lie in the interior of M2• Consequently, M1 and 

M2 are not equivalent in E2 • 
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To show that every two arcs K1 and K2 in E
2 are equivalent in E

2
, 

we construct a simple closed curve from K
2 

by attaching an arc B
2 

to 

K2 at the pointsi~b) (See Figure 11). Now K
2

U B2 is equivalent to a 
______ h

2 
(a) 

circle u
2

, 

2 2 that i s ; there exists a homeomorphism h
2 

which maps E onto E and h
2 

(K
2

U B
2

) = u
2

• Similarly, there exists an arc B
1 

and a homeomorphism 

h1 which 

morphism 
-1 

2 maps E 
2 onto E so that h1 (K1U B

1
)= U2• 

of E2 onto itself such that h3(h 1 (K1)) = 

Now let h
3 

be a homeo

The composi-

tion h
2

, h
3
,h

1 
2 2 is a homeomorphism of E onto E that takes K1 onto K2• 

Definition. A continuum Mis thin in a space S (or thinly 

embedded in S) if there exists an uncountable collection of pairwise 

di sjoint equi valent images of Mins. 

a p - - -- -

M 
(}, 

Figure 12 

In Figure 12, M is a circle centered at the point p with radius 
a 

Cl. in E2 • Let a assume any real number in the interval [o, lJand we have 
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an uncountable collection of disjoint equivalent simple closed curves 

in E2 • Thus, each simple closed curve in E2 is thin in E2• 

0 
Figu:ce 13 

Arc K 
a 

1 

As a further illustration, we now show that each arc in E2 is thin 

in E2• Since every two arcs in E2 are equivalent, it suffices to ex

hibit an uncountable collection of disjoint arcs in E2• For each real 

number a let K be a vertical arc of length 1 with its lower end point 
a 

on the x-axis at the point ( a, 0). (See Figure 13.) Then G = 

{ Ka I a.€ [O,l]J is the desired collection. 

Definition. A continuum Mis slender in a space S if there exist 

uncountably many disjoint homeomorphic images of Min S. 

Notice that if a continuum Mis thin in S, then Mis also slender 

in S. Therefore, the continua in Figures 12 and 13 are slender in E2 • 

Later we will construct continua M
1 

and M
2 

which are homeomorphic, but 

M2 will be thin in E2 while M
1 

is s lender but fails to be thin in E2• 

Definition. A continuum Mis thick in S if it is not slender in S. 

T 

Figure 14 

The triod (See Figure 14) is a continuum which is not slender in 

E2 and so it must be thick in E2• It is also the case that any continuum 
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M which contains a triod as a subset will be thick in E2• (See Figure 

15). These results are proven in [8]. Easier proofs of these facts 

are given in [7 ]. 

Figure 15 

Definition. A continuum Mis wide in S if M contains an open sub-

set of S. 

I x I 

Figure 16 

Annulus 

Figure 17 
The continua pictured in Figures 16 and 17 are wide in E2• Notice 

that a continuum M that is wide in a separable metric space S must also 

be thick in S, but some thick continua in E2 are not wide in E2
• (See 

Figure 15). 

2 Given a continuum M which contains an open subset of E, it is 

clear why there fails to exist an uncountable collection of disjoint 

h h . . of M 1· n E2 • omeomorp 1c images 

As was seen in Figure 10, given a continuum M it is sometime s possi

ble to have more than one embedding of Min S. It is natural to ask if 

there is a continuum Min E2 which has an infinite number of inequivalent 

embeddings in S. 
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ai-1 a3 a2 al ai+l 

~J1 
... 

A . . J 
I 

l-

b3 b2 bl .. ' 
A. c~ 

l B. c'.) ..., 
J 

a Figure 18 b· l J 

Three homeomorphic continua c1 , c2, and c3 in E2 are pictured in 

Figure 18 . From considerations similar to those used in connection 

with Figure 10, it is clear that C. (i = 2, 3) i s not equivalent to 
l 

c1 • We shall now show that c2 and c3 are n ot equivalent whenever 

i} j. Suppose there is a homeomorphism h of E2 onto E2 such that 

h(C 2 ) = c3• It follow s from previous considerat i ons (see Fi g-

ure 10) that, under h the vertical arc A., whose end point is a., must 
l l 

go onto the vertical arc B., whose end point is b .• Now extend the ver-
J J 

tical arcs Ai+l and Ai-l' with end points ai+l and ai-l respectively, 

upward as indicated by the dotted lin es in Figur e 18, and l et J . 
1 

be 
l-

the si mple c lo sed curve containing A. iU A. 
1 and otherwise lyin g in 

l+ l-

Since h takes J. 1 onto a simple closed curve, it is easily see n 
l-

that h(ai_ 1 ) 

that h(a 1 ) = 

= b. 1• An inductive argument can now be applied to show 
J -

b. k for some k > 0 assuming i > j. Now there is nowhere 
J+ 

-1 
for h to map bj+k-l. A similar contradiction exists by a ss uming j < i. 

Now we see that the continuum c1 ha s a countably infinite number of dif

ferent embeddings in E2• 

A simi la r example can be constructed to produce a continuum L with 

uncountably many inequivalent embeddings in E2• Let L be th e continuum 
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pictured in Figure 19 

al 

J-+ a2 

~. - I I IA2 Al 

L 

Figure 19 

In L there is only one simple closed curve J while there is a 

countable collection of disjoint vertical arcs {A
1

, A
2

, ••• } each having 
00 

an end po int ai in the interior J. Now L = JU q-~!i Ai). For each 

sequence a = {X } of real numbers where X ~ {o, 1 } we now describe n n 

an embedding L a of L in E
2• If a = O, O, O, ••• then L a "' L. One 

further example will suffice to make the correspondence between a and 

L0 clear. Suppose a = O, 1, O, O, 1, O, O, • • • Then L a is pictured 

in Figure 20. 

I I I , 
Figure 20 

Since there are uncountably many sequences of zeros and ones, it is 

clear that we have an uncountable collection G of homeomorphic continua 

. E2 in • Now we give an indication of why no two elements of Gare 

equivalent. 

Choose two different sequences a and e, and let n be the least 

th integer such that then term of~ and 6 are different. This means 

that L an:! L have their vertical arcs A in opposite complementary S Cl, n 



domains of their simple closed curve J. Now we apply the inductive 

argument above to show that this is impossible. 
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We conclude Section II with a theorem that coordinates the concept 

of homeomorphic convergence from Section I and equivalent continua. 

Theorem 8. If {X } is a sequence of continua converging homeomorphin 

cally to M1 in a metric space Sand hi s a homeomorphism of S onto 

itself, then {h(Xn)} converges homeomorphically to h(M1). 

Proof. Restrict h to M1 and the sequence {Xn}· Now hi s not only 

continuous but uniformly continuous. Let {h} be a sequence of homeon 

morphisms such that h :X • M1 and h moves points less than a distance n n n 

1/n. There exists a positive nu'Tlber o such that if d (x, y) < o, 
then d (h(x), h(y)) < E. Choose N so that hN moves points of Xn less 

than a distance o. Then d(h(~ (x)), h(x)) < E since d(~(x) ,x) < 0 • 

Since this is also true for all n > N we see that the sequence { hoh } of n 

homeomorphism s suffices for the homeomorphic convergence of { h(X )} to 
n 
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III. CHAINABLE CONTINUA 

In Section III we introduce the concepts of "E-chain," "chainable," 

and "chainable-with-nice-links." 

Definition. Given a positive number E, a continuum M has an~

chain if there exists a finite sequence of open sets, L
1

, L
2

, ••• , Ln' 

each of which is called a link, such that Mc .IJ L. , each 1 ink has a 
-- l=l l 

diameter less than E, and L.() L. i s nonempty if and only if 
l J 

Ji - j I= i. 
A continuum M is chainable if, for each positive E,M has an E:-chain. 

-1 

1 

0 
Figure 21 

1 

Figure 22 

1 

Both the triod in Figure 21 and the c i.rclr: in Fir1urr ; 2 ✓- hav,:; 1--

chains for restricted values of r. , but r,r;t,h f;;iJ tr1 h;; \n : :, 1./:,,-r,r,:,ir,. 

Hence, neither the triad nor tht ~ ·,imr,l': r,1,,- , ,,,J ,_,Jr t' : i •• ,.,,:, ir,:,LJ , .• 
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In Figure 23, we have pictured a continuum M1 [1 ) which is the union 

of H1 and T 1 • H1 is the vertical interval, and T 1 is the "wiggly" open 

ray which "converges" to H1 • The vertical line segment H1 will be re

ferred to as the head of M1 , while everything to the right of H1 , 

labeled T1 , is the tail of M1• The horizontal line is not part of the 

continuum M1 • Only two cycles of T1 are pictured. 

At this time we wish to convince t he reader that M1 is actually 

chainable. Therefore, let E be given. It follows from the construc

tion of T1 that there exists a point b such that d(a, b) < E/2. (See 

Figure 23). We construct the first link L1 of our E-chain about the 

point c of H1 and proceed along H1 with the connected links L2 and L3• 

Notice that links L4 and L5 , although disconnected, maintain a diameter 

less than E. We complete the E-c hain about M1 with the connected links 

L6 through Ln. 

Pictured in Figure 24 is one cycle of M1 illustrating the first 

nine links in the ~-chain about M1• 
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- Figure 24 

Since such a collection of links L1 , L2 , 
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••• , L can be constructed 
n 

for any positive number s , it follows that M1 is a chainable continuum. 

We will now define a more restrictive type of chain which will lead 

to the concept of "chainable-wi th-nice-1 inks." 

Definition. A disk K is any set which is homeomorphic to the set 

K = {(x, y) J x2 + y2 
< l} in E

2• The boundary, Bd K, of Kand the 

interior, Int K, of Kare the sets homeomorphic with {(x, y) J x
2 

+ y 2 
= l } 

· { 2 2 and (x, y) J x + y < 1 }, respectively. 

Definition. A continuum Min E
2 is chainable-with-nice-links if, 

for each positive numbers, there is a collection of disks D1 , D2 , ••• , 

Dn in E
2 such that {Int D1 , Int D2 , ••• , Int Dn} forms an E-chain of M, 

Bd D. n Bd Ij= ¢ if Ji - j J > 1, and Eld D. n Bd D. consists of two 
l l J 

points if Ji - j J= 1. 

It follow s from the definition that if a continuum Mi s not chain

able then it also fail s to be chainablc-with-nicc-links. Therefor e , 

the triad in Figure 21 and the circle in Figure 22 fail to be chainable

with-hice-links. 
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Figure 25 

The arc, as shown in Figure 25, is a continuum which is chainable-

with-nice-links. 

H 

. ,er - - -,b 
61 • L 

\ - - I 7 
~ - --- " L51 IL 
,, -- .. .i 8 r - -- ,, 

L41 I 
\ . - - - -/ ____ ... , 

L3 t , '< - -- 1. I•---, 
2', -·--' , .,-< 

L1 ( -- - • 
J -.: __ _ 

m 

Closure of sin 1/x = M 

L---v------...J,I 
T 

Figure 26 

The continuum M of Figure 26 is divided into two parts; the head 

H, and the tail T. Let E be given. To show that Mis chainable-with

nice-links we locate the point b (see Figure 26) where d(a b) <E/ 2. 

We construct our E-chain about M by first covering H. It is essential 

that none of the links L1 through L6 intersect any portion of T to the 

right of b. Notice that the links L1 , ••• , Lm form an E-chain about M. 

Furthermore, since such a collection L
1

, L
2

, ••• , Lm of disks exists 

for any E,we see that Mis chainable-with-nice-links. 
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I • • 

'" .... ------~ 
'T'2 

Figure 27 

The continuum M2, pictured in Figure 27, is borrowed from [ 1] 

where it is described using trigonometric functions. Using the pre

vious chaining techniques, it is ea sy to see that M
2 

is chainable-with

nice-links. 

At this point we wish to recall the continuum M1 (see Figure 23) 

and indicate why M1 fails to be chainable-with-nice-links. Let E be 

1/4. 

The reader must first convince himself that a 1/4-chain of M1 

constructed as in Figure 23 fails to satisfy the definition of chainable

with-nice-links. Furthermore, if M1 is chainable-with-nice-links then 

such an E-chain of M
1 

will be constructed in a manner similar to that 

of Min Figure 26. 
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Notice that in the construction of the links L1 , L2 , ••• , L6 in 

Figure 26 it was important that these links leave the tail T of Mun

covered from the point b top. Similarly, it is essential that in 
I 

covering H1 of M1 the arc between b and p must be left uncovered. 

Notice that with these restrictions upon our E-chain it is impossible 

for any link to contain the point z in Figure 28. Based upon this 

initial hint the reader will convince himself that M1 fails to be 

chainable-with-nice-links. 

We would now like to draw the readers attention to the following 

fact. In Figure 23 we have described a continuum M1 which is chain

able but not chainable-with-nice-links. In Figure 27 we have described 

a continuum M2 which is chainable-with-nice-links. Furthermore, it can 

be shown that M2 is homeomorphic to M1• Since M1 and M2 will be ob

served further in Section IV, it is of importance that the above re

sults be understood. 

We now describe two embeddings of a continuum Min E
2 and note 

that both are chainable-with-nice-links. These continua will be re-

ferred to in next sect ion. 

M (See Figure 26) 

a, . 
L. 

H 

ll' M' 

a.Jr a 1 .... ,, l 

Figure 29 
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In Figure 29 we have described a continuum M' which is homeo

morphic to the closure of sin 1/x = M (see Figure 26). The homeo

morphism h, from M to M', can be constructed as follows: h maps Hof 

M horizontally onto H' of M'. Then h maps the tail T of M onto the 

spiral K of M' by mapping the arc with endpoints (a., a. 1) to the arc 
1 1+ 

with endpoints (b., b . . 
1

) in K using a "uniform stretch." It is readily 
1 1- r-

seen that this may be carried out so that h preserves the convergence 

of sequences and, hence, is a homeomorphism. 

Notice that the continuum M' of F i gure 29 is also chainable-with

nice-links as was the continuum in Fi gure 26. 

To conclude this section, we state a consequence of a problem 

solved in Bing [ l]. Given a chainable continuum K there exists a 

homeomorphism h which maps K onto a continuum Lin E
2 

where Li s chain

able-with-nice-links. Thus, every chainable continuum K has an em

bedding Lin E2 , which is chainable-with-nice-links. In Section IV 

we shall show that if a continuum Mis chainable-with-nice-links, then 

M . h" . E2 
1s t 1n 1n • 
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IV. ROBERTS
1
THEOREM 

Section IV is divided into three parts. Part 1 deals with the 

development of the necessary tools to prove Roberts' Theorem . In part 

2 we will prove Roberts' Theorem, after which, in Part 3 we will con

sider the consequences of the Roberts' Theorem on certain continua in 

E2. 

Lemma 1. If f is a continuous bijection of E2 to E2 , th en f is 

a homeomorphism. 

Proof. The 2-sphere Sis the one-point compactification of E2• 

We extend f to a continuous bijection f of S onto itself by letting f 

( co) == 00 where "co" is the ideal point of S - E2 • Since f is a cont inu

ous bijection def:ned on the compact space S, it follows that f is a 

homeomorphism, and f, the restriction off, is a homeomorphism also. 

The following well known plane topology lemma appears in [81. 

Lemma 2. If Mis chainable-with-nice-links and C forms such an 

E:-chain, then there exists two homemorphisms T1 and T2 of the plane onto 

itself such that (1) both T1 and T2 reduce to the identity map for 

points not in any link of the chain C, (2) both T1 and T2 map the i th 

link of C onto itself, and (3) T1(M) and T2(M) have no points in common. 

We now have the necessary tools to prove the following theorem by 

Roberts [sl. 

Theorem (Roberts). If a continuum Min E2 is chainable-with-nice-

1 ink s , then there exists an uncr)Unt ab l e set G of mutually disjoint 
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continua in E2 all equivalent to M. 

Proof. Let H
1 

be a collection of open disks covering M such 

that H
1 

satisfies the definition of chainable-with-nice-links with E 

replaced by 1/2. Let T
1 

and T2 be two homeomorphisms satisfying the 

conclusion of Lemma 2; that is, (1) T1 and T2 reduce to the identity 

function for points outside the links of th e chain H1 , (2) both T1 

and T
2 

map the i th link of H
1 

onto itself, and (3) T1 (M) and T2(M) ha ve 

no points in common. 

Let H
2 

be a collection of open disks covering M, such that H2 

sat isfies the definition of chainable-with-nice-links with E replaced 

by a number less than 1/2 2 and small enough so that, (1) T1 (H2) and 

T2 (H) have no points in common, (2) the links of the chains T 1 (H2) 

and T2(H2) are of diameter less than 1/2 2 , and (3) H2 1 ies with in Hl. 

To satisfy condition (1) we let U and V be two disjoint open sets con-

taining Tl (M) and T2(M) respectively, such that un V = ¢. Notice that 

the existence of U and V follows from the fact that T1(M) and T2 (M) are 

-1 -1( ) di sjoint compact sets. The open set T1 (U) n T2 V = 0 contains M. 

Now when H
2 

is constructed it will be sufficient to keep the link s of 

H
2 

as subsets of O. 

Notice that H
1 

is a compact set. Hence, T1 and T2 are uniformly 

continuous on H
1

• Therefore, we can satisfy condition (2) by construct

ing an appropriate a-chain about M. Condition (3) is consequence of the 

normality of E
2

• 

Let T
11

, T
12

, and T
21

, T
22 

denote homeomorphisms satisfying the 

conclusion of Lemma 2 with respect to the chains T1 (H2) and T2 (H2), 

respectively. Let H
3 

be a collection of open di sks covering M, such 

the H
3 

sa tisfies the def in it ion of cha inabl e-with-n ice-1 inks with ,_ 
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replaced by a number less than 1/2 3 and small enough so that no two of 

point in common. Notice that the preceding condition follows as a con

sequence of the argument used for T1 (H2) and T2 (H2). 

Continue this process inductively. Let k be any sequence of the 

digits 1 and 2, of which there is an uncountably collection. 

be the first n digits of k. We have the sequence H1 , Tk (H2 ), 
1 

Let k 
n 

\ [Tk (H
3

) l, . . . By construction each chain of this seq uence covers 
2 1 

the succeeding chain including its boundary; hence, if Mk is the inter-

section of the closure of the above sets, it follows that~ is a con

tinuum. We will show that, for each k, the continuum~ is equivale nt 

to M. 

Let Tk b~ a mapping defined as follows: (1) For a point p not in 

M let n be the first integer such that p does not lie in any element 
p 

of the chain H and n p 

each pin M there is 

let Tk (p) be the point Tk [ ••• Tk [\ (p ) H (2) 
n 2 1 p 

an infinite sequence of open disks R1, R2 , ••• , 
00 

one from each of the chains H1 , H2 , ••• , such that p = (] R .• It is 
1 1 

For 

clear that pis the only point common to all of the open di sks R1 , R2 , 

If in each of the corresponding open disks R1, Tk (R2), \ [\ (R3)l • • • 
1 2 1 

there is constructed a corresponding sequence of points {y }, then this n 

sequence is Cauchy; that is, given a positive number£ there exist an N, 

such that l/2N < E and, hence, for m, n > N we have d(y , y ) < E . We m n 

therefore have a unique point g which is converged to by the sequence 

We shall now show that Tk i s injective. Suppose to th e contrary 

that two points p and g exist in E2 such that Tk(p) = Tk(g). If p and 

g are not in M then Tk(p) = Tk ! ••• Tk [Tk (p)II = Tk [ ••• Tk ITk (g)ll= 
n 2 1 n 2 1 

p g 



Tk ( g) • If n = n then p = g. g p since 

(p) I Tk (g). 
n 

g 

Similar arguments suffice for p ~Mand g £ M. 
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Therefore, let p and g be elements of M. Then there exists an m such 

that pE. R. and g€. R., i /= j, where R. and R. EH and R. n R. = ¢, 
1 J 1 J m 1 J 

hence, Tk(p) J Tk(g). Thus, Tk is an injective map. 

To show that Tk is a surjective map, we let g be a point which is 

not in~• Then there exists two open sets U and V such that Mk CV, 
- -

g E U, and U n V = ¢. Since ~ C U it follows that there exists an m 

such that the chain Tk [ ••• Tk [Tk (Hm)]] whose links have diameter les s 
m-1 2 1 

than 1/~, lies in U. If n is the least of such integers m, then for g 

any x not in a link of Hn , Tk(x) = T [ ••• Tk [Tk (x) 11 • Since g is 
ng 2 1 g 

such a point and Tk is the composition of surjections, we see that there 

exists a point p such that Tk(p) = g. 

If g is an element of Mk' then g is an element of each of the sets 

R
1

, Tk (R
2

), Tk [Tk (R
3 )] ••• , where R

1
, R

2 , R
3

, ••• , is an infinite 
1 2 1 

sequence of open disks, one from each of the chains H
1 , H

2 , H
3

, ••• 
00 00 

Let p€JJ Ri;then by condition (2) p is the only element in ~ Ri. Thus, 
00 

p = ~Ri, and hence, Tk(p) = g. Consequently, Tk is a surjection. 

To show that Tk is continuous we suppose that we have a sequence 

{x} converging top where p fails to lie in M. As we have seen before, n 

conditions (2) and (3) guarantee us the existence of an integ er n , such 
p 

that pE. E2 
hence, Tk(p) = \ [ ••• Tk [Tk (p)ll -

n 2 1 
p 

-
Since H is a 

n 
p 

closed set, we have that E
2 H is open; hence, there exists an N such n 

E2 -
p_ 

[ ... that for m > N we have X ~ H . Since Tk(xm) = T \ m n n p p 2 

r Tk (x ) l] for all x C. E
2 

- H , and each Tk. is a homeomorphism, we 
1 m m np 

1 
see that the sequence · {Tk (xn)} will converge to Tk (p). 
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Consider the sequence' {x } converging to p where p (:. M. Correspond
n 

ing top is an infinite sequence of open disks R1, R2 , ••• where each Ri 

is a link of Hi. Suppose that Tk(p) = g. Since R. is an open set, 
l 

there exists an N such that for n > N we have x ~ R.; hence, Tk. [ ••• 
- n l 

l 

Tk [ Tk ( x ) ] ] €. Tk [ • • • Tk [ Tk ( R . ) )l c N ( g , 1 / 2 i ) • 
2 1 n i 2 1 l 

Furthermore, 

Tk [ ••• Tk [Tk (x )]] €. N(g, 1/2i) for each n ~ N. 
i 2 1 n 

From this we can 

conclude that the sequence ' {Tk(xn)} converges tog. Consequently, Tk 

is a continuous bijection from E2 to E2• 

It follows from Lemma 1 that Tk is a homeomorphism, thus M and Mk 

are equivalent in E2• 

Corollary. If Mis a chainable continuum (not necessa ril y i n the 

plane), then there is an uncountable collection G of pairwise disjoint 

equivalent continua in E2 such that each is homeomorphic to M. Thus, 

each chainable continuum has a thin embedding in E2• 

Proof. Recall from Section III that if a continuum Mis chainable 

in a space S, then there exists a continuum M1 in E2 which is homeomor

phic to M such that M1 is chainable-with-nice-links [11. To the con

tinuum M1 apply Robert~ Theorem to obtain the se t G. 

It should be noted that one cannot conclude that if th e continuum 

M of the above corollary is already in E2 , then G can be found so that 

each element of G is equivalent to M. Examples M1 and M2 which follow 

illustrate this. 

Robert~ Theorem offers sufficient conditions for a continuum M to 

be thin in E2• An example of a continuum which fails to satisfy the 

hypothesis of Robert~ Theorem yet is thin in E2 i s that of the si mple 

clo!,ed cur ve ( see Fi.gure 12). 
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Consider the following question: Does there exist a continuum 

Min E2 which fails to be thin in E2 yet has a homeomorphic image which 

is thin in E2
? The following examples show that the answer to the 

above question is affirmitive. 

In Section III (see Figure 27) we constructed a continuum M2 in 

E2 which is chainable-with-nice-links. Next we consider the continuum 

M
1 

(see Figure 23) in E2 which is homeomorphic to M2 but fails to be 

chainable-with-nice-links. We intend to show that (1) M1 and M2 are not 

equivalent in E2 and (2) that M1 is not thin in E
2

• 

Assume that M
1 

and M
2 

are equival ent i n E2 , that i s , th ere exi s t s 

a homeomorphism h from E2 to E2 which take s M2 onto M1• Sinc e M2 is thin 

. E2 in , it follows from Theorem 7 that there exists a sequence of dis-

joint continua ' {Ln}, each equivalent to M2 , in E
2 

which converges homeo

morphically to some continuum M2 • equivalent to M2 • We may as well 

assume M
2

• = M
2 

since they are equivalent. Applying Theorem 9, we see 

that ' {h(Ln)} converges homeomorphically to M1• We shall now show that 

such convergence is impossible. 
H 

Figure 30 



40 

Notice that if the sequence {h(Ln)} converges to M1 , it must do so 

from the right hand side (as M1 is pictured in Figure 30). As was seen 

in the example of the sin 1/x continuum (see Figure 7, Section I), the 

head of h(L ), which we shall call K, must converge homeomorphically 
n n 

to the head H1• Next construct an arc Y from the point f on M1 to the 

point a on H1 in such a way that the arc Y formed intersects no element 

of the sequence · {h (L )} • 
n 

2 
Notice that M1U Y separates E into the two 

complementary domains U and V. Let U designate the complementary do

main which is bounded. It can now be argued that for sufficiently large 

n each K must have a vertical l ength very close to 6 units. Thus , we 
n 

see that if Kn C U then Kn appears as 11 is pictured in Figure 30. 

Similarly, if K C. V then K must fold as 12 does in Figure 30. In 
n n 

either case each K has a fixed fold. n 
As was seen in Figure 6, such 

a sequence of arcs cannot converge homeomorphically to the unfolded ver

tical arc H1• 

Consequently, M1 and M2 are not equivalent in E2 • Using arguments 

as above, we al so see that no sequence' {M:J of disjoint continua ( equi

valent or not) can converge homeomorphically to M1• Thus, it follows 

from Theorem 7 that no uncountable collection of disjoint continua, 

each homeomorphic to M1, can contain uncountably many continua equiva

lent to M1• 

The situation here is in contrast to properties claimed in [sl 

about the continuum M1• 
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V. S~E RELATED QUESTIONS 

We have compiled a collection of ten questions which have arisen 

during the preparation of this paper. These questions may be of interest 

to anyone who has coin?leted a study of Sections I through IV. We further 

add that although some of the questions have been answered, there are 

questions for which we found no answer. 

Question 1. 
co 

If {M } is a sequence, of chainable continua equivalent 
n o 

which converges homeomorphically to M, then is M chainable-o 0 

with-nice-links? 

Question 2. Does there exist a continuum M which has an uncount

able number of inequivalent thin embeddings in E
2

? 

Answer. Yes. An argument similar to that used in connection with 

the continuum in Figure 20 shows us that the continuum C below has an 

uncountable number of inequivalent embeddings in E
2

, all of which are 

chainable-with-nice-links. It follows from Robert~Theorem that each 

embedding is thin. 

C 

- .. 1LJ \ \. 

Figure 31 

Question 3. If G is an uncountable collection of disjoint equiva

lent chainable continua in E2 , then is each element of G chainable-with-
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nice-links? 

Notice that Question 3 is actually the converse to Roberts Theorem 

in Section IV. An affirmative answer to Question 1 would supply an 

affirmative answer here, in view of Theorem B. 

Question 4. Is there a continuum with uncountably many pairwise 

disjoint inequivalent embeddings in E2? Is the continuum in Figure 31 

such an example? 

Question 5. Does there exist a sequence of disjoint continua 
00 

{M} converging homeomorphically to M, such that no two elements of 
n o o 

{M } are equivalent. 
n 

Answer. Yes. Consider the continuum C in Figure 31. As before, 

we can associate the sequence "'0, O, o, .•. > with C (see Figure 19). 

Define the continuum M corresponding to<O, O, ••• , O, 1, O, ••• >, 
n 

where 1 is in the nth position, by "flipping" the nth sin 1/x curve of C 

to the opposite side of C and making M disjoint from C and the other 
n 

M. 's. The reader should be able to convince himself that the sequence 
l 

{Mn} can be constructed to converge homeomorphically to C. 

Question 6. 
00 

If {M.} is a sequence of disjoint equivalently 
l 0 

embedded continua in E2 converging homeomorphically to M, then is M 
0 0 

Cannon arid V,ayrnent I 5 I claimed a negative answ2r to thi s que stion, 

but we have shown that one of the counter example s they cited (namely 

the continuum M1 in Figure 23) does not satLfy the conditions of the 

question. Furthermore, there is evidence that the other proposed counter 

example referred to in (5) fails for the same reason. 
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Question 7. If a chainable continuum M in E2 is free from itself, 

then is M chainable-with-nice-links? 

A continuum Mis free from itself in E2 if, for each positive num

ber o, there exi sts a a-homeomorphism h of E2 onto itself such that 

h (M) M = ~-

Question 8. If a continuum Min E2 is chainable-with-nice-links, 

then is M free from itself? 

Ansv.er. Yes. A technique such as described in the proof of 

Roberts' Theorem seems to yield a proof. 

Question 9. If a continuum Min En is free from itself in En, 

then is M thin? 

Answer. Yes . It is not difficult to extend the technique in the 

proof of the main theorem in 00] to establi sh the affirmative an swer. 

Question 10. If {Mi}; is a sequence of disjoint equivalent con-

tinua in E2 converging homeomorphically to M o' then is M free from 
0 

itself? 

An answer here would be of interest in light of Question 6. 
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