
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

1986

Automatic Ordering of Program Units for Execution Automatic Ordering of Program Units for Execution

Ronald D. Williams
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Williams, Ronald D., "Automatic Ordering of Program Units for Execution" (1986). All Graduate Plan B and
other Reports. 1169.
https://digitalcommons.usu.edu/gradreports/1169

This Report is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/1169?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

AUTOMATIC ORDERING OF PROGRAM

UNITS FOR EXECUTION

by

Ronald D. Williams

A report submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

UTAH STATE UNIVERSITY
Logan, Utah

1986

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Wendell L. Pope,

Department of Computer Science, Utah State University, for the help

given to me as I have proceeded to obtain my master's degree in

computer science. His help and suggestions have been very helpful. I

would also like to thank my other committee members, Dr. Donald Cooley,

Computer Science, and Dr . David Luthy, Accounting, for their time and

help .

A special word of appreciation is extended to my parents , Joseph

R . and Helen P. Williams of Ogden, Utah, for the considerable support

and encouragement they have given me as I have worked towards this

degree.

ACKNOWLEDGEMENTS

LIST OF FIGURES

ABSTRACT

Section

1 . INTRODUCTION

TABLE OF CONTENTS

2. A NON-PROCEDURAL PROGRAMMING SYSTEM

2.1 System Definition
2.2 Completeness Test
2 . 3 Feasibility Test
2 .4 Order Constraints
2.5 Imposed Ordering

3 . SEMAPHORES

3 . 1 Semaphore Definition
3 . 2 Semaphore Use

4. ORDERING PROGRAM OVERVIEW

4 . 1 Language and System
4 . 2 Graph Data Structure
4 . 3 Graph Construction
4 .4 Completeness Test .
4.5 Feasibility Test
4 . 6 Semaphore Placement

5 . USE OF THE ORDERING PROGRAM

5 . 1 Source Program
5 . 2 Flagging
5 . 3 Instructions for Use
5.4 Sample Input and Output

6. SINGLE AND MULTIPROCESSOR ENVIRONMENTS

6 . 1 Single Processor Environment
6 . 2 Multiprocessor Environment
6 . 3 Multiprocessor Syncronization
6 . 4 Conclusion

iii

page

ii

V

vi

1

3

3
4
4
4
5

6

6
9

12

12
12
14
15
16
17

19

19
20
22
24

28

28
29
30
31

REFERENCES

APPENDIX

Appendix A.

TABLE OF CONTENTS (continued)

Order Program Listing

iv

33

34

35

LIST OF FIGURES

Figure

1. Directed Graph

2. Graph Data Structure Representation

3. Pre-existing inputs .

4. Source Program Input

5. Directed Graph Representation of Source Program

6. Output with Semaphores Inserted

7. Dual Processor Execution Times

V

Page

13

13

24

24

25

27

29

ABSTRACT

Automatic Ordering of Program

Units for Execution

by

Ronald D. Williams, Master of Science

Utah State University, 1986

Major Professor: Wendell L . Pope
Department: Computer Science

vi

A program written in today's sequential programming languages

must be written according to a rule which states that source instruc

tions must be written in their exact order of execution. A better rule

would be to let the programmer write the instructions in any order he

wants- - then let a program figure out the proper order of execution.

Such a system applies not only to individual instructions in a pro

cedure or program, but to procedures in a program and to programs in a

job stream.

This paper and its associated automatic ordering program introduce

a method by which instructions can be written in any order. The

ordering program analyzes the source instructions and determines their

order of execution. Semaphores are utilized by the ordering program to

control the order of execution of the source instructions. Were this

system to be used in conjunction with a compiler, the user of such a

compiler would no longer be forced to worry as much about the order of

his source instructions. Thus, the programmer would be able to

vii

concentrate more on the "what" of programming rather than so much on

the "how" of programming. The programmer, then, would be writing

programs at a higher level than is possible with current higher level

languages.

(57 pages)

1

1. INTRODUCTION

In the current sequential programming environment, a programmer

must pay explicit attention to the order of statements in a procedure,

the order of procedures in a program, and/or the order of programs in a

job stream . This is necessitated by the fact that the input to a

program unit (where a program unit can be a statement in a procedure , a

procedure in a program, or a program in a job stream) often must have

been previously created by another program unit. In other words, if

program A creates file X as output and program Buses file X as input ,

then program A must finish executing before program B can start exe

cuting .

This project is an exercise i n implementing an automatic ordering

technique which will determine when all inputs have become available

to a particular program unit . The potential benefits of automatic

ordering of program uni ts extend into two areas . First, the use of

automatic program unit ordering allows the programmer to concentrate on

programming at a higher level than is possible in the current sequen

tial programming environment . The programmer can concentrate more on

the "what " of programming rather than so much on the "how" of program-

ming . Second, the use of automatic program unit ordering allows

different program units to execute concurrently on different processors

in a multiprocessor environment. The problem of scheduling the program

units on two or more processors thus becomes easier.

This project has attempted to address the above issues. Needless

to say , more research remains to be done. However, a basic algorithm

2

to implement automatic program unit ordering is presented in this

project.

Definitions of three terms used extensively by this project are

given at this point.

Program unit: A program unit consists of a distinct and separable
element of a program. Thus, a program unit can theoretically be
an individual statement in a procedure, a procedure in a program,
or a program in a job stream. The actual syntax of the program
units as used by this project is given later in this paper.

Source program: A source program is a program which is analyzed by the
automatic ordering program. In following the convention described
under the definition of "program units," a source program can
theoretically consist of a procedure of statements, a program of
procedures, or a job stream of programs. The actual syntax of the
source program as used by this project is given later in this
paper.

Ordering program: The ordering program is the program which analyzes
the source program and automatically determines the order of
program unit execution.

3

2 . A NON-PROCEDURAL PROGRAMMING SYSTEM [2]

2.1 System Definition

A formal definition of the project is given in this section. A

less formal and more intuitive description is given in section 4.

In any multiprogramming or multiprocessing environment where a

number of programs units are to be executed, the question of their

order of execution arises . That is, given a set of program units , how

can they be ordered for execution?

Let Q1, Q2, . . . ' Qn be the program units to be ordered. Let INi

be the input set for Qi, and OUTi be the output set for Qi. That is,

INi - (Xil, xi2• .. . ' Xik) and OUTi - (Yil• yi2 • . .. ' Yim) ·

The Qi can be a collection of statements, procedures, or tasks in

one program , a collection of interdependent programs , or any combi

nation thereof. The INi and OUTi can be sets of files, variables, or

parameters.

Assume that the Qi are all submitted to be run , but the order is

unspecified . We classify the Qi as follows:

1) Any Qi with a null input set may begin executing.

2) Any Qi whose input set consists entirely of existing resident

files may begin executing.

3) All remaining Qi must be interdependent, i.e . , the output

from one must be produced before another can begin.

In order to determine the dependencies of the program uni ts as

classified above, we form a directed graph as follows : Search the

output sets of all Qi for inputs for Qj . If an input for Qj is an

output of Qi, then Qi must precede Qj and <i,j> is a directed edge in

4

the graph, and Qi and Qj are vertices in the graph. Repeat the search

for all j.

2.2 Completeness Test

The system is complete and the graph is finished when inputs for

all Qj have been found. Failure to find one or more inputs means the

system can not run and the user must be notified to remove the defi

ciency.

2.3 Feasibility Test

If the graph has a topological ordering of its vertices, then it

has no cycles and the system is feasible and can be run. If the

system is not feasible, then the cycles must be reported to the user

so they can be removed.

2.4 Order Constraints

An ordering of the Qi is established by the topological ordering

described above . To run the system in that order, establish a sema

phore, Sij• for each directed edge, <i,j>, in the graph. Initial

ize all the S ij to zero. Prefix Qj with P (S ij) and suffix Qi with

V(Sij) (the P and V operations are described in detail in section 3).

P(Sij) causes Qj to be blocked from executing when Sij - 0,

and if Sij - 1, Qj passes its P and may begin executing . V(Sij) sets

Sij equal to one and causes a search to see if Qj is amongst the set of

all blocked program units. If it is, Qj is moved to the ready state so

that it can begin executing. In a multiprocessing environment, any of

potentially several program units in the ready state can be selected

for execution.

5

2.5 Imposed Ordering

Several methods suggest themselves for allowing users to estab

lish an order between any pair of program units not ordered by input

output constraints. One method would be for the user to establish an

artificial input-output dependency between the two units. Another

method would be to allow the user an opportunity to add an edge to the

graph after the completeness test is done. Yet another way would be to

give the user the capability to define a semaphore, but this has the

disadvantage of having to be done after the feasibility test, and may

cause the system to be infeasible. The feasibility test would have to

be done again. The issue of imposed ordering has not been addressed by

this project. It could, however, be addressed at some future time .

6

3. SEMAPHORES

3.1 Semaphore Definition

Since the mechanism used by this system to control the order of

program execution is the semaphore, a definition and description of

the semaphore is given in this chapter. The semaphore was introduced

by Dijkstra in 1965 and is commonly used as a process control mecha-

nism. [l]

A semaphore is nothing more than an integer variable with access

constraints . Other than at initialization , a semaphore can only be

accessed by two atomic operations: P and V. The definitions of the P

and V operations are :

Procedure P(Sij);
begin

A: if FLAG then goto A;
FLAG :- true;
if Sij - 0 then BLOCK(Qj) ;
FLAG :- false ;

end ;

Procedure V(Sij);
begin

A: if FLAG then goto A;
FLAG :- true;
Si· :- Si· + l;
i°f1Qj is i1ocked then MOVE(Qj);
FLAG :- false;

end;

where S- • is a semaphore and Q1- is a program unit . [2] 1.J

When semaphores are used, we must consider the problem of mutual

exclusion. That is, if a P operation is executing on a given sema-

phore, we cannot allow a V operation (or visa versa) to begin executing

on the same semaphore. The use of the FLAG will prevent this. When a

P or V operation is entered, the value of the FLAG is checked. If it

7

is equal to TRUE, then the corresponding V or P operation on this

semaphore is currently exec _uting and the IF statement will continue to

execute until the value of Fl.AG becomes equal to FALSE. Once the Fl.AG

is set to FALSE, the IF statement is passed and the Fl.AG is once

again set to TRUE. Mutual exclusion is now ensured.

Another problem encountered when semaphores are used is that of

indivisibility of P and V. That is, if a P (or a V) operation is

currently executing, we cannot allow it to be interrupted by another

instance of execution of the P (or the V) operation. Such a problem

can be handled by disabling the hardware interrupt capability upon

entering a P or V, and re-enabling it upon exit. This will ensure that

a P (or a V) operation which is executing on a given semaphore will not

be interrupted and the integrity of that P (or that V) operation will

not be threatened .

The P and V operations manage two queues of program units. P puts

program units on the BLOCK queue. V moves programs uni ts from the

BLOCK queue to the READY queue . [2] Such control is performed as

follows: Qj invokes P(Sij). As the P operation executes, the value of

the semaphore Sij is checked. If Sij is equal to zero, then program

unit Qj is placed on the BLOCK queue where it will remain until it is

removed by a V operation (to be described shortly) and control given

to the CPU scheduler. If S ij is not equal to zero (meaning the

associated V operation has already executed), then control returns to

Qj as it has passed its P. After passing all the P's preceding it, Qj

can begin executing.

CPU scheduler.

Scheduling the execution of Qj is given to the

8

When Qi finishes executing, all the V(Sij) following it are

invoked. When the V operation executes, the value of the semaphore Sij

is incremented by one. The BLOCK queue is then searched for Qj (which

was placed there by a P operation). If Qj is found, then the MOVE

operation will transfer Qj from the BLOCK queue to the READY queue and

control will then be returned to the calling process . We must be

careful when searching the BLOCK queue for a particular Qj since a

given Qj can be placed on the BLOCK queue more than once. Such

a situation will occur if a Qj is preceded by more than one P opera

tion . Two possible solutions to this problem exist.

The first solution allows a Qj to exist on the BLOCK queue more

than once, but a flag is associated with each occurrence of Qj . When a

P operation on an Sij is executed, the Qj is simply placed at the end

of the BLOCK queue. Then, when searching the BLOCK queue for a Qj we

must see if it exists on the queue more than once and if so , we can not

move Qj to the READY queue until all instances of Qj on the BLOCK queue

have been given authority to execute . Such authority can be given by

setting the flag on each instance of Qj when that instance has been

given authority to execute. Once all instances of Qj have had their

flag set, then Qj can be moved to the READY queue and all Qj on the

BLOCK queue can be removed .

The second and probably better solution is to associate a counter

with each Qj. Each time a P operation on an S ij is executed, a search

is made for Qj on the BLOCK queue. If Qj is found, its counter is

incremented by one . If Qj is not found, it is added to the BLOCK

queue and its counter is set to one. Then, each time a V operation

9

is executed on Sij• Qj is found on the BLOCK queue and its counter is

decremented by one. When the counter reaches zero, Qj is ready to

execute and can be moved to the READY queue.

As already mentioned, the second solution is probably the better

solution. By allowing only one occurrence of Qj to exist on the BLOCK

queue, the system is both easier to comprehend and easier to imple

ment. The searching algorithm is easier since only one occurrence of

Qj has to be found on the BLOCK queue. Another advantage is that the

length of the queue is shorter . With the first solution, the maximum

length of the queue is equal ton where n is the number of semaphores

in a source program. With the second solution, the maximum length of

the queue is equal tom where mis the number of program units in a

source program.

We note here that the P and V operations must interface with the

operating system. Such an interface can not be covered by the limited

scope of this project. However, the implementor of such a system must

be aware that such considerations must be taken into account .

3.2 Semaphore Use

Assume that all the Qi are compilable program units in a given

language . All Qi will be embedded in a source _program of the same

language. The Sij are declared as global variables and are initialized

to zero. Each Qi is preceded by the appropriate calls to the P

operation, and suffixed by the appropriate calls to the V

operation. [2]

A specific example to show how semaphores work will now be given.

Three semaphores, Sl2, Sl3, and S23 are initialized to the integer

10

value zero. The calls to the P and V operations are then inserted into

a sample source program with program units Ql, Q2, and Q3 as shown.

Sl2
Sl3
S23

:-
:-
:-

P(Sl2)

O·
' O·
' O·
'

Ql V(Sl2) V(Sl3)
Q2 V(S23)

P(Sl3) P(S23) Q3.

The inputs and outputs to these program units have been intentionally

left off in order to simplify this illustration.

In the traditional procedural processing environment, Ql would

execute first, Q2 would execute next, and finally, Q3 would execute .

The programmer would have to explicitly order these program units. In

a non-procedural environment, the program units can theoretically be

listed in any order such as Q3, Q2, Ql. Also, in a multi processor

environment, some or all the program units can execute concurrently

depending on which program units are dependent on the completion of

other pro gr~ uni ts. These problems (non-procedurality and concur-

rency) will be controlled by P and V operations on semaphores.

Since program unit Ql does not have a P operation preceding it,

execution of Ql can begin immediately. Program unit Q2 has a P

operation on semaphore Sl2 preceding it. Since Sl2 was initialized to

zero, Q2 is placed on the BLOCK queue and must wait there until the V

operation on semaphore Sl2 _ following Ql is executed. Only after the V

operation following Ql is executed can Q2 can begin executing.

Likewise, since Q3 has P operations on semaphores Sl3 and S23 pre

ceding it, Q3 will be placed on the BLOCK queue and will remain there

until the V operations on semaphores Sl3 and S23 following both Ql and

11

Q2 are executed. In other words, Q2 is dependent on the completion of

Ql, and Q3 is dependent on the completion of both Ql and Q2.

As has been shown, the use of semaphores is a convenient way to

control the order of program execution . This convenience, however, is

totally dependent on the way in which semaphores are inserted into the

source program. If they are inserted manually by the programmer, then

no advantage is gained by their use since the programmer is still

explicitly defining the order in which program units can execute . The

benefits are gained when program unit ordering is done by an automatic

ordering technique and the semaphores are inserted automatically into

the source program .

12

4. ORDERING PROGRAM OVERVIEW

We have thus far discussed the needs and reasons for imple

menting an automatic ordering technique of program units. We have also

discussed the use of semaphores as a mechanism for controlling the

execution of these program units. We shall now consider the program

used to perform the ordering of the program units.

4 . 1 Language and System

The ordering program is written in Pascal on a VAX 11/780

running VMS/4.2 operating system.

4 . 2 Graph Data Structure

The main data structure used hy the ordering program i.s a directed

graph . A set of program units with inputs and outputs such as

Ql Yl Y2
Xl Q2 Y3 Y4
X2 Q3 YS
X3 Q4 Y6
X4 QS Y7
XS Q6 Y8

X6 X7 XS Q7

can be represented by a directed graph such as shown in figure 1 at the

top of page 13 . The directed graph of figure 1 can then be implemented

as a data structure as shown in figure 2 also on page 13 .

13

Figure 1 . Directed Graph

Ver te x name M . a1.n 12:raJ h ta bl e s uccessor 1· 1.st
01 0 2

f
3 l 1 l -

02 - 1 4 s I ; I -
03 1 6 I
04 1 7 I

05 1 7 I
06 1 7 I
07 - 3 I

D D p T s
E E R A u
s s E G C
C p D C
R T C L
I R 0 I
p u s
T N T

T

Figure 2. Graph Data Structure Representation

The graph data structure consists of a table of length n where n

is the number of vertices in the graph. Each program unit in a source

program corresponds directly to a vertex in the graph. In our ordering

program, n (or the size of the table) has been set equal to 100 since

we do not know in advance the number of program uni ts in a source

program. The table contains four columns . DESPTR is a pointer

to a description or name of the vertex . The name of the vertex is

the program unit. PREDCOUNT shows how many predecessors a vertex has.

TAG is a boolean value which will be used during topological sorting

14

and cycle reporting. SUCCLIST is a pointer to a list containing each

immediate successor of a vertex. The successor list can be of infinite

length.

4.3 Graph Construction

Before the graph can be constructed, the source program must

first be analyzed by a lexical analyzer. The lexical analyzer will

examine the source program and find each input of a program unit, each

output of a program unit, and the name of the program unit. The inputs

are placed in an input list structure in the same order in which they

are found in the source program, and the outputs are placed in an

output list structure in the same order in which they are found in

the source program. The program unit names are placed directly in the

graph data structure in the same order in which they are found in the

source program. The inputs and outputs can now be easily compared as

will be described below. In addition to the input and output lists

just described, a list is also created which contains all pre-existing

inputs. Once the input, output, and pre-existing input lists are con

structed, the relationships between the inputs and the outputs of the

program units can be analyzed.

One of three conditions will exist if the source program is

written correctly. (1) If a program unit does not have any inputs

other than screen input or real-time input, then this program unit is

not dependent on any other program unit in the source program. This

program unit can be inserted into the graph with its PREDCOUNT set

equal to zero. (2) If a program unit has inputs that are all pre-

existing, such as resident files, then this program unit is not

15

dependent on any other program unit in the source program. This

program unit can also be added to the graph with its PREDCOUNT set

equal to zero. (3) If a program unit Qj has inputs which are created

as the outputs of another program unit Qi, then program unit Qj is

dependent on program unit Qi since Qi's output is used as input by Qj.

Since there is a dependency between these two program units, an edge

is inserted into the graph. This edge consists of a successor record

being linked to the SUCCLIST list of graph record i (since i is the

predecessor). This successor record contains the value j . Since j now

has a predecessor, the PREDCOUNT field of j is incremented by one .

Since one program unit can produce more than one output, and since

another program unit can use . one or more of these outputs as its

inputs, care must be taken to ensure that an edge between two vertices

is not created more than once . In other words, if an edge between two

vertices already exists, then an attempt to insert another identical

edge into the graph will be flagged. If the edge already exists, the

identical edge will not be created .

4 . 4 Completeness Test

At the same time the graph is being constructed, the completeness

test is being performed. The completeness test fails if a program

unit uses an input, but this input is neither an output from another

program unit nor a pre-existing input. If a completeness error is

found, a message indicating the error and the location in the source

program where the error ocurred is reported. Construction of the graph

continues with the next input. However, processing will terminate

after all inputs in the source file have been checked for completeness.

16

4.5 Feasibility Test

Once the graph is constructed, the feasibility test is performed.

The feasibility test consists of performing a topological sort of the

graph. If the sort is successful, then no cycles exist in the source

program and the source program is feasible . If the topological sort

fails, then at least one cycle exists in the source program and the

system is not feasible. A cycle reporting routine is then called and

the first cycle encountered is reported. Should more than one cycle

exist, only the first cycle encountered is reported . The cycle must

be removed and the graph rebuilt.

reported at this time.

If another cycle ex ists, it will be

Topological sorting is performed by first checking the value of

each vertex' s PREDCOUNT. If the value is equal to zero, then this

vertex has no predecessors and can be ordered . This vertex is inserted

into an eligibility queue . Vertices are removed from the eligibility

queue one at a time and are, at that time , considered ordered . After a

vertex is removed from the eligibility queue, the PREDCOUNT of this

vertexs' successors can be decremented by one . When a vertex's

PREDCOUNT reaches zero, it is eligible for ordering and is inserted

into the eligibility queue . This process continues until (1) all

PREDCOUNTs become equal to zero in which case no cycles exist, or

(2) until there are some PREDCOUNTs not equal to zero, and ., at the same

time , no vertices exist in the eligibility queue in which case at least

one cycle exists. [3] Cycle reporting is performed only when the

topological sort routine determines that a cycle exists in the graph .

If a cycle exists , the vertex on which the topological sort halted is

17

the first vertex in the cycle. All successors of this vertex are

examined to determine if they are involved in the cycle . If they . are,

the TAG field associated with this vertex is set to TRUE. When all

vertices involved in the cycle are found, the cycle is reported The

cycle is reported by listing the first vertex in the cycle, all

subsequent vertices in the cycle, and finally, to complete the cycle,

the first vertex in the cycle is listed again . (3)

4 . 6 Semaphore Placement

When the graph has been found to contain no cycles, the feasi

bility test is successful and the semaphores can be inserted into the

source program. This is a very simple matter . Each vertex of the

graph is examined for its successors. The edge between a predecessor

and its successor represents a precedence relation . A semaphore is

generated to represent the edge . The program unit representing the

predecessor vertex in the graph and the program unit representing the

successor vertex in the graph are then found in the source program. A

P operation on the semaphore is inserted before the successor program

unit and a V operation on the semaphore is inserted after the prede

cessor program unit.

A semaphore is generated by prefixing an "S" to two three-digit

integers. The "S" is used to satisfy the requirement that identifier

names begin with a character. The first three-digit integer following

the "S" represents the location (or line number) in the source program

where the predecessor program unit is found. The second three digit

integer following the "S" represents the location (or line number) in

the source program where the successor program unit is found.

18

When all semaphores have been inserted, the original source

program is replaced by the new source program. The new source program

can now be used in conjunction with a compiler which implements sema-

phores. The actual interface between the ordering program and a

compiler is not addressed by this project.

19

5. USE OF THE ORDERING PROGRAM

5.1 Source Program

To use the ordering program, a set of compilable program units

together with the inputs and outputs for each of the program units,

is submitted to the ordering program. Any name can be given to the set

of program units. An example of such a set is

Xl X2
X3

X4 X6

Ql
Q2
Q3
Q4

Y3 Y4
YS
Y6
Y7

where Xl and X2 are inputs for program unit Ql, and Y3 and Y4 are

outputs for program unit Ql. Since the ordering program will auto-

matically order the program units in the correct order of execution,

the order in which inputs and outputs for a given program unit appears

is immaterial, except that the inputs and outputs for a given program

unit must be associated with that program unit by appearing on the same

line. In other words, inputs and outputs can precede the program unit,

the program unit can precede the inputs and outputs, and so forth. In

our example, inputs precede, and outputs follow the program unit. Such

an order is not mandatory, but is done here for purposes of illustra

tion. Syntax rules are as follows: A line of the source program may

begin in any column of a source record . One or more blanks can

separate entries in a source record . The maximum line length is 80

characters. All inputs must begin with the letter "X". An integer

value must follow the "X". All program unit names must begin with the

letter "Q". Up to 49 characters can follow the "Q". All outputs must

begin with the letter "Y". An integer value must follow the "Y". If

20

an "X" and a "Y" are both followed by the same integer value, then this

input and output represent the same data and an edge will be created in

the graph to indicate the dependency between these associated program

units. The inputs and outputs are optional, but a program unit name is

mandatory. An error message will be generated if one does not exist on

every line of the source program. The "X"' s , "Y"' s, and "Q"' s can be

either upper or lower case letters . A source program can be up to 100

lines in length.

In addition to the source program, a file which contains pre

existing inputs must be created. As with the source program, the names

of pre-existing inputs must begin with an "X" and be followed by an

integer. At least one space must separate inputs . Input records are a

maximum of 80 characters in length.

We should note here that this project is an exercise in the

ordering of program units and is not an exercise in parsing. While the

ordering program does perform some syntax checking, the amount done is

minimal and the user must be aware that his input needs to be syntacti

cally correct.

5 . 2 Flagging

As discussed in the previous section, each input, each output, and

each program unit name is specifically flagged as such . That is, every

input must have an "X" preceding it, every output must have a "Y"

preceding it, and every program unit name must have a "Q" preceding

it . When the lexical analyzer examines the source code, it specifi

cally looks for an "X", a "Y", or a "Q" . When it finds one of these

three characters, the lexical analyzer knows it has found either an

21

input, an output, or a program unit name respectively. After finding

an identifying flag, the lexical analyzer looks for the remaining

characters associated with the just found flag.

inputs, outputs, and program unit names.

Blanks delimit the

This method of lexical analysis has costs associated with it.

These costs come from two areas. (1) The space needed in the source

program file to store each of the flags. (2) The time required by the

lexical analyzer (and hence the CPU) to search for these flags.

However, such a method of lexical analysis does have its benefits.

Locations of inputs, outputs, and program unit names can be arbitrary.

In other words, outputs can precede inputs, program unit names can

follow inputs and outputs, and so forth. This does, in fact, raise the

level of programming to a higher level (restrained only by the fact

that inputs and outputs must remain on the same line of the source

program as their associated program units).

If the costs associated with this method of lexical analysis are

considered to be too high, an alternative method does exist for

performing the lexical analysis. We can place all inputs into an

input set and all outputs into an output set . Such sets can be

specified as !Ni - (Xil• Xi2• ... , Xik) for the input set and

OUT i - (Y il, Y i2, ... , Yim) for the output set. We can now require

that all inputs (or the input set) precede the program unit name, and

all outputs (or the output set) follow the program unit name. Then,

when we perform the lexical analysis, we will begin looking only for

inputs and will continue to do so until we find a program unit name.

The individual inputs will, in this case, be identified only by the

fact that a delimiter will precede and follow each input.

22

No flags

will be associated with the input. Once the program unit name is

found, we will then look only for outputs and will continue to do so

until we find the end of the source line. As with the inputs, the

outputs will be identified only by a delimiter preceding and following

each output.

We now have a simpler lexical analyzer. We also require less

secondary storage to store the source program and we spend less CPU

time to perform the lexical analysis. We have, however, lost the

flexibility associated with the flagging method. Which method to use

can be determined only by the intended use of the ordering program. We

note that this project · uses the first method just described- -the

flagging method.

and flexibility.

Such a decision was made for reasons of simplicity

By requiring all inputs, outputs, and program unit

names to be flagged as such, recognizing which of the three constructs

(input, output, or program unit name) we have found becomes much

easier. In using the first method, we do not claim it is any better

than the second method- -only easier and more flexible. Each method

does, however, have the advantages and disadvantages just mentioned.

Which ones are given the most weight is a decision which must be made

by the implementors of a program such as our ordering program.

5.3 Instructions for Use

Once the input file has been created, the ordering program can be

run. Entering "R ORDER" will invoke the ordering program. The

following prompt will appear: "Program Source File:". The name of the

source program file is entered. The following prompt will then

23

appear: "Pre-existing Parameters File:". The name of the pre-existing

inputs file is entered. If a pre-existing inputs file does not exist

for a given source program, the ENTER key can simply be pressed without

entering the name of a file. The format of these files is given in the

next part of this section. The ordering program will now run to

completion. When it finishes, a message will be displayed indicating

how many program units were processed.

The following conditions will cause errors- -each of which will

cause an error message to be generated. (1) A syntax error in the

source program or in the pre-existing inputs file will cause an error

message to be generated. All syntax errors found in the entire source

program will be displayed. Remember, however, that only minimal syntax

checking is performed. (2) A completeness error, as discussed in

sections 2 and 4, will cause an error message to be generated. All

completeness errors will be displayed for an entire source program.

(3) A feasibility error, as discussed in sections 2 and 4, will cause

an error message to be generated. Only the first cycle encountered

will be reported. This cycle must be removed and the ordering program

run again to check for additional cycles. (4) Output errors will be

reported. If the insertion of semaphores into a source program line

causes that line to exceed 132 characters, an error message will be

generated and the output file will not be created .

When the ordering program successfully completes execution, an

output file containing the inserted semaphores is created. The file

will have the same name as the input file with an extension of ".SEM" .

24

5.4 Sample Input and Output

A sample input file consisting of 26 program units has been

generated. A pre-existing inputs file also was generated and is shown

in figure 3.

xl x2 x3 x4 xS x6 x7

Figure 3. Pre-existing Inputs

The source program input file is shown in figure 4. As described

above, the inputs begin with an "X", the outputs begin with a "Y", and

the program unit names begin with a "Q".

Ql y8 y9
x2 x3 Q2 ylO

x4 xS x6 Q3 yll yl2 yl3
x7 Q4 yl4

x8 xlO QS ylS yl6
x8 x9 Q6 y17

xlO xll xl2 Q7 yl8
xl4 Q8 yl9 y20

x13 xl4 Q9 y21 y22 y23 y24
xlS QlO y25

xl7 xl8 Qll y28
xl9 x21 x22 x23 x24 Ql2 y29 y30

xl6 x25 Ql3 y26 y27
x28 x26 x27 Ql4 y41 y42

x29 QlS y31
x30 Ql6 y32
x32 Ql7 y35 y36
x32 Ql8 y37

x31 x28 Q19 y33
x31 Q20 y34
x33 Q21 y38

x25 x34 Q22 y39
x35 x36 x37 Q23 y40

x38 x41 Q24 y43
x42 x43 Q25 y44 y45 y46 y47
x39 x40 Q26 y48

Figure 4. Source Program Input

25

The ordering program is run, the name of the source program file and

the name of the pre-existing inputs file are entered when their

respective prompts are displayed.

program is shown in figure 5 .

A graph representing the source

Figure 5. Directed Graph Representation of Source Program

26

The output produced by the ordering program is shown in figure 6. Note

that the semaphores are initialized to zero at the beginning of the

program. Also, the insertion of the semaphores has drastically altered

the format of the original source program. While this is not neces

sarily appealing to the eye, the context of the source program has not

been altered. One final note, the order of execution of the program

units is given at the bottom of the listing. · This order of execution

applies to both a single processor environment and to a multiprocessor

environment. Comparison of these two environments will be made in

section 6.

S001005 :- O· ,
S001006 :- O· ,
S002005 :- O· ,
S002007 :- O· ,
S003007 :- O· ,
S003009 :- O· ,
S004008 :- O· ,
S004009 :- O·

' S005010 :- O·
' S005013 :- O·
' S006011 :- O· ,

S007011 :- O·
' S008012 :- O·
' S009012 :- O·
' S010013 : =- O· ,

S010022 :- O·
' S011014 :- O·
' SOl.1019 :- O·
' S012015 :- O·
' S012016 :- O·
' S013014 :- O·
' S014024 :- O·
' S014025 :- O·
' S015019 :- O·
' S015020 :- O·
' S016017 :- O·
' S016018 :- O·
' S017023 :- O·
'

Figure 6. Output with Semaphores Inserted
(continued on next page)

S018023 := O;
S019021 := O;
S020022 :- O;
S021024 :- O;
S022026 :- O;
S023026 :- O;
S024025 :- O;

Ql y8 y9 V(S001005) V(S001006)
x2 x3 Q2 ylO V(S002005) V(S002007)

x4 x5 x6 Q3 yll y12 y13 V(S003007) V(S003009)
x7 Q4 y14 V(S004008) V(S004009)

P(S002005) P(S001005)
V(S005013)

P(S001006)
P(S003007) P(S002007)
P(S004008)

x8 xlO QS ylS y16 V(S005010)

x8 x9 Q6 y17 V(S006011)
xlO xll x12 Q7 y18 V(S007011)

x14 Q8 y19 y20 V(S008012)

27

P(S004009) P(S003009)
P(S005010)

x13 x14 Q9 y21 y22 y23 y24 V(S009012)
xlS QlO y25 V(S010013) V(S010022)

P(S007011) P(S006011)
P(S009012) P(S008012)

V(S012016)
P(S010013) P(S005013)
P(S013014) P(S011014)

V(S014025)
P(S012015)
P(S012016)
P(S016017)
P(S016018)
P(S015019) P(S011019)
P(S015020)
P(S019021)
P(S020022) P(S010022)
P(S018023) P(S017023)
P(S021024) P(S014024)
P(S024025) P(S014025)
P(S023026) P(S022026)

x17 x18 Qll y28 V(S011014) V(S011019)
x19 x21 x22 x23 x24 Q12 y29 y30 V(S012015)

x16 x25 Q13 y26 y27 V(S013014)
x28 x26 x27 Ql4 y41 y42 V(S014024)

x29 QlS y31 V(S015019) V(S015020)
x30 Q16 y32 V(S016017) V(S016018)
x32 Ql7 y35 y36 V(S017023)
x32 Q18 y37 V(S018023)

x31 x28 Ql9 y33 V(S019021)
x31 Q20 y34 V(S020022)
x33 Q21 y38 V(S021024)

x25 x34 Q22 y39 V(S022026)
x35 x36 x37 Q23 y40 V(S023026)

x38 x41 Q24 y43 V(S024025)
x42 x43 Q25 y44 y45 y46 y47
x39 x40 Q26 y48

Order of program execution:
Ql Q2 Q3 Q4 Q6 QS Q7 Q8 Q9 QlO Qll Q12 Q13 Q15 Q16
Ql4 Q19 Q20 Ql7 Q18 Q21 Q22 Q23 Q24 Q26 Q25

Figure 6. Output with Semaphores Inserted (cont.)

28

6. SINGLE AND MULTIPROCESSOR ENVIRONMENTS

A comparison of the ordering of program units in both a single

processor and a multiprocessor environment shall be considered in this

section.

6.1 Single Processor Environment

The main benefit of automatic program unit ordering in a single

processor environment is the relief the programmer will have of the

worry of arranging the program units in the correct execution order.

In the end, the result of automatic ordering and manual ordering are

the same . However, the increase in productivity of performing the

automatic method over the manual method is potentially quite dif-

ferent. We shall now consider the execution time for the program

units in a single processor environment. For purposes of illustration,

arbitrary execution times have been assigned to each program unit in

the sample program initially considered in section 5. These execution

times are contained in parenthesis following each program unit. Note

that these program units are listed in the same order in which they

will be executed:

Ql(6) Q2(5) Q3(10)

Q9(5) Ql0(9) Qll(S)

Ql9(7) Q20(6) Ql7(7)

Q26(6) Q25(9).

Q4(4) Q6(4) QS(S) Q7(10)

Ql2(4) Ql3(8) Ql5(6) Ql6(4)

Ql8(5) Q21(8) Q22(7) Q23(5)

Q8(8)

Ql4(5)

Q24(10)

Total execution time is derived simply by adding the execution times of

each individual program unit. Given the sample execution times, the

total execution time for all the program units is 168 time units.

29

6.2 Multiprocessor Environment

The benefits of automatic program unit ordering in a multipro

cessor environment are similar to the benefits of the single processor

environment. There are, however, some additional benefits. As with

the single processor system, the programmer does not need to worry

about the order in which he places the program units. Another benefit

of automatic program unit ordering is that the ordering of programs,

including the placement of semaphores in the source code, also deter-

mines which programs can execute concurrently . In a multiprocessor

environment , this benefit would aid greatly in the scheduling process ,

Using the same individual program unit execution times as used in the

previous section, figure 7 shows the total execution time for all

program units on a two processor system.

Processor #l

I 01
0

I 941 os I 961
6 10 15 19

I 022 I 0231 026 I
62 69 74 80

Processor #2

l Q2 I 03 I Q7
0 5 15

I 021 I 024 I
61 69 79

Figure

08

025

7.

010
27 36

013 I 0141
44 49

017 I 020 I
56 62

I 09 l 0111012 I 015 10161 0181 019 I
25 30 35 39 45 49 54 61

I
88

Dual Processor Execution Times

As can be seen, total execution time in a two processor environ-

ment is 88 time units. This is just slightly more than half of the 168

time units required on the single processor system . Needless to say,

30

the reduced execution time is a great benefit to the user. The auto

matic ordering of the program µnits just compounds the benefits.

Although not addressed here, similar benefits can also be obtained

on a multiprocessor system where more than two processors exist.

6 . 3 Multiprocessor Synchronization

One significant problem exists when using semaphores in a multi-

processor environment . This problem is the synchronization of the

different processors. For ex.ample , if two processors begin executing a

P operation at the same time, then the integrity of the P operation is

threatened . Likewise , if one processo r begins executing a P operation

on a given semaphore and another processor begins executing a V

operation on the same semaphore, once again the integrity of the

operation (P or V) is threatened . These problems are the same problems

of mutual exclusion and indivis i b i lity considered in 3 . 1 , only now, the

use of multiple processors complicates the problem even more.

must be taken to guard against such loss of integrity .

Steps

Synchronization of processors will alleviate this integrity

problem . Such synchronization must be performed at the operating system

level since it is at this level that the machines actually communicate

with each other. One method of synchronization involves the use of a

coordinator process residing on one of the processors . The coordi-

nator will ensure that mutual exclusion and indivisibility exists among

critical processes. In our case, the critical processes are the P and

the V operations. When a process (P or V) wants to invoke mutual

exclusion or indivisibility, it sends a request message to the coord-

inator . When the process receives a reply message from the coordi-

31

nator, it can begin executing. After the process is finished exe-

cuting, it sends a release message back to the coordinator.

When a request message is received, the coordinator checks to see

if some other critical process is executing . If no such process is

executing, then the coordinator sends a reply message back to the

requesting process. Otherwise, the request is queued and will later be

serviced when a release message is received from some other

process. [l]

Other methods of multiprocessor synchronization exist. Such

methods include the distributed approach and the token passing ap

proach. See [l] for additional information on these two methods.

6.4 Conclusion

We have attempted, through the implementation of this project, to

demonstrate that the automatic ordering of program units is not only

feasible from a technological standpoint, but is also desireable from

a programmer efficiency standpoint. In a single processor environment,

the programmer becomes more efficient since he is not required to worry

about the order is which he places program units. In a multiprocessor

environment, the programmer becomes even more efficient since he does

not have to worry about either program unit ordering nor program unit

synchronization. The synchronization of programs in a multiprocessor

system offers, by far, the most promising future for automatic program

unit ordering.

We should note that there are costs associated with automatic

program unit ordering. These costs include the additional overhead of

the ordering algorithms which in turn increases computer time used, the

32

additional complexity of compiling a program (program unit ordering

would be closely associated with the compilation process), and the

reduced control the programmer will have over his style and method

of programming. Historically, when new assemblers and compilers have

been introduced, these same questions of increased cost and computer

inefficiencies have been raised. Even so, the introduction of these

assemblers and compilers have resulted in benefits which have far

outweighed any cost and computer inefficiency considerations. Although

automatic program unit ordering does have additional costs associated

with it, additional research into the subject would surely provide the

information needed to efficiently implement such a system.

REFERENCES

1. Peterson, James L., and Silberschatz, Abraham. Operating System
Concepts. Addison-Wesley Publishing Company, Inc . Reading,
Massachusetts. 1985.

33

2. Pope, Wendell L. A Non-procedural Programming System. Department
of Computer Science. Utah State University. 1985.

3. Tremblay, J. P . , Sorenson, P . G. An Introduction to Data Struc
tures with Applications. McGraw-Hill, Inc. New York. 1976.

34

APPENDIX

35

Appendix A. Order Program Listing

program order(input,output);

(***)
(* *)
(* Program name: ORDER *)
(* *)
(* This program performs automatic ordering of program units for ex- *)
(* ecution. Given the following input *)
(* Xl X2 X3 Pl Y4 YS The output Y4 is the same as *)
(* X4 XS P2 Y6 Y7 Y8 the input X4 and the output YS *)
(* P3 Y9 YlO . is the same as the input XS . *)
(* We can see that Pl must execute before P2. P3 can execute any time*)
(* since it does not have any input parameters which are dependent on *)
(* any other program's output . Therefore, Pl and P2 can execute con - *)
(* currently with P3 . This program, given input like that shown above,*)
(* will calculate which program units can execute concurrently . *)
(* Semaphores wi ll be used to control the scheduling of the programs. *)
(* *)
(* The following modules exist in this system : *)
(* LEXICAL: Reads input parameters, output parameters , and *)
(* enters them into in list and out list linked *)
(* lists, respectively. The program names are also *)
(* read and are entered directly into the graph *)
(* data structure (GRAPH_REC). This module also *)
(* reads the names of parameters that are pre-existing*)
(* parameters and stores them in a linked list called *)
(* PRE LIST. *)
(* BUILD: This module takes the input parameter linked list *)
(* (in_list), the output parameter linked list (out_list), *)
('k and the pre_exist:ing parameters linked list (pre_list) , *')
(* and builds the graph data structure (graph_rec) using *)
(* the above mentioned linked lists . *)
(* CYCLES: This module takes the graph data structure (graph_rec) *)
(* and determines if any cycles exist in the graph . If one*)
(* or more cycles do exist, a message is sent to the user *)
(* indicating such and the nodes of the graph in the cycle *)
(* are then reported to the user. *)
(* SEMAS: This module takes the graph record and inserts semaphores*)
(* between the proper programs. This is done by inserting *)
(* a "P" operation before of successor programs and *)
(* inserting a "V" operation after predecessor programs. *)
(* The output file is then written containing the new pro- *)
(* gram with the semaphores inserted. *)
(* *)
(***)

type
descriptor varying[SO] of char;
desc_pointer - Adescriptor;

(* Descrip . of a row of GRAPH_REC *)
(* Pointer to DESCRIPTOR *)

36

node_pointer - Anode_record;
node record record

value: integer;
next: node_pointer;

(* Points to nodes of the graph *)
(* Defines a node of graph *)
(* Designates which node in graph*)
(* Pointer to next node *)

end;
graph_record - record

desptr: desc_pointer;
predcount: integer;
tag: boolean;
succlist: node_pointer;

end;

(* Defines structure of graph *)
(* Points to descrip. of graph*)
(* No. of predecessors of node*)
(* Used in cycle detection *)
(* List of successors of node *)

record 132 - packed array[l .. 132] of char;(* 80 character record *)
) top_sort_str - varying[S0] of char; (save the topological sort

var
(* Desc. of a row of GRAPH REC*) description: [global] desc_pointer;

graph_rec: [global] array[l .. 100] of
pre, source, out: [global] text;
prefile,

graph_record; (* Main graph *)

infile, outfile: [global] varying[25] of
lex_error: [global] boolean;
in_list, out_list: [global] array[l .. 100]

test, pre_list: [global] node_pointer;
p : [global] integer;

(* Input and output file names*)
(* pre-existing parameters *)

char; (* holds file names *)
(* True if syntax errors exit *)

of node_pointer;
(* Input, output params
(* Pre-existing parameters

*)
*)

of record_l32;(* Holding for input recs*)
(* Total number of program rows *)
(* True is cycles found in graph*)

record_hold : [global] array[l .. 100]
total_rows: [global] integer;
cycles_exist: [global] boolean;
top_sort_save: [global] array[l .. 100]

a : char;

prcced~re build_lists; extern;
procedure pre_exist; extern;
procedure build_graph; extern;
procedure top_sort; extern;
procedure report_cycles; extern;
procedure insert_semaphores; extern;

begin
write('Program Source File: ');

of top_sort_str;
(* save the topological sort
(* used to retrieve file names

(* main program

*)
*)

*)

while (a<>' . ') and (not eoln(input)) do (* read the file name character*)
(* by character and place the *)
(* name into the input file name*)
(* and into the output file name*)

begin
read(a);
infile :- infile + a;
outfile :- outfile + a;

end;
if (eoln(input)) and (a<>'.') then

outfile :- outfile + '.sem'
else

begin
outfile :- outfile + 'sem' ;

(* get name of the source file *)
(* add extension to output file*)

(* add extension to output file*)

while not eoln(input) do
begin

end;

read(a);
infile :- infile + a;

end;

open(source,infile,history :- old);
reset(source);
read(a);
write('Pre-existing Parameters File: ');
readln(prefile);
if length(prefile) <> 0 then

begin
open(pre,prefile,history :- old);
reset(pre);

end;

for p :- 1 to 100 do
begin

with graph_rec[p] do
begin

desptr :- nil;
predcount :- O;
succlist :- nil;

end;
in _ list[p] :- nil ;
out_list[p] :- nil;

end;
pre list :- nil;
lex error :- false;
cycles_exist :- false;
build_lists;
i f length(prefile) <> 0 then

pre_exist;
if lex error then

begin
writeln(' ');

37

(* get remainder of file name

(* get next character
(* continue to add to name

(* you've got it, now open it

(* reads the <CR> at E0L *)

(* Get pre-existing params file*)

(* Get Pre-existing params.

(* perform initializations

(* initialize the graph

*)

*)

(* init. the input list array *)
(* init . the output list array*)

(* Points at nothing yet *)
(* Be optimistic *)
(* Set if cycles found in graph*)
(* Call to BUILD_LIST proc. *)

(* Call to PRE_EXIST proc .
(* If syntax error was found

*)
*)

writeln('Lex error exists - -program execution halted.');
end

else
begin

build_graph;
top_sort;
if cycles_exist then

report_cycles
else

insert_semaphores ;
end;

writeln(' ');

(* build the graph from lists *)
(* topological sort of graph *)
(* True if cycles were found *)
(* Report these cycles to user*)
(* False if no cycles found *)
(* semaphores can be inserted *)

writeln('Total program rows: ',total_rows : l) ;
end. (* end main program*)

*)

*)
*)

*)

*)

38

module lexical(input,output);

(***)
(* *)
(*Module-LEXICAL *)
(* *)
(* This module contains the BUILD_LISTS and the PRE_EXIST procedures. *)
(* These procedures are responsible for building lists to contain the *)
(* input, output, and pre-existing program parameters. The program *)
(* names are also added to the graph. *)
(* *)
(***)

type
descriptor
desc_pointer
node_pointer
node record

varying[S0] of char;
- "descriptor;
- "node_record;

record
value: integer;
next: node_pointer;

end;

(* Descrip. of a row of GRAPH_REC *)
(* Pointer to DESCRIPTOR *)
(* Points to nodes of the graph *)
(* Defines a node of graph *)
(* Designates which node in graph*)
(* Pointer to next node *)

graph_record - record
desptr: desc_pointer ;
predcount: integer;
tag: boolean;
succlist: node_pointer;

end;

(* Defines structure of graph *)
(* Points to descrip . of graph*)
(* No. of predecessors of node*)
(* Used in cycle detection *)
(* List of successors of node *)

record 132 - packed array[l .. 132] of char;(* 80 character record
top_sort_str - varying(S0] of char; (* save the topological sort

var

*)
*)

description: [external] desc_pointer; (* Desc. of a row of GRAPH_REC *)
graph_rec: [external] array[l .. 100] of graph_record; (* Main graph *)
pre, source, out: [external] text; (* Input and output file names*)
prefile, (* pre-existing parameters *)
infile, outfile: [external] varying[25] of char; (* holds the file names *)
lex_error: [external] boolean; (* True if syntax errors exit *)
in_list, out_list: [external] array[l .. 100] of node_pointer;

test, pre_list: [external] node_pointer;
p : [external] integer;

(* Input, output params
(* Pre-existing parameters

*)
*)

record_hold: [external] array[l .. 100]
total_rows: [external] integer;
cycles_exist: [external] boolean;
top sort save: [external] array[l .. 100] - -

of record_132;(* Hold for input rec*)
(* Total number of program rows*)
(* true if cycles found in graph*)

of top_sort_str;
(* save the topological sort*)

(***)
(***)

[global] procedure build_lists;

39

(***)
(* *)
(* Procedure BUILD LISTS: *)
(* *)
(* Reads each of the input parameters, each of the output parameters , *)
(* and each of the program names. If the value is an input parameter, *)
(* the integer part is placed into IN_LIST. Rows of IN_LIST correspond*)
(* to rows of the program . Input parameters must begin with the letter*)
(* "X". If the value is an output parameter, the integer part is *)
(* placed into OUT_LIST. Rows of OUT_LIST correspond to rows of the *)
(* program . Output parameters must begin with the letter "Y". If the*)
(* value is a program name, it will be placed the graph. Only minimal*)
(* syntax checking is performed on the program. *)
(* *)
(***)

var
p,
i,

(* Row number of program *)

number : integer ;
c: char;
inrecord: record 132 ;
box,
in_rear,
out rear : node_pointer;
p_found,
valid num: boolean ;

begin
p :- O;
while not eof(source) do

begin
readln(source,inrecord);
p : - P + l;
record_hold(p] :- inrecord;
i :- l;
p_found :- false;
while i <- 80 do

begin

(* Position in input record *)
(* Alpha to integer conversion*)
(*Temp . holds an alpha number*)

(* Input record, source program*)
(* Temp. pointer to a node rec*)
(* Points to rear of list *)
(* Points to rear of list *)
(* False if no program found *)
(* True if valid param. number*)

(* Init. to zero
(* Do until end of file

(* Raad first input record
(* Next row of program
(* Keep for later use
(* First position of record
(* No program name found yet
(* Check each position of rec

*)
*)

*)
*)
*)
*)
*)
*)

if inrecord[i] in ['X', 'x'] then(* These are input parameters *)
begin

valid_num :- true;
i : - i + l;
if inrecord[i] - ' ' then

(* Valid unless told otherwise*)
(* Check next record position *)
(* Error if not a digit *)

begin
writeln('** Invalid
lex error :- true ;
valid num :- false;

end;
number :- O;

input parameter on line ',p:1);
(* An error has been found
(* Number is not valid

*)
*)

while inrecord[i] <>' ' do
begin

(* Initialize to zero *)
(* Scan for digits until blank*)

40 ·

(* Get character from input rec*) c := inrecord[i];
if (c >= '0') and (c <= '9') then (* Valid digit? *)

begin
number : = number *

i
end

else

:= i + l;

end;

begin
writeln('** Invalid
lex_error := true ;
valid_num := false ;
while inrecord[i] <>

i : - i + l;
end;

if valid num then
begin

new(box);
boxA .value :- number;
box A.next := nil;
if in_list[p] - nil then

begin
in_list[p] : - box;
in rear :- box;

end
else

begin

10 + ord(c) - ord('0'); (*Alpha to
int*)

(* Look at next position *)

(* Not a valid digit *)

input parameter on line ',p : l);
(* An error has been found *)
(* Number is not valid *)
' ' do (* Find the next blank*)
(* Look at next position *)

(* Not unless number is valid *)

(* Get a new node *)
(* Put parm. number in node *)
(* node will go at end of list*)
(* If this is the first node *)

(* set pointer in IN LIST *)
(* set rear pointer *)

(* If not the first node

in rearA . next :
in rear := box;

box ; (* Place at rear of list
(* Move rear pointer

*)

*)
*)

end;
end ;

end
else

if inrecord[i] in ['Y', 'y'] then (* Output parameters *)
begin

valid_num := true;
i : - i + l;

(* Valid unless told otherwise*)
(* Look at next position *)

if inrecord(i] =' ' then (* Error if not a digit *)
begin

writeln('** Invalid
lex error :- true;
valid num := false;

end;

output parameter on line ',p:l);
(* An error has been found
(* Number is not valid

*)
*)

number:- O; (* Initialize to zero *)
while inrecord[i] <>' ' do (* Scan for digits til blank *)

begin
c :- inrecord[i]; (* Get character from input rec*)
if (c >= '0') and (c <= '9') then (* Valid digit? *)

begin
number :- number* 10 + ord(c) - ord('O');

(* Convert alpha to integer *)

i := i + l;
end

(* look at next position

41

*)

else (* Not a valid digit *)
begin

writeln('** Invalid output parameter on line ',p:l);
lex_error := true; (* An error has been found *)
valid_num :- false; (* Number is not valid *)
while inrecord[i] <>' ' do (* Find the next blank*)

i := i + l; (* Look at next position *)
end;

end ;
if valid num then (* Not unless number is valid *)

begin
new(box); (* Get a new node *)
boxA . value := number; (* Put param. number in node *)
boxA.next : - nil ; (* Node will go at end of list*)
if out_list(p] - nil then(* If this is the first node*)

begin
out_list[p] :- box; (* Set pointer in OUT_LIST *)
out rear :- box ; (* Set rear pointer *)

end
else

begin

end;

out rear A.next :
out rear :- box;

end;

(* If not the first node

box; (* Place at rear of list
(* Move rear pointer

*)

*)
*)

end
else

if inrecord[i] in ['Q' , 'q'] then(* Program name *)
begin

valid_num :- true;
p_ fo~nd :- true;
new(description) ;
while inrecord[i] <>' '

begin

(* Valid unless told otherwise
(* A program name is f~und

*)
*)
) (Get a new description

do(* Scan for digits til blank*)

descriptionA := descriptionA + inrecord[i];

i :- i + l;
end;

(* Add character to DESCRIPTION*)
(* Look at next position *)

graph_rec(p] . desptr :- description ;
(* Link description into graph*)

end;
i := i + l ;

end ;

(* Look at next position

if not p_found then
begin

(* If program name not found

name was not found on line ',p:l);

*)

*)

writeln('** Program
lex error true; (* An error has been found *)

end;
end;

total rows :- p; (* Remember how many prog lines*)

42

end; (* build_lists

(***)
(***)

[global] procedure pre_exist;

(***)
(* *)
(* Procedure PRE EXIST: *)
(* *)
(* This procedure reads the file EXISTING.DAT. This file contains *)
(* names of parameters that exist before the program begins execution. *)
(* These parameters must be present in order to determine if the *)
(* program is complete. *)
(* *)
(***)

var

*)

i: integer;
c : char;

(* Position in input record *)

rear: node_pointer;
valid_num: boolean;
number: integer;
box: node_pointer;
inrecord: record_l32 ;

begin
while not eof(pre) do

begin
readln(pre,inrecord);
i := l;
while i <- 80 do

begin

(* Temp. holds a character *)
(* Points to rear of list *)
(* True if valid param . number*)
(* Alpha to integer conversion*)
(* Temp. pointer to node rec *)

(* Pre-existing parameters *)

(* Do until out of parameters *)

(* Get a record *)

(* Check each position of rec *)

if inrecord(i] in ['X', 'x'] then (* First char. must be a "Y" *)
begin

valid num :- true;
i :- i + 1;
if inrecord[i] =' ' then

(* Valid unless told otherwise*)
(* Look at the next character *)
(* If blank, then error *)

begin
writeln('** Invalid
lex error := true;
valid num := false;

end;

pre-existing parameter name');
(* An error was found
(* Not a valid number

*)
*)

number :- O; (* Initialize to zero *)
while inrecord[i] <>' ' do (* Scan for digits only *)

begin
c := inrecord(i]; (* Get char. from input rec *)
if (c >- '0') and (c <= '9') then (* Valid digit? *)

begin
number :- number* 10 + ord(c) - ord('O'.);

(* Convert from alpha to integer*)

end;
end;
enci..

i := i + l;
end

else
begin

43

(* Look at next position

writeln('** Invalid pre_existing parameter name');

*)

lex_error := true; (* An error was found *)
valid_nurn := false; (* Not a valid number *)
while inrecord[i] <>' ' do

end;
end;

i := i + l; (* Scan until a blank is found*)

if valid num then (* Not unless number is valid *)

(* Get a new node *)
(* Put param. number in node *)
(* Node will go at end of list*)

end;

begin
new(box);
boxA.value :- number;
boxA.next :- nil;
if pre_list - nil then

begin
pre_list :- box;
rear :- box;

end
else

end;

begin
rearA.next :- box;
rear :- box;

end;

i := i + l;
end;

(* If first node in list *)

(* PRE LIST points at node *)
(* Point to rear of list *)

(* Place at rear of list
(* Move rear pointer

(* Look at next character

*)
*)

*)

44

module build(input,output);

(***)
(* *)
(* Module: BUILD *)

(* *)
(* This module contains two procedures; BUILD_GRAPH, INSERT_NODE. *)

(* Build_graph reads each element of in_list. Each element of out_list*)

(* is then read. If any of the elements are equal, an edge is then *)

(* inserted into the graph data structure. This insertion is done by *)
(* the insert_node procedure. Before the insertion is done, the graph*)

(* is checked to see if the edge already exists. If it does exist, *)

(* the insertion is not done. *)

(* If no output elements exist for a given input element, then pre-list*)

(* is checked to see if these elements are pre-existing parameters. *)

(* No edges are inserted into the graph for matches between these *)
(* elements. If a match is not found in pre_list, then an error has *)

(* occurred because this means that a given input parameter will not *)
(* be in existence when the corresponding program begins execution. *)
(* This error is reported to the user. *)

(* *)
(***)

type
descriptor
desc_pointer
node_pointer
node record

varying[SO) of char;
- "descriptor;
- "node_record;

record
value : integer;
next: node_pointer;

(* Descrip. of a row of GRAPH_REC *)
(* Pointer to DESCRIPTOR *)
(* Points to nodes of the graph *)
(* Defines a node of graph *)
(* Designates which node in graph*)
(* Pointer to next node *)

graph_record
end;

record
desptr: desc_pointer;
predcount: integer;
tag: boolean;
succlist: node_pointer;

end;

(* Defines structure of graph *)
(* Points to descrip. of graph*)
(* No. of predecessors of node*)
(* Used in cycle detection *)
(* List of successors of no.de *)

record 132 -
top_sort_str

packed array[l .. 132) of char;(* 80 character record *)
) - varying[SO] of char; (save the topological sort

var
description: [external] desc_pointer; (* Desc . of a row of GRAPH_REC *)

graph_rec: [external] array[l . . 100] of graph_record; (* Main graph *)
pre, source, out: [external] text; (* Input and output file names*)

prefile, (* pre-existing parameters *)

infile, outfile : [external] varying[25] of char; (* holds file names *)

lex_error: (external] boolean; (* True if syntax errors exit *)

in_list, out_list: (external] array[l .. 100] of node_pointer;

test, pre_list: [external] node_pointer;
p : [external] integer;
record hold: [external] array[l .. 100] of

(* Input, output params
(* Pre-existing parameters

*)
*)

record_l32;(* Hold for input rec*)

total_rows: [external] integer;
cycles_exist: [external] boolean;
top_sort_save: [external) array[l .. 100]

45

(* Total number of program rows*)
(* true if cycles found in graph*)

of top_sort_str;
(* save the topological sort *)

(**)

[global] procedure build_graph;

var
in_value, (* Value of an

Value of an
*)
*) out value: integer;

in_p,
(*
(*
(*
(*
(*
(*
(*

line number

input node
output node
of the org. prog . *)

out_p: integer;
in_ptr,
out_ptr,
pre_ptr: node_pointer;
match_found: boolean;

line number of the org . prog.
points to nodes of IN LIST
points to nodes of OUT LIST
points to nodes of PRE LIST
T if elements are equal

(***)
procedure insert_node(succ,pred: integer);

var
box,
ptr,
last_ptr: node_pointer;
already_exists: boolean;

begin

(* temp. pointer to a node
(* temp. point. to graph edges
(* points to next to last node
(* an edge already exists

*)
*)
*)
*)
*)

*)
*)
*)
*)

already_exists :- false; (* assume edge doesn't exist
set to first edge in graph
do (* find end of edge list
does edge already exist?

*)
*)
*)
*)
*)

ptr :- graph_rec[pred) .succlist; (*
while (ptr <> nil) and (not already_exists)

if succ - ptrA.value then (*
already_exists :- true (* if it does, set to true

else
begin

last ptr :- ptr;
- A ptr :- ptr .next;

end;
if not already_exists then

begin

(* doesn't exist, rem. this node*)
(* get the next node *)

graph_rec[succ] .predcount :=

(* if the edge doesn't exist, *)
(* insert the edge into the graph*)

graph_rec[succ] .predcount + l;
(* add 1 to predecessor count *)

if graph_rec[pred] .succlist = nil then(* is this the first succ. node*)
begin

new(box);
boxA.value := succ;
boxA.next :- nil;
graph_rec[pred] . succlist :-

end
else

begin
new(box);

box;

(* get a new node *)
(* store the succ. value in node*)
(* this node goes at the end *)
(* link node into succ. list *)

(* this isn't the first succ. node*)

(* get a new node *)

boxA .value :- succ;
box A.next := nil;
last_ptrA . next := box;

end;

46

(* store the succ. value in node*)
(* this node goes at the end *)
(* link node into succ. list *)

end;
end;

(***)

begin
for in_p : - 1 to total rows do

begin
(* input params . on program rows*)

in_ptr :- in_list[in_p];
while in_ptr <> nil do

(* point to first node of list
(* end of the list yet?

*)
*)

end;
end;

end .

begin
match found:- false;
in_value :- in_ptr A.value ;

(* no match found y et *)
(* get the parameter value *)

for out_p :- 1 to total rows do
begin

(* output params. on program rows*)

out_pt r :- out _ list(out_p] ; (* point to first node of list
while (out_ptr <> nil) and (not match_found) do

*)

*)

end ;

(* check all nodes in this list
begin

out_value : - out_ptrA.value; (* get the parameter value *)
if in value= out value then(* are param. values equal? *)

begin
insert_node(i n_p , out_p) ; (* if equ . , insert edge in gra*)
match_found :- true ; (* if true, don ' t keep looking *)

end;
out_ptr : - out _ptr A.ne xt ; (* look at the next out param

end ;
*)

i f not match found then
begin

(* check pre_existing for match *)

pre_ptr :- pre _ list; (* point to pre-existing params
(not match found) do

*)
while (pre _ptr <> nil) and

(* check all nodes in this list *)
if in value - pre_ptrA .value then(* has param. been found *)

match found:- true (* don't look for any more *)
else (* param. not found *)

pre_ptr := pre_ptr A.next ; (* get next node in list *)
if not match found then (* all nodes checked - -no matches*)

writeln('*** Completeness Error on input line ',in_p:l);
(* Completeness error exists

end;
in_ptr := in_ptrA.next ;

end;
(* look at next input param.

*)

*)

47

module cycles(input,output);

(***)
(* *)
(* Module : CYCLES *)

(* *)
(* This module has two main procedures. TOP SORT will detect if a *)

(* cycle exists in the graph. If a cycle does exist, a message is sent*)

(* to the user indicating such. REPORT CYCLES will inform the user *)

(* which nodes are contained in the cycle. The algorithm used by this*)

(* module to detect and report cycles will only report the first cycle*)

(* it encounters . If more than one cycle exist in the graph, the first*)

(* one will be reported and this module will stop execution. *)

(* *)
(***)

type
descriptor
desc_pointer
node_pointer
node record

var y ing(SO] of char;
- "descriptor ;
- "node_record;

record
value: integer;
next: node _pointer;

(* Descrip . of a row of GRAPH_REC *)
(* Pointer to DESCRIPTOR *)
(* Points to nodes of the graph *)
(* Defines a node of graph *)
(* Designates which node in graph*)
(* Pointer to next node *)

graph _ record

record 132 -
top_sort_str

var

end;
record

desptr: desc_pointer;
predcount : integer ;
tag: boolean;
succlist: node_pointer;

end;

(* Defines structure of graph *)
(* Points to descrip . of graph*)
(* No. of predecessors of node*)
(* Used in cycle detection *)
(* List of successors of node *)

packed array[l .. 132] of char;(* 80 character record *)
) - varying[SO] of char; (save the topological sort

description : [external] desc_pointer ; (* Desc . of a row of GRAPH_REC *)

graph_rec: [external] array[l . . 100] of graph_record; (* Main graph *)

pre, source, out: [external] text; (* Input and output file names*)

prefile, (* pre-existing parameters *)

infile, outfile: [external] varying[25] of char; (* holds file names *)

lex_error: [external] boolean; (* True if syntax errors exit *)

in_list, out_list: [external] array[l . . 100] of node_pointer;

test, pre_list: [external] node_pointer;
p: [external] integer;
record_hold: [external ·] array[l..100] of
total_rows: [external] integer;
cycles_exist: [external] boolean;
top_sort_save : [external] array[l .. 100]

(* Input, output params
(* Pre-existing parameters

*)
*)

record_l32;(* Hold for input rec*)
(* Total number of program rows*)
(* True if a cycle is found *)

of top_sort_str;
(* save the topological sort *)

(***)

48

• [global] procedure top_sort;

(***)
(* *)
(* Procedure: TOP SORT *)

(* *)
(* Sorts the graph into topological order. The algorithm is obtained *)
(* from "An Introduction to Data Structures with Applications" by *)
(* Tremblay and Sorenson, published by McGraw-Hill Book Company. *)
(* Pages 438-439. *)

(* *)
(***)

var
q, (* pointer to successor list *)
trash, (*anode to be DISPOSEd of *)
front, (* list of sorted nodes *)
rear: node_pointer; (* list of sorted nodes *)
hold, (* index into GRAPH REC *)
k, (* index into GRAPH REC *)
i, (* index into GRAPH REC *)
n: integer; (* number of nodes visited *)
box, (* temp. node record for graph*)
work_ptr: node_pointer; (* ptr to graph nodes *)
save_succs: array(l .. 100] of node_pointer; (* used to save the graph in*)
prograrn_sort_number: integer; (* index into top_sort_save *)

(***)
procedure lqinsert(n: integer);

(***)
(* *)
(* Procedure: LQINSERT *)

(* *)
(* Inserts into a linked list, all nodes which have been visited by *)
(* by the procedure TOP SORT. This linked list has a front and a rear*)
(* pointer. *)

(* *)
(***)

var
box: node_pointer;

begin
new(box);
box".value :- n;
box ".next :- nil;
if rear - nil then

begin
front:- box;
rear :- box;

end

(* temp pointer to a new node

(* get a new box record
(* n - current node visited
(* to be put at end of list
(* is this first node in list

(* link to front pointer
(* link to rear pointer

*)

*)
*)

*)
*)

*)
*)

49

else
begin

(* is not first node in list

(* link to rear of list

*)

*)
*)

end;

rearA.next := box;
rear :- box;

end;
(* link to rear pointer

(***)

(* The following segment of code is used to work around a bug found*)
(* in the Pascal compiler. The problem being caused by the bug is *)
(* that the graph data structure (GRAPH_REC) is being altered in the*)
(* immediately preceding procedure LQINSERT. As can be seen by *)
(* examining LQINSERT, no reference is ever made to GRAPH_REC. *)
(* However, the graph data structure will be in one state when *)
(* LQINSERT is entered, but will be in another state when *)
(* LQINSERT finishes executing. To solve this problem, a duplicate*)
(* copy of GRAPH_REC is made at this point of the proc. TOP_SORT. *)
(* TOP_SORT calls the procedure LQINSERT several times and it is at*)
(* these times that the error occurs . At the end of TOP_SORT, the *)
(* original graph is recreated from the copy that is being made at *)
(* this time. The entire graph is not copied, but only the edge *)
(* nodes are copied as this is where the problem was occurring *)

begin (* TOP SORT*)
front :- nil;
rear :- nil;
for i :- 1 to total rows do

begin
work_ptr :- graph_rec[i] .succlist;
while work_ptr <> nil do

begin
new(box);
boxA.value := work ptrA.value;
boxA . next := nil;
if rear - nil then

begin
front := box;
rear :- box;

end
else

begin
rearA.next :- box;
rear :- box;

end;
work_ptr :- work_ptrA . next;

end;
save_succs[i] := front;
front : - nil;
rear :- nil;

end;

(* no nodes yet to point to *)
(* no nodes yet to point to *)
(* do for each row of graph *)

(* get ptr to edge nodes *)
(* get nodes until no more *)

(* make a new node *)
(* copy contents to duplicate *)
(* node doesn't point to others*)
(* if nil, first node in list *)

(* set front pointer to node *)
(* set rear pointer to node *)

(* not first node in list *)

(* set ptr in previous node *)
(* set rear to this node *)

(* get next node in graph *)

(* save this list in row i *)
(* start on next row of graph *)
(* start on next row of graph *)

50

(* End of saving the graph--continue with main part of TOP_SORT now . *)

front : = nil;
rear :- nil;

(* start by initializing *)
(* start by initializing *)

n :- total_rows; (* number of nodes to be sorted*)
for i := 1 to total rows do

if graph_rec[i] .predcount
lqinsert(i);

program_sort_number :- O;
while front<> nil do

= 0 then
(* check all nodes in graph *)
(* if no predecessors *)
(* insert into temp list *)
(* just initializing *)
(* while nodes in temp list *)

begin
k :- frontA.value;
n := n - l;
trash : - front;
front :- frontA . next;
dispose(trash);
program_sort_number :-

(* get value of first node
(* this node has been visited
(* get rid of it now
(* point to next node
(* get rid of front node

program_sort_number + l;
(* point to next row of save

top_sort_save [program_sort_number] :- graph __ rec [k] . desptrA;

graph_rec [k] .desptr :
if front - nil then

rear :- nil;

nil;
(* copy the node description
(* this node has been visited
(* no nodes in temp list

*)
*)
*)
*)
*)

*)

*)
*)
*)

q : - graph_rec[k] . succlist;
while q <> nil do

(* succ . list of visited node *)
(* look at each node to succ list*)

begin
hold :- qA .value; (* get first successor *)
graph_rec[hold] .predcount :- graph_rec[hold] . predcount - l ;

(* subtract 1 from number of predecessors*)

end;

if graph_rec[hold] .predcount - 0 then

lqinsert(hold);
trash:- q;
q :- qA . next;
dispose (trash);

end ;

(* if no more predecessors

(* get rid of node
(* point to next successor
(* get rid of front node

(* This next FOR loop copies the duplicate graph back to the original
(* graph which has been improperly altered at this point of TOP SORT.
(* See explanation above .

*)

*)
*)
*)

*)
*)
*)

for i :- 1 to total rows do (* copy each row of save back *)
) graph_rec[i] .succlist := save_succs[i]; (to graph data structure

if n <> 0 then (* cycles exist if not - zero *)

end;

begin
writeln(' ');
writeln('*** System not feasible--One or more cycles exist in system.');

writeln('The following cycle exists:');
cycles_exist :- true; (* global variable *)

end;

51

(***)
(***)

[global] procedure report_cycles;

(***)
(* *)
(* Procedure: REPORT CYCLES *)
(* *)
(* This procedure reports all nodes that are contained in a cycle . *)
(* Thi s procedure is only called if the procedure TOP_SORT detects *)
(* that cycles do exist in the system. The algorithm for this *)
(* procedure was obtained from "An Introduction to Data Structures *)
(* with Applications" by Tremblay and Sorenson, published by *)
(* McGraw-Hill Book Company. Pages 439 -440 . *)
(* *)
(************** ***)

var
k ,
i ,
j '
succ : integer ;
p : node_pointer;
quit : boolean;

begin
for i : - 1 to total rows do

with graph_rec[i] do
begin

predcount :- O;
tag :- false;

end;
for i :- 1 to total rows do

if graph_rec[i] . desptr <> nil then
begin

p :- graph_rec[i] .succlist;
while p <> nil do

begin
succ :- pA.value ;

(* used in reversing some values*)
(* an index into GRAPH_REC *)
(* an index into GRAPH REC *)
(* index into GRAPH REC *)
(* points to successor list *)
(* quit searching for cycle *)

(* initialize GRAPH REC *)

(* to be used for other purposes*)

(* check each node of graph *)
(* only check nodes in cycle *)

(* successors of nodes
(* find the nodes that
(* in a cycle

in cycle*)
belong *)

*)

*)
if graph_rec[succ] .predcount

graph_rec[succ] .predcount :- i;

(* next node in the cycle
0 then

(* predcount points to
(* node in the cycle

(* get the next node

next*)
*)
*)

end;

p :- pA.next;
end;

i : - l; (* start at the first node *)
quit :- false; (* true when begin of cycle found*)
while (i <- total_rows) and (not quit) do(* marks each node in cycle *)

(* finishes when all nodes have*)
(* been marked *)

if graph_rec[i] .predcount <> 0 then
while not graph_rec(i] .tag do

begin
graph_rec[i] .tag :- true;
i :- graph_rec[i] .predcount;
quit := true;

end
else

i := i + l;
j : - O;
while graph_rec[i] .predcount <> 0 do

begin
k :- j;
j :- i;
i :- graph_rec(j] .predcount;
graph_rec[j] . predcount :- k;

end;
graph_rec(i] .predcount :- j;
while graph_rec[i] . tag do

begin
writeln(graph_rec[i] .desptrA);
graph_rec[i] .tag :- false;
i :- graph_rec[i] .predcount;

end;
writeln(graph_rec(i] .desptrA);

end;

end .

(* not zero if in cycle
(* check all nodes in cycle

(* true for a nodes in cycle
(* points to next node
(* cycle has been found

52

*)
*)

*)
*)
*)

(* cycle not found-try next node*)

(* reverse the order of the cycle*)

(* go through the cycle and *)
(* print the nodes in the cycle*)

(* node has been printed *)
(* get next node to be printed *)

(* the node that completes the *)
(* cycle *)

53

module semas(input,output);

(***)
(* *)
(* Module: SEMAS *)

(* *)
(* This module takes the graph and uses it to create a new program *)
(* source listing with the proper semaphores inserted in the proper *)
(* places. This is performed by looking at each row of the graph *)
(* record. Each of the successors are then examined. Since each of *)
(* the successors is dependent on its predecessor a semaphore will be *)
(* inserted between these two programs. This will be done by inserting*)
(* a "P" operator infront of the successor program and inserting a "V" *)
(* operation behind a predecessor program. This module also checks to*)
(* make sure that there is enough room remaining on each row of the *)
(* program to insert the semaphore. If there is insufficient room *)
(* the semaphore isn't inserted and an error message is reported . The*)
(* output file isn't produced when this error occurs . *)
(* *)
(***)

type
descriptor
desc_pointer
node_pointer
node record

varying[SO] of char;
- "descriptor;
- "node_record;

record
value : integer;
next: node_pointer;

(* Descrip . of a row of GRAPH_REC *)
(* Pointer to DESCRIPTOR *)
(* Points to nodes of the graph *)
(* Defines a node of graph *)
(* Designates which node in graph*)
(* Pointer to next node *)

graph_record
end;

record
desptr : desc_pointer;
predcount: integer;
tag: boolean;
succlist: node_pointer;

end;

(* Defines structure of graph *)
(* Points to descrip. of graph*)
(* No . of predecessors of node*)
(* Used in cycle detection *)
(* List of successors of node *)

record 132 -
top_sort_str

packed array[l . . 132] of char;(* 80 character record *)
) - varying[SO] of char; (save the topological sort

var
description: [external'] desc_pointer; (* Desc . of a row of GRAPH_REC *)
graph_rec: [external] array[l . . 100] of graph_record; (* Main graph *)
pre, source, out : [external] text; (* Input and output file names*)
prefile, (* pre-existing parameters *)
infile, outfile: [external] varying[25] of char; (* holds file names *)
lex_error: [external] boolean; (* True if syntax errors exit *)
in_list, out_list: [external] array[l . . 100] of node_pointer;

(* Input, output params
test, pre_list: [external] node_pointer; (* Pre-existing parameters

p : [external] integer;

*)
*)

record_hold: [external] array[l .. 100] of record_l32;(* Hold for input rec*)
total rows: [external] integer; (* Total number of program rows*)

54

cycles_exist: [external] boolean; (* True if a cycle is found *)
top_sort_save: [external] array[l .. 100] of top_sort_str;

(* save the topological sort*)

(***)
(***)

[global] procedure insert_sernaphores;

type
init_string - packed array[l .. 13] of char ; (* Sernas that are initialized*)

var
serna inits: array[l . . 200] of init_string;
sernaphore_number: integer ;
i,
j,
k,
1 : integer;
value: integer;
succs: node_pointer;
sernal,
serna2: packed array[l .. 3] of char;
do_print,
end found: boolean;

(***)

(* array on init'ed sernas
(* index into serna inits
(* a loop counter
(* a loop counter
(* a loop counter
(* a loop counter
(* a temporary variable
(* ptr to graph nodes
(* a semaphore number
(* a semaphore number
(* output file created??
(* end of a row found

function convert(n: integer) : char ;

(**)
(* ·k)

(* CONVERT *)
(* *)
(* Converts an integer number to a character *)
(* digit. *)
(* *)

(****************,l-*******************************)

begin
case n of

0: convert :- I 0';
1: convert :- 'l';
2: convert :- '2';
3: convert : - I 3 I;
4 : convert := '4';
5 : convert :- I 5 I;

6 : convert :- I 6 I;

7 : convert :- I 71;

8: convert :- I 8 I;
9: convert :- I 9 I ;

end;

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

55

end;

(**)

begin
for i := 1 to 200 do (* init semas array *)

*)
*)
*)
*)

sema_inits[i] :- '
semaphore_number :- 0;
do_print :- true;

'. , (* with blanks
(*
(*
(*

no semas have been created
be optimistic

for i := 1 to total rows do look at first row of graph

begin
value := i; (* convert integer to char

(* convert the third digit
(* get rid of third digit
(* convert the second digit
(* get rid of second digit
(* convert the first digit
(* now look at successors

semal[3) := convert(value mod 10);
value :- value div 10;
semal[2] :- convert(value mod 10);
value : - value div 10;
semal[l) :- convert(value mod 10);
succs :- graph_rec[i] .succlist;
while succs <> nil do ('k go through successor list

begin
semaphore number :=
j :- succ;A_value;
value :- j;

semaphore_number + l; (* this is a new one
(* get the successor value
(* convert integer to char

sema2[3) :- convert(value mod
value :- value div 10;

10); (* convert the third digit
(* get rid of third digit
(* convert the second digit
(* get rid of second digit
(* convert the first digit

sema2[2) :- convert(value mod 10);
value :- value div 10;
sema2[1) :- convert(value mod 10);
sema_inits[semaphore_number,l] :
sema_inits[semaphore_number,2) :
sema_inits[semaphore_number,3] :
sema_inits[semaphore_number,4] :
sema_inits[semaphore_number,5] :
sema_inits[semaphore_number,6) :
sema_inits[semaphore_number,7] :=
sema_inits[semaphore_number,8] :
sema_inits[semaphore_number,9] :
sema_inits[semaphore_number,10) :
sema_inits[semaphore_number,11) :
sema_inits[semaphore_number,12] :
sema_inits[semaphore_number,13) :-

(* insert "V" sema at

'S'; (* create the sema
semal[l]; (* insert number
semal[2];
semal[3];
sema2[1); (* insert number
sema2[2);
sema2[3);
' '. ,
I • I• . , ,_,. ,

I I• ,
'0';
t.'. ' ,

(* init to this value

rear of program line*)

*)
*)
*)
*)
*)
*)
*)
,~)

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

*)

*)

k :- 132;
end_found := false;
while (k <> 0) and (not

(* No of pos. in record_hold *)
(* end of input record found *)

if record_hold[i,k]
k :- k - 1

else
end found:- true;

if k <- 121 then
begin

k :- k + 2;

end_found) do (* do until end of record*)
' ' then(* is position blank *)

(* check next position *)
(* if not blank *)
(* end has been found *)
(* enough room in insert sema? *)

(* yes *)
(*backup to positions *)

56

record_hold[i,k] := 'V'; (* insert the "V" operation *)
record_hold[i,k + l] := I (I ;

record_hold[i,k + 2] :- 's'; (* insert the proper semaphore *)
record_hold[i,k + 3 l :- semal[l];
record_hold[i,k + 4] :- semal[2];
record_hold[i,k + 5] :- semal[3];
record_hold[i,k + 6] :- sema2 [l];
record_hold[i,k + 7] :- sema2[2];
record_hold[i,k + 8 l :- sema2[3];
record_hold[i,k + 9] := I) I ;

end
else (* no *)

) begin (indicate that sema can't
*)

Semaphore Addition');
writeln(' '); (* be inserted
writeln('Program Record Length Too Long For
writeln('Program Line Number: ',i:1);
do_print :- false; (* don't print output file *)

end;
(* insert "P" sema at front of program line*)

k :- 132; (* no. of pos . in record_hold *)
end_found :- false; (* end hasn't been found yet *)
while (k <> 0) and (not end found) do (* do until line end found*)

if record_hold[j,k] - ' ' then (* is position blank *)
k :- k - 1 (* check next position *)

else
end found : - true; (* end has been found *)

if k <- 121 then (* enough room to insert sema *)
begin (* yes *)

for 1 :- k + 11 downto 12 do (* move chars right by 12 *)
record_hold(j ,l] :- record_hold[j,1 - 11);

for 1 : - 1 to 11 do (* fill emptied pos. with blank*)
record_hold(j ,1) :- 1 1

;

record_hold[j, 1] :- 'P' ; (* insert "P" operation *)
record_hold[j,2] :- '(';
record_hold[j,3] :- 'S'; (* insert the semaphore *)
record_hold[j ,4] := semal[l];
record_hold[j ,5] := semal[2];
record_hold[j,6] :- semal[3];
record_hold[j,7] :- sema2[1];
record_hold[j ,8] :- sema2[2];
record_hold[j,9] :- sema2[3];
record_hold[j,10] :- ')';

end
else (* no *)

begin (* indicate the sema can't *)
writeln(' '); (* be inserted *)
writeln('Program Record Length Too Long For Semaphore Addition');
writeln('Program Line Number: ',j :l);
do_print :- false;

end;
succs :- succsA . next; (* get the next successor and *)

(* start the process over again*) end;

57

end;
if do_print then (* is it ok to print

(* yes
*)
*) begin

open(out,outfile , history := new);
rewrite(out) ;
i : - l; (* index into sema init table *)
while sema_inits[i,l] <>' ' do

begin
writeln(out,sema_inits[i]);
i :- i + l;

(* do until no more entries *)

(* write out the line *)
(* goto the next line *)

end ;
writeln(out);
for i :- 1 to total rows do

(* print
(* write

writeln(out,record_hold[i]);
writeln(out); (* skip
writeln(out) ;
writeln(out , 'Order
i :- l ;
j :- 3 ;
write(out, ' ');

of program execution : ') ;
(* point
(* start

a blank line *)
out the program lines *)

some lines *)

to first row of save *)
at print pos i tion 3 *)

while length(top_sort_save[i]) > 0 do (* do until no more descripts . *)
begin

if length(top_sort_save[i]) + j + 2 <- 132 then
begin

write(out,top_sort_save[i],' ');
j - j + length(top_sort _ save[i]) + 2 ;
i :- i + l;

end
else

begin
writeln(out) ;
j :- 3;
write(o•1t ,' ');
write(out,top_sort_save[i] ,' ');
j :- j + length(top_sort_save[i]) + 2;
i : - i + l;

end;

(* output line is*)
(* not yet full *)

(* output line is*)
(* is now full *)

(* start a new line*)

end ;
end

else (* no *)
*) begin

writeln(' ');
writeln('Program Row Length
~riteln('No Output File Was

end ;
end;

end .

(* indicate length too long

Errors Encountered In Source Program');
Produced');

	Automatic Ordering of Program Units for Execution
	Recommended Citation

	tmp.1520962700.pdf.8cEpC

