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ABSTRACT 

COMPUTER PROGRM GENERATION OF EXTREME VALUE 

DISTRIBUTION DATA 

by 

Stephen (Wan-Tsing) Lei, Master of Science 

Utah State University, 1986 

Major Professor: Dr. Ronald V. Canfield 
Department: Applied Statistics 

The application of the Monte Carlo method on the 

estimation in Gumbel extreme value distribution was 

studied. The Gumbel extreme value distribution is used 

to estimate the flood flow of specific return period 

for the design of flood mitigation project. This paper 

is a programming effort (1) to estimate the parameters 

of Gumbel distribution using the observed data and (2) 

to provide a random variate generating subroutine 

to generate random samples and order statistics of 

a Gumbel distribution random variable. The mean 

squared error is used to measure the accuracy of 

the estimation method. Finally, an example of the 

use of these programs is given to illustrate application 

in the analysis of a hydrologic system. 

(29 pages) 
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CHAPTER I 

INTRODUCTION 

An important tool in statistical analysis is the 

capability of generating random variates on the computer. 

Generated data is used in Monte Carlo anaylsis of complex 

problems which cannot be solved analytically. The Gumbel 

distribution is an important distribution in hydrology. It 

is used to decribe the distribution of extreme events such 

as yearly floods and droughts. This paper is a programming 

effort (1) to estimate the parameters of Gumbel 

distribution using the observed data and (2) to provide 

a random variate generating subroutine to generate random 

samples and ordered statistics of a Gumbel distributed 

random variable. An example of the use of these programs 

is given to illustrate application in flood hydrology. 

Relevance of Investigation 

With the continuing development of flood plains and 

rural watersheds for urban use, flood control becomes 

increasingly important. Construction of dams, water needed 

for irrigational purposes, keeping a river within its 

embankment, all require estimation of flood frequency and 

severity, through statistical analysis of the extreme value 

hydrologic flood flow data. 
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The design of structures related to water resources 

management and control is heavily dependent on the extreme 

hydrologic event. Design parameters usually include the 

yearly maximum event with n - year return period. 

Prediction of flood frequency by height is the basis of most 

of the specifications for flood control. Considerable 

effort has been expended to determine a distribution of 

maximum yearly river height which can be applied uniformly 

to all streams with reasonable accuracy. After fitting 

several distributions to many different data sets 

representing a wide variety of conditions, the log Pearson 

Type III distributions have been judged to give the best 

overall fit (Benson, 1968). This has been reinforced by the 

work of Beard (1974). There has been disagreement that the 

log Pearson Type III distributions are "best" (Bebee and 

Robitaille, 1977), and Reich (1977) has questioned the 

advisability of even suggesting that uniform method may 

apply. 

Selecting a distribution to describe floods has been 

essentially one of curve fitting. It is very necessary in 

the application of these distributions for design and 

management decisions to extrapolate,i.e. to estimate return 

periods beyond the range of the data. Thus the hydrologist 

is forced to make decisions in regions in which he has no 

data. A serious difficulty is inherent when one uses 

empirical fit to select a distribution for maximum river 
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height. Many different distributions can provide a good 

empirical fit in the range of the data and yet have very 

different right tail characteristics. The most important 

consideration in selecting a distribution for use in 

describing maximum yearly river height is the behavior of 

the right tail of the distribution. It is from the right tail 

that return periods and probabilities of rare events are 

determined. Considering the region where greatest accuracy 

is needed, empirical fit of a distribution over the data set 

is not adequate as sole criterion for choosing a 

distribution. Some theoretical principle is needed to 

assist in the choice of a distribution due to the absence of 

data in the right tail. The application of extreme value 

distributions to hydrology have been studied by Canfield et, 

al, (1980). When used properly they are shown to have both 

theoretical basis and good empirical fit. 

Objective of study 

Every year, floods cause loss of life and millions of 

dollars worth of damage around the United States for 

example, in April 1983 there was a spring flood causing the 

damage over 200 millions dollars in Utah. How to mitigate 

the damage economically can provide the way to use the water 

resources and to manage the flood alluvial fan Wasatch 

Front, in Utah. The flood flow frequency analysis is a 

tool which is used to reach that goal. 



Frequency analysis 

averting disaster but 

efficient flood control 
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is used not only as an aid in 

is also a means of introducing 

structural and non - structural 

designs. 

requiring 

with a 

Anaylsis of such structures is often very complex 

Monte Carlo methods. In order to generate data 

given distribution it is necessary to define all 

parameter values. Therefore this work is divided into two 

main parts. A program for estimation of the parameters of 

the Gumbel distribution is written and tested in the first 

part. Generation of Gumbel data both random and ordered is 

considered in the second part. The mean squared error 

is used to measure the accuracy of the estimation method. 

The final chapter of this work is devoted to an example 

which serves to illustrate the use of these programs in the 

analysis of a hydrologic system for flood flow estimation. 
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CHATPER II 

LITERATURE REVIEW 

Data Sampling 

The available hydrologic data are generally presented 

in chronological order. For extreme value distribution 

sampling there are two ways; annual maximum series and 

annual exceedance series. Chow (1964) states the annual 

exceedance series should be used for designing a bridge 

foundation because flooding sometimes results from the 

repetition of flood occurrance rather than from a single 

peak flow. In other cases where the design is governed by 

the most critical condition, such as spillway 

design, the annual maximum series should be used. 

Laugbein (1949) investigated the relationship between the 

probabilities of the annual exceedance series and annual 

maximum series and found that the difference between them 

is not very significant except in the value at low river 

flow. 

Extreme Value Theory 

L. Tippett (1925) calculated the probability of largest 

normal values for different sample sizes up to 1000, 

and the mean normal range for samples for two to 1000. His 
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table become the fundamental tool for all practical uses 

of largest values from normal distributions. The first 

study of largest value for other distributions was made by 

E. L. Dodd (1923) . His work is based on "asymptotic" 

values which are again similar to the characteristic 

largest value. Frechet, M. (1927) showed that largest 

values taken from different initial distributions sharing 

a common property may have 

distribution. He introduced the 

a common 

stability 

asymptotic 

postulate 

according to which the distributions of the largest value 

should be equal to the initial one, except for a linear 

transformation. R. A. Fisher and L. H. Tippett(l928) used 

the same stability postulate, and found in addition to 

Frechets' asymptotic distributions, two others valid for 

other initial types. R. von. Mises (1936) classified the 

initial distribution's possessing asymptotic distributions 

of the largest value, and gave sufficient conditions under 

which the three asymptotic distribtuions are valid. 

J. E. Gumbel (1958) worked on the return period of flood 

flow. He derived the type I extreme value distribution 

equation as follows: 

1. Let x 1 ,x 2 , ... ,xN be a series of independent 

random variables with cumulative probability 

distribution given by: 

P(X)=P(xv ~ y) (2-1) 

2. Define XN as the maximum value of x in a sample of 



length N, i.e. XN = MAX Xv so that 
l<v<N 

or P(XN~ y) = [P(y)]N (2-2) 

3. Now assume that the tail of the distribution 

4. 

P(y) is exponential such that 

P(y)= 1-a e-Y 

From equation (2-2) if 

(2-3) 

Ln(aN) is a 

normalizing constant 

P(XN ~ y+Ln(aN))=[P(y+Ln(aN))]N 

and from Equation (2-3) 

P(y + Ln(aN))=l-ae-(Y + Ln(aN)) 

so that 

( 2-4) 

( 2-5) 

P(XN ~ y+Ln(aN))=[l - ae-(Y + Ln(aN))]N 

or 

5. If ~ a, , then: 

lim P(XN ~ y+Ln(aN))=lim[l-e-Y/N]N 

or 

or 

N-ro N•oo 

lim P(xN ~ y+Ln(an))=exp(-e-Y) 
N-co 

P(x) =exp(-e-Y) 

P(x) = exp(-e-a(X + B)) 

Parameters Estimation 

1. Moment Method: 

(2-6) 

(2-7) 

( 2-8) 

7 
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Fisher and Tippett(1928) applied the standard equation 

for generation of original moments to the pdf of the 

reduced type I extreme value distribution as follows: 

U' = ,~ yrexp(-y-e)-Ydy (2-9) 
y, r J-ro 

Substituting z for e-Y the result is 

U' = 1( -ln z)rze-z(-dzlz) 
Y, r ---ro (2-10) 

The first moment about the original, r=l, is then 

= _Jo in z (z) e-z dzlz (2-11) U'y,1 

But _,,r0
ze-Zdz is /(1) , so that , from Kendall and 

Stuart (1958) 

U'y,l = - tp (l) =V 
where P is Euler's constant, approximately 0 . 57721. 

Reconverting to the original variate x as x = y/a + B 

u' 1 = B + Y 1a ( 2-12) 

Similarly, Gumbel (1958) has shown that second moment 

about the mean, u 2 , is given by 

(J = n I ({61 a) 

a = TT I ({610--) = 1.2825 I rr (2-13) 

B = u - Y l a = u - co. 511211 a ) (2-14) 

II B" is the mode of the distribution or location 

parameter. 

"a" is the distribution dispersion parameter or shape 

parameter. 

2. Weighted Least Squares Method: 

A weighted least squares technique reported by Bain 
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and Antle (1967) and the improvement of this method by 

White (1969) is shown as follows: 

Gumbel extreme value equation, 

P(x) = exp(-e-Y) 

Take the double log of P(x), then 

a (Xin-B) = log ( -log P(x)) = Yi 

Yi= f( a, B, Xin) 

z = 2: (Ei - Yi)2Wi 

Thus 

z = :E ( a x in - a B - E i) 2w i 

Q(Xi) = Xi 

where 

Ei is known value, Ei= E(Yi) 

( 2-15) 

(2-16) 

(2-17) 

( 2-18) 

(2-19) 

( 2-2 0) 

Wi is the wieght function of Yi,Wi= (Var(Yi)J- 1 

Xin is order statistic. 

Kwan (1979) compared between the weighted least square 

method and the maximum likelihood method for estimating 

the parameters of type I extreme value distribution. The 

estimating formula of weighted least squares method are 

listed below, comparing with the Weibull distribution 

analysis, 

(2-21) 

(2-22) 



E = 

Q = 

2 E· W· ]. ]. 

1 W· l. 

~ W• l. 
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(2-23) 

(2-24) 

(2-25) 

comparing equation (2-19) with equation (2-21) 

h 1 (a ,B) = -aB 

h 2 (a ,B) = a 

Q(Xin> = Xin 

Then a= h 2 (a,B) and B = -h 1 (a,B)/a 

3. Maximum Likelihood Method 

The maximum likelihood estimation of the type I 

extreme value distribution was first proposed by 

Kimball (1946). It is not practical until the advent 

of computers. Harter and Moore(l968} investigated the 

maximum likelihood method for estimating the type I 

extreme 

procedure 

value distribution, but 

requires considerable 

the numerical 

computer time. 

Panchang (1967) reported a more efficient numerical 

procedure for the maximum likelihood estimation of 

the parameters of type I extreme value distribution. 

This method is widely used in computer programming. 

Details of the numerical procedure are shown in 
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chapter III. 

Monte Carlo Method 

Nash and Armorocho(l966)developed expressions for the 

standard error of sample estimates for flood magnitudes 

of a specified return period, using Monte Carlo 

sampling technique from a double exponential 

distribution, and assumed Gumbel straight line. Canfield 

(1980)used a Monte Carlo experiment to apply extreme value 

theory in estimating flood peaks from mixed populations. 

A five parameter distribution was applied to 11 

long-term sequences and shown by the plotting test to 

originate from nonhomogeneous sources. The fit was 

generally excellent. Wallis et al (1985) uses the 

generalized extreme value distribution which combines 

three possible extreme value distributions to analyze 

the flood frequency. 



12 

CHAPTER III 

METHODOLOGY 

The first section is using the observed flood data to 

estimate the Gumbel distribution parameters, A and B by 

applying maximum likelihood estimation method. The 

Panchang 

detail. In 

(1967) numerical procedure will be stated in 

the second section the estimated parameters, A 

and B are used in the generate random samples from the 

Gumbel distribution. The Monte Carlo method is explained 

step by step. The computer programs are listed in the 

appendix. The final section is to measure the accuracy 

of the estimation method by using mean squared error. 

Maximum Likelihood Estimation 

For a continuous distribution, the likelihood L(Q) for 

a 

as 

complete sample of n observations y 1 , ...... yN is defined 

the joint probability density f(y 1 , .... yN; Q) • The 

likelihood L(Q) is viewed as a function, an arbitrary value 

of the distribution parameter. The true value (unknown) is 

denoted by Q
0

• Usually the N observations are a random 

sample of 

distribution 

independent observations from 

with probability density f(Y,Q). 

sample likelihood is, 

the same 

Then the 

( 3-1) 
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The method of maximum likelihood is to estimate, Q, such 

that L(Q) is maximized. This is obtained by partially 

differentiating L(Q) with respect to each of the parameters 

and equating to zero. 

Frequently Ln L(Q) is used instead of L(Q) to 

simplify computations. The following is the maximum 

likelihood method for evaluating the Gumbel distribution 

parameters. If the probability of x 1 occurring as an 

annual highest peak, it can be expressed as follows, 

(3-2) 

same as for x 2 

f(X 2 ) =ae-a(X2-B>Exp(-e-a(X2-B)) (3-3) 

In general terms 

f ( X 1 ' .. XN) =a N e - !: a (Xi - B) Exp ( -e - _r: a (Xi - B) ) (3-4) 

L=logf(X 1 , . . XN)= Nlogea- i: a(Xi-B)- I e-a(Xi-B) .. (3-5) 

Then maximize the likelihood function as follows; 

d L/ a B = 0 and d L/ a a = 0 

B=(logelO log 10 N)/a-(logelO log 10 (Ze-axi))/a 

(3-6) 

(3-7) 

(3-8) 

Panchang (1967) used a Taylor series expansion to solve 

equation (3-8) as follows; 

F' (a) 
dF(a) 

d(a) 

=- I: xi 2 e-axi+ (X-1/a) ! Xi e-axi- ( 1/a) 2z:e-axi ( 3-9) 

Panchang(l967) used the sucessive approximations to estimate 



a 1 by applying the following equation. 

-F(a 1 ) 

F'(a 1 ) 

then, F(a 2 ) =F(a 1+h 1 ) = F(a 1 )+h 1F 1 (a 1 ) 

and 

(3-10) 

(3-11) 

(3-12) 
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This procedure is repeated until a sufficiently small value 

of F(a 1 ) is obtained when B can be obtained from equation 

(3-7). Generally, only 3 or 4 steps will be required. 

Monte Carlo Experiment 

The problem encountered when empirical fit is the sole 

criterion used to select a "best" distribution to describe 

a population increases as one uses the distribution to 

estimate the frequency of rare events. It is sometimes 

suggested that no distribution is perfect; therefore, 

several may do an adequate job, and certainly the "best" 

fit will be close. This argument may be valid when the 

distributions are used to estimate probabilities of return 

periods for frequently occurring events. However, when 

estimates are needed for extreme or rare events, serious 

errors can result from use of a distribution selected on 

the basis of empirical fit because the probabilities of 

rare events are computed from the tails of a distribution, 

whereas empirical fit is dominated by the body of the data 

set. Therefore the Monte Carlo method is used to generate 
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more data for evaluating the probability of rare events. 

The steps of the Monte Carlo experiment were shown as 

follows: 

1. From a known distribution (or probability law) a 

sequence of psuedo-random numbers was generated 

(equivalent to a single hypothetical flood record 

for a site). 

2. Using the psuedo-random numbers to generate a 

random variate. 

3. From a known distribution (Gumbel distribtution) 

parameters were estimated using the maximum 

likelihood method. 

4. The parameters of the generating distribution 

were compared with the estimated parameters of 

the observed samples. 

5. Steps 1-4 were repeated many times. 

6. Steps 1-5 is refered as a Monte Carlo experiment . 

In this paper, samples of size 59, were generated 

30, 50, 100, and 500 times from a Gumbel population. 

The detailed steps were shown as follows: 

1. Using Fortran 77, on a VAX 11/780 computer, the 

uniform random number generator was used to 

generate random numbers. 

2. The inverse transformation technique was used to 

generate the Gumbel variate. The procedure is as 

follows: 



a). estimate the CDF of the derived random 

variable X. 

b). set F (X) = U on the range of X. 

16 

c). solve the equation F(X)=U for X as a function 

of U. 

d). Repeat steps a - c as needed. 

For the Gumbel distribution: 

a). F(X) = Exp(-e-a(X-B)) 

b). Ln F(X) = -e-a(X-B) = Ln(U) 

c). Ln[-LnF(X)] = -a(X-B) = Ln[-Ln(U)] 

d). X= - Ln(-Ln(U)]/a + B 

(3-13) 

(3-14) 

( 3-15) 

(3-16) 

The Fortran Statement for generating random variate, 

is programmed in subroutine RANDOM as 

X(I) = B - DLOG[-DLOG(U)]/a 

where U is a uniform random number generated and ordered 

by the following statement, 

U = 1.0 - (l.0-TEMP)*Y**(l.0/(FLOAT(N-I)+l.0)) 

Model Accuracy Test 

The following formulae was used to calculate the 

accuracy of the model, 

using 
Sample 

. . j2 Est1.. A by using 
observed Sample 

r[ Esti. A by 
Sum of generating 
Square= ----~------------,------Error Number of Monte Carlo Trials 

(3-17) 



~( Esti. B by using 
Sum of __ L generating Sample 

. b . ~ 2 Esti. B y using 
observed Sample 

Square 
Error Number of Monte Carlo Trials 

1:. Estimator A 
Average = 

Number of Monte Carlo Trials 

E Estimator B 
Average= ----:-----------::-----,---

Number of Monte Carlo Trials 

17 

(3-18) 

(3-19) 

(3-20) 

The flow chart of the Monte Carlo program is shown on 

Figure 1. 



INPUT: NUMQ=SAMPLE SIZE 
ITER=NUMBER OF ITERATION 
OBSERVED ANNUAL PEAKS: 
PEAKS(I), I= 1, NUMQ 

ESTIMATE PARAMETERS 
----iA AND B 

INPUT: A, B, ITER, 
NUMQ, AND MC (MONTE 
CARLO REPEATITIONS) 

NO 

NO 

GENERATING RANDOM 
VARIATE AND ESTI
MATING EA AND EB 

ASSE=ASSE+(EA-A) 2 

BSSE=BSSE+(EB-B) 2 
-9-tAVA =AVA+ A 

BVB = BVB + B 

OUTPUT: ESTIMATED 
PARAMETERS A AND B 

OUTPUT: 
AMSE = ASSE/MC 
BMSE = BSSE/MC 
AVA = AVA /MC 
BVB = BVB /MC 

Figure 1. The Flow Chart of the Program 

18 
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CHAPTER IV 

EXAMPLE 

Extreme value data is collected as shown in Figure 2. 

··-· !· .------,-----,----,----~----,----~--------.---, 

" 
•'i 

~ 
0 -E 
0 
~ ... -(/) 

Year I 

xi /Annuo floods 

x, 

2 3 n•t · n-1 " 
Figure 2. Schematic showing 

Observed data is shown as in Table 1. 

data collection 

59, 4 
10040. 

8390. 

11900. 

9020. 

11900. 

29100. 

23000. 

16100. 

Table 1. Observed data for Estimating the 
Gumbel Parameters 

10700. 20100. 8210. 14300. 8040. 8210. 

18500, 13000. 16400. 14500. 13000. 17200. 

13600. 12400. 18300. 12900. 18200. 9900. 

11800. 16100. 16900. 11800. 13900. 12300. 

11000. 16000. 116(10, 19900. 18600. 18000. 

10300. 122 t) 0. 156 00 . 12700. 13100. 19200. 

6700, 7130. 14300. 20600. 25600. 8180. 

10200. 12300. 

1390 

1390 

1020 

1510 

1310 

1950 

3440 



Results: Using the observed data, 

Estimator a= 0.2375*10- 3 

Estimator B = 12156.98 

The accuracy of the estimated a and Bis measured 

by mean squared error testing method (as shown in Table 

2 • ) 

Table 2. Using Mean Squared Error to Measure the 
Accuracy of the Monte Carlo Method 

20 

I I I 
I I Monte Carlo Number I 
I 1----------1-----------1----------------------1 
I I 3 o I 50 I 100 500 
1--------------1----------1-----------1----------------------
1 Estimate of I .237*10- 3 I .237*10- 3 I .237*10- 3 .237*10- 3 
I Parameter EA I I I 
1--------------1----------1-----------1----------------------
1 Estimate of I 12561.98 I 12400.12 I 12278.55 12181.29 
I Parameter EB I I I 
1--------------1----------1-----------1----------------------
1 Mean Squared I I 
I Error of a, I. 668*10- 12 .1098*10- 12 1 • 495*10- 12 . 886*10- 12 
I slope para. I I 
--------------1---------------------1----------------------

Mean square I I 
error of B, I 385.01 4707.85 I 6.07 75.80 I 

location para. I I I 
--------------1---------------------1----------------------1 

Bias in I I I 
Estimator a, I .791*10- 5 .475*10- 5 I .237*10- 5 .475*10- 6 I 
shape para. I I I 

--------------1---------------------1----------------------1 
Bias in I I I 
Estimator B, I 405.23 243,14 I 121,57 24.31 I 

location para. I I I 
______ l _________ , __________ I 
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C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C% 
C% THIS IS MAIN PROGRAM WHICH IS USED TO ESTIMATE 
C% THE TWO PARAMETERS OF EXTREME VALUE DISTRIBUTION TYPE 
C% "GUMBEL DISTRIBUTION" USING THE OBSERVED ANNUAL FLOOD 
C% DATA. 
C% 
C% 
C% 
C% 
C% 
C% 
C% 
C% 
C% 

INPUT DATA: 

C% OUTPUT 

X 
NUMQ: 
ITER: 

OBSERVED ANNUAL FLOOD 
SAMPLE SIZE 
USING THE MAXIMUM LIKELIHOOD METHOD ( 
NUMERICAL METHOD EVALUATED BY PANCHANG) 
ITERATION 4 TIMES IS CLOSED ENOUGH FOR 
THE ERROR LIMITATION. 

C% A THE SCALE PARAMETER OF THE GUMBEL 

9:-0 

9:-
0 

I 9:-
0 

9:-
0 

9:-
0 

9:-
0 

9:-0 

9:-
0 

9:-
0 

9:-0 

9:-
0 

9:-
0 

9:-
0 

9:-
0 

9:-0 

% 
C% DISTRIBUTION. % 
C% B THE SHAPE PARAMETER OF THE GUMBEL % 
C% DISTRIBUTION % 
C% % 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C 

C 

PROGRAM ESTIMA 
REAL*8 PEAKS(l000),A, B 
INTEGER NUMQ,ITER 

C INPUT THE OBSERVED ANNUAL FLOOD DATA, SAMPLE SIZE 
C HERE WE USE 59, AND THE NUMBER OF THE ITERATIONS FOR MAXIMUM 
C LIKELIHOOD METHOD (HERE USING 4 ITERATIONS). 
C 

C 

OPEN(l0,FILE='LIKE.DAT',STATUS='OLD') 
READ(l0,*) NUMQ,ITER 
READ(l0,*) ( PEAKS(I),I=l,NUMQ) 

C THIS SUBROUTINE MAXL IS USED TO ESTIMATE THE TWO 
C PARAMETERS, SCALE PARAMETER A AND SHAPE PARAMETER B, 
C OF THE GUMBEL DISTRIBUTION USING THE MAXIMUM 
C LIKELIHOOD METHOD WHICH IS NUMERICALIZED BY PANCHANG. 
C 

CALL MAXL(PEAKS,NUMQ,ITER,A,B) 
WRITE(6,*) A,B 
STOP 
END 
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C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C% % 
C% THIS IS THE MAIN PROGRAM TO CALL THE SUBROUTINE, % 
C% RANDOM, MAXL, AND CALCULATE THE AVERAGE DIFFERENCE AND % 
C% MEAN SQUARE TO TEST THE ACCURACY OF THE ESTIMATION % 
C% WHICH IS USING THE MONTE CARLO METHOD. % 

~ 
0 C% 

C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C% 
C% 
C% 
C% 
C% 
C% 
C% 
C% 
C% 
C% 
C% 
C% 
C% 

INPUT DATA: 
X 
ITER: 

A 

B 

GENERATED ANNUAL FLOOD DATA 
THE ITERATION FOR MAXIMUM LIKELIHOOD 
ESTIMATION FOR THE PARAMETERS OF THE 
EXTREME VALUE DISTRIBUTION 
THE SCALE PARAMETER OF THE EXTREME 
VALUE DISTRIBUTION ESTIMATED FROM THE 
OBSERVATION DATA 
THE SHAPE PARAMETER OF THE EXTREME 
VALUE DISTRIBUTION ESTIMATED FROM THE 
OBSERVATION DATA 

C% VARIABLES : % 
C% MEAN: THE MEAN OF THE GENERATED DATA % 
C% ASSE: THE AVERAGE OF THE SQUARE OF THE % 
C% STANDARD ERROR OF THE PARAMETER A % 
C% BSSE: THE AVERAGE OF THE SQUARE OF THE % 
C% STANDARD ERROR OF THE PARAMETER B % 
C% AVA AVERAGE OF THE ESTIMATED PARAMETER % 
C% A BY MONTE CARLO METHOD % 
C% BVB AVERAGE OF THE ESTIMATED PARAMETER % 
C% B BY MONTE CARLO METHOD % 
C% AMSE: ASSE DIVIDED BY MC(MONTE CARLO NUMBER) % 
C% BMSE: BSSE DIVIDED BY MC % 
C% MC MONTE CARLO NUMBER (HERE USING 500) % 
C% NUMQ: SAMPLE SIZE (HERE USING 59) % 
C% ISEED: 8764321 % 
C% % 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C 

PROGRAM MAIN 
REAL*S PEAKS(l000), MEAN, ASSE, BSSE, A, B, AVA, BVB 

* ,AMSE, BMSE, X(l000} 
INTEGER MC,ITER,NUMQ 

C 
C INPUT DATA: NUMQ,ITER,A,B 
C 

OPEN(l0,FILE='DATAIN.DAT',STATUS='OLD'} 
C 
C OUTPUT: AVA.BVB,AMSE.BMSE 
C 

OPEN(ll,FILE='DATA.OUT',STATUS='NEW') 



READ(l0,*) A,B,ISEED,NUMQ,ITER 
WRITE(ll,300) NUMQ 
READ(S,*) MC 
WRITE(ll,400) MC 
WRITE(ll,450) 
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C 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C% % 
C% THE SUBROUTINE RANDOM IS USED TO GENERATE THE % 
C% RANDOM NUMBER OF GUMBEL DISTRIBUTION (EXTREME VALUE % 
C% DISTRIBUTION TYPE I) WHICH IS SO CALLED THE % 
C% ANNUAL FLOOD. % 
C% % 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C 

DO 100 I=l,MC 
CALL RANDOM(X,NUMQ,A,B,ISEED) 

C 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C% % 
C% 
C% 
C% 
C% 

THE SUBROUTINE MAXL IS USED TO ESTIMATE THE PARAMETERS 
FOR GUMBEL DISTRIBUTION EA AND EB USING THE DATA WHICH 
ARE GENERATED BY THE SUBROUTINE RANDOM AS THE ANNUAL 
FLOOD DATA 

% 
% 
% 
% 

C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C 

CALL MAXL(X,NUMQ,ITER,EA,EB) 
ASSE=0.0 
BSSE=0.0 
AVA=0.0 
BVB=0.0 
ASSE=ASSE+(A-EA)*(A-EA) 
BSSE=BSSE+(B-EB)*(B-EB) 
AVA=AVA+A 
BVB=BVB+B 
WRITE(ll,500) EA,EB 

100 CONTINUE 
AMSE=ASSE/MC 
BMSE=BSSE/MC 
AVA=AVA/MC 
BVB=BVB/MC 

300 FORMAT(SX,'SAMPLE SIZE= ',3X,I4/) 
400 FORMAT(SX, 'MONTE CARLO NUMBER= ',3X,I4/) 
500 FORMAT(5X,El8.8,5X,Fl2.4) 

WRITE(ll,600) AMSE,BMSE,AVA,BVB 
450 FORMAT(9X, 'ESTIMATE A', 

*9X, 'ESTMATE B'/) 
600 FORMAT(SX, 'AMSE=',1X,El0.4,5X,'BMSE= 1 ,3X,F8.2,3X, 'AVA=', 

* 3 X, E 10 . 4 , 3 X, 1 BVB= 1 , 3 X , F 8 . 2 ) 
STOP 
END 
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C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C % 
C THIS IS THE SUBROUTINE WHICH IS USED TO ESTIMATE THE TWO % 
C PARAMETERS OF THE GUMBEL DISTRIBUTION AK AND U. THE DATA % 
C ARE GENERATED BY THE RANDOM SUBROUTINE. % 
C INPUT: % 
C X GENERATED ANNUAL FLOOD % 
C NUMB SAMPLE SIZE % 
C ITER THE ITERATION NUMBER IS 4. THE ERROR IS % 
C WITHIN THE LIMIT. % 
C a, B THE TWO PARAMETERS ARE ESTIMATED FROM % 
C THE MAIN PROGRAM EST. % 
C % 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C 

SUBROUTINE MAXL(X,NUMB,ITER,EA,EB) 
INTEGER T(9) 
REAL*S PEAKS(S00), MEAN, Q(9), SE(9), R(9) 

OPEN(ll,FILE='LIKE.OUT',STATUS='NEW') 

RNUMQ=NUMQ 

1 FORMAT(l2Fl0.0) 
SUMX=0.0 
DO 11 I=l,NUMQ 

11 SUMX=SUMX+PEAKS(I) 
MEAN=SUMX/RNUMQ 
SUMSD=0.0 
DO 22 I=l,NUMQ 

22 SUMSD=(PEAKS(I)-MEAN)**2+SUMSD 
VAR=SUMSD/(RNUMQ-1) 
SD=SQRT(VAR) 

C COMPUTE FIRST APPROX OF PARAMETER 
AK=3.1416/(DSQRT(6.0)*SD) 
WRITE(ll,2) MEAN,VAR,SD,AK 

2 FORMAT('l',4F20.5) 
C START ITERATIVE LOOP TO GET U 

KOUNT=0 
2222 S2=AK*0.43429 

S3=1.0/AK 
S4=S3**2 
S5=MEAN-S3 
SUM6=0.0 
SUM7=0.0 
SUMS=0.0 
DO 33 I=l,NUMQ 
DUM6=DEXP(-AK*PEAKS(I)) 
SUM6=SUM6+DUM6 
SUM7=SUM7+DUM6*PEAKS(I) 

33 SUM8=SUM8+DUM6*PEAKS(I)**2 



FAK=SUM7-S5*SUM6 
FPAK=S5*SUM7-SUM8-S4*SUM6 
HK=-FAK/FPAK 
AK=AK+HK 

C PRINT OUT ALL STEP 
WRITE(ll,3) AK,S2,S3,S4,S5,SUM6, 

* SUM7,SUM8,FAK,FPAK,HK 
3 FORMAT(4X,5Fl4.0/4X,6Fl6.6) 

KOUNT=KOUNT+l 
IF(KOUNT .GE. ITER) GOTO 9999 
GO TO 2222 

9999 A=S3*DLOG(l0.)*DLOG10(RNUMQ) 
B=S3*DLOG(l0.)*DLOG10(SUM6) 
UK=A-B 
WRITE(ll,4) AK,UK 

4 FORMAT(4X, 'ALPHA= ', Fl0.7, 1 U= ',Fl5.7) 
C COMPUTE Q AND STANDARD ERROR FOR DIFFERENT RETURN PERIOD 

T(l)=2 
T(2)=5 
T(3)=10 
T(4)=20 
T(5)=50 
T(6)=100 
T(7)=200 
T(8)=500 
T(9)=1000 
DUM=S3/SQRT(RNUMQ) 
WRITE(ll,5) 

5 FORMAT(4X, 1 T=',SX, 1 Q=', 4X, 1 S.E.= 1 /) 

DO 44 I=l,9 
R(I)=T(I) 
DUMT=ALOG(R(I)/R(I)-1)) 
Q(I)=UK-S3*ALOG(DUMT) 
DUMSE=(6.0/3.1416**2)*(1.0-.577216-ALOG(DUMT)) 
SE(I)=DUM*(l.0+DUMSE)*l.64 

44 FORMAT(ll,6) T(I),Q(I),SE(I) 
6 FORMAT(' ',I5,2Fl0.0) 

RETURN 
END 
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C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C% 
C% 
C% 
C% 
C% 

THIS SUBROUTINE RANDOM IS USED TO GENERATE THE 
RANDOM NUMBER OF GUMBEL DISTRIBUTION (EXTREME VALUE 
DISTRIBUTION TYPE I) WHICH IS SO CALLED THE ANNUAL 
FLOOD DATA (GENERATED DATA). 

% 
% 
% 
% 
% 

C% % 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C 

SUBROUTINE RANDOM(X,N,A,B,ISEED) 
REAL*S X(l000),TEMP,A,B,Y,U 
INTEGER N,I 
TEMP=0. 
DO 10 I=l,N 
Y=RAN(ISEED} 
U=l.0-(1.0-TEMP}*Y**(l.0/(FLOAT(N-I)+l.0)) 
X(I}=B-DLOG(-DLOG(U}}/A 
TEMP=U 

10 CONTINUE 
RETURN 
END 
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