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Key Points: 13 

• Climatologies of mesospheric temperature and their geophysical variability from 11 14 

years of USU Rayleigh lidar observations are presented 15 

• Significant features in both: October “cold island”, January “cold valley”, 170 K 16 

mesopause, seasonal variability decreasing with altitude 17 

• These climatologies compare well to those from the French and Canadian, mid-latitude 18 

(40° to 45° N), Rayleigh lidars 19 
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Abstract  24 

From 1993-2004, 839 nights were observed with the Rayleigh-scatter lidar at Utah State 25 

University’s Atmospheric Lidar Observatory.  They were reduced to obtain nighttime 26 

mesospheric temperatures between 45 and ~90 km, which were then combined to derive 27 

composite annual climatologies of mid-latitude temperatures and geophysical temperature 28 

variability.  At 45 km, near the stratopause, there is a ~250 K temperature minimum in mid-29 

winter and a 273 K maximum in mid-May.  The variability behaves oppositely, being 7-10 K in 30 

winter and 2.5 K in summer.  At 85 km, there is a 215 K temperature maximum at the end of 31 

December and a 170 K mesopause minimum in early June.  In contrast, the variability is roughly 32 

constant at ~20 K.  At both low and high altitudes, the temperatures change much more rapidly 33 

in spring than in fall.  The transition between these opposite temperature behaviors is 65 km.  34 

Distinctive temperature structures occur in all regions.  In mid-winter, between 45 and 50 km, a 35 

6 K warm region appears, most likely from occasional sudden stratospheric warmings.  Above 36 

that, a “cold valley” extends to 70 km, which may be related to the bottom side of intermittent 37 

inversion layers.  Both regions have increased variability.  Near 85 km, there is a very rapid 38 

heating event of 25 K/month in August with high variability.  In October, a temperature 39 

minimum, a “cold island”, occurs from 78–86 km with low variability, indicating a regular 40 

feature.  These USU results are compared extensively to those from other mid-latitude lidars in 41 

Canada and France. 42 

  43 
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Plane Language Summary 44 

 45 

We present the results from 11 years of observations of the mesosphere, the 45-90 km 46 

portion of the middle atmosphere.  We used a Rayleigh lidar, a radar-like system that uses pulses 47 

of light that are backscattered from atmospheric molecules.  We obtained good data from 839 48 

nights above northern Utah.  From these, we derived altitude profiles of neutral temperature.  We 49 

combined these profiles to construct climatologies of how the temperatures evolve day-by-day 50 

during the year and how much they can vary on a given day.  As expected, in the lower 51 

mesosphere, the summer was warmer than the winter.  In addition, the winter had much greater 52 

variability, indicating the likely contribution of competing, time-varying, geophysical heating 53 

and cooling processes.  But, in the upper mesosphere, the summer was much colder than the 54 

winter.  The coldest temperatures occurred in June at the mesopause, which we found to be 170 55 

K at 85 km.  In contrast, the mid-winter temperature was 45 K warmer.  While the variability at 56 

these higher altitudes was much greater because fluctuations grow with altitude, it was almost 57 

constant throughout the year.  Comparisons with data from French and Canadian Rayleigh lidar 58 

groups that observe at similar latitudes found very similar results. 59 

 60 

  61 
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1.  Introduction 62 

The temperature structure of the atmosphere is a very distinctive feature, serving as the 63 

basis for defining the different atmospheric regions.  The temperature climatology provides 64 

fundamental information about the energetics of these regions and serves as a reference for 65 

evaluating first-principle models.  It is also a reference for detecting and exploring unusual 66 

events or phenomena.  Regular measurements of much of the middle atmosphere were very 67 

difficult prior to the advent of Rayleigh-scatter lidar.  Balloons, which are used in the 68 

troposphere and stratosphere, typically reach altitudes less than 30 km.  Likewise, special high-69 

flying aircraft have a similar altitude ceiling.  Resonance lidar observations only begin above 80 70 

km.  Airglow observations only begin above 85 km.  Rocket soundings are infrequent because of 71 

their expense.  Until recently, satellite remote-sensing observations had poor altitude resolution 72 

and, in any case, are unable to provide time evolution above selected locations.  Rayleigh-scatter 73 

lidar observations (Hauchecorne and Chanin, 1980) changed this situation.  Regular mid-latitude 74 

observations between 40° and 45° N latitude throughout most of the mesosphere have been 75 

undertaken by the French (Hauchecorne et al., 1991; Keckhut et al., 1993; Leblanc et al., 1998) 76 

since 1978, by our group (Wickwar et al., 1997; Beissner, 1997; Wickwar et al., 2001; Herron, 77 

2004, 2007) from 1993 through 2004, and by the Canadians (Sica et al., 1995; Argall and Sica, 78 

2007; Jalali et al., 2016) since 1993.  Observations have also been carried out in other latitude 79 

regions.  For instance, at a higher latitude, 54.1° N, the Germans have been making such 80 

observations since 2002 (Gerding et al., 2008).  And, at lower latitudes, 34.4° N and 19.5° N, the 81 

lidar group from the Jet Propulsion Laboratory has been making such observations since 1990 82 

and 1993, respectively (Leblanc et al., 1998).  Such frequent, long-term measurements are 83 

necessary for exploring this region and for producing good climatologies of temperature and 84 
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temperature variability.  As of 2004, our data set, based on 5972 hours from 964 nights of 85 

Rayleigh lidar observations spanning 11 years, was one of the longest data sets in the 40°–45° 86 

mid-latitude region and one of the densest from that period.  In this paper, we present the 87 

mesospheric temperature composite annual climatology between 45 and approximately 90 km 88 

above the Atmospheric Lidar Observatory (ALO) on the campus of at Utah State University 89 

(USU) in Logan, Utah (ALO-USU).  We also present the climatology of the composite 90 

geophysical temperature variability.  The significance of these climatologies are, above all, to 91 

provide a background against which theory and model calculations can be compared to see if the 92 

effects of radiation, winds, waves, and chemistry are properly understood.  In addition, they 93 

provide a reference against which to compare temperatures from various subsets of the data to 94 

look for unusual or special conditions, and a reference to make comparisons with other 95 

climatologies to investigate longitudinal and latitudinal differences.  Besides presenting these 96 

two climatologies, this paper sets the stage for subsequent papers that will examine the data in 97 

other ways and make comparisons with other data sets and models.  The lidar and data reduction 98 

are described in Section 2, the observations are presented in Section 3, they are discussed in 99 

Section 4 along with comparisons to other mid-latitude lidars, and the summary and conclusions 100 

are given in Section 5. 101 

 102 

2.  Description of the Lidar and Data Reduction 103 

The original Rayleigh-scatter lidar operated on the USU campus at ALO-USU (41.74°N, 104 

111.81°W, and 1466 m), which is part of the Center for Atmospheric and Space Sciences 105 

(CASS), from August 1993 through December 2004.  The lidar consisted of a frequency-doubled 106 

Nd:YAG laser operated at 532 nm with a repetition rate of 30 Hz.  During this period two lasers 107 
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were used at different times: one had an average power of 18 W, the other 24 W.  The laser was 108 

Q-switched, providing a short pulse of ~7 ns.  The backscattered light was collected by a 44-cm 109 

diameter Newtonian telescope, which gave a system power-aperture product of 2.7 or 3.6 Wm2, 110 

depending on the laser.  The telescope focused the backscattered light onto a field stop at the 111 

prime focus, giving a field of view approximately 3 times that of the 0.5 mrad laser divergence.  112 

Its light then passed through a field lens to another lens that focused the light onto the plane of a 113 

mechanical chopper.  Another lens collimated that light and passed it through a narrow-band, 114 

high-transmittance interference filter (1 nm and 80%) and into a cooled photomultiplier tube 115 

(PMT) housing (Products for Research) that held a green-sensitive, bi-alkali PMT (Electron 116 

Tubes 9954).  The narrow, high-transmittance filter and cooled PMT housing helped extend the 117 

acquisition of good data to as high an altitude as possible.  The 1466-m altitude of ALO also 118 

helped in that regard.  The basic altitude resolution was 37.5 m, corresponding to a range bin of 119 

250 ns.  The returns from 3600 pulses were summed before they were recorded to disk, giving a 120 

minimum time resolution of 2 minutes.  The data can be integrated afterwards in the data 121 

reduction in both altitude and time.  For this study, they were integrated over 3 km in altitude and 122 

all night in time.  However, the calculations were still carried out every 37.5 m.  Most of the 123 

observations started approximately an hour after sunset and ended approximately an hour before 124 

dawn.  The intent was to make all-night observations.  However, because of clouds, on some 125 

nights the observations ended early and on roughly an equal number of nights they started late.  126 

A more detailed description of the lidar is given elsewhere (Beissner, 1997; Wickwar et al., 127 

2001; Herron, 2004, 2007). 128 

The lidar signal is composed of backscattered photons, background photons, and dark 129 

counts.  To protect the PMT from large, low-altitude signals, a mechanical chopper blocked most 130 
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of the return from below 20 km, and electronic gating in the PMT reduced the gain by about a 131 

factor of 700 below 38 km.  We appeared to obtain better PMT behavior when using both the 132 

chopper and electronic gating.  Good data after the gate turn-on were acquired starting at 133 

approximately 41 km.  This relatively high altitude also ensured that the PMT count rate was in 134 

its linear range, which was essential for deriving good temperatures.  At and above this altitude, 135 

possible extinction by stratospheric aerosols (Hauchecorne et al., 1991) and absorption by O3 136 

(Sica et al., 2001) can be neglected.  At higher altitudes, there is the possibility of Mie scattering 137 

from ice crystals in noctilucent clouds (Wickwar et al., 2002; Herron et al., 2007), but they occur 138 

rarely at this latitude and stand out clearly in the return signal.  Consequently, the altitude-139 

dependent signal above 41 km is effectively due only to Rayleigh scattering.  The returns are 140 

measured out to an altitude of 525 km.  Extended regions between 120 and 350 km can be used 141 

to enable both an accurate and precise determination of the background signal and, on occasion, 142 

to provide a diagnostic tool for the detector system.  Once a suitable background level is 143 

determined and subtracted, the signal is corrected for the inverse range-squared falloff of the 144 

return signal.  The resulting profile is proportional to molecular density and is integrated 145 

downward to determine profiles of absolute temperature by assuming the atmosphere is in 146 

hydrostatic equilibrium and obeys the ideal gas law (Hauchecorne and Chanin, 1980; Beissner, 147 

1997; Herron, 2004).  To do this, we need the mean molecular mass.  Because the downward 148 

integration begins at or below 95 km, it is assumed that turbulent mixing leads to a constant 149 

mean molecular mass based on 78.1% N2, 20.9% O2, and 0.93% Ar (Goody and Yung, 1989).  150 

We also need the gravitational acceleration normal to the geoid as a function of altitude.  We 151 

used the very detailed formulation provided by NIMA (2000).  A major strength of the Rayleigh 152 

lidar technique is that the temperature profiles are independent of time variations in the 153 
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atmospheric transmittance (mostly arising from thin clouds and aerosols) and laser power.  The 154 

temperatures do not have to be calibrated.  However, they do depend on very good observational 155 

and data reduction procedures.  More generally, a detailed discussion of the analysis procedure 156 

and its verification using extensive simulations is given in Herron (2004). 157 

To calculate the absolute temperature, an a priori knowledge of the temperature at the 158 

start of the downward integration is necessary.  The initial values were taken from the 8-year 159 

climatology from the sodium lidar at Colorado State University (CSU) (She et al., 2000), which 160 

was only 575 km away and just over 1° equatorward of ALO-USU.  The CSU temperatures were 161 

from 1990 to 1999, covering much of the same time period as the ALO-USU data.  The use of 162 

this nearby climatology in deriving our Rayleigh climatology should be more appropriate than 163 

using an empirical model such as NRLMSISe-00 (Picone et al., 2002).  However, because of the 164 

existence of large amplitude temperature waves, with amplitudes as great as 20 K, that we 165 

identified in a noctilucent cloud study (Herron et al., 2007), a climatological initial temperature 166 

could still have a large error, too high or too low, at the highest altitudes for a given night.  But, 167 

averaging together the many nights that go into our composite climatology minimizes the effect 168 

of these and other waves at the highest altitudes.  At lower altitudes, these initial values are not 169 

significant because any systematic error from this initial temperature decreases rapidly with the 170 

downward integration because of the exponentially increasing density.  For instance, using a 171 

neutral-density scale height of 7 km, any difference between the derived and actual temperatures 172 

decreases by a factor of ~4 after 10 km of integration and by a factor of  ~17 after 20 km.  Thus, 173 

the Rayleigh temperatures become independent of the initial values after a relatively short 174 

distance. 175 

The starting altitude for the downward temperature integration is determined as the 176 
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altitude at which the signal is 20 times its standard deviation, or a 5% uncertainty in the signal.  177 

This implies a 5% uncertainty in the number density.  This, in turn, leads to a 6% temperature 178 

uncertainty.  The average starting altitude for nighttime temperature profiles is 87 km, but even 179 

for the very best data the maximum altitude was capped at 95 km.  The use of the CSU 180 

climatology for the starting values and the averaging of many nights, coupled with the rapid 181 

decrease of any initial errors, should ensure that accurate temperatures are obtained for altitudes 182 

below 80 km and that reasonably accurate temperatures are obtained significantly above 80 km 183 

all the way to the maximum altitude. 184 

At the upper limit of the lidar’s data range, the background becomes a large portion of the 185 

total signal.  Its accurate determination at a yet higher altitude, in the region above 120 km, is 186 

most important for the data reduction.  In that region, it should be constant.  Typically, the 187 

background was estimated by averaging the signal between 120 and 170 km.  Occasionally it 188 

was averaged over slightly different ranges.  The accuracy is important because a bad 189 

background can lead to systematic temperature errors at all altitudes (Herron, 2004).  190 

Observationally, bad backgrounds can have positive or negative slopes, oscillations, or spikes.  191 

While not common, these bad behaviors indicated that either equipment was failing or that 192 

improper settings had been used.  Experimentation with simulated data also showed that 193 

significantly too high or too low an estimated background would lead to temperatures that 194 

increased or decreased sharply immediately below the initial altitude, thus warning of a potential 195 

problem.  The effects of random small variations in the observed background level on the 196 

deduced temperatures are reduced by the subsequent averaging of many nights to produce the 197 

climatology.  On some nights, mostly because of clouds, the signal strength was too small to 198 

obtain good temperatures.  Between 1993 and 2004 observations were obtained on 964 nights 199 
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covering 5972 hours.  Of these, 839 nights covering 5273 hours were of such quality as to give 200 

good temperatures.  The monthly distributions of nights and hours observed that contributed to 201 

the two composite climatologies are given in Figure 1.   202 

 203 
Figure 1.  Number of Good Nights and Hours Observed Each Month in the ALO-USU 204 

Composite Year.  The good nights are in red, the hours in blue. 205 

 206 

An average temperature profile is found for each night of a composite year by averaging 207 

the nighttime temperature profiles over a 31-day by 11-year window centered on that night.  208 

Because each of the nighttime profiles included in the average can have a different starting 209 

altitude, the maximum altitude for the average is dependent on the distribution of these starting 210 

altitudes.  The averaging starts at 45 km with the maximum (or close to the maximum) number 211 
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of profiles in the averaging window and continues upward until half of the maximum number 212 

remains.  (Occasionally the number of profiles increases over the first few km because the 213 

electronic gate had been set too high, giving the maximum number at a slightly higher altitude.)  214 

Seventy-five percent of the individual nighttime temperature profiles have their maximum 215 

altitude, the starting altitude for the downward integration, between 84 and 95 km.  The average 216 

altitude for all the individual nights in the dataset is ~87 km.  As might be expected, after the 217 

multi-night by multi-year averaging, the maximum altitude in the climatological averages is 218 

almost the same, 88 km.  This also implies that half the nights in the averages start above 88 km.  219 

As seen from the individual profiles in Figure 2, many reached 95 km. 220 

After finding the temperatures, the next important question concerns their significance 221 

and variability.  The starting point is the Poisson uncertainty from photon counting.  Its effect on 222 

the derived temperature uncertainty and, hence, variance has been given by Gardner (1989), 223 

Beissner (1997), and Herron (2004, 2007).  Provided these temperature variances are fairly 224 

similar at a given altitude from night to night, which they should be, they can be averaged over 225 

the same 31-day by 11-year window as the signal to find the average temperature variance,  226 

 𝜎𝑇
2(ℎ) = [1 𝑁(ℎ)⁄ ] ∑ 𝜎𝑖

2(ℎ)𝑁(ℎ)
𝑖=1  (1) 227 

where 𝜎𝑖
2(ℎ) is the temperature variance for the ith night at altitude h, and 𝑁(ℎ) is the total 228 

number of nights in the averaging window at that altitude.  This variance can be divided by 𝑁(ℎ) 229 

to find the variance of the mean temperature 𝑇̅(ℎ).  The square root of that gives the standard 230 

deviation of the temperature uncertainty,  231 

 𝜎𝑇̅(ℎ) = √𝜎𝑇
2(ℎ) 𝑁⁄ (ℎ) . (2) 232 

This is a good estimate of the contribution to the uncertainty of the mean temperature arising 233 

from the Poisson uncertainty from photon counting, provided all the temperatures in the 234 
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averaging window are from the same temperature distribution.   235 

 236 
 237 

Figure 2.  Superposition of Individual Nighttime Temperature Profiles from January and June, 238 

the Extreme Winter and Summer Months.  Nighttime temperature profiles from (a) all 48 239 

January and (b) all 87 June observations.  A different color is used for each year.  These are 240 

examples of two of the ensemble of profiles that contribute to the 31-day by 11-year averages 241 

shown in Figure 5.  The standard deviations of the mean 𝑠𝑇̅(ℎ) used in Figure 3 and shown in 242 

Figures 4 and 6 are calculated from such ensembles of profiles.  243 

 244 

However, much greater temperature variability arises because of day-to-day and year-to-245 

year geophysical temperature variability, 𝜎𝐺𝑒𝑜(ℎ).  The combined effects of measurement 246 

uncertainty from Poisson counting statistics and geophysical temperature variability is found 247 

from the sample variance,          248 



Journal of Geophysical Research -- Atmospheres 2018JD028450 

 13 

 𝑠𝑇
2(ℎ) = {1 [𝑁(ℎ) − 1]⁄ } ∑ [𝑇𝑖(ℎ) − 𝑇̅(ℎ)]2𝑁(ℎ)

𝑖=1  (3) 249 

where 𝑇𝑖(ℎ) is the ith derived temperature and 𝑇̅(ℎ) is the average of the 𝑇𝑖(ℎ), and 𝑁(ℎ) is the 250 

total number of nights in the averaging window at altitude h.  This sample variance can also be 251 

divided by 𝑁(ℎ) to estimate the variance of 𝑇̅(ℎ).  The square root of that gives the standard 252 

deviation of the total temperature uncertainty from the combined effects of the Poisson counting 253 

statistics and geophysical variability,  254 

 𝑠𝑇̅(ℎ) = √𝑠𝑇
2(ℎ)/𝑁(ℎ) . (4) 255 

As such, it indicates the significance of the derived mean temperature 𝑇̅(ℎ).  It provides the 256 

temperature uncertainties of the mean (error bars) for the temperatures shown in Figure 3, the 257 

uncertainty profiles shown in Figure 4 for the temperatures in Figure 5, and the uncertainty 258 

profiles (solid lines) shown in Figure 6 for the January and June temperatures.  These are 259 

discussed in the next Section. 260 

In addition to 𝑠𝑇(ℎ) giving the standard deviation for the temperature distribution, it can 261 

be combined with the Poisson-derived temperature uncertainty 𝜎𝑇(ℎ) to determine the 262 

geophysical temperature uncertainty or variability,     263 

 𝜎𝐺𝑒𝑜(ℎ) = √𝑠𝑇
2(ℎ) − 𝜎𝑇

2(ℎ) . (5) 264 

This formulation is consistent with that of Leblanc et al. (1998) and Argall and Sica (2007).  It is 265 

used to find the composite climatology of the geophysical temperature variability, which changes 266 

significantly with time during the year and with altitude, reflecting changes and evolution in the 267 

underlying physical processes.  The 31-day by 11-year integration is long enough that it is not 268 

sensitive to variations from gravity waves.  The waves that could affect this average have periods 269 

that range from 2 to 31 days.  Contours of  𝜎𝐺𝑒𝑜(ℎ) for the composite-year temperature 270 

variability are shown in Figure 7.   271 
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 272 
 273 

Figure 3.  ALO-USU Climatological Nighttime Temperatures 𝑇̅ at 45, 65, and 85 km.  The 274 

temperatures are averaged over a 31-day by 11-year window centered on each night of the 275 

composite year.  The error bars are from the standard deviation of the mean 𝑠𝑇̅(ℎ) given at the 276 

three altitudes by Equation 4 and shown as profiles in Figure 4.  The ✫ symbol marks maximum 277 

and minimum temperatures.  278 

 279 
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 280 
Figure 4.  Mid-month Profiles of Standard Deviations of the Mean 𝑠𝑇̅(ℎ) for the ALO-USU 281 

Climatology of Nighttime, Mesospheric Temperatures.  There is a profile for each mid-month 282 

mean temperature profile 𝑇̅(ℎ) shown in Figure 5.  These standard deviations include the effects 283 

from both Poisson statistics and geophysical variability.  The solid profiles are for April through 284 

September and the dashed profiles are for October through March.  The black curve is the 285 

average annual temperature uncertainty profile obtained by averaging the twelve, one-month 286 

profiles.   287 

  288 
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 289 
 290 

Figure 5.  Mid-month Temperature Profiles 𝑇̅(ℎ) from the ALO-USU Climatology of 291 

Nighttime, Mesospheric Temperatures.  The temperatures are averaged over a 31-day by 11-year 292 

window centered on the middle of each month of the composite year.  The solid profiles are for 293 

April through September and the dashed profiles are for October through March.  The heavy 294 

black curve is the average annual temperature profile obtained by averaging the twelve, one-295 

month profiles.   296 

 297 

  298 
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 299 
Figure 6.  Several Uncertainty Profiles for January and June Climatological Temperatures.  The 300 

dashed profiles are the uncertainty of the mean 𝜎𝑇̅(ℎ) derived from the Poisson, photon-counting 301 

uncertainty, Equation 2.  The solid profiles are the standard deviations of the mean 𝑠𝑇̅(ℎ) derived 302 

from the temperatures, Equation 4.  The dotted profiles are the geophysical temperature 303 

variability of the mean 𝜎𝐺𝑒𝑜(ℎ) √𝑁⁄  derived starting from Equation. 5.  The January profiles are 304 

given in blue and the June profiles in red.  The profile of plus signs is a reference curve for the 305 

June geophysical variability of the mean.  It grows with a 14 km scale height.   306 

 307 
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 308 
Figure 7.  ALO-USU Composite Year Climatology of Geophysical Temperature Variability 309 

𝜎𝐺𝑒𝑜(ℎ).  The variability 𝜎𝐺𝑒𝑜(ℎ) is derived from the temperatures within the 31-day by 11-year 310 

window centered on each night of the composite year, Equation 5.  The contours are at intervals 311 

increasing by √2 between 2.5 and 28 K.   312 

  313 
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Furthermore, 𝜎𝐺𝑒𝑜(ℎ) can be divided by √𝑁(ℎ) , as done for other uncertainty 314 

expressions in Equations 2 and 4, to find the geophysical uncertainty of the mean of a particular 315 

set of 𝑁(ℎ) observations.  This is what is shown by dotted lines in Figure 6 for January and June 316 

from the composite-year temperature variability. 317 

 318 

3.  Observations  319 

     3.1  Composite-Year Temperature Climatology 320 

The average climatological temperatures can be examined in several ways.  The 321 

temperatures for each day of the composite year are given as a contour plot in Figure 8 and are 322 

given at 3-km intervals in Table 1.  This plot extends from 45 to approximately 90 km and from 323 

175 to 270 K with contours every 5 K. For a second perspective and more detail, the averaged 324 

temperatures at three selected altitudes—45, 65, and 85 km—are shown in Figure 3.  The three 325 

curves are very different, showing a singular characteristic of the mesosphere: the 45 km curve 326 

shows a cold winter and warm summer, while the 85 km curve shows the reverse, a warm winter 327 

and cold summer.  There is a transition in between.  After examining many curves between 60 328 

and 70 km, the 65 km curve was chosen because it had the minimum variation.  (It is purely 329 

coincidental that it is midway between 45 and 85 km.)  The total uncertainty of the mean 𝑠𝑇̅(ℎ), 330 

as defined in Equation 4, is also shown at monthly intervals on these three temperature curves.  331 

These uncertainties are all very small, giving considerable significance to the temporal structures 332 

in these curves and to the temperature values in the Figure 8 contour plot.  For a third perspective 333 

and different detail, twelve altitude profiles of the monthly temperatures are shown in Figure 5.  334 

Each profile is the result of the same type of averaging as in Figures 3 and 8, the average of all 335 

the nighttime temperature profiles in a 31-day by 11-year window at each altitude 𝑁(ℎ).  336 
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However, in this case, the averages shown are just the` ones centered on the middle of each 337 

month.  With so many profiles in Figure 5, it would be difficult and confusing to display the 338 

uncertainties, which are the total mean measurement uncertainties 𝑠𝑇̅(ℎ) as also shown in Figure 339 

3 at 45, 65, and 85 km.  They are instead shown as profiles for each month in Figure 4.  Again, 340 

they are small, small enough to enable meaningful comparisons among the temperature profiles 341 

in Figure 5.  In addition to the monthly profiles, an annual average temperature profile, created 342 

by averaging the 12 one-month profiles, is shown in black.  It almost perfectly divides the data in 343 

time, into summer and winter behaviors.  (The exception is September above 78 km.)  The 344 

monthly curves from the winter half of the year, October through March, are shown as dashed 345 

lines, and the curves from the summer half of the year, April through September, are shown as 346 

solid lines.  Similarly, an annual average uncertainty profile is created and shown in black in 347 

Figure 4.  Most of the uncertainty curves are closely clustered together.  The biggest exception is 348 

December, which has the largest uncertainties.  They reflect a combination of large, winter 349 

variability and the fewest number of nights observed.  350 

351 
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 352 
Figure 8.  ALO-USU Composite Year Climatology of Nighttime Mesospheric Temperatures 353 

𝑇̅(ℎ) between 45 and ~90 km.  The temperatures are averaged over a 31-day by 11-year window 354 

centered on each night of the composite year.  The contours are at intervals of 5 K.   355 

  356 
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 357 

Table 1.  Climatological Temperature Values and their Sample Standard Deviations of the Mean.   358 
 359 

   Alt  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

45 253.5 257.6 262.7 269.4 273.3 273.2 270.0 266.4 262.4 258.0 253.0 252.7 

  1.5 1.2 0.6 0.8 0.4 0.3 0.3 0.4 0.3 0.5 0.8 2.6 

48 253.2 256.2 262.1 266.9 271.7 272.1 269.2 265.6 262.6 259.3 254.4 254.5 

  1.1 1.0 0.6 0.4 0.5 0.3 0.3 0.3 0.2 0.4 0.8 2.5 

51 250.5 253.0 258.6 264.4 269.2 268.6 265.5 262.0 260.2 257.7 252.6 254.0 

  1.0 0.9 0.6 0.5 0.5 0.2 0.3 0.3 0.3 0.4 0.7 2.2 

54 246.3 248.0 253.9 259.8 264.8 262.9 259.2 255.8 255.3 253.5 249.1 251.4 

  1.1 0.9 0.5 0.5 0.6 0.3 0.3 0.3 0.3 0.4 0.9 1.8 

57 239.5 243.4 247.7 252.3 257.6 255.0 250.6 247.7 248.1 247.7 244.9 244.7 

  1.3 1.1 0.5 0.5 0.7 0.4 0.4 0.4 0.3 0.5 1.0 1.4 

60 231.9 237.5 240.9 244.5 248.6 245.1 240.7 237.4 239.2 240.5 241.3 238.8 

  1.6 1.1 0.6 0.6 0.7 0.4 0.5 0.4 0.4 0.6 1.2 1.3 

63 225.0 231.8 234.3 236.2 238.1 233.5 229.8 227.4 230.2 233.1 235.5 232.9 

  1.9 1.1 0.7 0.7 0.7 0.5 0.5 0.5 0.5 0.6 1.2 1.4 

66 222.7 231.0 229.3 229.0 227.4 220.6 218.7 217.3 220.8 226.3 228.8 229.4 

  2.1 1.1 0.8 1.0 0.9 0.6 0.6 0.6 0.6 0.8 1.2 2.1 

69 222.7 229.4 226.3 221.4 216.2 208.1 208.0 209.5 213.5 220.0 223.0 226.8 

  2.2 1.3 0.9 1.4 1.2 0.7 0.8 0.9 0.8 0.9 1.3 2.8 

72 222.7 225.5 220.7 213.6 206.5 197.7 201.5 203.5 208.0 214.0 218.2 222.9 

  2.2 1.5 1.1 1.5 1.2 1.0 1.3 1.0 1.0 1.0 1.4 4.0 

75 220.9 220.1 214.2 204.7 196.9 188.5 195.4 198.8 205.3 208.3 212.3 216.5 

  2.3 1.5 1.3 1.5 1.6 1.2 1.3 1.2 1.4 1.2 2.0 3.5 

78 218.2 215.0 206.3 195.6 190.3 179.7 188.6 193.7 202.4 203.2 208.2 210.2 

  2.6 1.7 1.6 1.8 1.9 1.4 1.4 1.5 1.7 1.7 2.0 4.2 

81 216.9 208.3 200.1 187.2 183.8 175.4 183.2 187.2 199.8 197.9 204.3 208.6 

  2.9 2.0 1.8 2.0 2.0 1.8 1.8 2.0 1.9 1.8 1.8 4.0 

84 212.9 203.7 196.7 183.1 176.7 171.2 177.3 183.9 200.6 198.0 203.7 209.4 

  3.9 3.0 2.0 3.1 2.3 2.2 2.3 2.2 2.4 2.1 2.4 6.0 

87 213.2 197.7 194.5 182.6 176.3 175.5 179.2 189.8 203.7 201.8 203.6 204.9 

  3.8 3.1 2.4 2.7 2.9 3.5 2.5 3.2 2.8 2.4 3.7 6.1 

90 211.8 202.1 195.7 186.4 180.5 — 180.8 — 197.2 201.6 201.1 208.6 

  4.5 4.0 3.3 4.1 3.0 — 2.6 — 3.1 2.9 3.8 7.2 

93 — — — — — — — — — — 200.3 — 

  — — — — — — — — — — 4.4 — 

 360 
 361 
  362 
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 363 

 364 

Figure 2 shows the 48 individual nighttime temperature profiles for January and the 87 365 

nighttime temperature profiles for June, which were averaged together, respectively, to make the 366 

January and June profiles in Figure 5.  The averaged January and June profiles give rise to the 367 

extreme temperature profiles in Figure 5.  Both months in Figure 2 show profiles of temperatures 368 

that mostly reflect geophysical variability and a small contribution derived from the Poisson 369 

contribution to the temperature uncertainty.  Below ~75 km the spread is clearly significantly 370 

greater in January than in June, presumably reflecting the propagation of more gravity waves and 371 

planetary waves into the mesosphere in winter (Andrews et al., 1987).  In addition, in January, 372 

the distribution of curves appears to become wider below 50 km, presumably in response to 373 

SSWs (Sox et al., 2016).  A few of the nights, roughly 10%, in both months clearly show profiles 374 

with large-scale waves with both bigger amplitudes and longer wavelengths than for the rest of 375 

the nights.  The spread in the profiles increases with altitude.  However, above ~75 km the 376 

spread becomes very similar for the two months.  Looking in detail at these collections of 377 

profiles, what is clear is the presence of waves with a wide range of vertical wavelengths and 378 

amplitudes that grow with altitude.  The waves must have long enough periods and small enough 379 

vertical velocities that they show up strongly as waves in the all-night profiles.  Above 92 km, 380 

the spread diminishes, not because of geophysical reasons, but because of the similarity of the 381 

initial temperature values, which are all taken from the CSU Na lidar climatology as stated 382 

earlier.  383 

 384 

Most of the monthly profiles in Figure 5 start at a high temperature at 45 km and then 385 

decrease monotonically with altitude until the mesopause near 85 km.  However, the profiles for 386 

January and February behave significantly differently from the others.  At about 65 km, the 387 
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temperatures start to increase with altitude.  They do this for the next 5 to 10 km, then resume 388 

their monotonic decrease with altitude.  That results in a small peak in the two profiles.  In 389 

addition, the profiles for December and March change slope in this same region, briefly 390 

decreasing more slowly with altitude.  This behavior, which is different than for the other eight 391 

months, comes about because of wintertime mesospheric inversion layers (Schmidlin, 1976; 392 

Hauchecorne et al., 1987; Whiteway et al., 1995, Leblanc and Hauchecorne, 1997; Meriwether 393 

and Gerrard, 2004).  Examples of these inversion layers, one each from December, January, 394 

February, and March, are shown in Figure 9.  These profiles were selected because they show 395 

very significant mesospheric inversion layers.  By comparing them to the average profiles in 396 

Figure 5, note that they have temperatures below the average at ~65 km and above the average at 397 

~75 km.  However, the amplitude of mesospheric inversion layers does vary considerably from 398 

night-to-night as does their occurrence frequency.  These variations in amplitude and occurrence 399 

frequency give rise to the differences seen in the averaged profiles in Figure 5. 400 

  401 
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 402 
Figure 9.  Temperature Profiles 𝑇(ℎ) from Four Winter Months with Large Mesospheric 403 

Inversion Layers.  They are from 20 December 1993, 20 January 1995, 19 February 1995, and 8 404 

March 1995.  The error bars 𝜎𝑖(ℎ) are calculated from the propagation of the Poisson uncertainty 405 

for the signal through the temperature reduction routine.  The dashed line shows the adiabatic 406 

lapse rate.  The January and February profiles have extensive regions on the topside of the 407 

inversion layer that are at the adiabatic lapse rate.  408 

 409 

In Figure 9, these temperature profiles come from 20 December 1993, 20 January 1995, 410 

19 February 1995, and 8 March 1995.  Also, included for reference in Figure 9 is the adiabatic 411 

lapse rate of 9.8 K/km, which is extremely close to the topside lapse rate for two of these four 412 

all-night profiles.  This closeness has been noted in a number of previous studies (e.g., Whiteway 413 

et al., 1995; Leblanc and Hauchecorne, 1997; Sica et al., 2007; Meriwether and Gerrard, 2004) 414 
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and has been associated with wave saturation and convective instability.  Also, shown for each 415 

all-night profile are several examples of the temperature uncertainties (or error bars) that are 416 

based on propagating the Poisson uncertainties from the observations though the temperature 417 

reduction procedures.  It is very apparent that the inversion layer structures are very real.  418 

 419 

     3.2  Composite-Year Climatology of Geophysical Temperature Variability 420 

An indication of the geophysical temperature variability is seen in the spread of the 421 

composite year temperature profiles from January and June in Figure 2.  Formally, the spread in 422 

the temperatures at a given altitude is characterized by the variance 𝑠𝑇
2(ℎ) of all the temperatures 423 

about the mean at that altitude during the month, Equation 3.  The sample temperature 424 

uncertainty or variability of the mean of those temperatures 𝑠𝑇̅(ℎ) is given by Equation 4, which 425 

is plotted for January and June in Figure 6 as solid lines.  The January curve shows greater 426 

uncertainty or variability of the mean than does the June curve.  This is for two reasons in 427 

addition to greater geophysical variability: fewer observations, Figure 1; and lower densities, 428 

hence signals (Barton et al., 2016).  This basic temperature uncertainty from the observations has 429 

two contributions.  The first is the temperature uncertainty or variability 𝜎𝑇(ℎ) arising from the 430 

observations, from the Poisson statistics of photon counting that are propagated through the data 431 

reduction to the temperatures.  Its temperature uncertainty of the mean 𝜎𝑇̅(ℎ), given by Equation 432 

2, is plotted for January and June in Figure 6 as dashed lines.  It shows greater uncertainty of the 433 

mean for January than for June for the same reasons as above.  There are fewer observations, 434 

Figure 1, and lower densities, hence signals (Barton et al., 2016).  These temperature uncertainty 435 

values are much smaller than those for the total sample uncertainty of the mean.  The second 436 

contribution, the major one, is the geophysical variability 𝜎𝐺𝑒𝑜(ℎ), which arises from many 437 



Journal of Geophysical Research -- Atmospheres 2018JD028450 

 27 

possible geophysical sources, as described below.  It gives the total contribution to the variability 438 

from these sources.  It is found by subtracting the variance from Poisson statistics from the total 439 

sample variance, Equation 5.  This is shown for the composite year in Figure 7 and the values 440 

given at 3-km intervals in Table 2.  This result is then divided by √𝑁(ℎ) to find the total 441 

geophysical variability or uncertainty of the mean, which is plotted for January and June in 442 

Figure 6 as dotted lines.  It is only slightly smaller than the sample temperature uncertainty of the 443 

mean. 444 

  445 
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 446 

Table 2.  Geophysical Temperature Variability 𝜎Geo.  447 

 448 

Alt Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

45 9.9 8.7 4.9 6.1 2.6 2.8 3.2 3.5 2.5 4.3 5.0 12.5 

48 7.3 7.2 5.2 3.2 3.6 2.4 2.7 2.5 2.2 3.9 5.0 12.3 

51 6.6 6.8 5.0 3.5 3.9 2.2 2.7 2.8 2.6 3.7 4.6 10.7 

54 7.6 7.2 4.3 3.6 4.5 2.8 3.0 3.0 2.7 3.8 5.7 8.8 

57 8.9 8.2 4.7 3.4 5.1 3.9 3.8 3.5 3.2 4.7 6.3 6.7 

60 11.4 8.8 5.2 4.3 4.9 4.1 4.6 3.9 3.7 5.2 7.4 6.3 

63 13.0 8.8 6.0 5.0 5.3 4.7 4.9 4.6 4.4 5.3 7.5 7.0 

66 14.5 8.9 7.2 7.5 6.6 5.3 6.6 5.9 5.5 7.1 7.8 10.2 

69 15.3 10.6 8.8 10.3 8.9 6.2 8.4 8.6 7.5 8.6 8.1 13.7 

72 15.5 11.9 10.3 11.6 8.8 9.3 13.6 10.3 10.3 9.4 8.7 19.4 

75 16.3 11.9 12.2 11.5 11.6 11.3 13.6 12.2 14.1 10.8 12.4 17.3 

78 17.9 13.4 14.7 13.2 13.4 13.3 14.3 14.9 16.6 15.9 12.4 20.5 

81 19.9 15.4 16.3 14.0 14.5 16.7 17.9 20.0 18.2 16.5 11.1 18.8 

84 25.9 22.1 17.4 20.8 15.7 20.2 21.9 21.2 23.2 19.1 14.9 25.2 

87 22.5 22.0 19.8 17.0 18.6 27.3 24.0 27.1 25.2 20.8 21.4 24.4 

90 24.0 25.2 23.4 21.0 15.9 — 21.4 — 23.4 21.3 19.9 24.8 

93 — — — — — — — — — — 19.2 — 

 449 

  450 
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  451 

As just mentioned, there are many potential sources of geophysical variability.  These 452 

include waves with periods greater than half a night’s observations that are not coherent with a 453 

24-hr period, such as some gravity waves and planetary waves.  Their contribution is apparent in 454 

Figure 2.  Other sources include upward propagation of tropospheric temperature perturbations 455 

from weather systems, random sampling of episodic events such as time-varying mesospheric 456 

inversion layers or SSWs (and mesospheric coolings), solar variations from solar activity and the 457 

27-day Carrington rotation, variability in the timing of the change from one season to the next, 458 

year-to-year variability from such things as El Niño and La Niña and the quasi-biennial 459 

oscillation (QBO), multi-year temperature heating or cooling from major volcanic eruptions such 460 

as El Chichon and Mt Pinatubo, solar cycle irradiance variations, and long-term temperature 461 

trends such as from global climate change.  In addition, because of clouds affecting lidar 462 

observations, some of the observations include only the first half of the night and some only the 463 

second half of the night.  As a result, there may also be some contribution to the variability from 464 

waves with a period roughly equal to the length of the night.  Besides mesospheric inversion 465 

layers and SSWs, these sources of variation are not examined here.  They will be in the future. 466 

There is another possible contribution to the total uncertainty of the mean 𝑠𝑇̅(ℎ) that 467 

needs to be mentioned.  Because the data are averaged over 31-day periods, the total calculated 468 

uncertainty might be artificially increased if the temperature had a significant gradient in time.  469 

This possibility is explored by examining the effect of the largest temporal warming in the data, 470 

which occurred between early August and early September at 85 km, as shown in Figures 3 and 471 

8.  It is a 25 K temperature increase in the course of one month.  Approximately 100 nights 472 

contributed to this portion of the composite climatology.  An estimate of the effect of this 473 

temporal change is obtained by deriving the variance of the mean for a 25 K linear temperature 474 
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change over this period.  It works out to be less than 10% of the total variance, meaning that the 475 

effect on the total standard deviation of the mean is less than 0.2 K.  Accordingly, the effect of 476 

temporal temperature gradients in the observations is small enough that it does not contribute 477 

significantly to these results. 478 

Taken together these profiles of the January and June uncertainties of the mean in Figure 479 

6 give a very good representation of the range of precision of the derived temperatures.  The 480 

uncertainties shown in Figure 3 for 45, 65, and 85 km are the total uncertainties of the mean, 481 

calculated using Equation 4.  The same is true for Figure 4.  It should also be noted that these 482 

uncertainties are consistent with the temperature fluctuations in Figures 3 and 5.  The values are 483 

small.  They are less than 1.5 K below 70 km for the whole year except for December and 484 

January.  They are that small, in part, because of the high photon count rates at low altitudes and, 485 

in part, because of the large number of nights observed each month, as indicated in Figure 1.  486 

They are bigger in December and January because of large winter wave effects and the smaller 487 

number of nights observed in December.  They then have a rapid increase with altitude to values 488 

near 4 K by 90 km for most months and almost 8 K for December.  This increase is largely 489 

because of the exponential falloff of neutral density with altitude.  Another factor, as discussed in 490 

Section 2, is that the number of profiles contributing to the average at the maximum altitude 491 

𝑁(ℎ𝑚𝑎𝑥) is half of what it is at 45 km 𝑁(45), with much of that decrease occurring in the top 10 492 

km.  493 

It should also be noted that the profile of the geophysical temperature variability of the 494 

mean for June in Figure 6 appears to increase exponentially with altitude over most of the 495 

altitude range.  This is emphasized by a profile with plus signs almost superimposed on the June 496 

dotted curve.  It grows by a factor of e every 14 km between 50 and 85 km.  This is what is 497 
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expected for waves growing adiabatically with altitude in an atmosphere where the density falls 498 

off with a 7-km scale height.  This is presumably what is happening.  The waves are growing at 499 

this rate as opposed to breaking and giving up energy, which would reduce the temperature 500 

variability. 501 

Below 50 km something else is happening in Figure 6 in June.  The variability grows 502 

above the background exponential level in descending from 50 to 45 km.  This strongly suggests 503 

the existence of another source of temperature variability near the stratopause, a source that does 504 

not propagate upward.  A possibility might be upward propagating gravity waves reaching their 505 

critical level and losing their energy to the background atmosphere.  506 

The growth of the total geophysical variability of the mean 𝑠𝑇̅(ℎ) in Figure 6 for January 507 

is less rapid and much more structured.  Immediately above 86 km it has values similar to the 508 

elevated June values.  Slightly lower, centered on 84 km, it has an isolated peak in variability.  509 

Below 70 km the variability is again significantly greater than what would be expected from a 510 

downward extension of an exponential profile.  This additional variability must come from other 511 

geophysical processes.  The relative maximum between 60 and 70 km most likely reflects the 512 

variability introduced by mesospheric inversion layers, such as the examples shown in Figure 9.  513 

Like the June profile, it also shows an increase while descending from 50 km to 45 km.  514 

However, this increase is significantly bigger.  This is much like the temperatures in Figure 8 and 515 

at 45 km in Figure 3.  This suggests another source of variability, which as mentioned earlier is 516 

most likely the intermittent occurrence of SSWs over the years during these observations (Sox et 517 

al., 2016).  518 

The climatology of the geophysical variability for the composite year is given as a 519 

contour plot in Figure 7.  As in Figure 8, this climatology is based on a 31-day by 11-year 520 
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running average.  This plot extends from 45 to approximately 90 km and from 2.5 to between 20 521 

and 28 K with the contours increasing by √2.  That is a meaningful spacing because, as already 522 

noted, the magnitude of fluctuations grows rapidly with altitude due to the exponential decrease 523 

in density, as described above.  What is also immediately apparent in Figure 7, as suggested from 524 

Figure 6, is that in most of the mesosphere, there is considerably greater variability in December, 525 

January, and February than in summer.  This winter variability grows and extends into the upper 526 

mesosphere above ~80 km.  However, unlike the annual cycle in variability in the lower 527 

mesosphere, this high level of variability extends across almost all 12 months.  In between the 528 

winter and summer periods of high variability, there are two short periods, each about a month 529 

long, with lower variability, less than 20 K instead of greater than 20 K.  The first is centered on 530 

mid-April, three weeks after equinox.  The second is centered on the beginning of November, 531 

five weeks after equinox.  They do differ from one another in that the April period appears to 532 

extend lower into the middle and lower mesosphere than the November period.  They both 533 

extend down to 70 km, with the spring one extending another 10 km or so lower.  By their 534 

timing, they are related to the winter-summer seasonal transitions.  With this high level of 535 

variability in both summer and winter, it appears that there is much greater variability above ~80 536 

km in summer than expected from the variability below.  This is supported by the high level of 537 

variability in the June profile in Figure 6 above 80 km, in the region of the mesopause. 538 

In addition to June and January, the composite year contour plot in Figure 7 shows 539 

further variability in altitude and time, suggesting even more effects.  It appears that from late 540 

May through October, the variability is similar to what is shown in Figure 6 for June.  Strong 541 

winter effects occur from November well into February, and to a lesser extent into March.  542 

Variability in December is particularly strong at all altitudes.  As indicated above, much of this 543 
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may come from significant inversion layers. 544 

The temperature variability distribution in the upper mesosphere above 80 km, as shown 545 

in Figure 7, is roughly the same throughout the year and quite large.  However, a few aspects of 546 

it need mentioning.  The winter period from early December through late March and the summer 547 

period from late May through early October have similar variability above about 80 km.  The 548 

summer temperature variability starts at 14 K, increases to 20 K and in a few spots almost 549 

reaches 28 K.  As mentioned above, this appears to be part of the exponential growth with a 14 550 

km e folding distance.  This might arise from the breaking of gravity waves at high altitudes or 551 

from variations in the meridional circulation.  However, at the highest altitudes, above 88 km or 552 

so, the variability appears to decrease in Figures 2 and 7.  This reflects that these altitudes are 553 

very close to where the initial value in the temperature data reduction is specified.  Accordingly, 554 

the deduced variability at the highest altitudes would be artificially reduced.  Coming back to just 555 

above 80 km, the higher-than-expected temperature variability may arise if the temperature 556 

profiles can vary significantly.  That possibility is clearly seen in a few of the profiles with large 557 

amplitudes in Figure 2.  It is further emphasized by the finding (Herron et al., 2007) of a wave on 558 

22 June 1995 at 83 km that had a 20 K amplitude, which in that case gave rise to a low enough 559 

temperature to support a noctilucent cloud.  To be clear, this high-temperature variability is a 560 

common feature during both the winter and summer periods.  It extends across the March and 561 

September equinox periods as well as the very cold summer mesopause in June at 85 km.  This 562 

indicates that no localized maximum in variability is seen at either equinox.  As previously 563 

indicated, the temperature variability during the “cold island” in mid-October is smaller.  This 564 

supports the contention that the “cold island” is a general feature, a true cold region in time and 565 

altitude, not the result of a few particularly cold nights.  566 
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Thus, from the lidar observations, temperatures have been obtained throughout the 567 

mesosphere between 45 and ~90 km during a composite year.  Near 45 km, the summer is about 568 

20 K hotter than the winter.  Near 85 km, this behavior is reversed, with the summer mesopause 569 

about 40 K colder than the summer maximum.  In spring, the periods of heating at 45 km and of 570 

cooling at 85 km are much shorter than the fall periods of cooling at 45 km and heating at 85 km.  571 

The transition between these two behaviors is at 65 km.  In addition to this significant spring-fall 572 

asymmetry in temperature behavior, two features stand out.  They are a period of extreme 573 

heating at 85 km of 25 K/month from early August to early September and a “cold island” that 574 

follows shortly thereafter in October.  In winter, there is a “cold valley” extending from 45 km 575 

well into the middle mesosphere. There is considerable variability in the temperature profiles, 576 

which increases with altitude.  There is a small contribution originating from the Poisson 577 

statistics of the observations and a much larger contribution from geophysical temperature 578 

variability.  The two components combine to produce the observed variability.  This variability is 579 

illustrated in Figure 2 and shown in Figure 6 for January and June.  The composite-year 580 

climatology of the geophysical temperature variability is show in Figure 7.  581 

 582 

4.  Discussion  583 

As discussed in the previous section, the ALO-USU mesospheric temperatures from 584 

41.74° N latitude are presented in three different ways in Figures 3, 5, and 8: at three specific 585 

altitudes, as monthly profiles, and as contours.  The geophysical variability is presented as a 586 

contour plot in Figure 7.  The temperatures and variability from two other lidar groups located 587 

between 40° and 45° N latitude were presented as contours plots in their papers:  the two French 588 

lidars, OHP at 44.0° N and 6.0° E and CEL at 44.0° N and 1.0° W (Hauchecorne et al., 1991; 589 
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Leblanc et al., 1998) and the Canadian Purple Crow Lidar (PCL) originally at 42.9° N and 81.4° 590 

W and now at 43.1° N and 81.3° W (Argall and Sica, 2007; Jalali et al., 2016).  Although 591 

contour plots provide a good indication of how things vary with altitude and time, they do 592 

present a challenge for obtaining precise comparison values.  There are additional considerations 593 

that affect these comparisons.  While there is a significant overlap in altitude from 45 to 85 km, 594 

the individual lidars cover different ranges.  The three groups handle the data, the photon counts, 595 

in slightly different ways and determine temperatures in slightly different ways.  Both the 596 

altitude and temporal smoothing are done differently.  In addition, the time periods covered by 597 

the reported observations are different: 1993 to 2004 for ALO-USU; 1984 to 1995 for OHP and 598 

1986 to 1994 for CEL (Leblanc et al., 1998); 1994 to 2013 for PCL.  The latter is further divided 599 

between 1994 to 2004 (Argall and Sica, 2007), which is used mostly for geophysical variability, 600 

and 1994 to 2013 (Jalali et al., 2016), which is used mostly for temperatures.  Also, the seasonal 601 

coverage and density of observations differ: 839 nights at ALO-USU; 1244 profiles at OHP and 602 

670 at CEL (Leblanc et al., 1998); and 453 profiles at PCL between 1994 and 2004 (Argall and 603 

Sica, 2007).  Winter tends to present the greatest challenge because of both the observing 604 

conditions and the day-to-day or week-to-week variability of the temperatures.  Another factor, 605 

the impact of which is not clear, is the proportion of the night that is observed—first half, second 606 

half, or all night.  It could affect the precision as well as the contribution of tidal fluctuations to 607 

the “all-night” temperature averages and the geophysical variability.   608 

Despite all these caveats and cautions, it is nonetheless very worthwhile to compare these 609 

two ALO-USU climatologies with those from the other two groups.  There are many features 610 

that are common and others that are different.  Because information from these other two groups 611 

will be referred to often, please note the references to Argall and Sica (2007) and Jalali et al 612 
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(2016) for PCL and to Leblanc et al (1998) for OHP and CEL and consider them as given 613 

whenever reference is made to these lidars or the results obtained with them.  614 

     4.1  Lower Mesosphere 615 

In the lower mesosphere in summer, the maximum temperatures at ALO-USU occur in 616 

May and June, as seen in Figures 3, 5, and 8.  If anything, May is comparable to or very slightly 617 

warmer than June.  This result is similar to what is seen in the contours for the other lidars, 618 

especially OHP.  For the others, there appears to be a slight maximum in June.  The profiles for 619 

mid-May and mid-June in Figure 5 are at least 3 K warmer than any of the other profiles up to 52 620 

km.  This difference is valid in that it greatly exceeds the total observed uncertainty of the mean, 621 

given by the solid profiles in Figure 6 for June.  These contours in Figure 8 also show time 622 

variations of temperature, i.e., heating and cooling rates, on both sides of the maximum.  The 623 

heating rate in the spring is significantly greater than the cooling rate in the fall.  The contours 624 

for the other lidars qualitatively show the same asymmetry, heating faster in the spring and 625 

cooling more slowly in the fall.   626 

In winter, the mid-January temperature profile in Figure 5 is significantly colder than the 627 

December and February profiles, especially between 50 and 64 km, reaching more than 5 K 628 

colder near 58 km.  Turning to the contours, they show very distinct temperature maxima on 629 

either side of this January minimum, creating a “cold valley” in between.  In more detail, starting 630 

in late November, a relative maximum in Figure 8 appears to propagate upwards from about 55 631 

km until mid-December at about 74 km.  Then in mid-January a relative temperature maximum 632 

descends from 85 km until late February at about 65 km.  The effect of these two warm features 633 

is to extend this “cold valley” beginning at about 75 km at the beginning of January and 634 

descending to about 50 km by the end of January.  The center of this temperature minimum 635 
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occurs between 1 and 5 weeks after winter solstice as it depends on altitude. 636 

The winter behavior is complex and varied for all the lidars.  There is more or less a 637 

minimum temperature between 45 and 50 km between November and February, but with one or 638 

two hot spots in between.  All the lidars show significant increases in the geophysical variability 639 

between 45 and 50 km between December and February followed by decreases in variability 640 

between 50 and 60 km.  The low altitude values rise to 10 K or so, compared to the summer 641 

values of 4 K or less from April to October.  Like the hot spots, the dates of these minima vary 642 

somewhat within that period.  ALO-USU and PCL have the coldest background temperatures, 643 

between 250 and 255 K, in this 45 to 50 km region.  The two French lidars have slightly warmer 644 

background temperatures, between 255 and 260 K.  ALO-USU has a hot region in excess of 255 645 

K.  PCL has two hot regions, one in excess of 255 K and one in excess of 260 K.  OHP has a hot 646 

spot in excess of 260 K, while CEL has two hot spots, one in excess of 260 K and one in excess 647 

of 265 K.  The variable timing of these hot spots on top of what are basically temperature 648 

minima strongly suggest that they arise from a non-radiative source.  All groups have suggested 649 

that they could result from Sudden Stratospheric Warmings (SSWs).  Major SSWs have been 650 

examined in detail at ALO-USU, i.e., at midlatitudes, between 1993 and 2004 by Sox et al. 651 

(2016).  This SSW interpretation is consistent with what they found.  Because of different 652 

observational periods, the hot spots would occur at different times between December and 653 

March.  Because of averaging years with and without SSWs, the small 5 K temperature increases 654 

are reasonable.  The extension of the hot spots to about 50 km is also consistent with this 655 

interpretation. 656 

Turn from the variability between 45 and 50 km to the stratopause, which is located in or 657 

close to this region.  The ALO-USU temperatures are shown in the composite temperature 658 
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climatology in Figure 8 and the mid-month profiles in Figure 5.  They vary between 253 and 273 659 

K.  As shown by the altitude of the relative maxima in the profiles, the stratopause is at 660 

approximately 47 or 48 km between July and January, but the lack of a clear relative maximum 661 

suggests it is at or below 45 km between February and June.  This is similar to the other lidars.  662 

At PCL, the stratopause is above 45 km all year except for January and February.  It is below 48 663 

km except for December when it is just above 50 km, presumably because of SSW effects.  At 664 

OHP and CEL, it is between 47 and 48 km most of the year, but drops to 46 km from December 665 

through February.  Thus, all the mid-latitude lidars appear to show an annual cycle in the height 666 

of the stratopause with it being between 47 and 48 km most of the year, but dropping to close to 667 

or below 45 km between December and February.  It appears to be just below 45 km at ALO and 668 

PCL and just above in France.  669 

The curve for ALO-USU at 45 km in Figure 3 gives a good representation of the annual 670 

temperature cycle at that altitude.  The maximum is 273.4±0.4 K in mid-May and the minimum 671 

is 250.3±1.2 K in late January, giving rise to a summer-winter difference of 23.1±1.3 K.  As 672 

might be expected from the variability of SSWs, there is another relative temperature minimum 673 

of 252 K in early December with a small relative maximum of 257 K on 1 January in between 674 

these relative minima.  With the exception of the SSW effects, there is a basic annual cycle of 675 

hot in summer and cold in winter.  In more detail, while the temperature maximum is in mid-676 

May, the temperature is almost the same throughout May and June, which implies that the 677 

maximum is approximately a month before summer solstice.  While the minimum is in late 678 

January, the relative minimum in early December is almost the same.  This suggests that the 679 

winter minimum is later than the winter solstice.  In addition, the heating rate in spring and 680 

cooling rate in fall are at very different rates.  Between the end of January and the end of April 681 
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the temperature increases by almost 7 K per month.  Between the end of June and the end of 682 

November the temperature decreases at about half that rate, 4 K per month.  This asymmetry in 683 

the occurrence of the seasonal temperature extremes and the related asymmetry in the spring 684 

heating rates and fall cooling rates emphasizes the presence and contribution of physical 685 

processes that are more complicated than the annual variation of solar irradiance.   686 

Along with the temperatures, the geophysical variability has distinctive patterns 687 

throughout the year.  Looking at the region near 45 km, the variability is between 2.5 and 3.5 K 688 

from May through September.  It then increases significantly to between 7 and 10 K between 689 

November and February.  At PCL, the geophysical variability in the same summer period is 690 

between 2 and 4 K.  It increases in winter, reaching 14 K in January.  At the French lidars, it is 691 

between 3 and 4 K in the same summer period.  It increases to 12 K in December and January.  692 

Thus, these mid-latitude lidars have essentially the same very small geophysical variability from 693 

May through September in the vicinity of 45 km.  It increases in winter depending, most likely, 694 

on the occurrence of planetary waves and SSWs to values between 7 and 14 K primarily in 695 

December and January.  However, the ALO-USU values are at the low end of that range. 696 

     4.2  Middle Mesosphere 697 

A transition or crossover altitude between these different altitude regimes, with 698 

comparatively minimal seasonal variation, occurs at 65 km, as shown in Figure 3.  However, 699 

there is still some temperature structure at this altitude, though it is mostly during the winter.  It 700 

shows up as strong cooling during December from 233 to 221 K followed by slow recovery 701 

during January and February back to 232 K.  This temperature decrease is the same for every 702 

such temperature curve that we have examined between 61 and 68 km.  This behavior is also 703 

seen in the contour plot in Figure 8.  It gives rise to what was earlier characterized as the “cold 704 
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valley.”  The French lidars show bigger decreases, but during two months, from mid-November 705 

to mid-January.  They are followed by comparable increases over the next two months.  The 706 

pattern for the PCL lidar appears similar to the French pattern.   707 

More generally, looking at the averaged temperature profiles in Figure 5 and inferred 708 

from Figure 8 is that the mesosphere, except for the upper-most part, is usually characterized by 709 

temperature profiles that decrease monotonically with increasing altitude.  However, the great 710 

amount of averaging in January and February shows profiles in Figure 5 that become 711 

significantly more vertical (isothermal) or even increasing in a region just above 65 km.  This 712 

more vertical structure also shows up in the superposition of individual nighttime profiles from 713 

January in Figure 2.  In January, the average profile is almost isothermal between 64 and 74 km 714 

and in February between 63 and 68 km.  In addition, the January temperature profile is almost 10 715 

K colder than the February temperatures in the isothermal region, but then becomes as much as 716 

15 K warmer above that region.   717 

These changes in slope occur because the averaging includes many profiles with 718 

mesospheric inversion layers (Schmidlin, 1976; Hauchecorne et al., 1987; Whiteway et al., 1995, 719 

Leblanc and Hauchecorne, 1997, Meriwether and Gerrard, 2004) as well as many without.  The 720 

inversion layers also have smaller but noticeable impacts on the December and March average 721 

profiles. The maximum effect of the inversion layers, in terms of increased temperature, occurs 722 

in January, a month after winter solstice.  723 

To emphasize the point that these winter structures arise from inversion layers, examples 724 

of ALO-USU inversion layers from four individual nights from four separate months are shown 725 

in Figure 9.  Below approximately the transition altitude, comparisons of the profiles in Figures 5 726 

and 9 show that their temperatures below the inversions are significantly colder than the average 727 
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profiles.  At roughly the transition altitude, their temperatures increase sharply by 5, 10, or even 728 

40 K, giving rise to a very distinct inversion layer peak 5 to 15 km higher.  Above that peak, the 729 

temperatures decrease rapidly.  Also, included in Figure 9 is a dashed line showing the adiabatic 730 

lapse rate of 9.8 K/km, which is the steepest gradient that can be sustained.  If it were steeper, on 731 

the topside of the inversion layer, a convective instability would set in (Whiteway et al., 1995) 732 

that would return the gradient to the adiabatic lapse rate.  Two of these all-night profiles show 733 

regions where the lapse rate is equal to the adiabatic lapse rate.  These steep gradients, lasting all 734 

night, are a common feature of the ALO-USU mesospheric inversion layers.  The low 735 

temperatures, compared to the average below 65 km followed by high temperatures at higher 736 

altitudes, suggest that the mesospheric inversion layers are a manifestation of a wave 737 

phenomenon, consistent with Meriwether and Gerrard (2004). 738 

There is much less structure visible during the rest of the year.  In particular, in the 739 

summer from May to August, there is a gradual temperature decrease at 65 km from 230 to 220 740 

K.  Furthermore, between 60 and 70 km, the temperature contours are essentially parallel and 741 

almost equally spaced.  This summer region has the biggest temperature gradient, falling 742 

approximately 4 K/km with increasing altitude.  The PCL and the French lidars show similar 743 

smooth temperature contours and large temperature gradients in this region.  744 

This part of the year roughly coincides with low geophysical temperature variability.  745 

However, the low variability starts one to two months earlier in the spring and extends one to 746 

two months later in the fall than the region of almost parallel, gradually decreasing temperatures.  747 

During this period, the variability ranges from 5 K near 60 km to 10 K near 70 km.  The behavior 748 

is similar at PCL and the French lidars except that their maximum variability is smaller.  The 749 

values at PCL are roughly between 4 and 6 K.  The combined values for the French lidars are 750 
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between 4 and 7 K.  In the winter months from November through February, it increases to 751 

between 10 and 14 at ALO-USU.  It reaches 14 to 18 K at PCL in late December and early 752 

January and 13 to 14 at the French lidars in late December. 753 

     4.3  Upper Mesosphere and Mesopause 754 

In the upper mesosphere in Figures 5 and 8, and at 85 km in Figure 3, the phasing of the 755 

seasonal behavior is reversed from that of the lower mesosphere, with a warm winter and a cold 756 

summer.  This well-known behavior reversal is also seen for the French lidars and the Canadian 757 

lidar.  The lowest temperature in the ALO-USU data is a minimum of 169.8±2.3 K in early June 758 

at 85 km, which is closer to summer solstice than the center of the extended summer temperature 759 

maximum at 45 km.  The June profile in Figure 5 is colder than any other profile above 70 km, 760 

becoming 7 to 10 K colder than the May and July profiles above 75 km.  As mentioned above, it 761 

has a distinct minimum at 85 km, which is the summer mesopause.  This behavior is in close 762 

agreement to what was found with the PCL.  In their case, the downward integration started 763 

some 10 to 15 km higher, making their results essentially independent of the initial value.  764 

Unfortunately, the French lidars do not have results for the region above 85 km.  This summer 765 

mesopause behavior is also in close agreement with the findings obtained with Na lidar, e.g., at 766 

CSU (40.6° N, 105.0° W; She and von Zahn, 1998).   767 

In the averaged profiles and the contour plot, this summer mesopause at ALO-USU 768 

extends from April to August with altitudes that are within 1 to 2 km of the June 85 km altitude 769 

and the temperatures rising approximately 15 K on either side of June.  Beyond these extremes, 770 

March appears to have a minimum that is 3 km higher and 12 K warmer than June.  September 771 

has a minimum of 200 K, which is 30 K warmer than June, that appears to be 3 km lower than 772 

the June minimum.  And, very unusually, September has a relative maximum at almost 87 km.  773 
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This is from the very rapid heating described earlier that extends from August into September.  774 

However, this lower altitude September minimum may be part of another phenomenon, a “cold 775 

peninsular,” which is seen by the other Rayleigh lidars extending to lower altitudes.  However, at 776 

ALO-USU it leads to a “cold island,” which is discussed below.  The mesopause is so cold in 777 

these summer months and March that the average of all the monthly profiles in Figure 5 also 778 

shows a mesopause at 85 km.  These mesopause results are similar to those reported for the PCL.  779 

Their mesopause extends from April through September.  It is at 87 km in June and within 1 km 780 

of that in the other months. 781 

In addition to the mesopause, another temperature minimum, a 5 K relative minimum, 782 

occurs at ALO-USU just before mid-October.  It is centered at 82 km and extends from 78 to 86 783 

km.  It appears clearly in Figure 8 and shows up in Figures 3 and 5.  It is 197 K at its coldest.  784 

The defining contour is at 200 K.  This is the “cold island” referred to above.  Since no unusual 785 

variability stands out in the geophysical temperature variability in Figure 7, it is probably a 786 

general feature.  These observations are also most likely related to ones reported for PCL and the 787 

French lidars.  Instead of a “cold island,” they observed a “cold peninsula” extending downward 788 

from the summer cold region in September into October near 80 km.  The defining contours are 789 

in October at 195 K and 200 K for PCL and 210 K for OHP and CEL.  Having been observed by 790 

four lidars, this “cold island” or “cold peninsula” is most probably a real feature that needs to be 791 

understood.  792 

Unfortunately, these Rayleigh observations do not go high enough to investigate the 793 

winter mesopause. 794 

Another distinctive feature appears at and near 85 km just before the “cold island” or 795 

“cold peninsula.”  The summer cold region ends abruptly at ALO-USU with a very sharp one-796 
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month temperature increase of 25 K/month (about 4 times the usual) from early August to early 797 

September.  This is a dramatic part of the asymmetry between the spring cooling rate and the fall 798 

warming rate.  The fast, month-long heating is also seen by at least one of the French lidars, but 799 

surprisingly not by PCL.  They have slower temperature increase over a longer period.  It is 800 

followed immediately at ALO-USU by the cooling that leads to the October “cold island.”  801 

In mid-winter in the upper mesosphere (at 85 km in Figures 3, 5, and 8) the maximum 802 

temperature is 215.0±4.0 K on 31 December, shortly after winter solstice.  In addition, the 803 

January profile stands out as it is significantly warmer than any other profile above 75 km, 804 

reaching more than 10 K warmer at several altitudes.  As already indicated, the summer 805 

minimum at 85 km is 169.8±2.3 K in early June.  These winter-summer temperature extremes 806 

give rise to a 45.2±4.7 K seasonal difference, which is essentially double the summer-winter 807 

extremes at 45 km and, of course, out of phase with it.  This temperature behavior in the upper 808 

mesosphere is consistent with control by dynamics.  It is usually attributed to the effect of 809 

planetary waves and, in particular, gravity waves on the global meridional circulation.  These 810 

lead to adiabatic heating from downward compression in the winter hemisphere and adiabatic 811 

cooling from upward expansion in the summer hemisphere (Andrews et al., 1987; Holton and 812 

Alexander, 2000).  Presumably the cooling from January to June, the slower heating from June 813 

through December, and the fast heating in August reflect details of this interhemispheric 814 

circulation.   815 

At 85 km in the five months between January and June there is rapid cooling, averaging 9 816 

K/month, but reaching values closer to 19 K/month for brief periods at the beginning of February 817 

and April.  Initially, the winter geophysical temperature variability is high, greater than 20 K, 818 

presumably because of day-to-day and year-to-year differences.  In March and April, while the 819 
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temperature is still falling, this variability drops below 20 K.  It then increases leading up to the 820 

June temperature minimum and continues high throughout the summer and early fall.  821 

Meanwhile, the temperature increases, overall averaging just under 7 K/month between early 822 

June and the end of December.  However, as already mentioned, it has significant structure 823 

superimposed on that rate between mid-July and early October.  Initially, there is a brief period 824 

of slow cooling between mid-July and early August.  That is followed by a very striking period 825 

of rapid heating, approaching 25 K/month, for one month between early August and early 826 

September.  This heating is followed by another brief period of slow cooling between early 827 

September and early October leading up to the October “cold island.”  The heating then becomes 828 

structured, but is on average just under 7 K/month until the end of the year.  The summer 829 

temperature variability remains just above 20 K even during the very rapid temperature increase 830 

in August.  It then drops below 20 K at the “cold island” in October and stays low until the 831 

beginning of winter in December at which point it increases to above 20 K again. 832 

The PCL and the French lidars show much the same temperature pattern.  There is the 833 

period of significant cooling from January to mid-June followed by a period of slightly slower 834 

heating until the end of the year.  Superimposed on this, they all have a period of more rapid 835 

heating in August just prior to the “cold peninsula.”  The French lidars have rapid heating similar 836 

to ALO-USU in August, while the heating for PCL is less rapid. 837 

In a significant difference from lower in the mesosphere, the geophysical temperature 838 

variability is greater for ALO-USU in the upper mesosphere than for the other lidars.  With the 839 

exception of two, small time periods described above, it is between 14 and 20 K at 80 km over 840 

most of the year.  At 85 km, it is between 20 and 28 K for most of the year.  For PCL, with the 841 

exception, again, of two small, time periods, the values are between 6 and 10 K for most of the 842 
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year at 80 km.  It is the same for 85 km, except in January, when some of the seasonal variation 843 

appears, and it rises to 12 K.  For OHP and CEL, the geophysical temperature variability retains 844 

a seasonal variation during the year.  It too is much lower, from 9 to 10 K at 80 km from March 845 

through October, and increases to between 11 and 12 K at 85 km.  It rises to 15 K at both 846 

altitudes in winter. 847 

Provided the calculations are truly the same for each lidar, the greater geophysical 848 

temperature variability at ALO-USU implies less energy loss from upward propagating waves or 849 

additional sources of variability.  It is not clear why the loss would be less or what other sources 850 

of variability would become significant.   851 

     4.4  Whole Mesosphere 852 

Combining these summer and winter temperature results, the seasonal transitions are 853 

temporally asymmetrical, with slightly different asymmetry in the lower and upper mesospheres.  854 

In the lower mesosphere, as seen most clearly in Figure 3, the transition from midwinter (end of 855 

January) to midsummer (early May) takes three months while the transition from midsummer 856 

(early July) to midwinter (early December) takes approximately five months.  In the upper 857 

mesosphere, the transition from midwinter (mid-January) to midsummer (early June) takes 858 

approximately five months while the transition from midsummer (early June) to midwinter (early 859 

January) takes approximately seven months.  In both regions, the spring change is much shorter 860 

than the fall change.  The source of this asymmetry is not apparent.  However, this asymmetry 861 

would lead to the presence of a strong semiannual and probably higher-order temperature 862 

variations.  These higher-order variations and their phases have been shown elsewhere for ALO-863 

USU (Herron, 2007; Wynn, 2010). 864 

This division between the lower and upper mesosphere that is based on temperature 865 
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behavior does not extend to everything.  Many gravity waves pass from the lower to the upper 866 

mesosphere at ALO-USU (Kafle, 2009).  Many waves, both small scale and large scale, are seen 867 

in Figure 2 growing in amplitude as they propagate into the upper mesosphere.  In addition, some 868 

temperature structures extend from the lower to the upper mesosphere.  For instance, a large 869 

feature of warm air appears to propagate upward from 55 km in late November to 85 km in mid-870 

January, contributing to the winter temperature maximum in the upper mesosphere.   It then 871 

appears to propagate back downward to 65 km in mid-February.  The region that lies between 872 

these two elevated temperature structures forms the January “cold valley,” which appears to be 873 

closely related to the mesospheric inversion layers. 874 

 875 

5.  Summary and Conclusions 876 

We have presented mid-latitude composite climatologies of nighttime mesospheric 877 

temperatures and of their geophysical variability derived from Rayleigh-scatter lidar 878 

observations at ALO-USU between 1993 and 2004.  With over 5273 hours of data from over 839 879 

nights analyzed out of 5972 hours and 964 nights acquired over a span of 11 years, this dense 880 

dataset is significant for investigating the vertical and temporal structure of the mesosphere.  The 881 

lidar was described in Section 2.  The observations were presented in Section 3.  They were 882 

discussed and compared to observations from lidars at similar latitudes, from PCL in Canada and 883 

from OHP and CEL in France, in Section 4.  884 

Overall, the temperature climatology shows the well-known features of the low-altitude 885 

mesosphere being hot is summer and cold in winter, while the high-altitude mesosphere is hot in 886 

winter and cold in summer.  More specifically, at 45 km the temperature varies over 23 K, from 887 

250 K in very late January to 273 in mid-May.  At 85 km the temperature varies over 45 K, from 888 
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215 K at the end of December to 170 K at the mesopause in early June.  The transition altitude 889 

between these opposite behaviors is 65 km.  890 

While the solar irradiation follows a symmetrical increase and decrease during the year 891 

from winter-to-summer solstices, the temperature variations are decidedly asymmetrical, with a 892 

shorter period of change in the spring than in the fall.  At 45 km, the temperatures increase in the 893 

spring at 7 K/month between the beginning of February and the beginning of May.  In the fall 894 

they decrease at 4 K/month from the beginning of July to the middle of November.  At 85 km, 895 

they decrease in the spring at 9 K/month from mid-January to early June.  In the fall they 896 

increase at 6 K/month between early June and the end of December.  Accordingly, the annual 897 

temperature variation needs to include semiannual and higher-order terms to describe the 898 

asymmetrical variation.  The physical causes for this asymmetry need to be identified and 899 

examined.  For instance, what are the roles of local and global dynamics in this asymmetry? 900 

In the lower mesosphere, the stratopause is visible during part of the year.  It is at ~48 901 

km from July to January with temperatures dropping from 270 to 252 K.  It is at or below 45 km 902 

during the rest of the year. 903 

In the upper mesosphere, the mesopause occurs in early June at 85 km at 169.8±2.3 K in 904 

heavily averaged data.  (It has to be averaged because of the presence of waves.)  The mesopause 905 

appears at slightly higher altitudes and at higher temperatures starting as early as March.  It 906 

appears at slightly lower altitudes and higher temperatures in September.  At the two extremes, 907 

the temperatures are 25-to-30 K warmer.  From March to September, this summer mesopause is 908 

so pronounced that it shows up at 85 km in the annual average temperature profile. 909 

A couple of features stand out at and near 85 km.  A very sharp one-month temperature 910 

increase of 25 K/month (about 4 times the usual) occurs between early August and early 911 
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September.  This is part of the asymmetry between the spring cooling rate and the fall warming 912 

rate.  It is also seen by the French lidars (Leblanc et al., 1998), but surprisingly not as strongly by 913 

PCL (Argall and Sica, 2007; Jalali et al., 2016).  It is followed immediately by a cooling, leading 914 

to an October “cold island,” extending from 78 to 86 km that is ~5 K cooler than the 915 

surroundings.  The small geophysical variability during this period indicates that it is a general 916 

feature.  The reality of this feature is further supported by a “cold peninsula,” as opposed to an 917 

island, seen with the other lidars extending from the summer cold region down into the October 918 

location of the “cold island.”  These are clearly real features that need to be understood. 919 

As expected, the geophysical temperature variability is much greater in the upper 920 

mesosphere than in the lower mesosphere.  In June, it increases exponentially over most of the 921 

altitude range with, roughly, a 14 km e folding distance.  It approximates this rate in other 922 

summer months.  This growth rate suggests that the variability is largely from the adiabatic 923 

growth of waves with altitude.  The waves have a wide range of wavelengths and amplitudes.  924 

This variability in summer in the upper mesosphere at ALO-USU is greater than what the other 925 

lidars show.  It is close to 20 K, approximately 50% bigger than at PCL (Argall and Sica, 2007).  926 

This high level of variability in summer leads to a roughly constant level of variability 927 

throughout the year.  This constancy is similar to PCL (Argall and Sica, 2007), but at a higher 928 

level.  It is very different from the French lidars, which retain their annual variability with a 929 

winter maximum (Leblanc et al., 1998).  930 

One aspect of these growing waves in summer is that waves at 85 km with a 20 K 931 

amplitude can and do exist.  They can lower the temperature to 150 K, low enough to support a 932 

noctilucent cloud (Herron et al., 2007).  While this low temperature happens often enough in 933 

June, the fact that few NLCs are seen indicates that it takes more than a low temperature to 934 
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produce a noctilucent cloud.  It could be a change in another parameter, such as water vapor, that 935 

enabled the NLCs to form above ALO-USU. 936 

Departures in the geophysical variability from this growth rate curve with its 14 km e 937 

folding distance can be indicators of other various geophysical effects.  For instance, the 938 

variability is greater than this curve between 45 and 50 km in the January profile and in the 939 

contour plot in December and January.  This is presumably because of the intermittent 940 

occurrence of SSWs (Sox et al., 2016).  It appears to be greater above 80 km during this same 941 

winter time period, which may indicate the mesospheric coolings are part of the intermittent 942 

SSW phenomenon.  The variability is greater than this curve between 45 and 50 km in June.  943 

This might represent the effects of ascending waves being absorbed at their critical levels.  The 944 

variability is also greater than this curve in winter between 60 and 70 km.  This is presumably 945 

because of the intermittent occurrence of mesospheric inversion layers, which are significant 946 

enough to affect the month-long average profiles between December and March.  They have two 947 

effects.  On the bottom side of the inversions, they lead to colder-than-average temperatures, 948 

creating a “cold valley” centered on January, but extending from December to February at 50 to 949 

70 km.  It is most dramatic between 60 and 70 km in December and January.  On the top side of 950 

the inversion, they lead to higher-than-average temperatures nominally between 65 and 75 km.  951 

Four examples of inversion layers are given.  Their all-night profiles show a topside lapse rate 952 

very close to or equal to the adiabatic lapse rate, which is an indication of wave saturation and 953 

convective instability.  The inversion layers, with a lower-than-average temperature below the 954 

maximum temperature and a greater-than-average temperature above the maximum temperature, 955 

suggest an amplified wave.  956 

Temperature variability above 80 km lacks the winter-summer differences seen at lower 957 
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altitudes.  This appears to result from extra variability in the summer months between May and 958 

September.  This might result from the waves ascending into this region without breaking.  959 

Alternatively, this might result from variability in the summer northward meridional flow.  There 960 

are month-long periods with reduced variability starting shortly after the spring and fall 961 

equinoxes, one centered on mid-April, the other on early November.  Given the timing, shortly 962 

after the equinoxes, might these two periods of reduced variability be related to a slightly 963 

delayed reversal in the interhemispheric circulation?   964 

In addition to temperatures and variability, this extensive dataset has been used to 965 

investigate a number of aspects of the middle atmosphere such as SSWs (Sox et al., 2016), 966 

gravity waves (Kafle, 2009), neutral densities (Barton et al., 2016) and special events such as 967 

noctilucent clouds (Wickwar et al., 2002; Herron et al., 2007).  Initial efforts have also been 968 

made to examine the combined effects of solar variations and climate change on the observed 969 

temperatures (Wynn, 2010). 970 

While much has been learned from this extended mesospheric dataset from ALO-USU, 971 

still more can be learned from it.  To further explore the mid-latitude mesosphere, more 972 

extensive comparisons are needed with other Rayleigh lidars located between 40° and 45° N, and 973 

with both empirical and reanalysis atmospheric models and with first-principle models.  To 974 

explore the mesosphere more globally, comparisons are needed with Rayleigh lidars at both 975 

lower and higher latitudes.   976 

A number of additional questions can be examined with new and improved data.  The 977 

ALO-USU data set is just long enough to give an inkling about long-term trends (Wynn, 2010).  978 

However, the atmospheric system is variable enough that systematic longer-term observations 979 

are needed to properly separate long-term trends from short-term variations.  Frequent 980 
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observations are also needed to examine structures and trends in such features at the stratopause 981 

and mesopause, as well as to capture and examine special or unusual events.  The SSWs and 982 

noctilucent clouds are examples.  They were unexpected at a midlatitude site when lidar 983 

operations began, but their observations have furthered what we know about them.  Additional 984 

observations of NLCs and correlative observations are needed to better understand their 985 

appearance. 986 

Extended observations are needed from a more sensitive Rayleigh-lidar system, such as 987 

the one that has already been built and tested at ALO-USU (Wickwar et al., 2016; Sox et al., 988 

2017), that is on the threshold of reaching 120 km.  It improves the temperatures in the upper 989 

mesosphere and extends the observations upward well into the lower thermosphere.  Downward 990 

extensions of the lidar observations are also needed to better relate mesospheric and 991 

thermospheric temperatures and their variability to what is happening in the stratosphere and 992 

troposphere.  Continued observations, adding to what has been observed in the last 20 to 30 993 

years, will help in determining the climatological changes. 994 

 995 

996 
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