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Abstract 

According to ideomotor theory, goal-directed action involves the active perceptual 

anticipation of actions and their associated effects. We used multivariate analysis of fMRI data to 

test if preparation of an action promotes precision in the perceptual representation of the action. 

In addition, we tested how reward magnitude modulates this effect. Finally, we examined how 

expectation and uncertainty impact neural precision in the motor cortex. In line with our 

predictions, preparation of a hand or face action increased the precision of neural activation 

patterns in the extrastriate body area (EBA) and fusiform face area (FFA), respectively. The size 

of this effect of anticipation predicted individuals' efficiency at performing the prepared action. 

In addition, increasing reward magnitude increased the precision of perceptual representations in 

both EBA and FFA although this effect was limited to the group of participants that learned to 

associate face actions with high reward. Surprisingly, examination of representations in the hand 

motor cortex and face motor cortex yielded effects in the opposite direction. Our findings 

demonstrate that the precision of representations in visual and motor areas provides an important 

neural signature of the sensorimotor representations involved in goal-directed action. 
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1. Introduction 

Sensorimotor interactions with the environment provide organisms with information 

about the consequences of their actions. Such information is critical for developing outcome-

directed, goal-driven behavior. According to ideomotor theory (Harleß, 1861; James, 1890; 

Lotze, 1852), goal-directed action involves the anticipation of the action’s perceptual 

consequences. This prediction has been confirmed in numerous behavioral studies (Elsner and 

Hommel, 2001; Shin et al., 2010; Waszak et al., 2012). There is also a growing literature 

beginning to reveal how perceptual and affective features of intended outcomes are processed in 

the brain (Daw and O’Doherty, 2014; Elsner et al., 2002; Jessup and O’Doherty, 2014; Kühn et 

al., 2011, 2010; McNamee et al., 2013; Melcher et al., 2008; Valentin et al., 2007). The present 

study focused on the nature of the perceptual representations in visual cortex. Kühn and 

colleagues (2011) have shown that category-specific perceptual regions code the outcome of 

intended actions, whereby the preparation of hand versus face actions activates category-specific 

areas that have traditionally been associated with the perception of face stimuli (FFA) and body 

parts (including hands; EBA) (Downing et al., 2001), respectively. 

Here we address the question whether perceptual representations of anticipated action 

outcomes in EBA and FFA show an additional signature of enhanced neural encoding. We used 

multivariate analysis of fMRI data to examine the consistency, or precision, of patterns of 

activity in the EBA and FFA across trials. Our choice of analysis is motivated by previous 

research demonstrating that representational precision has important functional implications in 

neural processing (Churchland et al., 2011, 2010, 2006, Schurger et al., 2015, 2010, Warren et 

al., 2016, 2015). Furthermore, the multivariate measure of precision we use does not depend on a 

uniform increase of brain activity in all voxels of a given brain area. Thus, as earlier work using 
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multivariate techniques has shown, it allows us to characterize changes in neural processing even 

in cases when the change is not detectable using univariate approaches (Etzel et al., 2016; Xue et 

al., 2010).  

Neurophysiological studies in animals have shown that measures of representational 

precision are a signature of information encoding in many parts of the cortex (Churchland et al., 

2011, 2010, 2006). MM Churchland and colleagues demonstrated that the variability of firing 

rates of neurons in the premotor cortex decreases as a decision is formed (Churchland et al., 

2006), and this type of variability decreases across the whole brain at onset of any type of 

stimulus (2010). In humans, Schurger and colleagues demonstrated that neural consistency is a 

hallmark of conscious perception, both between (2010) and within (2015) trials. Here we attempt 

to demonstrate for the first time that modulations in representational consistency can also be 

region specific. More specifically, we examined representational consistency to determine 

whether anticipation of a hand or face action increases the precision of representations in the 

associated perceptual area, i.e. the EBA or FFA (see Figure 1). 

The second goal of the present study was to test whether the neural consistency of 

sensorimotor codes during action preparation is modulated by the reward value of a particular 

outcome (see Figure 1C, middle and right panel). Recent work suggests that reward motivation 

impacts the signal-to-noise ratio of representations of task sets in frontoparietal brain regions 

(Etzel et al., 2016). This finding is consistent with long-standing theoretical accounts (Botvinick 

and Braver, 2015; Kruglanski et al., 2002; Simon, 1967). Based on recent behavioral evidence, 

we predict that neural representations of perceptual outcomes should be more precise specifically 

when the related actions are associated with reward (Allman et al., 2010; Eder and Dignath, 

2015; Muhle-Karbe and Krebs, 2012) (Figure 1C middle panel). Alternatively, potential reward 
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might have a more general neuromodulatory effect related to motivational significance, whereby 

increases in catecholinergic-mediated gain improve the signal-to-noise ratio of neural processing 

across the brain (Aston-Jones and Cohen, 2005; Nieuwenhuis et al., 2005; Servan-Schreiber et 

al., 1990). Such an effect may provide a general boost in stability or precision (Warren et al., 

2016, 2015) (Figure 1C right panel). Interestingly, Warren and colleagues (2011; 2012) argued 

that brain-wide increases in signal-to-noise ratio should have a differential impact across brain 

regions, such that brain regions more engaged in signal processing should have a greater change 

in activity than less engaged regions. Thus, region-specific effects of reward on neural precision 

do not necessarily discount a role of neuromodulators in this effect.  

Finally, we also investigated the precision of motor representations of planned actions. In 

our task, participants were cued as to whether they would be required to make either a hand or 

face action three to six seconds later. Critically, during this cue period, participants did not know 

exactly which hand action (left or right button press) or face action (“smile” or “kiss”) they 

would make, only whether they would use their hands or their face. We expected that 

representations of potential actions would be strongly instantiated in motor cortex relative to the 

same action representations when they were not anticipated. However, the impact that such a 

change should have on representational precision is not clear. One possibility is that strong 

representation of both actions simultaneously should promote consistency between trials. 

Another possibility is that the uncertainty concerning which action would ultimately be cued 

would provoke greater variability, reducing precision. Notably, AK Churchland and colleagues 

(2011) showed that firing rates of neurons in the primate lateral intraparietal area are more 

variable when monkeys are cued with four versus two potential decision outcomes. Furthermore, 

within trials, firing rates in this area get more variable as a perceptual decision is formed. They 
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hold that neural variability is a natural outcome of the stochastic accumulation and integration of 

evidence (Miller and Wang, 2006). Though our participants do not make protracted decisions 

based on noisy evidence, they do consider multiple decision outcomes. Also potentially relevant 

is that information encoded in perceptual areas versus motor areas involves different levels of 

abstraction (Wurm and Lingnau, 2015). For example, representations in the FFA and 

surrounding regions are distributed and overlapping (Haxby et al., 2001). In contrast, 

representation of left versus right hand responses will be lateralized and, consequently, discrete. 

Warren and colleagues (Warren et al., 2016) demonstrated that the effect of neural gain on 

representational precision varies according to pattern overlap. Thus, if action relevance were to 

increase representational precision through modulation of gain either locally (Destexhe et al., 

2003), or across the brain (Warren et al., 2016), we would expect precision to increase more in 

perceptual regions than motor regions. However, a change in precision in motor cortex opposite 

to that observed in perceptual areas would work against an interpretation of these effects as being 

mediated by brain-wide changes in signal-to-noise ratio. 

To foreshadow our somewhat counterintuitive results, we found that whereas considering 

motor actions increased representational precision in perceptual areas associated with the action 

(EBA versus FFA), it decreased representational precision in associated motor areas (hand motor 

cortex versus face motor cortex). Furthermore, with some caveats, we found evidence that 

increasing reward magnitude increases representational precision in perceptual areas, but 

decreases representational precision in motor areas, apparently enhancing the effect of action-

area congruence. 

2. Material and methods 

2.1 Participants 
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Thirty-one healthy right-handed volunteers (age 19–27 years; 8 males) with normal 

vision and no dental braces participated in the study. The experiment was approved by the 

medical ethics committee of the Leiden University Medical Center, and all participants gave 

written informed consent. The experiment took approximately two hours, and participants were 

paid 25 euros. One participant was excluded from analyses because of a hardware failure during 

data collection. Participants were randomly assigned to one of the two action-reward mapping 

groups: Half of the participants (n=15) learned to associate face actions with high reward and 

hand actions with low reward. The other half of the participant (n=15) learned to associate hand 

actions with high reward and face actions with low reward. 

2.2 Experimental Paradigm and Design 

Figure 1B shows the trial structure of the task. Each trial started with a cue presented for 

1 second showing the picture of a house. There were two possible house pictures, each cuing a 

different condition. The house cues instructed participants to either respond with a face or hand 

action as soon as the subsequent target was presented (see Figure 1A). Note that the brain 

response to this action-preparation phase is the focus of the analyses described in this paper. 

After a blank screen of jittered duration between 2 and 5 seconds, the target specifying the to-be-

performed action was presented for 1 second. The three possible actions in the context of a hand 

cue were a button press with the left index finger, a button press with the right index finger, or no 

action. The three possible actions in the context of a face cue were uncompressing the lips into a 

broad smile and raising both eyebrows (“smile”), compressing the lips into a kiss and lowering 

the eyebrows (“kiss”), or no action (Figure 1A). Participants were instructed to respond quickly, 

but due to the difficulty of measuring the timing of face actions, we followed Kühn et al. (2011), 

and measured reaction times for the hand actions only. Following target presentation, there was a 
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two-second blank screen, and then a feedback screen. Participants received feedback indicating 

the reward (in points) for the current trial along with a running total (in points and euros). 

Between trials a blank screen was presented for a jittered duration of 2 to 5 seconds.  

This task was a modified version of the paradigm utilized by Kühn and colleagues (Kühn 

et al., 2011). Extending the original study, we introduced reward feedback following action 

execution. This addition allowed us to associate different action modalities (hand vs. face) with 

different reward magnitudes. Participants were instructed that 4 eurocents would be paid for 

every point earned. Because we could not record the accuracy or timing of face actions, we 

always provided the reward feedback associated with the correct action. In order to encourage 

correct performance, we told participants that we recorded their actions via video, and that points 

gained for incorrect actions would be subtracted at the end of the experiment. However, all 

participants received the same total amount at the end of the study (25 euros).  

Outside the scanner, participants first practiced the task for 12 trials. Task instructions 

were provided on a computer screen and we presented a picture of the face actions required, 

accompanied by experimenter demonstration if necessary. The experimenter confirmed that 

participants understood the correct face actions before they were put in the scanner. Inside the 

scanner, we presented three separate blocks (in counterbalanced order), each containing 60 trials. 

Each block started with a repetition of task instructions and gave participants the mapping of 

house cue to action modality (hand or face). Each of the three blocks used two unique house cues 

with mapping counterbalanced across participants. Participants were not informed about the 

action-reward contingency. There were two groups of participants: Half of participants were 

randomly assigned to the condition in which face actions were associated with high reward, 

whereas the other half of participants learned to associate hand actions with high reward. This 
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action-reward mapping did not change across blocks and was included as a between-participants 

factor in the analyses reported (see Analytic Approach below).  

As Table 1 shows, each of the three block used a different combination of action-reward 

contingency and proportion of no-action trials. This manipulation allowed us to explore the 

effect of incentive salience on perceptual and motor representations of expected actions. Across 

blocks, we varied the probability of reward, the magnitude of reward for each type of response, 

and the proportion of trials requiring no action. For example, in blocks A and C, no-action 

responses were infrequent (20%), and in block A no-action received no reward (0 points), 

whereas in block C no-action received high reward (12 points on average). This manipulation 

was exploratory – it was difficult to predict beforehand what would be the optimal combination 

of incentive salience and proportion of no-action trials. All analyses reported included block as a 

factor, and significant interactions with block are reported when significant. However, because 

the factor block never interacted significantly with any of the primary effects of interest, we do 

not discuss the effects of incentive salience and proportion of no-action trials in this paper.  

After the experimental session, we employed a localizer scan in order to also report (as a 

supplementary analysis) the original univariate analyses on individual-specific voxels of interest 

in the EBA and FFA reported by Kühn and colleagues (2011). During the localizer task, 

participants passively viewed pictures of hands and faces. We used eight different male and 

female, black-and-white photographs as well as eight different black-and-white photographs of 

hands. All images were adjusted to assure the same average luminance. In a separate block, all 

house cue images were presented in random order so that we would be able to localize cue-

specific brain activity (analysis not reported). House cue trials were modelled as nuisance 
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regressors in the event-related design used for the localizer scan. All images were presented for 1 

second and followed an inter-trial interval of jittered duration between 2 and 5 seconds.  

In order to be able to explore the relationship between our primary neural outcomes and 

individual differences in reward sensitivity and impulsivity, participants filled out the following 

questionnaires (translated into Dutch) outside the scanner: the Behavioral Inhibition 

System/Behavioral Activation System (BIS/BAS) Scales (Franken et al., 2005), the Barratt 

Impulsivity Scale (BIS-11) (Patton et al., 1995), the Dickman Impulsivity Inventory (DII) (Claes 

et al., 2000), and the Substance Use Risk Profile Scale (SURPS) (Woicik et al., 2009). Note that 

impulsivity is a multidimensional construct, so we chose a selection of scales that earlier have 

been related to individual differences in goal-directed behavior (Colzato et al., 2010; Hogarth et 

al., 2012; Wiers et al., 2010). Using a p < .01 threshold, we found that area-specific 

representational precision was associated with lower scores on the Behavioral Inhibition Scale, 

r(28) = 0.482, p = 0.007 (cf. Gentsch et al., 2015). However this result did not survive 

Bonferroni or FDR correction, and is therefore not discussed further. Correlations between trait 

measures and the effects of reward were not observed. 

2.3 MRI Data Acquisition 

Scanning was performed with a standard whole-head coil on a 3-T Philips Achieva MRI 

system (Best, The Netherlands) at the Leiden University Medical Center. During the task, three 

runs of 337 T2*-weighted whole-brain EPIs were acquired, including 2 dummy scans preceding 

each run to allow for equilibration of T1 saturation effects (TR = 2.2 s; TE = 30 ms, flip angle = 

80°, 38 transverse slices, 2.75 × 2.75 × 2.75 mm +10% interslice gap). The same sequence was 

run to acquire 360 EPIs for the localizer scan. Stimuli were projected onto a screen that was 

viewed through a mirror at the head end of the scanner. After the functional runs, a high-
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resolution EPI scan (TR = 2.2 ms; TE =30ms, flip angle = 80°, 84 transverse slices, 1.964 × 

1.964 × 2 mm) was acquired for registration purposes. This was followed by a 3D T1-weighted 

scan (TR = 9.8 ms; TE = 4.6 ms, flip angle = 8°, 140 slices, 1.166 × 1.166 × 1.2 mm, FOV = 

224.000 × 177.333 × 168.000).  

2.4 fMRI Preprocessing 

Preprocessing of the FMRI data was carried out using FEAT (FMRI Expert Analysis 

Tool) Version 5.98, part of FSL (FMRIB’s Software Library, www.fmrib.ox.ac. uk/fsl) (Smith 

and others, 2004). The following preprocessing was applied: motion correction, slice-timing 

correction, brain extraction, spatial smoothing using a Gaussian kernel of FWHM 6.0 mm, 

grand-mean intensity normalization of the entire 4D dataset by a single multiplicative factor, and 

high-pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma = 

60.0 s). Functional scans were registered to high-resolution EPI images, which were registered to 

T1 images, which were registered to the standard space of the MNI (Montreal Neurological 

Institute) with 2 mm resolution using FLIRT. The preprocessed data were individually inspected 

and this confirmed that individual runs were not affected by excessive motion and were 

registered correctly.  

2.5 Regions of interests 

The main analyses reported are restricted to predefined regions of interest (ROI) for the 

visual and motor cortex. For the FFA, EBA, and PPA we used bilateral masks that were based on 

category-selective group-level parcels resulting from group-constrained participant-specific 

analyses on an independent dataset of 30 participants (Julian et al., 2012). The Face Motor 

Cortex (FMC) and Hand Motor Cortex (HMC) were based on the contrast of the univariate 
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event-related analysis in the current study that compared face action execution versus hand 

action execution, and vice versa, across participants and runs. In order to keep the size of these 

motor ROIs roughly comparable to the size of the perceptual ROIs, these masks were obtained 

by using a threshold at an uncorrected z-value of 5.5 (p <<0.001). 

2.6 Multivariate Analyses 

In order to analyze the consistency of neural patterns over trials, we extracted the peak of 

the BOLD response (approximately six seconds after cue onset) from the preprocessed fMRI 

data. Analyses were run separately for each individual, run, and ROI. To quantify consistency, 

we treated each pattern of activity as a vector running from a zero origin to a point in 

multidimensional, representational space with coordinates defined by each value in the vector. 

This method yielded vectors with 4968 coordinates in the EBA, 1749 coordinates in the FFA, 

1067 coordinates in the face motor cortex, 570 coordinates in bilateral hand motor cortex, 281 

coordinates in left hand motor cortex, and 289 in right hand motor cortex. Thus, the 

representational space for each brain area had as many dimensions as there were voxels in the 

ROI. By treating activity patterns as vectors we were able to calculate the angular dispersion of 

all vector pairs within a given condition. Angular dispersion is a measure specifically optimized 

to characterize variability in space/direction (Fisher et al., 1987) and thus suited for 

conceptualizing pattern consistency as precision: similar patterns of activity will tend to cluster 

together in the representational space, like the arrows of an expert archer on a target. In principle, 

a similar type of analysis can be performed using correlation analysis, as in seminal work by 

Haxby and colleagues (2001), and as extensively developed by Kriegeskorte and colleagues 

(Kriegeskorte et al., 2008a, 2008b). However, the directionality inherent in the calculation of 

angular dispersion aligns well with the concept of precision, as it applies to the current work. 



Consistency reveals neural outcome encoding 13 

 

Angular dispersion was calculated across trials as described by Schurger and colleagues 

(Schurger et al., 2015), quantified as the length of the normalized vector sum, divided by the 

number of vectors summed, and presented as one minus this value so that lower values indicate 

lower angular dispersion, and greater precision. The raw activation values after preprocessing 

were z-scored across each voxel’s time series separately before calculating angular dispersion. 

For each condition, angular dispersion was calculated between each pair of trials, for all possible 

pairs within the same condition and then averaged across all possible combinations to get the 

overall measure of angular dispersion. Calculating angular dispersion one pair of vectors at a 

time has the benefit that the inverse of angular dispersion between two vectors yields values that 

can be interpreted in terms of the relative direction of the two vectors.  

Angular dispersion was calculated separately for conditions in which participants 

prepared face actions and hand actions. This allowed us to the test the hypotheses depicted in 

Figure 1C. We predicted that neural representations in the FFA would be more consistent (i.e. 

involve lower angular dispersion) when participants prepare a face action relative to a hand 

action, and vice versa for the EBA. We also predicted that reward would modulate these 

representations. Note that the approach presented here deviates from typical multivariate pattern 

analysis classification approaches that focus on determining if a pattern of activation in a given 

area is predictive of the manipulation in question. Such analyses would yield a summary statistic 

about the discrimination success of an area (also associated with methodological confounds on 

its own, cf. Todd et al., 2013), not a direct measure of consistency or precision. 

Finally, because there is a nonlinear relationship between signal-to-noise ratio and 

angular dispersion that can potentially confound the results when overall differences in mean 

activation are observed, we implemented a mean-matching procedure on the vector norms, as 
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recently applied by Schurger and colleagues (2015) and described in detail by MM Churchland 

and colleagues (2010). To specify, our mean-matching procedure selected a subset of trials 

(pattern vectors) for which the mean vector norm was matched across both conditions. To do so, 

we only selected trials with the greatest common distribution of vector norms present for both 

conditions. Thus, each bin of this common distribution had a height equal to the smallest value 

for that same bin across both conditions. We then matched the distribution of the vector norms of 

the two conditions to this common distribution using a random selection of trials. The mean 

angular dispersion for both conditions was then calculated for this subset of trials. This 

procedure was repeated 5000 times with different random seeds, resulting in 5000 angular 

dispersion values per condition. The reported angular dispersion values represent the mean of 

these values.  

2.7 Univariate Analyses 

Standard univariate analyses were run on the preprocessed fMRI data (see above) using 

FEAT (FMRI Expert Analysis Tool) Version 5.98. In native space, the fMRI time series were 

analyzed using an event-related approach in the context of the general linear model with local 

autocorrelation correction. The model was high-pass-filtered (Gaussian-weighted least-squares 

straight-line fitting, with sigma = 60.0 s). The task model included the following regressors: two 

for the cue period (face action preparation and hand action preparation), and three for the target + 

reward period (face action execution, hand action execution, and no action required). This 

allowed us to probe for brain activity related to executing a particular action modality (face or 

hand) and receiving reward feedback (low or high), and brain activity related to preparing a 

particular action (face or hand) and anticipating (low or high) reward. All regressors used square-

wave functions to represent the duration of the cue (1 second) or the time from target 
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presentation to reward presentation (4 seconds), respectively. These regressors were convolved 

with a canonical HRF. Temporal derivatives of these regressors were also included. For the 

localizer task, a model using the same parameters included two regressors for the face and hand 

pictures and six regressors for the different house cues. 

Relevant contrasts for the experimental task were combined across the three runs on a 

participant-by-participant basis using fixed-effects analyses. These second-level contrast images 

were then submitted to third-level mixed-effects group analyses. One group analysis was run to 

create masks of the hand and face motor cortex (see the section Regions of interest below) based 

on the effects of action modality (hand versus face actions) during the execution phase. Another 

group analysis probed brain activity in reward-related brain areas and analyzed the effect of 

reward during the anticipation and receipt of reward. This analysis modeled the interaction 

between reward value and action-reward mapping (see Results). 

The supplementary analysis described in the Results section used univariate analyses 

based on the same ROIs that are used for the multivariate analyses. In addition, we also report an 

individual peak analysis that used the approach described by Kühn and colleagues (2011). For 

this analysis, peak voxels in the bilateral EBA and FFA for the Face > baseline and Hand > 

baseline contrasts in the localizer scan were manually identified first. Individual mean COPE 

values (arbitrary units) of the preparation contrasts of the experimental runs of spheres of 6 mm 

radius centered at these peak voxels were then extracted using featquery. These values were 

subsequently submitted to a repeated-measures ANOVA in SPSS. For some participants, no peak 

voxels could reliably be identified from the localizer scan, so the analyses reported only include 

23 participants.  

2.8 Statistical inference and thresholding 
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All analyses reported are restricted to the ROIs described above, except for the analyses 

that focused on brain activation during reward anticipation and feedback (see Results). Those 

analyses were restricted to key regions of the neural reward circuit (Haber and Knutson, 2010) 

by using small anatomically defined volumes of interest for the basal ganglia, frontal medial 

cortex, and amygdala (all based on FLS's Harvard-Oxford Structural Atlases). These analyses 

report small volume corrected (SVC) clusters in these areas with a height threshold of z > 2.3 

and a cluster probability of p < 0.05, based on Gaussian random field theory (Worsley, 2001). 

2.9 Analytic approach of ROI analyses 

The analyses focused on the quality of neural representations in perceptual and motor 

regions during the preparation of an action with the face or hand, before the exact action was 

known (see Figure 1). For each participant, either the face or the hand action was associated with 

higher levels of monetary reward (see also Table 1). To facilitate the interpretation of this 

counterbalanced design, we labeled the particular actions and ROIs in terms of whether they 

were associated with high or low reward (compare left versus middle panel in Figure 1C). That 

is, for half of the participants, the EBA (the "hand area") and the hand action were labeled as a 

"low reward" ROI ($ROI) and "low reward" action ($action) respectively, whereas the FFA (the 

"face area") and the face action were labeled as a "high reward" ROI ($$$ROI) and "high 

reward" action ($$$action) respectively. For the other half of the participants this mapping was 

reversed. The same approach was used for the hand motor cortex (HMC) and the face motor 

cortex (FMC).  

Unless otherwise noted, ANOVAs run on the perceptual and motor regions associated 

with the variable of interest included the within-participant factors ROI (low versus high 

reward), action (low versus high reward), and block (A, B and C), and the between-participant 
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factor action-reward mapping (face or hand as high reward action). Greenhouse-Geisser 

correction was applied when assumptions of sphericity were violated. In these cases, we report 

corrected p-values and uncorrected degrees of freedom. All significant effects (p < 0.05) are 

reported. 

The predicted effects are depicted in Figure 1C. First, independent of reward, a ROI-

specific action coding (Figure 1C, left panel) should be evident by a significant interaction 

between ROI and action in the specified direction. Second, reward scenario 1 would result in a 

steeper slope (Figure 1C, middle panel) for high reward action than low reward action, which 

could be calculated by the following contrast ($ROI$$$action - $$$ROI$$$action) - ($$$ROI$action - 

$ROI$action). Note however, that this comparison would involve comparing neural encoding 

between distinct brain areas, which would be confounded by anatomical differences between 

regions and potential variations in properties of the magnetic field across space. Thus, we cannot 

validly test for this outcome with our design, and we do not report this test in the results section1. 

Third, reward scenario 2 (Figure 1C, right panel), would be evident by a significant main effect 

of action in the specified direction. Given these key predictions, the comparisons of particular 

cell means within the design are not informative, so we do not provide tests on simple effects. In 

the case that effects interacted with the between-participants factor action-reward mapping, we 

report follow-up ANOVAs that describe the particular effect for both groups separately.  

3. Results 

                                                 

1 These considerations mean that we can only interpret changes within a particular ROI and accordingly, 

we report but do not interpret effects showing that one brain area (e.g. FFA) shows different values than another 

brain area (e.g. EBA). 
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3.1 Behavioral results 

Behavioral analyses confirmed that participants performed the task correctly. This 

analysis was limited to hand responses because face responses were not recorded. Participants 

responded with the correct hand response following the hand target signaling a left or right 

button press on average 96.6% (range: 87.3% - 100%) of the trials, and they rarely did not 

respond to these trials (mean: 0.5%; range: 0.0 - 6.3%). They correctly withheld a hand response 

after a hand target signaling no action during 99.5% (range: 96.3% - 100%) of the trials. Finally, 

hand responses to face action targets were rare (mean: 2.1%; range: 0.0% - 11.1%). These effects 

did not differ between the $$$ action = face group and the $$$ action = hand group (ps > .178). 

3.2 Neural precision in visual cortex reveals perceptual outcome encoding 

In our first analysis, we investigated the precision of neural representations in category-

specific visual areas FFA and EBA during the preparation of face versus hand actions. Action 

preparation is hypothesized to activate the perceptual representations of associated outcomes 

(Kühn et al., 2011). An ANOVA on the angular dispersion values in the EBA and FFA regions 

of interest revealed an interaction between the action modality and ROI, in the hypothesized 

direction, F(1,28) = 9.8, p = 0.004, MSE = 0.0001. As Figure 2 shows, neural patterns were more 

consistent (lower angular dispersion) during the cued action that was congruent with the ROI in 

comparison to the cued action that was incongruent with the ROI (compare Figure 1C, left 

panel). This effect was not significantly different between the two action-reward mapping 

groups, as the three-way interaction between action, ROI and group was not significant, F(1,28) 

= 0.9, p = 0.343, MSE = 0.0001.  

3.3 Neural precision in visual cortex reveals reward modulation 
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In the same ANOVA, a main effect of action also revealed that the preparation of actions 

associated with high (versus low) reward led to reduced angular dispersion (increased precision) 

collapsed across ROI, F(1,28) = 5.3, p = 0.029, MSE = 0.0003. However, an interaction between 

action and action-reward mapping revealed that the effect of reward was not equally strong in 

both groups, F(1,28) = 9.9, p = 0.004, MSE = 0.0005. Subsequent ANOVAs run for both 

participant groups separately, revealed that the effect of reward was significant in the group that 

had learned to associate face actions with high reward (Figure 2, middle panel; bottom), F(1,14) 

= 21.7, p < 0.001, MSE = 0.0005, but was absent in the group of participants that had learned to 

associate hand action with high reward (Figure 2, middle panel; top), F(1,14) = 0.4, p = 0.547, 

MSE = 0.0004. 

3.4 Individual differences in outcome-related neural precision predict speed of 

action execution 

In order to provide converging evidence for the idea that the observed precision in 

perceptual representation of action outcomes might reflect a functional mechanism that is 

directly related to the efficiency of action execution, we correlated the individual size of the 

interaction effect between action and ROI on mean angular dispersion with the participants' 

mean speed of responding during the action execution phase. The individual size of the action x 

ROI interaction was calculated by subtracting both congruent ROI-action combinations from 

both incongruent ROI-action combinations, as follows: ($ROI$$$action + $$$ROI$action) - 

($ROI$action + $$$ROI$$$action). Although the effect should not be different for the type of action 

executed, we could only include the speed of hand actions in this analysis because face action 

onset was not recorded. Initial screening of the behavioral data revealed an extreme outlier (more 

than 3 interquartile ranges above the 75th percentile) in the mean correct reaction time, so we 
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used a rank-transformed measure in our correlation analysis which confirmed our hypothesis (see 

Figure 3): ROI-specific representational precision predicted speeded action during the execution 

phase, r(28) = -0.425, p = 0.019; Spearman’s rho(28) = -0.403, p = 0.027.  

3.5 Neural precision in motor cortex reveals outcome and reward effects opposite to 

effects in visual areas 

We also examined how action representations in the motor cortex differed when actions 

coded by a given, congruent ROI were being prepared, versus when actions coded by the 

alternative, incongruent, ROI were being prepared. As Figure 4 (right panel) shows, the pattern 

of results observed in motor cortex (hand motor cortex and face motor cortex) was opposite to 

the results observed in perceptual ROIs (compare Figure 2, right panel). An ANOVA confirmed 

that there was an interaction between ROI and action prepared, F(1,28) = 4.8, p = 0.037, MSE = 

0.0006. A similarly opposite main effect of reward was observed, F(1,28) = 15.6, p < 0.001, 

MSE = 0.0005. This effect again depended on action-reward mapping, F(1,28) = 9.9, p = 0.004, 

MSE = 0.0005, and was only significant in the group that associated face actions with high 

reward, F(1,14) = 21.7, p < 0.001, MSE = 0.0005 versus F(1,14) = 0.4, p = 0.547, MSE = 

0.0004. In addition, we observed a significant interaction between action-reward mapping and 

ROI, F(1,28) = 39.5, p < 0.001, MSE = 0.0005, suggesting overall increased angular dispersion 

(less precision) in the hand motor cortex than in the face motor cortex (see Figure 4, middle 

panel; green versus purple shaded conditions). However, as explained earlier we cannot interpret 

this effect as it compares different brain regions. 

We speculated that the reduced precision in motor cortex observed when planning 

potential motor actions could be due to the participant vacillating between the two responses, in 

such a way as that the fluctuation between non-overlapping motor representations between trials 
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drove precision down. As Figure 5 shows, this account would predict an opposite pattern of 

results if angular dispersion is analyzed separately for the left and right hand motor cortex. The 

results of these analyses are shown in Figure 4B and 4C. Surprisingly, precision was still reduced 

for the congruent ROI when participants considered hand actions. An ANOVA with the extra 

factor laterality (left versus right HMC) revealed effects in the same direction as the earlier 

bilateral analysis: We observed an interaction between ROI and action prepared, F(1,28) = 4.5, p 

= 0.044, MSE = 0.0013, and a main effect of reward, F(1,28) = 11.7, p = 0.002, MSE = 0.0011, 

that interacted with action-reward mapping, F(1,28) = 9.7, p = 0.004, MSE = 0.0011. Again, we 

also observed effects of brain region, including a significant interaction between action-reward 

mapping and ROI, F(1,28) = 90.5, p < 0.001, MSE = 0.0011, a significant interaction between 

laterality, action-reward mapping and ROI, F(1,28) = 6.4, p = 0.017, MSE = 0.0003, and a main 

effect of laterality, F(1,28) = 6.4, p = 0.017, MSE = 0.0003. These latter effects are not 

interpreted for reasons explained earlier. 

3.6 Neural precision in cue-related areas increased by reward 

In a final analysis on angular dispersion, we asked whether neural encoding of the cue 

that signaled the face and hand action was modulated by the reward value of the associated 

actions. We presented pictures of houses as action-modality cues, therefore we could analyze the 

precision of neural representations in the parahippocampal place area (PPA), an area typically 

activated by images of scenes, including houses (Epstein and Kanwisher, 1998). In addition, 

because the different blocks were associated with different levels of incentive saliency, the block 

factor might interact with reward. Figure 6 presents the results of this analyses. An ANOVA with 

the factors action, block, and action-reward mapping, revealed a main effect of prepared action, 

F(1,28) = 4.2, p = 0.049, MSE = 0.0002, showing decreased angular dispersion when participants 
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prepare a high reward compared with a low reward action. The effect did not depend on the 

action-reward mapping used, F(1,28) = 0.6, p = 0.427, MSE = 0.0002. In addition, there was a 

trend for a main effect of block, F(2,56) = 3.3, p = 0.061, MSE = 0.0003, but no interaction with 

action, F(2,56) = 0.6, p = 0.524, MSE = 0.0001. 

3.7 Brain activation during reward anticipation and feedback confirmed stronger 

reward effects for face-action group 

The results from the MVPA analyses on the visual ROIs described above revealed that 

reward increased neural precision, but that this effect was only significant for the group of 

participants that associated face actions with higher reward than hand actions. This suggests that 

our reward manipulation was only successful for half of the participants. If this is true, the 

typical profile of brain activation observed in the context of the anticipation and receipt of 

reward might also be exclusively observed in the participants that showed an effect on the visual 

ROIs. In order to provide converging evidence for this hypothesis, we ran a conventional 

univariate event-related analysis and compared the BOLD response during the anticipation and 

feedback phase of the experiment. An initial analysis that collapsed over both groups confirmed 

that reward anticipation and reward receipt did not yield brain activation in the neural reward 

circuit at our statistical threshold. Therefore, in a subsequent analysis we contrasted the reward 

effect for the group of participants that associated face actions with high reward to the reward 

effect for the group of participants that associated hand actions with high reward and we probed 

brain activation to the following contrasts: ($$$ action > $ action)$$$ action = face > ($$$ action > $ 

action)$$$ action = hand for the preparation phase, and ($$$ feedback > $ feedback)$$$ action = face > ($$$ 

feedback > $ feedback )$$$ action = hand for the feedback phase.  
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Analyses using these contrasts focused on the reward network of the brain (Haber and 

Knutson, 2010). As shown in Figure 7A, during the anticipation of reward, the interaction 

contrast ($$$ action > $ action)$$$ action = face > ($$$ action > $ action)$$$ action = hand revealed brain 

activation in the ventral striatum (x = -8, y = 14, z = 2 mm; p = 0.014; extent = 189 voxels; and x 

= 6, y = 16, z = 0 mm; p = 0.042; extent = 82 voxels), ventromedial PFC (x = 4, y = 58, z = -4 

mm; p = 0.002; extent = 683 voxels) and amygdala (x = -22, y = -2, z = -32 mm; p = 0.008; 

extent = 745 voxels; and x = 18, y = -14, z = -8 mm; p = 0.015; extent = 519 voxels). However, 

the full cross-over interaction profile observed in the brain activity extracted from these ROIs 

suggests that during anticipation these regions were not selectively increased for the group of 

participants that associated face actions with high reward. Instead, the pattern of results are more 

consistent with the interpretation of a main effect of action modality. In other words, the 

anticipation of face actions (outer bars in Figure 7A) leads to increased brain activation in 

comparison to the anticipation of hand actions (inner bars in Figure 7A). Given that the face 

actions were more difficult to perform than the hand actions, it is possible that the brain ROIs 

revealed by this analysis reflect increased motivation or effort associated with the preparation of 

those actions. 

Analyses that focused on the interaction contrast ($$$ feedback > $ feedback)$$$ action = face 

> ($$$ feedback > $ feedback )$$$ action = hand during the receipt of reward are more consistent with 

our proposal that reward had a stronger impact in the face-high-reward group. As is shown in 

Figure 7B, during the receipt of high reward, activity in the pallidum and putamen (x = 34, y = 

12, z = 4 mm; p = 0.043; extent = 267 voxels; and x = 16, y = -10, z = 4 mm; p = 0.047; extent = 

257 voxels) and amygdala ((x = 30, y = 6, z = -22 mm; p = 0.010; extent = 719 voxels; and x = -

14, y = -2, z = -10 mm; p = 0.026; extent = 364 voxels) was high in the face-high-reward group, 
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whereas it was low for the hand-high-reward group. A reversal of this effect was not observed 

during the low reward conditions. Taken together, this pattern of results suggest that the neural 

effects of reward receipt were stronger for the face-high-reward group. 

3.8 Supplementary analyses: univariate analyses on visual and motor areas 

For reasons of completeness, we also briefly report the conventional univariate analysis 

on brain activity in visual and motor ROIs during action preparation, as originally reported by 

Kühn et al. 2011 in a similar paradigm without a reward manipulation. See Table 2 for details.  

The analysis on the mean BOLD response in the motor ROIs revealed an action x ROI 

interaction, F(1,28) = 4.3, p = 0.047, MSE = 4501.0, replicating findings reported earlier by 

Kühn et al. 2011. There was also a general increase in BOLD activation when the action was 

associated with high reward, F(1,28) = 4.5, p = 0.042, MSE = 3931.0, although this effect 

depended on action-reward mapping, F(1,28) = 5.7, p = 0.024, MSE = 3931.0, and was only 

significant in the face-high reward group, F(1,14) = 10.4, p = 0.006, MSE = 3841.0 versus 

F(1,14) = 0.1, p = 0.861, MSE = 4021.0. Finally, a reward x action-reward mapping interaction, 

F(1,28) = 33.0, p < 0.001, MSE = 4906.1, revealed that the FMC was overall more activated than 

the HMC. However, as explained earlier we cannot interpret this effect because it compares 

different brain regions. 

The analysis of the mean BOLD response in the visual ROIs did not reveal the action x 

ROI interaction reported earlier by Kühn and colleagues, F(1,28) = 0.5, p = 0.483, MSE = 

1599.2. There was a trend for an effect of action-reward mapping on this interaction, F(1,28) = 

4.0, p = 0.054, MSE = 1599.2, but subsequent ANOVAs did not support the interaction for 

separate groups, F(1,14) = 1.5, p = 0.240, MSE = 891.0 and F(1,14) = 2.6, p = 0.132, MSE = 

2307.5. There was also an interaction between block and action-reward mapping, F(2,56) = 4.1, 
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p = 0.023, MSE = 7728.5, suggesting that overall brain activation was different in the three 

blocks in the face-high reward group only, F(2,28) = 5.1, p = 0.015, MSE = 5904.6 versus 

F(2,28) = 1.5, p = 0.249, MSE = 10351.8. 

Finally, we repeated the analysis on the visual ROIs by extracting spheres around the 

peak voxel (see Methods) from the face and hand localizer scan and running the ANOVA on 

these individual peaks in the EBA and FFA, thus following exactly the same procedure as 

described by Kühn et al. 2011. These results were very similar to the univariate analyses reported 

above on the EBA and FFA ROIs, and did not reveal an action x ROI interaction, F(1,21) = 0.1, 

p = 0.884, MSE = 1550.9. 
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4. Discussion 

In the present study we tested the prediction derived from ideomotor theory (Harleß, 

1861; Hommel et al., 2001; James, 1890; Lotze, 1852) that implementing an action goal entails 

the consistent neural representation of expected action outcomes in visual areas of the brain. We 

found that when participants prepared a hand or face action, patterns of activity in the EBA and 

FFA, respectively, were more consistent than when participants prepared an action in the 

opposite modality. Moreover, the size of this effect on action-congruent precision was predictive 

of the subsequent speed of executing an action across individuals. In addition, reward was shown 

to increase the precision of the perceptual representations associated with relevant action 

outcomes. Finally, motor codes in the hand motor cortex and face motor cortex revealed effects 

that were similar to the visual areas but opposite in direction.  

The results revealed by our multivariate measure of representational precision confirm 

and extend earlier studies that have used univariate brain activation approaches to show that 

areas encoding the perceptual consequences of actions are activated during the preparation and 

execution of actions (Kühn et al., 2011, 2010; Kühn and Brass, 2010; Ruge et al., 2010). The 

increased precision of perceptual representations revealed in our study is likely supported by 

bidirectional links between action and outcome representations, as has been shown in studies that 

have primed perceptual outcomes to bias behavioral choices (Elsner and Hommel, 2004, 2001) 

and motor cortex responses (Elsner et al., 2002; Melcher et al., 2013, 2008; Pfister et al., 2014). 

Extending other studies on activation patterns in the EBA and FFA (Astafiev et al., 2004; van 

Nuenen et al., 2012; Zimmermann et al., 2012), our findings show that the precision of those 

patterns also plays a role in action control. From this perspective, our results dovetail with other 

studies that have shown that the EBA and FFA are not only important for the perception of 
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visual stimuli such as body parts and faces (Downing et al., 2001; Kanwisher et al., 1997; Pitcher 

et al., 2008; Taylor et al., 2007; Urgesi et al., 2004; van Koningsbruggen et al., 2013) but that 

these areas also play a role when preparing for related actions (Kühn et al., 2011; see also 

Zimmermann et al., 2016). One may argue that the involvement of the visual cortex is more 

obvious in perceiving faces of others than one's own face, which in the absence of mirrors and 

other reflections relies on proprioception. However, activating one’s own face can still involve 

FFA via strong (Heyes, 2001), presumably prenatal (Meltzoff and Moore, 1997, 1977) 

intermodal connections between kinesthetic, motor, and visual brain regions. Our findings also 

align with studies that have implicated the same areas in visual imagination (Johnson et al., 

2007; O’Craven and Kanwisher, 2000), although these studies focused on the conscious 

experience of the participant, whereas the concept of outcome anticipation emphasizes the 

preparation for events to come. However, at a neural level these two terms refer to the same 

process. That is, both processes translate into the activation of neuronal codes representing the 

past and therefore to-be-expected action outcomes.  

The abstract coding of the perceptual aspects of actions was accompanied with a concrete 

coding of the actions in motor cortex, producing opposite effects in neural precision. This result 

is difficult to interpret. The three key differences between representations in perceptual areas 

versus motor areas are that there is more overlap in representation in perceptual areas, perceptual 

areas represent information at a greater level of abstraction than motor areas, and perceptual 

areas typically represent input whereas motor areas typically represent output. It is worth noting 

that whereas AK Churchland and colleagues (2011) found that during decision formation, neural 

activity (in monkeys) is more variable in the lateral intraparietal area, MM Churchland and 

colleagues (Churchland et al., 2006) found that during decision formation neural activity is less 
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variable in premotor cortex. This reversal of effect between perceptual and motor areas is similar 

but opposite to the pattern we find. However, their results come from cell recordings in monkeys 

during accumulation of noisy evidence toward a decision, whereas we report patterns of fMRI 

activity during which there is no perceptual evidence in favor of either of two options. We 

speculate that uncertainty about the ultimate action may drive pattern variability upward when 

patterns are discrete, concrete, and directly drive physical behavior, but we cannot determine 

which of these factors is most, or solely, important for producing this result. 

Another novel aspect of the current study is that we investigated how different levels of 

reward associated with particular actions alter the associated perceptual and action 

representations. Although some recent behavioral studies have started to investigate how reward 

signals can modulate outcome-mediated action control (Allman et al., 2010; Eder et al., 2015; 

Hogarth and Chase, 2011; Marien et al., 2013; Muhle-Karbe and Krebs, 2012; Watson et al., 

2014), there are no studies to date that have investigated the modulation of perceptual outcome 

representations at a neural level. If outcome-specific representations are increased by reward, as 

some behavioral studies suggest (Allman et al., 2010; Eder and Dignath, 2015; Muhle-Karbe and 

Krebs, 2012) but see (Eder et al., 2015; Hogarth and Chase, 2011; van Steenbergen et al., 2017; 

Watson et al., 2014), this might lead to a modulation of the area-specific representational 

precision effect in the visual areas.  

However, this is not what we observed. Instead, anticipated reward increased 

representational precision in all perceptual areas, but decreased precision in motor areas. This 

effect was limited to the group that associated face actions with high reward (see below). A 

brain-wide boost in neural stability mediated by a neuromodulatory increase in signal-to-noise 

ratio (Warren et al., 2016, 2015) could explain the consistent effect across perceptual areas, but 
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we had no basis to predict that such an effect would lower precision in motor areas. Our results 

suggest that patterns of activation in the hand motor cortex are actually less consistent when 

preparing two hand actions than when preparing two face actions, and vice versa for the face 

motor cortex. Insofar as this effect is a natural outcome of lingering uncertainty, it is not 

unreasonable to speculate that increased signal-to noise ratio would enhance the effect. In fact, 

this effect may be driven more by precision in the incongruent action condition, than by 

imprecision in the congruent action condition. That is, patterns of activity in the motor cortex 

may default to a representation that is less noisy when no action is being prepared than when two 

actions are being prepared. Findings from electrophysiological research suggest motor cortex 

demonstrates synchronized oscillations at rest that become desynchronized as a motor action is 

imagined or prepared (Miller et al., 2007; Pfurtscheller et al., 2006, 1996). The relationship 

between this phenomenon and the results we observe is admittedly speculative and we 

acknowledge that more research is needed to determine how the motor cortex represents multiple 

possible outputs versus no possible outputs. 

Our conclusions must be tempered by the fact that the effect of reward on angular 

dispersion was only significant in the group of participants that associated face actions with high 

reward. We speculate that because the face actions required in our study were unusual and might 

have been more difficult to perform than the hand actions (simple button presses), participants 

might have been more motivated in the group where effortful actions were associated with a 

corresponding higher (instead of lower) reward. By this account, the impact of reward is reduced 

in the group of participants that associated the more difficult face actions with relatively low 

reward. The patterns of activation in the pallidum, putamen, and amygdala – key structures of the 

traditionally so-called reward circuit (Haber and Knutson, 2010) – are consistent with this 
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explanation. On the other hand, the pattern of results for the reward anticipation phase indicates 

that the ventral striatum, vmPFC, and amygdala in this context most likely do not reflect the 

anticipated subjective value per se, but rather the enhanced motivational saliency or difficulty 

associated with face actions in comparison to hand actions. This result aligns with studies that 

have shown similar task demand effects in these brain areas (Boehler et al., 2011; Schouppe et 

al., 2014). Alternatively, it is also possible that face actions are simply easier to become 

associated with reward than hand actions, for example due to different neural connectivity with 

the reward system and/or because faces carry more affective information than hands.  

We also investigated whether neural representations of the house cues were differentially 

modulated by reward value. Reward-predicting stimuli are typically preferentially selected and 

processed (Berridge and Robinson, 1998; Hickey et al., 2010; Krebs et al., 2010; Robinson and 

Berridge, 2001; Serences, 2008). We therefore expected that neural representations in the PPA 

encoding visual scenes would be more precise in response to house cues signaling high-reward. 

This prediction was borne out in our data. Notably, this effect was independent of the action-

reward mapping and block, suggesting that the incentive salience of the cue was coded 

independently of the subjective value of reward and works independently of the observed 

modulation of outcome-related perceptual representations.  

We did not use a control condition that used a cue associated with no action modality. 

The implication of this is that we were not able to demonstrate action-specific effects such that, 

for example, preparing a hand action only decreased angular dispersion in the EBA without 

affecting activity in the FFA. Another limitation of this study is that we were not able to replicate 

the univariate effects in peak brain activity in the EBA/FFA as earlier demonstrated using a 

similar task (Kühn et al., 2011). The failure to observe this effect might be attributed to several 
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differences between our study and theirs. First, instead of the abstract letter cues that were 

presented in the original study we presented pictures of houses as cues. Pictures of houses also 

activate the ventral temporal cortex, potentially overshadowing action-specific effects in the 

EBA and FFA. Second, we introduced a reward manipulation that was not in the previous study. 

Some studies have shown that reward can undermine intrinsic motivation (Deci et al., 1999; but 

see also Cameron et al., 2001), and that reward is associated with reduced voluntary task 

engagement and diminished activation of the neural valuation system (Murayama et al., 2010). 

Generally undermined motivation might thus have reduced participants' neural anticipation 

effects in the current study, reducing the odds of observing it in a univariate analysis. 

Nevertheless, the main results of our study do show that multivariate analyses were highly 

sensitive to modulation of the visual cortex. Multivariate analyses typically are more sensitive 

than univariate analyses (Poldrack, 2012), and can reveal neural encoding in brain areas that are 

not possible to measure with univariate approaches (Etzel et al., 2016). 

We also note that because our study included a behavioral measure of performance for 

the hand actions, but not for the face actions, we could not investigate the action-specific 

relationship between neural precision and efficiency in execution. One way to improve this 

design in future studies is to use video recording of face and hand actions, which would enable 

testing of whether general modulation as observed here can produce modulation of outcome-

specific behavioral control as observed in some behavioral studies (Allman et al., 2010; Muhle-

Karbe and Krebs, 2012).  

From a more methodological perspective, our study demonstrates how angular dispersion 

of vectors defined by brain activation patterns can be used to investigate the precision of neural 

representations in different areas of the brain. The findings presented here thus extend the 
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seminal studies that have investigated the precision of neural representations over time in 

relation to consciousness (Schurger et al., 2015, 2010) and memory (Xue et al., 2010). As such, 

this body of work demonstrates added value to other multivariate approaches. For example, the 

seminal work by Haxby and colleagues characterizing the way perceptual category information 

is represented in inferior temporal cortex (Haxby et al., 2001), the design of classification 

algorithms focused on whether or not information is represented in particular areas (Haynes and 

Rees, 2006), and the development of representational similarity analyses (Kriegeskorte et al., 

2008a, 2008b).  

5. Conclusions 

Using a multivariate measure of representational precision, we showed for the first time 

how the precision of representations in perceptual and motor areas is modulated by the specific 

action goal and the associated reward value when participants prepare face or hand actions. Our 

findings show that increased temporal consistency of neural representations in visual cortex 

provides an important neural signature of the perceptual expectations involved in goal-directed 

action. 
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Table 1. Overview of different blocks used in experiment 

 

 

block A block B block C

"kiss" 40% +1 25% +2 40% +1

"smile" 40% +1 25% +2 40% +1 +0.8 +4 +4

no action 20% +0 50% +6 20% +16

left hand 40% +5 25% +6 40% +3

right hand 40% +5 25% +6 40% +3 +4 +4 +4

no action 20% +0 50% +2 20% +8

"kiss" 40% +5 25% +6 40% +3

"smile" 40% +5 25% +6 40% +3 +4 +4 +4

no action 20% +0 50% +2 20% +8

left hand 40% +1 25% +2 40% +1

right hand 40% +1 25% +2 40% +1 +0.8 +4 +4

no action 20% +0 50% +6 20% +16

block A

prepare face action

Frequency + reward | Cue + Target Average reward | Cue

$$$ action = hand (N=15)

$$$ action = face (N=15)

$ (low)

$$$ (high)

$$$ (high)

$ (low)

action-reward group Modality of action to be prepared | Cue Reward value Action to be performed | Cue + Target

prepare hand action

prepare face action

prepare hand action

block Cblock B
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Table 2. Supplementary univariate analyses on visual and motor areas (brain activation in 

arbitrary units) 

 

 

$ area $$$ area $ area $$$ area $ area $$$ area

prepare $ action 79.0 24.6 63.8 65.4 149.8 142.3

prepare $$$ action 71.5 28.7 28.8 41.3 111.8 104.8

prepare $ action 49.6 62.3 43.0 20.6 111.8 112.7

prepare $$$ action 55.8 115.7 80.2 34.9 141.8 145.0
$$$ action = face

motor areas (EBA/FFA) sensory areas (EBA/FFA) peak sensory areas (EBA/FFA)
cued actionaction-reward group

$$$ action = hand
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Figures 
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Figure 1.

 

Figure 1. A. Example of the study design. Participants were instructed to prepare a face or hand action (pictures 
show actions carried out by second author). These action modalities were associated with either low reward ($) or 
high reward ($$$). The action-reward mapping was counterbalanced across participants, so half of the participants 
learned to associate hand actions with more reward than face actions. The other half of the participants learned to 
associate face actions with more reward than hand actions (shown here in the example). Details about the cue-action 
and action-reward contingencies used in different blocks are presented in Table 1. B. Example of a trial presenting a 
cue that instructs participants to prepare a face action. To brain response to this action-preparation phase is the target 
of the analyses in this paper. The subsequent target indicated the action to be executed which was followed by 
feedback stimulus indicating the monetary reward gained. C. Illustration of predicted effects for the precision of 
neural perceptual representations in the EBA and FFA during the action preparation phase of a trial. We analyzed 
across-trial angular dispersion, a measure of the consistency of neural patterns across all trials. Note that less 
dispersion reflects more precision. We predicted that an action x ROI interaction (left panel) would reveal increased 
precision for congruent versus incongruent action-area combinations (i.e., more precision when preparing a face 
action in the visual cortex area involved in face processing (FFA), compared to the area involved in body parts 
processing (EBA); and vice versa for the preparation of a hand action. On top of this action x ROI interaction effect, 
reward might alter the consistency of the neural information in two ways: When preparing a high-reward action (e.g. 
a face action), 1) it might lead to a selectively more stable representation in the reward-related ROI only (e.g. FFA) 
(middle panel), or 2) it might lead to a more stable representation irrespective of the area (right panel). 
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Figure 2. 

 

Figure 2. Across-trial angular dispersion in the EBA and FFA regions of interest hypothesized to represent 
perceptual codes of hand and face actions respectively. The middle panel shows the data from the two action-reward 
mapping group: Top graph: $$$ action = hand, bottom graph: $$$ action = face. Error bars indicate standard error of 
the mean. 
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Figure 3. 

 

Figure 3. Area-specific modulation of angular dispersion in the EBA and FFA during action preparation predicts 
subsequent speeded hand responses after target presentation (correlation across participants). Marker type indicates 
the action-reward mapping group: diamonds: $$$ action = hand, circles: $ action = hand. 
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Figure 4. 

 

Figure 4. Across-trial angular dispersion in the HMC and FMC regions of interest hypothesized to represent motor 
codes of hand and face actions respectively. The middle panel shows the data from the two action-reward mapping 
group: top graph: $$$ action = hand, bottom graph: $$$ action = face. Error bars indicate standard error of the mean. 
A Shows results from the analyses that compared bilateral HMC and FMC regions. B and C show results from the 
analyses that compare bilateral FMC with left HMC and right HMC, respectively. 
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Figure 5. 

 

Figure 5. A. Illustration of the possible interpretation of the increased angular dispersion observed in the action-
congruent ROIs for the hand motor cortex. The middle graph shows how different trials are projected in 
multidimensional space (two-dimensional for display purposes), separately for preparing a face (top) and a hand 
(bottom) action. Given the topological organization of the motor cortex, preparing a hand action will involve non-
overlapping (lateralized) representations in bilateral hand motor cortex. When participants prepare a hand action, 
they might vacillate between the representations of the two hands in different trials. This will result in increased 
angular dispersion in bilateral hand motor cortex relative to face action trials that produce noisy representations. B. 
Example of expected results in unilateral hand motor cortex to test the vacillation account. Angular dispersion is 
expected to be reduced when preparing hand actions (versus face actions) because it will lead to reduced angular 
dispersion in those trials that involve the representation of the contralateral hand. Combining these trials with the 
noisy representations during the trials that involve the ipsilateral hand results in a mean decrease in angular 
dispersion.   
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Figure 6. 

 
Figure 6. Across-trial angular dispersion in the PPA region of interest hypothesized to represent cue-related 
processing. The middle panel shows the data from the two action-reward mapping group: top graph: $$$ action = 
hand, bottom graph: $$$ action = face. Error bars indicate standard error of the mean. 
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Figure 7. 

 

Figure 7. BOLD response during the reward anticipation phase (A) and the reward receipt phase (B) for the contrast 
that shows increased reward-related brain activation for the $$$ action = face group than for the $$$ action = hand 
group. Figure shows small volume corrected (SVC) clusters in the basal ganglia, frontal medial cortex, and 
amygdala surviving a height threshold of z > 2.3 and a cluster probability of p < 0.05. Bar graphs show extracted 
brain activity for illustrative purposes. Error bars indicate standard error of the mean. 
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