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INTRODUCTION

The analysis of variance is a well known tool for testing how
treatments change the average response of experimental units. The
essence of the procedure is to compare the variation among means of
groups of units subjected to the same treatment with the within treatment
variation. If the variation among means is large with respect to the
within group variation we are likely to conclude that the treatments
caused the variation and hence we say the treatments cause some change
in the group means.

The usual analysis of variance checks how far apart the group
means are in a single scale of measurement. Almost all researchers
are interested in how the treatments affect more than one characteristic
(variable) of their experimental units. A typical usage of such data is to
run a standard analysis of variance on each variable. This procedure
can be very misleading when trying to interpret the results. Most of
the time there are strong correlations among these variables and hence
if one variable tests significant the others will also. The multivariate
analysis of variance provides a way of performing valid tests regardless
of the correlation structure among the variables of interest.

The multivariate analysis of variance compares the distance the

treatments are apart in multidimensional space with the multidimensional
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variance/covariance structure of the observations about the treatment
means. Treatments that are far apart will likely be judged as being
different.

Multivariate procedures are relatively unused for two primary
reasons. The computational procedures are complex and there have
been very few computer programs written to do them. This report is

an attempt to encourage research workers to use more multivariate

procedures.




OBJECTIVES

The report has two basic objectives:

1. To provide a computer program capable of performing the
multivariate analysis of variance for the simple experimental designs;
completely randomized, randomized block and Latin square designs.

2. To document the computer program and illustrate its usage.
The first objective will be met by adding multivariate capabilities to the
program called BASIC that was developed by Greenhalgh (1967). The

second objective will be met by making the necessary modification to

the BASIC documentation and providing several illustrations of usage.




ME THODOLOGY

Multivariate analysis of variance is a generalization of univariate
analysis of variance. For the one-way univariate analysis of variance,
the jth observation from ith population is assumed to be generated by the

linear model Y.. = u + 7. + e,, in which u is an overall mean, 7, is an
ij i ij i

effect due to ith treatment, and e.. is a normal random variable with
1]

) 2 SN
mean zero and variance o . All e, .'s are assumed independently distri-
1)

buted. The hypothesis of equal population means HO: iy Soll we o = pg

is an elementary case of the general linear hypothesis, because T p+7’i
i

is the mean of ith treatment, so the hypothesis HO: T = B = e = T 18

1 2 g

equivalent. If we use matrix form to express all the observations then

- € 1 1 S e 9 o 3 e oo 9 o500 ’
Y = AB + €, in which Y [Yll, YlN1 Ygl YgNg]
€ = [ell,... elNl,... egl... egNg] and parameter vector B!= [’rl,...’rg,p],
where number of subjects in the ith group is N, and N = Nl e NG
1 g

A is the N x (g + 1) design matrix for the one-way analysis of variance
model, the element of ith column and g + 1 column are 1, when ith group
is applied. Postmultiplication of the design matrix by the parameter
vector assures thatijth observation will involve only the constant p + 'ri.

The null hypothesis of the one-way analysis of variance can be expressed

in matrix form as Ho: Cp =0




where
g
""_'N—ﬂ N N
sy g (71
01 Oi=11580 72
C'_" ﬁ:
o s . . . T
g
(g +1)x1
. o . \}-L J &
L0 0 1—1 0J) (g—1)x (g +1)
then
e oo e
T Tg
-7
72 ”
Cp= =0
T =7
gl B
As above Ho: 7'1 = 'r2 = .. = ‘rg, because by =R +’ri, so the hypothesis
of matrix from CPB = 0 is still the same as}HO: By By 20y = pg.
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Now extend the linear model and hypothesis to several dependent
variates, i.e., multivariate. Let Y be p-dimensional multinormal ran-
dom variable, and collect N observation vectors Yl' YZ' oyos YN under
some experimental design., The jth observation on the rth response is
generated by this model er = aji€1r+ P ajmgmr + ejr' ajr is the
coefficient of each response in the jth vector, so the design matrix A is
the same for all dimensions. ejr’ r=1, 2, .. pis the residual deviates
of the jth observation. These are distributed with null mean vector and
covariance matrix X of full rank p. The model for all observations

using matrix form is Y = A§+ €, Y is N x p matrix, has N observation

vectors or rows, A is the appropriate design matrix. The matrix

gll ine ¥ ; glpT
e
i e
L (=g +1)
qul i gqp/

is the unknown parameters matrix. € is an N x p matrix and contains

the residual variates e, .

Jjr

The multivariate extension of the general linear hypothesis is

Ho: CEM = 0, in which C is a (g—1) x (g + 1) matrix as in the univariate
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case and refers to the hypothesis on the elements within given columns

of the parameter matrix, M is p x r matrix and permits the generation

of hypothesis among the different response parameters. The multivariate
hypothesis is true if and only if the univariate hypothesis Ho: CtEMa = 0
holds for all nonnull r-component vectors a.

We will now use the general results to extend the analysis of
variance, for some common experimental designs, to the multiple res-
ponses case,.

(1) The one-way classification. (CRD)

There are g treatments (if the treatments were assigned at ran-
dom then it is completely randomized designs), each treatment has p
response variates on the sampling units. These measurements are
assumed to be independent observations on p-dimensional multinormal

variates with mean vectors Hps Hoseeee it under different treatments

2

and a common unknown covariance T for all g conditions. The design

matrix A in this model is the same as before, but its parameter matrix is

r'rn Tige v oo Tlp\

T Top s =o' sz
T :

Tg.l -rg'z G b T.gp

\Hl M .». o s Hp/




The hypothesis to be tested is that of equal-treatment-effect vectors:

= ~ f -~
1 Te1
7
12 g2
H - S R
(o]
T T
[ o | L 'gp |

which is the same as Ho: CEM = 0, where M is P x p identity matrix.
The matrix T of sums of squares and product among treatments, and

the error matrix E will be found1

g 1 1
£ = —— e W A
rs 5_51 Ni Tir Tis N Gr Gs
N,
g 1 g 1
e =2 X Y. Y =2z T
B % TR R 1r “is

It should be realized that the elements of these matrices can be
calculated by the procedures given in elementary texts on the analysis of
variance. Elements in the ii position, 11, 22, 33 etc. are the standard
computations for the univariate analysis for the lst, 2nd, 3rd response
variates. The elements in the 1j position, i # j, are computed in the
Same way as the cross product terms in the analysis of covariance,
Sample problems given later will make these computations clear.




where Y"r = jth observation on response r under treatment i.
1)
Ni
Tir = 2 Yijr = sum of all observations on rth response in
J=1

presence of treatment i,

G = Z Tir = grand total of all observations on rth response.
i=1

2,
I

+ Th e e
Nl N2 Ng

To test the equality mean vectors we must assume that the
unknown variance matrix is common for all treatments. This assumption

is another hypothesis we may test.

(2) Randomized blocks. (RBD)
In this model inferences from the observations will be restricted
to the g treatments applied to just those b blocks employed in the experi-

ment, The mathematical model for each observation is:

Y.. =g #7 +p. +e.,
ijr r ir jr ijr

where p_ = usual general level effect for rth response.
r

T = effect of ith treatment on rth response.

ﬁ'r = effect of jth block on rth response.

eijr= random effect specific to ijth combination of treatment,

block and response.
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The random terme ef, =[e.. , €. .., s.us, ©,.,.] are assumed to
1) ijl ij2 ijp

have the p-dimension multinormal distribution with null mean vector and

common covariance matrix T for all combinations of i and j, and the e,

1)

in any block are independently distributed. The design matrix A is

(bg) x (b + g + 1). The parameter matrix is

[ ARAC A *
B11 ﬁlZ B1p
ﬁbl @bz ....... ﬁbp

£ =

M1 Tip weeeees Tlp
T T = e es vwsie T
gl g2 gp
T e T F e W K

Spe il p]

The residual matrix € has as rows the bg vectors e' .. In this model the
1)

usual hypothesis of interest is

1 a
12 T
B = o R T e 5
0 L) L]
;3 T
| '1p_ gp_
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of equal treatment effects, The T and E matrices of treatment and

error can be found

1
BB G R Gy
I7gr “js bg. 't =5

Mo

g 1
B R e e
= g

1

8
where B, = X vy the total of the observations on the rth response in

Jr i=] ijr
block j.
b
Tir =2 Y"r = the total of the rth observations under treatment i.
=1 1)
% + B, + + = + + +
Gr Blr 2T, Bbr Tlr TZr Tgr
= grand total of the values of that response in all sampling
units,

(3) Latin square. (LSD)
The idea of a square is evident, if g treatments are to be investi-

2
gated, it has g experimental units. The mathematical model for each

observation is

Y.
ijkr = u_ + + T+
Dl PR i TR
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where e general level parameter of rth response,

ajr = effect of jth row treatment on rth response,
Bkr = effect of kth column treatment on rth response.
T effect of ith treatment on rth response,

eijkr = usual multinormal random variable term.

The design matrix A and parameter matrix £ can be produced by

using the same methods as for randomized block design. The null hypo-

thesis
o N - ~
11 a1
9 a2
H ’ = A = .
(o] . °
T 7]
. 1p . L EP. i

is the usual hypothesis to be tested in Latin square design., It is not
possible to test any hypothesis concerning rows or columns" . Proceeding

to the test of Ho’ we calculate matrices T and E for treatment and error.

This is for the same reason we do not test the effects of blocks
in the randomized block design. These design effects are created by the
researcher by the manner in which he restricts his randomization, selects
his experimental units. A test, if made, has no probability associated

with it. Large values of the mean squares simply mean that the researcher
did a good job in design,
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16 1
T e LT I T
rs g i=1 "ir "is g T8
B2k 1. B 1
IOt il e T N A SRR i S S C. G =
T8 j=]j=1k=1 1ijkr ijks B el Se g k=1 kr ks

where
g 8
R, =5 B :
J¥ i=1 k=1  ~ijkr
g 8
= s
kr i=1 j=1 ijkr
g 8
AN e .
ir -1 k=1 ijkr
= + +oeust = +C, +....+C__=
Gr er RZr Rgr Clr 2r gr
2 e
Tlr % TZr Tgr
The test for equality of dispersion, Ho: El =X, T eee.s Z , can

only be tested on the completely randomized design. The test for
equality of mean vectors, HO: e W e p.g, can be tested on all

designs. Here are the procedures for these two possible tests:

(i) Hypothesis of equality of the mean vectors.

H:p1=p2=....=p

8
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Using Rao's (1952) notation

- B

|T+E|

where E is the within-treatment deviation SSSP matrix of error, T is the
SSSP matrix of treatment. In completely randomized design, the T + E
matrix equals the total variance/covariance matrix.

The notations that will be used are the following:

g = number of groups or treatments,

Ni = number of subjects in group (i).

N = total number of subjects.

q = g—1 = degree of freedom for treatment.

P = number of responses.

t = DFtreatment+ DFerror — k, where DF means degree of

freedom, k = number of covariates.

Let

and \ = _pq—2
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then
1= "t=p . :
(1) F:-A— B with DF (p, t—p); if q = 1, for any p
1 —VA U Y i :
(2) FE = 7 = with DF (2p, 2(t—p—1)); if q=2, for any p

§ e i
(3) F:——/\——/-\-— t—q—g—with DF (q,t—q); if p= 1, for any q

1—\/;\— t=a=1

4) F = with DF (2q, 2(t—q—1)); if p=2, for an
q q P yq

B
1_ —
A r—ni:l-@—\-with DF (pq, (ms—2X\)); p, q> 2

1l

(5) F

Approximate F not integer DF

(ii) Hypothesis of the equality of group dispersions (CRD only).

This is presented by Box (1949), Box defines the criterion M:

B,

M= (N—g) In

1

E
= 2N =1)L
N—g' i(l i ;

]

(N—g)ln l S |— Z (N,-1) In lsi '
where S = the pooled matrix among treatments.

S. = variance/covariance matrix within treatment i,
i

Required constants are:
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2
1 1 2p°+3p=1
1 i N~—1 Ne=p " olptl){g—1)

1 1 (p—1)(p+ 2)
(Z = ) =
b e

>
N
n

. 2
if A —A1 is positive, then

2
el dp e b i 5 Tl
1 2 A Ao 2
Z 1
1
b
l_ -—
Ay
s
(nl’ nz)
s 2. :
if AZ—Al is negative, then
n +2
. oABTllpApt 1) el
1 2 Z_A 2 i
1 2
b = i
1~ 2
W Sny
nzM
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NUMERICAL EXAMPLE

This is a randomized block design with three treatments, four

blocks, and two variables. Use this data set to do the multivariate F

test.
block
treatment 1 2 3 4
1 4 8 5 7 8 8 B 11
2 [ 6 1 8 2 7 2 6
3 3 2 5. 12 9 11 3 1.3

Use the notation Yijk = observation in ith treatment, jth block, kth response.

> Ygl = 299 ZEYSZ = 921 ZIY;) Y., = 460
z Y, ) = 22 §:: Tk ? o ?? Yooy = 5%
Y, 34 >J: % 0 333 Yy, =38 ?;z‘ Yiip =99
2 Y= N BT e >

il12 i22 & i3 Y42

[ 5




2 18

2 2 (2ZY..) 532
Corrected total for Y, ==X Y., — ~——— - 299—22__ 299—234. 083
1 ijl bg 12
DF = 11 = 64,917
(==Y )2 2
2 2 :
S SR oy i ey C SN D B
2 ij2 bg 12
= 104, 25
(ZZY.. (=Y. ..)
) 5.t ijl ij2 L PR g
Yle" ZEYijlYijZ bg e 12

= 460 — 437.25 = 22,75

2 2
(Y : e 2
Corrected treatments for Y = %(LYi‘jl) — (ZzYiil) = 222+“ +20 - 53
re e (S m 5 1 J_ = b bg = 4 ]2
DF = 2 = 251,25 — 234, 083 = 17. 167
2
> 2 (=Y 2 2 2
= 1 G T R VLT 99
B bg ¥ 2 12

=852.25 ~816.75 = 15.5

¥ _Z(ZY;jl)(ZYijz) o (ZZYWXZZYUZ) 22x34+11x27+20x38
! 1727 bg s 4
_ 53x99
12

= 451,25 —437,25 = 14,0

2 2
S 2 2 2 2
i R e T LT
Corrected blocks for Y = - = —_
1 g bg 3 12

DF =3 _ =450, 333 — 234,083 = 16,25




19

2
3 2 2 2 2
YZ— E(z‘Yi_jz) " (ZEYUZ) 16 427 4 26 4+ 30
2" g bg 3 3
2
S
12
= 853,667 — 816,75 = 36,917
oy L TENEL,) Y e )
L2 g bg
_16x13+11 x27+19x26+10x 30
> 3
! 53 x 99
12
= 433 — 437,25 = — 4,25
In matrix form:
Total: r64.9l7 22,75 Treatments: 17167 14,0
104, 25 155
Blocks:[ 16. 25 —4,25
| 36.917

Error = Total — Treatments — Blocks:

DF = 6 |64.917 22.75|[17.167 14.0|16.25 —4.25 w3l 13,0
104, 25 15.5 36.917 51.833
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T+E= 117,167 14,0 s1.5 " 13,0 ] 48. 667 27.0

15,5 51,833 67,333

codRl e g
&= |T +E| = 2547.89 - ke
P =2, q=2 t=2+b6=8

W: 0. 758

B 1 -y t=p—=1 10,758 8—2Z—~1 0,242

X

VA P 0. 758 AR )

= 0.,32x 2.5 = 0,80

F

X o D

associated with DF = (2p.2(t—p—1)) ie. (4.10)

The computer output for the same data is given in Sample

Problem 1.
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PROGRAM MODIFICATIONS

The STATPAC/BASIC program was written using matrix mode,

In performing the desired computations on multiple variables all the
matrices needed for the multivariate tests were produced but only the
main diagonals useé. To modify the program the matrices were captured
on disk and held for later use . The only thing we have to note is it
holds all the variance/covariance matrices within each treatment on

disk as an extra in the completely randomized design.

Following basic analysis of variances the program will perform
the multivariate tests. If the model is completely randomized design,
read all variance/covariance matrices within treatment (Si) from disk,
then calculate the pooled matrix among treatments (S). These matrices
are used for testing the hypothesis of equality of treatment dispersion
HO: El = ZZ S .. = Eg. The program branches to FUNCTION DDET to
get the determinant of all Si and S. Following the steps Box has pre-
sented in 1949, calculate M, A n

A nz, b and F ratio for this

s it Lty

test. If the model is randomized block design or Latin square design,
we don't need to test this hypothesis, so skip this part in program.
The next step is to do the multivariate F test for the equality of

treatment mean vectors, Ho:p1 = iy T e = Hg for all the models.

Read all the SSSP matrices for the desired model from disk. Move the
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error SSSP matrix to lower triangular portion of matrix A and move the
sum of error and treatment SSSP matrix to upper triangular portion of
matrix A. Branch to SUBROUTINE MULTF. SUBROUTINE MULTF
is the subprogram for testing the equality of the mean vectors which use

Rao's notation., For different conditions of treatment and variable num-

bers, do the different F tests.




23

PROGRAM DOCUMENTATION

Up until now the BASIC program could calculate the analysis of
variance or covariance for completely randomized design (CRD) with
unequal sample size, or randomized block design (RBD), or Latin
square design (LSD) without replications or subsampling. With covariance,
on a CRD, it will, on control, give a linear regression analysis within
each treatment, This program can now do the multivariate procedures
with or without covariance on CRD, RBD and LSD.

Automatically the program gives an analysis of variance and
treatment means for each variable. With covariance, it gives the error
correlation matrix, inverse matrix, solution matrix, adjusted analysis
of variance, and adjusted means. Following these with multivariate
control are variance/covariance matrix within each treatment, pooled
matrix for treatment (for CRD only). The SSSP matrix of row, column
for LLSD; block for RBD; and SSSP matrix of treatment and error for all
of the designs.

The control card for STATPAC/BASIC program is now:

Column Description
(4) Model identification,
1 = Completely randomized design

2 = Randomized block design




(6-8)

(11-12)
(15-16)
(19-20)

(22)

(23-24)

(26)

(41-80)

3 = Latin square design

Number of treatments (< 100)

Number of blocks (< 100)

Number of X's

Number of Y's

1

} Sum must be less than 20

= Output regression within treatment for

completely randomized design

Input logical unit,

1

5 = Card reader

15 = disk

= Qutput multivariate tests

Descriptive information

The following abbreviations are used on output:

DF

SS

MS

SE

degree of freedom
sum of squares
mean square

standard error of a mean

EXP MEAN = overall mean of that variable

.V,

coefficient of variation

2
COEF OF DET = coefficient of determination (R )

DET

SSSP

determinant of matrix

sum of square and product

24
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SAMPLE PROBLEMS

Two sample problems will be used to demonstrate the capabilities
of this program. The first is randomized block design with three treat-
ments, four blocks. It has two responses per experimental unit (the

same data as numerical example). The control card for this problem is:

Column Description

(4) 2 = RBD

(8) 3 = number of treatments

(12) 4 = number of block

(16) 0 = no covariate

(20) 2 = number of Y's

(22) 0 = RBD can't do regression within treatment
(24) 5 = card reader

(26) 1 = output multivariate test

(41 - 80) descriptive information

The second sample is a randomized block design with twenty-four

treatments, two blocks. It has four responses per experimental unit.

The control card is as follows:
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Column Description

(4) 2 = RBD

(7-8) 24= number of treatments

(12) 2 = number of blocks

(16) 0 = no covariate

(20) 4 = number of Y's

(22) 0 = RBD can't do regression within treatment
(24) 5 = card reader

(26) 1 = output multivariate test

(41-80)

descriptive information
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Sample problem 1 (input cards)

lad
-}
a

x
<
<
wd

TN MINONDVDOC O
L ]

(4X,2F240)

N DN Ve 0N O NN ~o
-l -4 o

FUVNODO VDN NN D
=t N™MJT NN T = NM

Nt S NNNWNTYTYM™M

- (NN ™M
" *9 vy *e

3 4 313



Sample problem 1
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Computer output of hand calculated example

? 3 4 0
(axs2F2.0)

2051

EXAMPLE

MS

sR583333E+01
1525000CE+01

«eS51878215E+00

MS

«?7750CC0E+Q1
'863b889E+01

¢35626651E+00

1 2
ANALYSIS nF VARIANCE, VARIABLE 1§
SOURCE oF SS
107 11 sb6ULUQISKATE+D?
ALK 3 0 1625000F+02
TIRT ? e 1716667F+072
FRR [ e3150000E+0?
TRT TRT wFANS SE
1 «S50006CE+01 W1145644F+01
? «e?75000CE+01 ellus6uure+nl
3 «S00CO0CE+01 s114564uF+01l
EXP MEAN cU4166667F 401 CeVae
ANALYSIS n¥ VARIANCEs, VARIABLE 2?2
SOUKCE nF SS
107 i1 «1042500F+03
8LK 3 e3601567E+02
TRT 2 «185000CF+Q2
ERR & +51R333E+(02
IRT TRT MEAANS SE
1 «RS50C00CE+0Q1 «1469599F+n1
2 «67S000CE+0] e1469599F+01
3 «SS0CCG00E+01 0 146959QF+n1
EXP MEAN «825C0000F+01 CeVae

BLOCK SSSP MATRIX wlTh 3+ DOF
| e1A230C0E+C2 =,42500C0FE+01
2 0 3A81667E+02

TREATMENT SSSP MATRIX wWITH 2. DF
| e 1716667E+C2 «1400000F¢0?
IR ¢ 15850000FE«02

+1634921F+01

«B8971061F+00




ERROR SSSP MATRIX wWITH 6. DF
1 e 31S000C0E+02 +1300000E+07
2 eS1R3I3I33E4+02

TREATs + FRROR SSSP MATRIX 1S
1 cURAGLETESC? +2700000F+07?
? 06733333E+02

T¢E DET= e25u7889E+0nqg
E DFTe= o 1463750E+04

MULTIVARIATE F= 080 WITH

4,0

10,0 OF

29




Sample problem 2 (input cards)

2 ?u l 0 4053 RBD wITHNUT COVARI

i ? 3 4

1 14 1 0 1 1 32
2 Y2 a o 8-19
3 3 201 1) 129 8
4 ] 22 8§ 49 . F"'19
5 1 311511 5 9
6 1°3.2 “R-9. 815
7 1 41 a4 9 10 17
8 1 4 2 85.81) 186
9 15 1 2 1s 2 2?21
10 )L el G S Ve
11 1 61 12 1a 4 10
12 1 6 2 | SRR e B
13 0 LA IR TR (B, 1) (O 1
14 212 6 &5 6 23
15 2 2rny ] R 10 13
16 2 22 1 & B 25
17 2 301 0 R 6 26
18 2-31.2 2. & .25
19 2 4 117 & 11 6
20 2 42 2?2 A 6 26
21 2 51 9. 9 . T 22
22 25 2 9 14" 13
23 2061100 ‘tan 9
24 2 6 2 10 a 10 16
25 311 10 9 11 10
26 31 2 35 2:-30
27 3 21 1§ 10 -y-10
28 3 22 § A 12 15
29 3 3 1 & Q9 12 13
30 3 32 9 5411 .15
31 341111 [ la
32 3 4 2 3 5 13 19
33 35115 & 8 13
34 352 7 s 20 8
35 361 610 B 16
36 36 2 Y 7914 2
37 4 11 30 10
38 g 1 214 11l S
39 4 2118 117 a
40 § 2 2 34 4 2
41 8 3 1 164 320 3
q2 4 3 2 40
43 4 4 1 31 8 2
44 Q 4§ 2 390 1
45 YRGS RS EC N |5 S s
86 4 5 2 2 1 9 18
a7 4 6 1 37
48 4 6 2 13 9 10 8




"Sample prébhnn 2 (computer output) o
2 74 2 0 4 0 5 1
| 2.3 u

RBDO wlTHNUT COVARIANCE

ANALYSIS 0F VARIANCE, VARTAHLF 1§

SOURCE ck SS MS F
70T 47 051G647QF+04
BLK 1 sSR820RIF+Q2
TRT 23 03767974E+04 01630252E403 ¢2750392F+01
FRR 23 ¢e1369973F+04 e5956431E+02
TRT TRT MFANS SE
1 e 2C0000CCE+0Y +5457303F+01
2 «200CUOCE+O1 «eS457303F+n1
3 «1150C0CE+C? ¢54S7303F+01
4 «450000CE+01 «SU57203F+01
5 e3COCCCCE+CY $3457303F+01
& «E50C0CCE+01 eS5457303F+n1
7 «3500GCCE+01 «eS5457303F+01
8 «SCOCQOCE+CH +5457303F+01
9 «100C00CE+01 +S457303F+n1
10 «950CCOCE+C1 s5457303F+0n1
11 oQCOOOOCE’Ol .5057303"#01
1?2 «1COCONCE+C? +S4S7303F+01
1.3 W €500000E+01 ¢e5457303F+01
1a «RU0COCCE+O1 «S5L457303F+01
15 «750C00CE+01 «SUS7303Fr+01
16 «70000GCE+Q «5457303F+01
17 «GC000V0E+Q1 «e5457303Fr+01
14 «1150000E+07 05457303F+01
19 «2Z0000CE+02 +S4572303F+(1
20 0 200000CE+02 ¢94857303F+01
21 «27800000E+0? «5457303F+01
22 «350000CE+02 «5457303F+01
23 «1CS0000E+02 «S5457303F+01 o
24 «?500000E+07 ¢5457303F+01
EXP MEAN 0 112291487F+02 CueVae SB729872E+00
ANALYSIS nF VARIANCE, VARIABLE 2
SOURCE rF SS MS F
1oV 47 eT3I06667F+03
ALK 1 e2133333F+02
TRT 23 «8016667E+03 01746377E+02 e1268421F+01
FRR 23 03166067F+03 e1376812E+02
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N
TRT TRT MEANS SE
1 «5000000E+01 0262374qF+01
2 «1050000E+02? 02623749F+n]
3 «100000CE+0? 02623749F+01
4 +BS00000NE+01 0262137649F+n1
5 ¢1050000E+02 0262374UQF+01
é e 950CNONE+O1 e2623749r401
7 u5000CCE*O1 02623749F+n1
8 «7C0000CE+O1 02623740F+n}
9 e 7CO00CNRE+C 02623749F+01
10 6CO0000NDE+O] e?26?23749F+n1
1i W 6S0000CE+O1 02623740F+01
12 eSCOODCOE*01 02623749F+n1
13 «7COCOCCE+O1Y 026237409F+01
14 «9C00N0O0NE+OY 0262374GF+n1
15 «7CO0000E+01 02623749F+n1
16 +R5000CCE+O1 $2623740F+n1
17 «ES000C0OE+0] 0 2623746F+01
18 «B8S0CO0CE+01 026237409F4+01
19 eSC0COCOE+O1 82623749F+nl
20 ¢e€CNCO0O0E+CO 0262374QF+01
21 «SCOCOO0CE+OD 02623746F 401
22 e7COCO0CF+01 e262374QF+01
23 0 115C00CE+02? 0262374Q9F <01
24 s 6CCOCCCE+CY 0262374SF+01
EXP MEAN «69166667E+01 CoVas ¢e53646379E+00
ANALYSIS nDF vaArIANCE, VARIABLE 3
SOURCE rF SS *S F
ICT 47 «8B2L667E+03
BLK 1 e 7S00C0NE+00
1R1 23 e3334667E+03 s1450725E+02 6CB86031F+00
ERR 23 W SUR2500E+403 e2383636E+02
TRY TYRT MFAAS SE
1 «750C000E+C1 0345272318F+0n1!
4 «&COCOCCE+CH +3452315F+01
3 W £S0CO0CE+QL 03452315F+01
4 e105C00CE+Q? ¢e3452218F+n1
8 «0COCOCOE+01 0345231SF+01
& «8350000CE+01 ¢ 3452315F+01 i
7 «8S0C00CE+O1 03892315F+01
a eS00C000E+C1 ¢34523158F+n1l
Q9 "e6500C000E+01 1 3452315F+01
10 «BS500C0CE+O1 0345231s5F+01
11 2 700000CE+01 ¢3452315F+01
12 _.95000005001 034523185F+n}.
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13 e650000CE+01 ¢ 345231S5F+01
14 «1050000E+02 ¢«345231sF+n1l
15 jollSOOOCE’O? 2 34572315F+01
16 «1C00000E+0? «3452315F+01
17 2 1400000E+0?2 03452315F+n1
18 «1100000E+07 e3452315F+01
i9 «1050000E+02 ¢3452315F+01
20 «1CS5000CE+02 e 3452315F+0n1
21 21000000E+0? 03452315F+n1
22 e2000000E+01 ¢3452315F+01
23 «750C000E+01 03452315F+01
24 «eSC00000E+01 e3452315F+n1
FXP MEAN e833333313F+01 CeVe eSB8S87727E+00
ANALYSIS NF VARIANCE, VARIAHLE 4
SOURCE Df SS MS F
707 47 03729974F+04
8LK 1 e172520RF4+013
TRT 23 025324749F 404 «e1101078E+03 «P2470762E+01
FRR 23 s 102897QF+04 ed456431E+02
TRT TRT MEANS SE
1 «?55000CE+0? s U472039KF+01
2 «135000CE+0? «472039RF+01
3 e120000CE+0? e 472039RF+01
4 «1650000E+02 s472039RF+01
5 «?225C000E+0? 0 472039KF+n1
6 e1850000E£+07 2472039RF+01
7 e?35000CE+07? W U72039RF+01
8 «190000CE+C?2 0 472039AF+01
9 «?7550000E+07? «e472039RF+01
10 e1600000E+0? s472039RF+01
11 «175000CE+0? 0472039RF+01
12 «115000CE+02 e472039RF+n 1
13 «200000CE+0? «472039RF+01
14 «12500005+02 e 47203G6RF+01
15 «e140C00CE+Q2 «472039RF+n1
16 »145000CE+02 ed472039RF+01
17 «1050000E+402 e4720398F+n1
18 e S00000CE+C1 0472039RF+01
19 «?50C00CE+01 e472039BF+01
20 «3000000E+01 0472039RF+n1
21 «15000C0E+UL1 e 472039RF+01
22 e1COC0O0CE+01 e 472039RF+01
23 «1050000E£+0? e472039RF+N1
24 c4000000E+01 s4720398F+01

EXP MEAN

¢135208313F+02 CaVe

085373071€E+00
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BLOCK SSSP MATRIX wlITH 1+ OF )
1 ' SHR52083K+02 ¢3533333F+02 «6625000F+C1 *41004792F+03
2 02133333F4+02 «4000000E+01 «,60606667F+02
3 ¢75000C0E+00 =41137500E+02
4 «1725208E+03

TREATMENT SSSP MATRIX wlITH 23, DF
1 ¢3747979E+404 =,7935833F+03 «,16R5667F+03 =,2805729F+04
2 edNn16667F+03 2.2316667TE+0? «4150833F+03
3 e33316667F+03 =s1413333F+03
4 e2532479E+04

ERROR SSSP MATRIX wlTW 213, DF
1 e138¥979F+04 “+s94R3333F+02 ®«  4Y46250F+03 “.7805208F+03
2 «314CAKTFE+03  =.1550000F+072 =42063333F+03
3 e SUR2SO00E+03 =,3812500F+07
4 s1024979E+04

TREATs ¢ FRROR SSSP MaTRIX IS

¢5137958E+04 =,BRRU167E+01 =.6632917F+03 “e31586250F+04
oTIR3I333E403 =,33486587E+07 0 2087500F«03

eBRIVIA7E+D03 =,1799583E+03

«3857458F4+04

B N =

T+f CET= o 1256U54E40?
E DFTa «31B0BI6E=01

MULTIVARIATE Fa 2¢28 WITH 92.0 8147 OF
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