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CHAPTER 1

INTRODUCTION

It is often the case that equipment used by industry must be
replaced with new equipment from time to time either because frequent
malfunctions make it too costly to repair, or because the equipment has
simply worn out. The new equipment often has the nature of either
malfunctioning soon after installation due to manufacturing defects, or
functioning for an extended period of time because it is free of these
defects. For this reason, equipment is often given a preliminary run-
ning called the burn-in which gives no useful output but merely tests for
manufacturing defects. Also, after a given amount of time, equipment
is often replaced so as to avoid the added cost of a breakdown while
under use., The term useful life is here used to denote the time period
starting after burn-in time is reached and ending when replacement
time is reached (Shooman, 1968).

The amount of burn-in and/or replacement times can be con-
trolled to minimize cost per unit of operating time or to maximize
reliability for some specified operating time. Whether to minimize
cost or to maximize reliability is dependent upon the ultimate goal of
the equipment user. An example of a minimum cost goal would be

that of a company manufacturing a commodity whose production line




machinery must be replaced. This company would want to minimize
their costs of production rather than maximize the reliability, because
they are primarily interested in making a profit rather than insuring
against productiqn stops. Omn the other hand when the United States
sends a man to the moon, they are not so much interested in minimizing
costs as they are in maximizing the reliability of their equipment.
Given the various operating costs and previous operating data,
this study proposes to develop equations and computer programs which
could be used to determine the burn-in and/or replacement times for
minimizing cost or maximizing reliability of equipment., The equations
will be developed to include either burn-in time, replacement time or

both.




CHAPTER 1II

FEASIBILITY OF BURN-IN AND/OR REPLACEMENT TIMES

Minimizing Cost

The total cost of operation of equipment can be considered to
be composed of several different and contributing costs. There may
be any number of these different costs but for practical purposes
this study will consider six costs which will be either fixed or linear
over time. Later, these six costs could easily be expanded to any
number with small changes in the main computer programs. The
costs will be as follows:

Cost number 1 - Fixed cost of purchase

Cost number 2 - Fixed cost of installation

Cost number 3 - Cost of operation per unit time

Cost number 4 - Fixed cost of burn-in installation

Cost number 5 - Cost 6f burn-in per unit time

Cost number 6 - Fixed cost of breakdown

The hazard function can be defined as the conditional probability
that an equipment will fail in a unit time interval after t, given that it
was working at time t (Sandler, 1963). The hazard function can there-

fore be given by the following equation:




Hazard = £(t)/(1 —F(t))

When considering the performance of large numbers of equip-
ment it is often the case that when the hazard function is graphed, one
of three general patterns emerges. These general forms occur because
there is either large amounts of early failures or large amounts of late
failures or both largé amounts of early and late failures. Illustrations

of these situations follow:

Hazard

Time

Figure 1. Hazard function - early failure.

Hazard —__//

Time

Figure 2. Hazard function - late failure.




Hazard

Time

Figure 3. Combined hazard function

If a burn-in time was imposed on a set of data which had a
hazard function similar to Figure 1, it would eliminate many of the
costs incurred by having to spend time and effort installing equipment
which would run for only a short time. These costs would have to be
paid if a burn-in time was not imposed.

If a replacement time was imposed on a set of data which had
a hazard function similar to Figure 2 it would eliminate many of the
breakdown costs incurred by having to suspend operations during the
replacement, whereas, a replacement could have been made at a more
opportune time,

A burn-in and replacement time could be imposed on a set of
data which had a hazard function similar to Figure 3, to avoid many

installation and breakdown costs.




By choosing an appropriate burn-in and/or replacement time

the total costs can therefore be minimized.

Maximizing Reliability

Reliability can be defined as the probability of performing
successfully for a specified time. Thus, as the probability of per-
forming successfully increases, the reliability increases. By imposing
a burn-in time to data with a hazard function similar to Figure 1, the
probability of performing successfully increases as the burn-in time
increases until the last data point is reached, since the hazard function
is asymptotic to the time axis. This leads to a meaningless burn-in
time solution for maximizing the reliability with data similar to Figure 1.
However, by imposing a burn-in time to data with a hazard function
similar to Figure 3, the probability of performing successfully increases
as the burn-in time increases up to a point and then begins to decrease,
since the hazard function is not asymptotic to the time axis. This leads
to a meaningful burn-in time solution for maximizing the reliability with
data similar to Figure 3. By choosing an appropriate burn-in time for

a given time interval the reliability can be maximized.




CHAPTER III

OPTIMIZING USEFUL LIFE

Nonparametric Solution

A statistic is a term used to describe a measure computed
from the observations in a sample. In computing a statistic, it is not
necessary to have a knowledge of any unknown population. The observa-
tions in a sample determine the statistic and therefore the statistic can
be thought of as a function of the observations in a sample. The random
variable defined by this functional relationship can be defined to be a

statistic. If (x,,...x )is a possible sample point, then the functional
n

1’

relationship

v = (R e 2% )

1 n

transforms from the space that contains all the values of the sample
points to the space that contains the values of the function. A probability
distribution is induced in the space that contains the values of the function

by this transformation and thus defines a random variable:

Y= t(X1 e




It is often the case that creating order out of a mass of data
requires that the observations be put in numerical order. The result
is a vector of ordered observations, from the smallest to largest and
is sometimes referred to as the order statistic.

For a given sample, there can be defined a sample distribution
function. A "mass' of amount 1 /n can be placed at each observed

value. This mass distribution then has a distribution function of

Fn(x) = 1/n* (number of observation< x)

This is the sample distribution function. It can be computed from the
order statistic., It is known that the sample distribution function con-
verges to the population distribution function with probability one,
uniformly in x. Therefore, it is a natural estimate of the population
distribution function.

The sample distribution function is mathematically the same
as a probability distribution function for a discrete distribution as it
has the same mathematical properties as this type of function.

Since the sample central moments can be shown to be express-
ible as polynomial functions of sample moments about zero, it can be
shown that the sample central moments tend in probability to the
corresponding population moments (Lindgren, 1968).

If the population distribution function is not known but a sample

distribution function is, it can be assumed that the sample distribution




function will converge to the population distribution function as the
sample size gets large. Therefore, for large sample sizes the popula-
tion distribution function can be considered to be the sample distribu-
tion function and vise versa. This makes a nonparametric technique,
for determining the minimum cost, possible. Since the sample distri-
bution function is discrete this makes the burn-in and/or replacement
times discrete because the time between data points need not be con-
sidered in finding the minimum cost. They need not be considered
because, as can be seen in Figure 4, the discrete sample data gives a
step function which, as previously stated, closely approximates the
continuous population data's smooth curve function because of the
large sample size. It can also be seen from Figure 4 that time values
between data points of the step function give the same value for the
number of breakdowns as the data point preceding the between data
value. This of course, is what might be expected with a step function.
Therefore, a burn-in or replacement time value between the discrete
data points serves only to increase the burn-in or replacement time
and their accompanying costs while not increasing the number of in-
stallation or replacement costs saved because the number of break-
downs have not increased. Since the number of data points is large
but finite it is possible to compute the total cost of operation by using
all the data points as burn-in and/or replacement times and choosing

the times which minimize the cost.
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r’ Population distribution

No. of

Break- : Q

downs Sample distribution

Lt o000 -

Data Points Time

Figure 4, Step function.

Calculating the cost for each appropriate burn-in and/or
replacement time rather than finding the burn-in and/or replacement
time which minimizes the cost by more direct means has the advantage
of showing the relative size of the costs before it reaches its minimum
value. In some cases it might be more advantageous to use a cost
which is not quite minimal but has a burn-in and/or replacement time
which is more compatable to the equipment users time schedule. For
example, it may be more desirable to burn-in for eight hours rather
than for eight and one half hours, even though the cost might not quite
be minimal because the burn-in could be done in one eight hour shift
rather than be carried over into another shift of workers and possibly

forgotten about.
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Minimizing Cost

In a situation such as depicted by Figure 1, 2, or 3, where
some burn-in and/or replacement time is going to be imposed, it is
often not immediately evident what burn-in and/or replacement time
will minimize the cost. One way of deciding the time or times to
choose is to calculate the cost for each appropriate burn-in and/or
replacement time in a large but finite sample which converges to the
population and choose that particular time or times for which the cost

is minimized.

Burn-in only

When it seems appropriate to impose only a burn-in time, costs
one through five (as stated in Chapter II) may be considered. First,
there is the cost of purchase. Assuming 100 pieces of equipment, this
component of the total cost is 100 times the cost of purchase. Second,
there is the cost of installation. There are 100 pieces of equipment but
these will not all be installed due to malfunctions during the burn-in
period. Therefore, there will be the number of equipment installed
times the cost of installation for this component of total cost. The third
cost consists of the cost of operation per unit time. This component of
the total cost will be the total operation time, times the cost of operation
per unit time. Fourth is the fixed cost of burn-in. This will apply to

all the equipment, therefore, this component of the cost will be the
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number of equipment times the fixed cost of burn-in. Fifth is the
cost per unit time of burn-in. This cost may be thought of as including
within it, the cost per unit time of not making the profit which would be
made if the equipment was being used instead of being burned-in.
This component of the cost will be the total of the individual burn-in
times, times the cost of burn-in per unit time. By imposing a burn-in
time, some installation and breakdown costs can be saved. Where an
installation cost is saved there will always be a cost of breakdown
saved and vise versa, since, if equipment is not installed it can not
breakdown. Therefore, in this part of the study breakdown cost as
such is not considered seperately but is assumed to be includible in
the installation cost.

For convenience the following notation will be used.

bt = the burn-in time

n_(bt) = the number of data points less than or equal to the burn-in

time
n, = the number of data points
4
I, = the set of data points X(,l)such that i =[1,2,... n, (bt)]

go that for i€ 1. X... < bt

1 =)=

L = the set of data points X(i) such that i = [nl(bt)+l, 4 .nz]

that £ HE T X > bt
so that for i€ I, (i)

E = total cost per unit time
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The total of the contributing costs can be found by totaling the
purchase cost times the number of data points, the installation cost
times the total of the number of data points minus the number that
failed during burn-in, the operation cost times the sum of the time of
the data greater than the burn-in time, the fixed cost of burn-in times
the number of data points, and the cost per unit time of burn-in times
the total of all the burn-in time of those that failed and those that did
not.

The total cost per unit time will be the total of the contributing

costs divided by the total operating time and is given in the following

equation:
o= )+C —n. (b = X,. )+C + X .. +bt(n_—n_(bt
E Cl(nz,%\ Z(nZ ri( t)+C3(./_, /{(i))f64(n2) CS(Z X(i) (n2 nl( ))

i€ i€

i I.2 i Il

215, S

(i)
€1
e

Without a burn-in timme cost number four and cost number five
would be equal to zero and the total operation time would increase but
the number of equipment installed would also be increased, presumably

offsetting any gains acquired by not using a burn-in time.

Replacement time only

When it seems appropriate to use only a replacement time,

costs one, two, three and six (as stated in Chapter II) may be considered
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to apply. The first three components of the total costs, namely, costs
one, two and three can be computed as in the case of burn-in time only.
By imposing a replacement time some of the breakdown costs can be
avoided because equipment that reach the replacement time success-
fully do not induce breakdown costs. The breakdown component of the
total cost will be computed by multiplying the number of replacements
needed times the cost of breakdown.

For convenience the following notation will be used.

n_ (rt) = the number of data points less than or equal to the

fu—

replacement time.

n, = the number of data points

L= the set of data points X(i)such thati=f1,2,.. nl(rt)]
so that for i€ Il X(i)i- rt

I2 = the set of data points X(i) such that i = [nl(rt)+l, A .nZJ
so that for i€ IZ X(i)> rt

E = total cost per unit time
The total of the contributing costs can be found by totaling the
purchase cost times the number of data points, the installation cost
times the number of data points, the operation costs times the total
of the operating time, and the breakdown cost times the number of
data less than the replacement time.

The total cost per unit time will be the total of the contributing
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costs divided by the total operating time and is given in the following
equation:

E= Cl(r12)+C2(n2)+C (Z X

ic)
~
€1

(i))+ Cy(n, (rt))

pde

1

Z X

(1)

Without a replacement time the total operating time would be
increased but the increased number of breakdown costs would pre-

sumably offset any gains acquired by not using a replacement time.

Burn-in and replacement time

When it seems appropriate to use burn-in and replacement
times, costs one through six may be considered.
For convenience the following notation will be used.
bt = burn-in time
rt = replacement time
n, (bt)= the number of data points less than or equal to burn-in
time
nz(rt) = the number of data points less than or equal to the
replacement time
n, = the number of data points

I = the set of data points X(i) such thati=[1,2,.. .nl(bt)]

g0 that fori1¢ 1. X.. < bt
1 59




12 = the set of data points X(i) such that i = [nl(bt) 1,55 .nz(rt)]
so that for i€ IZ X(i)f- rt
I_ = the set of data points X,. such thati=[n_(rt)+l,...n_]
3 (i) 2 3
so that forie I. X .5 rt
Blastn)

E = total cost per unit time

The total of the contributing costs can be found by totaling the
cost of purchase times the number of points greater than the burn-in
time, the cost of installation times the number of data points greater
than the burn-in time, the operation cost times the sum of the time
between burn-in and replacement times, the fixed cost of burn-in times
the number of data points, the cost per unit time of burn-in times the
total of the times of those that failed before burn-in time and those that
did not, and the breakdown cost times the nurmber of data points that
fall between the burn-in time and the replacement times,.

The total cost per unit time will be the total of the contributing
costs divided by the total operating time and is given by the following

equation:

(= x(i?+c4(n3)+c5(z x(_15+bt(n3—n(bt))+c6(nZ(nt;_nl(bt))

1€t i€
i .T.1

X

(1)
i€1,
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Maximizing Reliability

In a situation such as depicted by Figure 3 where some burn-
in time is going to be imposed it is often not immediately evident
what burn-in time to use to maximize the reliability. One way of
deciding the time to use is to calculate the reliability for each appro-
priate burn-in time noting that particular time for which the reliability
is maximized.

Since the reliability can be considered to be the probability of
performing successfully for a specified time, then it can be calculated

by the following formula:

G(bt)

R = ——2

~ H(bt)

Where G(bt) = number of successes as a function of the burn-in time
H(bt) = number of events as a function of the burn-in time
When the situation is such as depicted by Figure 3, imposing
an appropriate burn-in time reduces the total number of events without
reducing the number of successes, thus, increasing reliability, The
total number of events (H) can be computed by counting the number of
times until failure greater than the burn-in time. The number of
successes (G) can be computed by counting the number of times until
failure greater than the burn-in and the specified (mission) times

combined.




18

CHAPTER IV

DISCUSSION AND RESULTS

This study used the Weibull distribution to generate data.

The Weibull distribution function is given by the following:
rin V.
F(t) =1 —exp((—t/0) ) (1)

where t is a time to failure and © and V are parameters of the
distribution. A t with a Weibull distribution can be found from the

following equation:

t=0(—In x)l/v (2)

when x has a uniform distribution. The mean of the Weibull distribu-

tion is given by the following equation:

—
Mean ——%— ('_-\7“) (3)

The hazard function is given by the following:

Hit) = i

where R(t) = (1 —F(t)). When V< 1 a curve similar to Figure 5 occurs.
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Hazard
\W
Time
Figure 5. Hazard function V <1

When V > 1 a curve similar to Figure 6 occurs.

Hazard V>1

Time

Figure 6. Hazard function V > 1

The curves of Figures 5 and 6 can be combined with an additional

chance failure source for which the hazard function is constant, to form
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a combined hazard function by use of the following equation:

Vl“'l Vz—l

H(t) = — + + (5)

The pertains to the chance failure. The central part of the curve

3
represents a constant hazard function where chance failures are pre-
dominant. This represents the exponential distribution of failures

which is a special case of the Weibull with V = 1. This is illustrated

in Figure 7 (Shooman, 1968).

Predominantly ’\/'1 <l
Chance Failures
V.> 1

2
Hazard N
// Vv 3 = 1
& o

Time

Figure 7. Combined hazard function.

To get time until failure data with a hazard function similar to
Figure 5, a mean of 25 and V equal to 0.5 was selected. This makes
O approximately equal to 12 from equation 3. The t's can then be found
by letting x be uniform random numbers between zero and one and

solving equation two. To get time until failure data with a hazard
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function similar to Figure 6, again a mean of 25, but now a V equal to
5. was selected. This makes 6 approximately equal to 125 from equa-
tion three. Again the t's can be found by letting x be uniform random
numbers between zerc and one and solving equation two. To get time
until failure data with a hazard function similar to Figure 7, 91, 82, 93,
VI,V’Z, and V3were assigned the values of 12, 5, 100, 0.5, 5and 1,
respectively. Now, however, the minimum value of t was choosen
from equation two for each ®, V set because a failure would occur at
the shorter time.

Computer programs for generating the data as well as arranging
it in assending order can be found in Appendix A.

Appendix B contains four computer programs which can be used
for minimizing costs using only a burn-in time, only a replacement
time, both a burn-in and replacement time or for maximizing reliability
using a burn-in time, in that order. The first two programs compute
all the total costs per unit of time as outlined in Chapter III using each
data point for a burn-in or replacement time. The third program does
not use all possible combinations of burn-in and replacement time but
rather uses combinations of every nth burn-in time with every nth re-
placement time where n is determined by the user, to get an initial idea
of where the best combination is. The user then looks at the costs as

displayed in Figure 8, for the combinations chosen and decides in what

general area the minimum lies. Then, after running the program again
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in this smaller area and with smaller jumps, he can narrow down the
search area even more. This itervative procedure can be continued,
using smaller and smaller search areas and jumps until the minimum
is reached. This program has the advantage of showing the general
trend of how much the cost is influenced by prescribed changes in burn-in
and replacement times and may aid in choosing a time which may be
better suited to a particular situation even though it does not quite mini-
mize the cost. Other more sophisticated programing techniques such
as the search methods which keep to rising paths or steepest gradients
depend on the assumption that the function is unimodal as described by
Wilde (1964). The cost function as seen in Figure 8 can be bimodal
(doubly peaked). When the assumption of unimodel is not met, success
can not be sure with such methods because the peak that is reached is
dependent upon where the search starts (Wilde, 1964).

Figure 8 shows the calculated costs for combinations of every
tenth burn-in time with every tenth replacement time where the burn-in
time is less than the replacement time. The component costs one through
six were 10, 600, 4, 1, 0.25, 250.

For example, the cell marked with '"A'' represents the total
cost per unit time for the 20th ordered data point as the burn-in time
and the 80th ordered data point as the replacement time,.

The cost at point B is surrounded by combinations of times

which give greater values for the cost. A similar situation exists at
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point A, thus showing that the cost function can be bimodal as described

by Wilde (1964).

Data Point Used for Burn-in Time

Q

g 10th  20th 30th 40th 50th  60th  70th  80th
B |LoOth | 669.9|658.1|671.2|861.7 [1282.2|1458.2 |1481.6 |1872.1
E | 90th | 664.6|652.2|664.4|854,4(1297.9 (1503.9 |1549.4 |[1290. 0
;3 80th | 664.3|65).4663.9|870.5(1449.2 (1861.9 |2187.5 |~

® | 70th | 667.3]|654.0[667.9]980.2[1872.6 [3691.7 | —

g | 6oth | 666.5]652.7 [666.8]931.4 [2492.2] —

§ 50th | 674.3[660.1 [677.5(1028.3 | —

= | 40th | 760.2{751.0|814.4| ~

HESSTTE TR St e e

g | 20th 3367.&/

A l10th | —

b

igure 8. Costs for 100 data in jumps of ten

It seems that the program used in this study and any other program
which does not compute the cost for all the possible combinations of
burn-in and replacement times, runs the risk of missing the optimum com-
bination because the cost may have several local minimums before
reaching the true minimum. Checking all possible combinations may be
the only sure solution for finding the optimum combination, but this may

prove too costly to the user. With the program given here, the user can
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come as close to checking all possible combinations as his resources
allow by choosing the size of the "jumps!''.

The fourth program computes the reliability by using each
data point as a burn-in time, as outlined in Chapter III, for any speci-
fied time interval. The program prints out all the reliabilities so
that a burn-in time which does not quite maximize the reliability may
be chosen if desired.

When using the first program, the user must read in the values
for the component costs one, two, three, four and five, in addition to
the number of data points, all on one card. The data must be read in
one per card. Formats for reading in can be found from the comment
card in the program and can be changed as needed. The program will
then compute all the costs per unit time using each of the data points as
a burn-in time and note the particular time for which the cost was
minimized and the minimum cost. If the user wants to delete any of
the component costs he can put a zero in its place when reading it in.
If he wants to add a cost, then following the comment cards in the pro-
gram should point the way.

When using the second program, the user must read in the
values for the component costs one, two, three and six, in addition to
the number of data points, all on one card. The data must be read in
one per card. Formats for reading in can be found from the comment

cards in the program and can be changed as needed. The program
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will then compute all the costs per unit time using each of the data
points as a replacement time and note the particular time for which
the cost was minimized and the minimum cost. If the user wants to
delete any of the component costs he can put a zero in its place when
reading it in. If he wants to add a cost, then following the comment
cards in the program should point the way.

When using the third program, the user must read in the values
for the component costs one, two, three, four, five and six, in addition
to the number of data points, the size of the jumps and the starting and
ending points in the data for the search, all on one card. The data must
be read in one per card. Formats for reading in can be found from the
comment cards in the program and can be changed as needed. If the
user wants to delete any of the component costs he can put a zero in its
place when reading it in. If he wants to add a cost, then following the
comment cards in the program should point the way.

When using the fourth program the user must specify on one
card the mission time and the total number of data points. The data
itself is read in one per card. Formats for reading in can be found
from the comment cards in the program and can be changed as needed.
The program will then compute all the reliabilities using each of the
data points as a burn-in time and note the particular time for which
the reliability was maximized and the maximum reliability.

In testing the programs, component costs had to be chosen
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which would give practical results. These costs have the property
that if one or more of them is too large or too small it may not be
advantageous to use either a burn-in or a replacement time. The
values of the costs as . illustrated in Table 1 were chosen to give
proctical results. Because other costs may produce the situation
where a burn-in and/or replacement time was not advantageous, the
programs first compute the total cost using no burn-in or replacement

time.

Table 1. Costs used for each of the three minimum costs programs

Program Program Program

1 2 3
Cost 1--cost of purchase 200 200 10
Cost 2--cost of installation 150 150 660
Cost 3--cost of operation 400 400 400
Cost 4--cost of burn-in 1 == 1

(fixed)
Cost 5--cost of burn-in 0..25 e 0. 25
(per unit time)

Cost 6--cost of breakdown - 50 250

The mission time for testing the reliability program was 4.1872667.

Each of the programs were run using 100 and 200 data points. The
burn-in and/or replacement time can perhaps be illustrated best by show-
ing their relative position in the data which was arranged from the small-

est to the largest. This is illustrated in Table 2.
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Table 2. Results using 100 and 200 data points

Relative position Relative position in
in 100 data points 200 data points
Minimum cost
Burn-in only program 28th 73th
Minimum cost
Replacement only
program 89th 179th
Minimum cost
Burn-in & replacement
program 22nd, 83rd 43rd, 168th
Maximum reliability
Burn-in program 8th 18th

The relative size of each of the component costs taken together
determine the optimum burn-in and/or replacement time. When the
size of one of the component costs changes and the others remain con-
stant, the burn-in and/or replacement time may or may not change.

If they change, they change as illustrated in Table 3.

Each of the four programs were tested for errors by using ten
data points except the third program which was tested by using thirty
data points. Hand calculations were found to produce the same results.

In conclusion it was found that the size of the component costs
relative to each other, determine what the optimum burn-in and/or
replacement times should be when minimizing costs and that no burn-

in and/or replacement time should be used when some of the component




Table 3. Results found when the component costs were changed

Component cost
increased

Burn-in time

Replacement time

C#1 cost of purchase
C# 2 cost of installation
C#3 cost of operation

C#4 cost of burn-in
(fixed)

C#5 cost of burn-in
(per unit time)

C#6 cost of breakdown

decreased

increased

no effect

decreased

decreased

increased

increased

increased

no effect

increased

increased

decreased

Component cost
decreased

Burn-in time

Replacement time

C #1
C#2
C #3
Ct#4
C#5

C#6

increased

decreased

no effect

increased

increased

decreased

decreased

decreased

no effect

decreased

decreased

increased

costs have a relative size that is much greater or smaller than the

others.

As can be seen in Table 3, the operation cost need not be

considered in finding the optimum useful life.
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With the maximum reliability program it was found that as the
mission time decreased the optimum burn-in time decreased, and that
a burn-in time only produced practical results when the hazard function

took the form of Figure 3.
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AEEendix A




101

101

5
100

101

DIMENSION DC100)5T7C100)
SCGrTHsX)BTH*((ABS(=ALOG(X)))*e(1/G))
Glme§

THi®12,

LARG=S] 39921

DO 101 I=1,100

XeRANDOMCLARG)

Di=S(G1sTHINX)

DCIYsD1

CONTINUE

DIMENSION DSiOQ))?(lQQ)
S(a}TH#X)‘TN*((kﬁS('QLUQ(x)))R*(llﬁ))
G2e5,

. TH22125.

LARG=uS139921
00 101 I=1,100
XsRANDOMCLARG)
D28S(G2,TH2sX)
ND¢IYmD2
CONTINVE

DIMENSION DC100),TC100)
S(GaTHsX)sTHe(CABSC(=ALOG(X)) )2 (1/G))
Gl=,;5

@G2a%,

G3=1,

THiwl2e

TH2u%

TH3100,

LARG=%139921

DO 101 I=1,100
XsRANDOMC(LARG)
Di1eSC(GiTHIAX)
XsRANDOMCLARG)
D2eS(G2,TH2,X)
XeRANDOMCLARG)
N3eS(G3,TH3INX)
IF(D1.GTsD2) GO TO 5
DCI)sD1

60 YO 100

DClYaD2

CONTINUE

IF(D3:.GT«DCI)) GO TO 101
DCIy=D3

CONTINUE
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700

600
500

PO 5006 JeRsION T o T

#aD(J)

Re.5% ENER
DO 600 Islrd
IF(RaGTsle) GO TO 600
IFCXsLTaDCI)) GO TO 700
60 TO 600

KeJeof

Res2e

D0 4 IlsisK
D(Jel=]])sD(J=]])
DEl)ex

CONTINUE

CONTINUE

34
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AEEendix B




OOOOOOO0O0

(2 X o)

OMNOOOO O

10

14
15

97

98
99

30

45
35

36

DIMENSION TC1000) : e i
THIS PROGRAM COMPUTES THE BURNeIN TIME WHICH MINIMIZES COST
THE NEXT CARD READS IN THE COSTS AND NUMBER OF DATA,ND
COLUMNS 1=5 ARE COST NUMBER 1

COLUMNS 6=10 ARE COST NUMBER 2 Sl e S 5
COLUMNS 11%15 ARE COST NUMBER 3

COLUMNS 16%20 ARE COST NUMBER &

COLUMNS 21+25 ARE COST NUMBER 5

COLUMNS 26=29 ARE THE NUMBER OF DATA
READ(S»10)C15C25C35C4,5C5ND

FORMAT(SFSe2s14) :

THE NEXT FOUR CARDS READ IN THE DATA

00 15 Is1,ND

READ(S»314) T(CI)

FORMAT(EL1S5.8)

CONTINUE

CSUM IS THE TOTAL OF ALL THE DATA TIMES

€9 IS THE COST WITHOUT A BURN=IN TIME

CSUM=0

D@ 97 I=1,ND

CSUMaCSUMeTC(I)

CONTINUE

X0=ND

WRITE(G,98)

COB(NDeCleND2C2¢CSUM®C3I)/CSUM

WRITE(62,993C9

FORMATC! ', 'wITH NO BURN IN TIME')

FORMAT(1IXsF1544)

NNDeND=1 e :

FORMAT(Y ', '8BURN=IN TIME casTt)

WRITE(6530)

SMIN=1000000:

DO 295 Is)sNND

BT IS THE BURNeIN TIME

XSUM IS THE NUMBER OF DATA POINTS GREATER THAN THE BURN=IN TIME
XeSUM IS THE SuUM OF THE TIME GREATER THAN THE BURNSIN TIME
SuM IS THE NUMBER OF DATA POINTS LESS THAN THE BURN=IN TIME
XBSUM IS THE SuM OF THE TIME LESS THAN THE BURNeIN TIME.
XD IS THE NUMBER OF DATA POINTS

SUM=0,

ASUMaQ,

XQ8UMn0,

BYaT(l)

BA 35 JeisND

IFCTCJIsLTeBTIGO TO 45

XSUMEXSUM®L

XQSUMaYQSUM*(TCJI®BT) i -
60 1O 35

SUMSSUMeT(]I)

CONTINUE
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34

X8SUMaSUM*(BTaXSUM)

K0=ND

C6 1S THE COST WITH A BURN=IN TIME
Cbl((XDwCI)0(XDtca)O(XBSUH*CS)’(XSUM’C2)¢(XOSUM#C3))/XOSUM
FORMATCIXIELISs8sF1%e4)

KRITE(6240)BTsC6H

IFCCO.GT«SMIN) GO TO 1

SMIN IS THE MINIMUM COST OF ALL THE COMPUTED COSTS

SMINRCE

SSMINeT(I)

SSMIN IS THE BURN®IN TIME THAT CORRESPONDS TO THE MINIMUM COST
CONTINUE TR ;

CONTINUE

WRITE(656)
FORMATC! ','0PTIMUM TIME MINIMUM COST")

WRITEC6»7)SSMIN,SMIN
FORMAT(1IX2E15+85F1544)
s$TOP

END
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T

QOO0

50

14
55

97

98
99
70

85
7S

38

DIMENSION T(1000) o
THIS PROGRAM COMPUTES THE REPLACEMENT TIME WHICK MINIMIZES COST
THE NEXT CARD READS IN THE COSTS AND NUMBER OF DATAsND o
COLUMNS 15 ARE COST NUMBER 1

COLUMNS 6=10 ARE COST NUMBER 2

COLUMNS 1115 ARE COST NUMSER 3 e

COLUMNS 16220 ARE COST NUMBER 6

COLUMNS 2124 ARE THE NUMBER OF DATA

READ(S5»50)C10C2,C39CpND =

FORMAT(4FS5e2,14)

THE NEXT FOUR CARDS READ IN THE DATA

PO 55 Isi,ND . re st il SRR g N D T R e e T
READ(S»14) T(I)

FORMAT(EL1S:8)

CONTINUE i e i

CSUM IS THE TOTAL OF ALL THE DATA TIMES

€¥% IS5 THE COST WITHOUT A BURN®IN OR REPLACEMENT TINME

E5UMSO 3

Do 97 Iul;ND

CSUMBCSUMeT(I)

CONTINUE

XDaND

WRITE(6598)

CORM(ND*CieNDeC2eCSUMNCIeNDCAIZCSUM o

WRITEC6,99)C9

FORMATC' ', 'WwITH NO REPLACEMENT TIMEY)

FORMAT(AXs»F1%44) _ el

FORMATC' ¢, 'REPLACEMENT TIME COSTY)

WRITEC6,570)

S$MIN®1000000, X ho

NNDEND=]

DO 65 l=il,sNND

RT IS THE REPLACEMENT TIiME

YXQSUM IS THE SUM DOF THE TIwME L£SS THAN THE REPLACEMENT TIME OF
OF THOSE DATA POINTS THAT ARE GREATER THAN THE REPLACEMENT TIME
YAXSUM 1S THE SUM OF THE TIME LESS THAN THE REPLACEMENT TIME OF
THOSE DATA POINTS THAT ARE LESS THAN THE REPLACEMENT TIME

YSUM IS THE NUMBER OF DATA POINTS LESS THAN THE REPLACEMENT TIME
YD IS THE NUMBER OF DATA POINTS

RTeT(I)

YXQSUM=Q,

_YESUM=Q,

YSUM=(Q ,

DO 75 J=i,sND
FECTCJI)sLTaRTIGO TO 85
YKQSUMaYXQSUMeT(J)=RT
60 70 78
YXSUMaYXSUMeT(J)
YSUMsYSUMele

CONTINUE

YOsND
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€7 IS THE COST WITH A REPLACEMENT TIME
c7-(YDtCIOYD~C2¢YSUN-C60((RT)*(Yo-YSUM)tYXSUM)aca)/((RT)
1eCYD=YSUM)*YXSUM) i, e
80 FORMAT(2XsE15e8s6XsF1504)
WRITE(6,80)RTC?
IF(C7:GT4SMIN) GO TO 1
SMIN IS THE MINIMUM COST OF ALL THE COMPUTED COSTS
SEMIN IS THE REPLACEMENT TIME THAT CORRESPONDS TO THE MINIMUM COST
SMINaC?7
SSMINST(I)
1 CONTINUE
65 CONTINUE
WRITE(C656)
6 FORMAT(' ','0PTIMUM TIME MINIMUM COSTY)
WRITECGsT7)SSMINSSMIN
7 FORMATCLIX2E15:80F1544)
STOP
END
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THIS PROGRAM COMPUTES THE BURN=IN AND REPLACEMENT TIMES WHICH
MINIMIZE THE CQOST ;
THE NEXT CARD READS IN THE COSTSs THE NUMBER OF DATA»THE SIZE OF
THE JUMPS»THE STARTING POINTs AND THE ENOING POINT
COLUMNS 1«5 ARE COST NUMBER 1
COLUMNS 610 ARE COST NUMBER 2
COLUMNS 311215 ARE COSY NUMBER 3
COLUMNS 16220 ARE COST NUMBER &
COLUMNS 21%2%5 ARE COST NUMBER §
COLUMNS 26=30 ARE_COST NUMBER 6
COLUMNS 31°34 ARE THE NUMBER OF DATA
COLUMNS 35937 ARE THE SIZE OF THE JUMPS
COLUMNS 38=4) ARE THE STARTING POINT
COLUMNS 42245 ARE THE ENDING POINT
READCS5,90)C15C25C35C4sC5,C6sNDsNJSISPSIEP
90 EORMAT(6FS542s1401302450%0Y =
THE NEXT CARD READS IN THE DATA
B0 95 Ismi,ND
TCI)=D(])
95 CONTINUE
CSUM=nQ ¢
DO 97 Isi,ND S T e U RSB TR [ o DR Al
CSUMBCSUMeTC(I)
97 CONTINUE
XDeND
WRITE(6,98)
Coa(XDaCleXDeC2¢CSUMSC3exXDel6)/CSUN
WRITEC6,99)C9 N i EER ke G T
98 FORMAT(®' ', 'WITH NO BURN IN OR REPLACEMENT TIMES')
99 FORMAT(1XsF15,:4)
WRITE(C6,110)

110 FORMAT(Y ', BURN®IN TIME REPLACEMENT TIME CosT")
Ce%1000000
DO 105 I=«]ISP,IEPsNJ
BTe7(1)

DO 115 KslSPL,IEPAINJ
IF CI«LTeK) GQ YO 116
60 TO0 115
116 CONTINUE

XSUM®0 o

XOSUM=Q .

XBSUM=Q

SUMaQ ¢ ! : e
YXQSUMEQ

YSUME(0 e
_YXSUM®BO0,

RTaT{K)
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DO 12% L=1i,ND
IFCTCL)LTBTIGO TO 135
I ot G0 N A e LB e T ot Lot 0 el G ,
XQSUMEXQSUM*(T(L)I*BT)
60 YO 125
135 SUMsSUMeT(L) 517 AR N
175 CONTINUE
XBSUMBSUMe(BTeXSUM)
DO 145 MmsioND
IFCT(M)LTeRYIGO TO 155
YXQSUMBYXQSUMeT(MI=RT
GO TO 148 ) s e 2
155 YXSUMSYXSUMeT (M)
YSUMBYSUM®+1 s
145 CONTINUVE
XxDeND
C? 1S THE COST WITH A BURNoIN AND REPLACEMENT TIME
CTo{(XD2Cl)eiXSUMPCRZIP(XDWCA)L(XBSUMMCS)*(CYSUM=(XD=XSUM))*CE)*
1CECSUMSXBSUM=YXQSUM)*CI))/((CSUMSXBSUM=YXQSUM))
WRITEC65120)BTSRTHSC7
120 FORMAT(IX2EL15:8,E1548,F1%44)
IFCC?7eLTsCBYGO TO 165
6O Y0 115
C8 IS THE FIRST APPROXIMATION OF THE MINIMUM COST
Il IS THE FIRSY APPROXIMATION OF THE BURN=IN TIME
KK IS THE FIRST APPROXIMATION OF THE REPLACEMENTY TIME
165 Ca=C? . e Tt IS S e s i
[lm]
KEK®K
115 CONTINUE = R
105 CONTINUE
IIKs]I=30
IIKKsII+10
WRITE(G518)
18 FORMATC(Y '»'FIRST APPROX®)
WRITEC(6,150)TCII)aT(KK)ALCA
150 FORMAT(IXSEL15:,8,E1%68,F1544)
STOP
*EMD
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160

245

180

275
28%

295
265

190

255

16
14

42

DIMENSION TC¢10600)
THIS PROGRAM COMPUTES THE BURN®IN TIME WHICH MAXIMIZES THE
RELIABILITY b T ; i

THE NEXT CARD READS IN THE MISSION TIME AND THE NUMBER OF DATA
COLUMNS 1=15 ARE THE MISSION TIME

COLUMNS 16219 ARE THE NUMBER OF DATA

READ(S»160)XMTsND

FORMATCEL1S48514)

THE NEXT FOUR CARDS READ IN THE DATA St el v

DO 248 I=i,ND

T¢(IYeD(CI)

CONTINUE Linr i

RMIN®O,

WRITECS,180)

FORMATC' '»*MISSION TIME == BURNeIN TIME = RELIABILITY')
NNDsND®}

DO 255 Ims1sNND

XSUM IS THE NUMBER QOF DATA POINTS GREATER THAN THE BURN=IN AND
MISSION TIMES COMBINED

XBSUM IS THE NUMBER OF DATA POINTS GREATER THAN THE BURNe=IN TIME
XTO IS THE BURNeIN TIME ) ;

XxMT IS THE MISSION TIME

XT IS A DATA POINT

XSUMaQe

XBSLUMEQ,

XTOsT(I)

XATeXTOeXMT

DO 265 JulasND

XT8T(J)

IF(XT.GTaXAT)GO TO 275

G0 7O 285

XSUMBXSUM*L o

IFCXT«GTXTD)GO TO 295

GO YO 268

XBSUMBXBSUMelL

CONTINUE

ReXSUM/XBSUM

WRITEC62,190)XMT»XTOsR

FORMAT(3X,EL15¢8,EL15:8,F845)

IF(ReLTeRMIN) GO TO 255

RMIN IS THE MAXIMUM RELIABILITY

XMIN IS THE CORRESPONDING BURN=IN TIME

RMIN®R ] ,

XxMINSXTO

CONTINUE

WRITE(G.163

WRITEC6517) XMToXMINSRMIN

FORMATC' *,'MISSION TIME BURN IN TIME BEST RELIABILITY')
FORMATCAX,EL1%5eBrEL1548aFB805) ]

s§TOP

END
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