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CHAPTER I 

INTRODUCTION 

It is often the case that equipment used by industry must be 

replaced with new equipment from time to time either because frequent 

malfunctions make it too costly to repa .ir, or because the equipment has 

simply worn out. The new equipment often has the nature of either 

malfunctioning soon after installation due to manufacturing defects, or 

functioning for an extended period of time because it is free of these 

defects. For this reason, equipment is often given a preliminary run-

ning called the burn-in which gives no useful output but merely tests for 

manufacturing defects. Also, after a given amount of time, equipment 

is often replaced so as to avoid the added cost of a breakdown while 

under use . The term useful life is here used to denote the time period 

starting after burn - in time is reached and ending when replacement 

time is reached (Shooman, 1968). 

The amount of burn-in and/or replacement times can be con-

' trolled to minimize cost per unit of operating time or to maximize 

reliability for some specified operating time. Whether to minimize 

cost or to maximize reliability is dependent upon the ultimate goal of 

the equipment user. An example of a minimum cost goal would be 

that of a company manufacturing a commodity whose production line 
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machinery must be replaced. This company would want to minimize 

their costs of production rather than maximize the reliability, because 

they are primarily interested in making a profit rather than insuring 

against producti~n stops. On the other hand when the United States 

sends a man to the ' moon, they are not so much interested in minimizing 

costs as they are in maximizing the reliability of their equipment. 

Given the various operating costs and previous operating data, 

this study proposes to develop equations and computer programs which 

could be used to determine the burn - in and/ or replacement times for 

minimizing cost or maximizing reliability of equipment. The equations 

will be developed to include either burn-in time, replacement time or 

both. 



CHAPTER II 

FEASIBILITY OF BURN-IN AND/OR REPLACEMENT TIMES 

Minimizing Cost 

The total cost of operation of equipment can be considered to 

be composed of several different and contributing costs. There may 

be any number of these different costs but for practical purposes 

this study will consider six costs which will be either fixed or linear 

over time. Later, these six costs could easily be expanded to any 

number with small changes in the main computer programs. The 

costs will be as follows: 

Cost number 1 - Fixed cost of purchase 

Cost number 2 - Fixed cost of installation 

Cost number 3 - Cost of operation per unit time 

Cost number 4 - Fixed cost of burn-in installation 

Cost number 5 - Cost of burn-in per unit time 

Cost number 6 - Fixed cost of breakdown 

3 

The hazard function can be defined as the conditional probability 

that an equipment will fail in a unit time interval after t, given that it 

was working at time t (Sandler, 1963 ). The hazard function can there­

fore be given by the following equation: 
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Hazard= f(t)/(1-F(t)) 

When considering the performance of large numbers of equip­

ment it is often the case that when the hazard function is graphed, one 

of three general patterns emerges. These general forms occur because 

there is either large amounts of early failures or large amounts of late 

failures or both large amounts of early and late failures. Illustrations 

of these situations follow: 

Hazard 

Time 

Figure 1 . Hazard function - early failure . 

Hazard 

Time 

Figure 2. Hazard function - late failure. · 
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Hazard 

Time 

Figure 3. Combined hazard function 

If a burn-in time was imposed on a set of data which had a 

hazard function similar to Figure 1, it would eliminate many of the 

costs incurred by having to spend time and effort installing equipment 

which would run for only a short time. These costs would have to be 

paid if a burn-in time was not imposed. 

If a replacement time was imposed on a set of data which had 

a hazard function similar to Figure 2 it would eliminate many of the 

breakdown costs incurred by having to suspend operations during the 

replacement, whereas, a replacement could have been made at a more 

opportune time. 

A burn-in and replacement time could be imposed on a set of 

data which had a hazard function similar to Figure 3, to avoid many 

installation and breakdown costs. 



By choosing an appropriate burn-in and/or replacement time 

the total costs can therefore be minimized. 

Maximizing Reliability 

6 

Reliability can be defined as the probability of performing 

successfully for a specified time. Thus, as the probability of per­

forming successfully increases, the reliability increases. By imposing 

a burn-in time to data with a hazard function similar to Figure 1, the 

probability of performing successfully increases as the burn-in time 

increases until the last data point is reached, since the hazard function 

is asymptotic to the time axis. This leads to a meaningless burn-in 

time solution for maximizing the reliability with data similar to Figure 1. 

However, by imposing a burn-in time to data with a hazard function 

similar to Figure 3, the probability of performing successfully increases 

as the burn-in time increases up to a point and then begins to decrease, 

since the hazard function is not asymptotic to the time axis. This leads 

to a meaningful burn-in time solution for maximizing the reliability with 

data similar to Figure 3. By choosing an appropriate burn-in time for 

a given time interval the reliability can be maximized. 
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CHAPTER III 

OPTIMIZING USEFUL LIFE 

Nonparametric Solution 

A statistic is a term used to describe a measure computed 

from the observations in a sample. In computing a statistic, it is not 

necessary to have a knowledge of any unknown population. The observa­

tions in a sample determine the statistic and therefore the statistic can 

be thought of as a function of the observations in a sample. The random 

variable defined by this functional relationship can be defined to be a 

statistic. If (x
1

, . .. xn) is a possible sample point, then the functional 

relationship 

y = t(x , . . . X ) 
1 n 

transforms from the space that contains all the values of the sample 

points to the space that contains the values of the function. A probability 

distribution is induced in the space that contains the values of the function 

by this transformation and thus defines a random variable: 
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It is often the case that creating order out of a mass of data 

requires that the observations be put in num.erical order. The result 

is a vector of ordered observations, from the smallest to largest and 

is sometimes referred to as the order statistic. 

For a given sample, there can be defined a sample distribution 

function. A ''mass" of amount 1 /n can be placed at each observed 

value. This mass distribution then has a distribution function of 

F (x) = l /n • (number of observation< x) 
n 

This is the sample distribution function. It can be computed from the 

order statistic. It is known that the sample distribution function con­

verges to the population distribution fun~tion with probability one, 

uniformly in x. Therefore, it is a natural estimate of the population 

distribution function. 

The sample distribution function is mathematically the same 

as a probability distribution function for a discrete distribution as it 

has the same mathematical properties as this type of function. 

Since the sample central moments can be shown to be express­

ible as polynomial functions of sample moments about zero, it can be 

shown that the sample central moments tend in probability to the 

corresponding population moments (Lindgren, 1968). 

If the population distribution function is not known but a sample 

distribution function is, it can be assumed that the sample distribution 
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function will converge to the population distribution function as the 

sample size gets large. Therefore, for large sample sizes the popula­

tion distribution function can be considered to be the sample distribu­

tion function and vise versa. This makes a nonparametric technique, 

for determining the minimum cost, possible. Since the sample distri­

bution function is discrete this makes the burn-in and/ or replacement 

times discrete because the time between data points need not be con­

sidered in finding the minimum cost. They need not be considered 

because, as can be seen in Figure 4, the discrete sample data gives a 

step function which, as previously stated, closely approximates the 

continuous population data's smooth curve function because of the 

large sample size. It can also be seen from Figure 4 that time values 

between data points of the step function give the same value for the 

number of breakdowns as the data point preceding the between data 

value. This of course, is what might be expected with a step function . 

Therefore, a burn-in or replacement time value between the discrete 

data points serves only to increase the burn-in or replacement time 

and their accompanying costs while not increasing the number of in­

stallation or replacement costs saved because the number of break­

downs have not increased. Since the number of data points is large 

but finite it is possible to compute the total cost of operation by using 

all the data points as burn-in and/or replacement times and choosing 

the times which minimize the cost. 



No. of 
Break­
downs 

Data Points 

Figure 4. Step function. 
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L Sample distribution 

Time 

Calculating the cost for each appropriate burn-in and/or 

replacement time rather than finding the burn-in and/or replacement 

tirne which minimizes the cost by m.ore direct means has the advantage 

of showing the relative size of the costs before it reaches its minimum 

value. In some cases it might be more advantageous to use a cost 

which is not quite minimal but has a burn-in and/or replacement time 

which is more compatable to the equipment users time schedule. For 

example, it may be more desirable to burn-in for eight hours rather 

than for eight and one half hours, even though the cost might not quite 

be minimal because the burn-in could be done in one eight hour shift 

rather than be carried over into another shift of workers and possibly 

forgotten about. 
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Minimizing Cost 

In a situation such as depicted by Figure 1, 2, or 3, where 

some burn-in and/ or replacement time is going to be imposed, it is 

often not immediately evident what burn-in and/or replacement time 

will minimize the cost. One way of deciding the time or times to 

choose is to calculate the cost for each appropriate burn-in and/ or 

replacement time in a large but finite sample which converges to the 

population and choose that particular time or times for which the cost 

is minimized. 

Burn-in only 

When it seems appropriate to impose only a burn-in time, costs 

one through five (as stated in Chapter II) may be considered. First, 

there is the cost of purchase. Assuming 100 pieces of equipment, this 

component of the total cost is l 00 times the cost of purchase. Second, 

there is the cost of installation. There are 100 pieces of equipment but 

these will not all be installed due to malfunctions during the burn-in 

period. Therefore, there will be the number of equipment installed 

times the cost of installation for this component of total cost. The third 

cost consists of the cost of operation per unit time. This component of 

the total cost will be the total operation time, times the cost of operation 

per unit time. Fourth is th e fixed cost of burn-in. This will apply to 

all the equipment, therefore, this component of the cost will be the 
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number of equipment times the fixed cost of burn-in. Fifth is the 

cost per unit time of burn-in. This cost may be thought of as including 

within it, the cost per unit time of not making the profit which would be 

made if the equipment was being used instead of being burned-in . 

This component of the cost will be the total of the individual burn-in 

times, times the cost of burn-in per unit time. By imposing a burn-in 

time, some installation and breakdown costs can be saved. Where an 

installation cost is saved there wi ll always be a cost of breakdown 

saved and vise versa, since, if equipment is not installed it can not 

breakdown. Therefore, in this part of the study breakdown cost as 

such is not considered seperately but is assumed to be includible in 

the installation cos t. 

For convenience the following notation will be used. 

bt = the burn-in time 

n
1 

(bt) = the number of data points less than or equal to the burn-in 

time 

n = the numb er of data points 
2 

\ = the set of data points X(i/uch that i = ( 1, 2, . . • n
1 

(bt)] 

so that for iE I 1 X(i) < bt 

1
2 

= the set of data points ~i) such that i = [ n
1 

(bt)+l, ..• n
2

] 

so that for iE 1
2 

X(i) > bt 

E = tot al cost per unit time 
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The total of the contributing costs can be found by totaling the 

purchase cost times the number of data points, the installation cost 

times the total of the munber of data points minus the number that 

failed during burn-in, the operation cost times the surr1 of the time of 

the data greater than the burn-in time, the fixed cost of burn-in times 

the number of data points, and the cost per unit time of burn-in times 

the total of all the burn-in time of those that failed and those that did 

not. 

The total cost per unit time will be the total of the contributing 

costs divided by the total operating time and is given in the following 

equation: 

"EI 
l 2 "EI 1 1 

Without a burn - in time cost number four and cost number five 

would be equal to zero and the total operation time would increase but 

the number of equipment installed would also be increased, presumably 

offsetting any gains acquired by not using a burn-in time. 

Replacement time only 

When it seems appropriate to use only a replacement time, 

costs one, two, three and six (as stated in Chapter II) may be considered 
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to apply. The first three components of the total costs, namely, costs 

one, two and three can be computed as in the case of burn-in time only. 

By imposing a replacement time some of the breakdown costs can be 

avoided because equipment that reach the replacement time ~uccess-

fully do not induce br e akdown costs. The breakdown component of the 

total cost will be computed by multiplying the nmnber of replacements 

needed t imes the cost of breakdown. 

For convenience the following notation will be used. 

n
1 

(rt) = the nmnber of data points less than or equal to the 

replacement time. 

n
2 

= the nmnber of da t a points 

1
1 

= the set of data points X(i)such that i = [ 1, 2, •. n 1 (rt)] 

so that for iE l X( . )< rt 
1 1 -

1
2 

= the set of data points X(i) such that i = [n
1

(rt)+l, .•. n 2J 

SO that for iE 12 X(i) > rt 

E = total cost per unit time 

The total of the contributing costs can be found by totaling the 

purchase cost times the number of data points, the installation cost 

times the number of data points, the operation costs times the total 

of the operating time, and the breakdown cost times the nmnber of 

data less than the replacement time. 

The total cost per unit time will be the total of the contributing 
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costs divided by the total operating time and is given in the following 

equation: 

Without a replacement time the total operating time would be 

increased but the increased number of breakdown costs would pre-

sumably offset any gains acquired by not using a replacement time. 

Burn-in and replacement time 

When it seems approp ri ate to use burn-in and replacement 

times, costs one through six may be considered. 

For convenience the following notation will be used. 

bt = burn- in time 

rt = replacement time 

n
1 

(bt) = the number of data points less than or equal to burn-in 

time 

n
2

(rt) = the number of data points less than or equal to the 

replacement time 

n
3 

= the number of data points 

\ = the set of data points X(i) such that i = [ 1, 2, .•. n
1 

(bt)] 

so that for iE' 1i x(i) < bt 
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1
2 

= the set of data points X(i) such that i = [ n
1 

(bt) + 1, ••• n
2

(rt)] 

so that for i€ 1
2 

1
3 

= the set of data points X(i) such that i = [ n
2

(rt)+l, ••• n
3

] 

E = total cost per unit time 

The total of the contributing costs can be found by totaling the 

cost of purchase times the mrmber of points greater than the burn-in 

time, the cost of installation times the number of data points greater 

than the burn-in time, the operation cost times the sum of the time 

between burn-in and replacement times, the fixed cost of burn-in times 

the number of data points, the cost per unit time of burn-in times the 

total of the times of those that failed before burn-in time and those that 

did not, and the breakdown cost times the number of data points that 

fall between the burn-in time and the replacement times. 

The total cost per unit time will be the total of the contributing 

costs divided by the total operating time and is given by the following 

equation: 

:E x(i) 
. E'l 
l 2 

iEI 
1 
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Maximizing Reliability 

In a situation such as depicted by Figure 3 where some burn­

in time is going to be imposed it is often not immediately evident 

what burn-in time to use to maximize the reliability. One way of 

deciding the time to use is to calculate the reliability for each appro-

priate burn-in time noting that particular time for which the reliability 

is maximized. 

Since the reliability can be considered to be the probability of 

performing successfully for a specified time, then it can be calculated 

by the following formula: 

R = G(bt) 
H(bt) 

Where G(bt) = number of successes as a function of the burn-in time 

H(bt) = n umber of events as a function of the burn-in time 

When the situation is such as depicted by Figure 3, imposing 

an appropriate burn-in time reduces the total number of events without 

reducing the nmnber of successes, thus, increasing reliability. The 

total number of events (H) can be computed by counting the number of 

times until failure greater than the burn-in time. The number of 

successes (G) can be computed by counting the number of times until 

failure greater than the burn-in and the specified (mission) times 

combined. 



CHAPTER N 

DISCUSSION AND RESULTS 

This study used the Weibull distribution to generate data. 

The Weibull distribution function is given by the following: 

V 
F(t) = 1 - exp( (-t/0) ) (1) 

where t is a time to failure and 0 and V are parameters of the 

distribution. A .t with a Weibull distribution can be found from the 

following equation: 

1/V 
t = 0 ( - ln x) ( 2) 

18 

when x has a uniform distribution. The mean of the Weibull distribu-

tion is given by the following equation: 

e I 1 Mean=- (-) 
V V 

The hazard function is given by the following: 

V-1 
R'(t) Vt H(t) = - -"--'-- = 
R(t) e V 

(3) 

where R(t) = (1-F(t)). When V < 1 a curve similar to Figure 5 occurs. 
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Hazard 

, Time 

Figure 5. Hazard function V < 1 

When V > 1 a curve similar to Figure 6 occurs. 

Hazard 

Time 

Figure 6. Hazard function V > 1 

The curves of Figures 5 and 6 can be combined with an additional 

chance failure source for which the hazard function is constant, to form 
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a combined hazard function by use of the following equation: 
V -1 V -1 

V 1 t 1 1 V 2t 2 
H(t) = ---- + -- + ----

V 1 03 V 2 
el e2 

( 5) 

The - 1- pertains to the chance failure. The central part of the curve 
03 

represents a constant hazard function where chance failures are pre-

dominant. This represents the exponential distribution of failures 

which is a special case of the Weibull with V = 1. 

in Figure 7 (Shoeman, 1968). 

Hazard 

Predominantly 
Chance Failures 

Time 

Figure 7. Combined hazard function. 

This is illustrated 

To get time until failure data with a hazard function similar to 

Figure 5, a mean of 25 and V equal to 0. 5 was selected. This makes 

0 approximately equal to 12 from equation 3. The t 1s can then be found 

by letting x be uniform random numbers between zero and one and 

solving equ ation tw o. To get time until failure data with a hazard 
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function similar to Figure 6, again a mean of 25, but now a V equal to 

5. was selected. This makes e approximately equal to 125 from equa­

tion three. Again the t's can be found by letting x be uniform random 

numbers between zero and one and solving equation two. To get time 

until failure data with a hazard function similar to Figure 7, e1 , e2 , e
3

, 

V 
1

, v
2

, and v
3 

were assigned the values of 12, 5, 100, 0. 5, 5 and 1, 

respectively. Now, however, the minimum value oft was choosen 

from equation two for each 0, V set because a failure would occur at 

the shorter time. 

Con~puter programs for generating the data as well as arranging 

it in ass ending order can be found in Appendix A. 

Appendix B contains four computer programs which can be used 

for minimizing costs using only a burn-in time, only a replacement 

time, both a burn-in and replacement time or for maximizing reliability 

using a burn-in time, in that order. The first two programs compute 

all the total costs per unit of time as outlined in Chapter III using each 
.... 

data point for a burn-in or replacement time. The third program does 

not use all possible combinations of burn-in and replacement time but 

h b . t· f th b . t· . th 
th 

rat er uses com 1na ions o every n urn-in 1me w1 every n re-

placement time where n is determined by the user, to get an initial idea 

of where the best combination is. The us er then looks at the costs as 

displayed in Figure 8, for the combinations chosen and decides in what 

general area the minimum lies. Then, after running the program again 
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in this smaller area and with smaller jumps, he can narrow down the 

search area even more. This itervative procedure can be continued, 

using smaller and smaller sear ch areas and jumps until the minimum 

is reached. This program has the advantage of showing the general 

trend of how much the cost is influenced by prescribed changes in burn-in 

and replacement times and may aid in choosing a time which may be 

better suited to a particular situation even though it does not quite mini­

mize the cost. Other more sophisticated programing techniques such 

as the search methods wh i ch keep to rising paths or steepest gradients 

depend on the as swnption that the function is unimodal as described by 

Wilde (1964). The cost function as seen in Figure 8 can be bimodal 

(doubly peaked). When the assumption of unimodel is not met, success 

can not be sure with such methods because the peak that is reached is 

d e pendent upon where the search starts (Wilde, 1964). 

Figure 8 shows the calculated costs for combinations of every 

tenth burn - in time with every tenth replacement time where the burn-in 

time is less than the replacement time. The component costs one through 

six were 10, 600, 4, 1, O. 25, 250. 

For example, the cell marked with "A" represents the total 

cost per unit time for the 20th ordered data point as the burn-in time 

and the 80th ordered data point as the replacement time. 

The cost at point B is surrounded by combinations of times 

which give greater values for the s;ost. A similar situation exists at 
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point A, thus showing that the cost function can be bimodal as described 

by Wilde (1964). 

Data Point Used for Burn-in Time 

10th 20th 30th 40th 50th 60th 70th 80th 

l 00th 669.9 658. 1 671. 2 861.7 1282. 2 1458.2 1481. 6 187 2. 1 

90th 664.6 652.2 664.4 854.4 1 297. 9 1503.9 1549. 4 1290. 0 

80th 664.3 651-4 663.9 870.5 1449.2 18 61. 9 2187. 5 ~ 
70th 667.3 654.0 667.9 980.2 1872.6 3691.7 ~ 

,/ 

60th 666.5 652.7 
B 

666.8 931. 4 2492. 2 ~ 
50th 674.3 660. 1 677.5 1028. 3 ~ I 

40th 760.2 751. 0 814.4 ~ 
30th 1348.9 15 77. 1 ~ Burn-in time > replacement 

time in this lower region 
20th 3367.0 ~ 
10th ---~ 

Figure 8. Costs for 100 data in jumps of ten 

It seems that the program used in this study and any other program 

which does not compute the cost for all the possible combinations of 

burn-in and replacement times, runs the risk of missing the optimum com-

bination because the cost may have several local minimums before 

reaching the true minimum. Checking all possible combinations may be 

the only sure solution for finding the optimum combination, but this may 

prove too costly to the user. With the program given here, the user can 
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come as close to checking all possible combinations as his resources 

allow by choosing the size of the "jwnps". 

The fourth program computes the reliability by using each 

data point as a burn-in time, as outlined in Chapter III, for any speci­

fied time interval. The program prints out all the reliabilities so 

that a burn-in time which does not quite maximize the relia.bility may 

be chosen if desired. 

When using the first program, the user must read in the values 

for the component costs one, two, three, four and five, in addition to 

the number of data points, all on one card. The data must be read in 

one per card. Formats for reading in can be found from the comment 

card in the program and can be changed as needed. The program will 

then compute all the costs per unit time using each of the data points as 

a burn-in time and note the particular time for which the cost was 

minimized and the minimum cost. If the user wants to delete any of 

the component costs he can put a zero in its place when reading it in. 

If he wants to add a cost, then following the comment cards in the pro­

gram should point the v;ay. 

When using the second program, the user must read in the 

values for the component costs one, two, three and six, in addition to 

the number of data points, all on one card. The data must be read in 

one per card. Formats for reading in can be found from the comment 

cards in the program and can be changed as needed. The program 
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will then compute all the costs per unit time using each of the data 

points as a replacement time and note the particular time for which 

the cost was minimized and the minimum cost. If the user wants to 

delete any of the component costs he can put a zero in its place when 

reading it in. If he wants to add a cost, then following the comment 

cards in the program should point the way. 

When using the third program, the user must read in the values 

for the component costs one, two, three, four, five and six, in addition 

to the number of data points, the size of the jumps and the starting and 

ending points in the data for the search, all on one card. The data must 

be read in one per card. Formats for reading in can be found from the 

comment cards in the program and can be changed as needed. If the 

us er wants to delete any of the component costs he can put a zero in its 

place when reading it in. If he wants to add a cost, then following the 

comment cards in the program should point the way. 

When using the fourth program the user must specify on one 

card the mission time and the total number of data points. The data 

itself is read in one per card. Formats for reading in can be found 

from the comment cards in the program and can be changed as needed. 

The program will then compute all the reliabilities using each of the 

data points as a burn-in time and note the particular time for which 

the reliability was maximized and the maximum reliability. 

In testing the programs, component costs had to be chosen 



which would give practical results. These costs have the property 

that if one or more of them is too large or too small it may not be 

advantageous to use either a burn-in or a replacement time. The 

values of the costs as _ illustrated in Table 1 were chosen to give 

practical results. Because other costs may produce the situation 
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where a burn-in and/or replacement time was not advantageous, the 

p r ograms first compute the total cost using no burn-in or replacement 

time. 

Table 1. Costs used for each of the three minimum costs programs 

Cost 1- - cost of purchase 

Cost 2- -cost of installation 

Cost 3- - cost of operation 

Cost 4 - -cost of burn-in 
(fixed) 

Cost 5- - cost of burn-in 
(per unit time) 

Cost 6 --cost of breakdown 

Program 
1 

200 

1 50 

400 

1 

o. 25 

Program 
2 

200 

150 

400 

50 

Program 
3 

10 

600 

400 

1 

o. 25 

250 

The mission time for testing the reliability program was 4. 187 266 7 . 

Each of the programs were run using 100 and 200 data points. The 

burn-in and/or replacement time can perhaps be illustrated best by show-

ing their relative position in the data which was arranged from the small-

est to the largest. This is illustrated in Table 2. 



Table 2. Results using 100 and 200 data points 

Minimum cost 
Burn-in only program 

Minimum cost 
Replacement only 
program 

Minimum cost 
Burn-in &: replacement 
program 

Maximum reliability 
Burn-in program 

Rel~tive position 
in 1 00 data points 

28th 

89th 

22nd, 83rd 

8th 

27 

Relative position in 
200 data points 

73th 

1 79th 

43rd, 168th 

18th 

The relative size of each of the component costs taken together 

determine the optimum burn-in and/or replacement time. When the 

size of one of the component costs changes and the others remain con­

stant, the burn-in and/or replacement time may or may not change. 

If they change, they change as illustrated in Table 3. 

Each of the four programs were tested for errors by using ten 

data points except the third program which was tested by using thirty 

data points. Hand calculations were found to produce the same resu lts. 

In conclusion it was found that the size of the component costs 

relative to each other, determine what the optimum burn-in and/or 

replacement times should be when minimizing costs and that no burn­

in and/or replacement time should be used when some of the component 
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Table 3. Results found when the component costs were changed 

Component cost Burn-in time Replacement time 
increased 

C#l cost of purchase decreased increased 

C#2 cost of installation increas ed increased 

C#3 cost of operation no effect no effect 

C#4 cost of burn-in decreased increased 
(fixed) 

C#5 cost of burn-in decreased increased 
(per unit time) 

C#6 cost of break down increased decreased 

Component cost Burn-in time Replacement time 
decreased 

C #1 increased . decreased 

C#2 decreased decreased 

C #3 no effect no effect 

C#4 increased decreased 

C #5 increased decreased 

C#6 decreased increased 

costs have a relative size that is much greater or smaller than the 

others. 

As can be seen in Table 3, the operation cost need not be 

considered in finding the optimum useful life. 
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With the maximwn reliability program it_ was found that as the 

mission time decreased the optimwn burn-in time decreased, and that 

a burn-in time only produced practical results when the hazard function 

took the form of Figure 3. 
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DIMENSION 0(100),TClOO) 
_ . _ Gs < G ~ T5_ ~ , >.C ) • f !1 * < < ABS < • AL. O G < x __ U1 • • ( 1 / G > > -· --_ _ ---_ _ --__ . 1•, . --· 

TH1•12 • 
LARG•5139921 
DC 101 1•11100 - ----·- ···--

X•fUNOOM(L.ARG) 
·-·- ··- Ol•SJG .1,TH.1,X} _______ _ 

D(l)•Ol 
101 CONTINUE 

OH11ENSlON 0.t1°-0u_l_C 100.l -· .. ~-~ .. '. -·- .... 
SCG,T~IX)•TH*((ABS(•ALOG(X)))••(l/G)) 
G2•5• 

-- YH.2..•125t . 
LARG•5139921 
00 101 1•1,100 
X•RANOOMCL~RG) 
02•SCG2,TH2,lO 
0(1)•02 

·- ·-······· 101 CONTINUE 

5 
100 

101 

o 1 ,,,fr N s I ON o , f oo'-> , Tc i o o > , -= 
S<G,TH,X)•TH•C(A8S(•AL0G(X)>)••C1/G)) 
Gl•,5 
Q2•5· 
G3•1• 
TIH•l.2• 
fl!l2•5 o-" 
THl•100• 
L.A_RG•5lJt9 _2J .- ______ _ 
00 101 1•1,100 
X•RANOOMCLARG) 
D 1 !' S ( G 11. t l'tt..l_x.1 _ 
X•fUNOOM ( L ARG) 
D2•SCG2,TH2,X) 
,c a R .A N DO lHJ •. ARG > 
Dl•SCG3,TH31X) 
lfCOl,GT,02) GO TO 5 
DC 1} •D 1 
GO TO 100 
o,I)•D2 
CQNT1NU£ 
1FCD3,GT,OC1)) GO TO 101 
0(1)•03 
CONTINUE 



- ·· - · - ·-·o-Ll° 500 ·:r•1iTCHr -'- -----­
M•D < J > , ... , 
00 600 1•1,J 
If(ReGT,l,> GO TO 600 
If ( X •LT t D ( I lJ ao _1_0 ... 7.00 . 
GO TO 600 

700 K•J•I 
1h21 
00 4 II•l,K 

4 O<J+l•ll)•OCJ•Il> 
.. o,I>•X _ _ __ 

600 CQNTINUE 
500 CONTINUE 
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C 
C 
C 
C 
C 
C 
C 

C 

C 
C 

C 
C 
C 
C 
C 
C 
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__ olti1ENSlON--.t,1o _(iQ.).. _ __ ------·-· --- -- ----------·-------- ---------
THIS PROGRAM COMPUTES THE BURN•lN TIME WHICH MINI~IZES COST 
THE NEXT CARO READS lN THE CO~TS ANO NUMBER Of OATA,NO 
COLUMNS 1•5 ARE COST NUMBER 1 
C OJ,. UM N S 6 • __ l~ _A_B_E __ ~ -t_ ~ U_f!1_8_U_ _2_ _____________________ --·-· _ 
COLUMNS 11•15 AR£ COST NUMBER l 
COLUMNS 16•20 ARE COST NUMBER 4 
COLUMNS 21•25 _Alt[ _ CQ_St _ NU_M_B[ _R 5 _ 
COLUMNS 26•29 ARE THE NUM&ER OF DATA 
REA0(5,lO)C1,C2,C3,C4,C5,NO 

10 FDRMAT<5F'51.2_1l__1l) _____ _ __ _ 
THE NEXT FOUR CARDS REA·O l·N THE DATA 
OQ 15 1•1,NO 
MiAOC5,l4) _ T_(jJ _________ _______ _ 

14 F'ORMAT<El5e8) 
15 CONTINUE 

C i UM I_S T HE TOT ~-L _Of __ lj,.J.. ___ lit[_ _DA T __ A_ ___ t Htil ___ _ 
,9 IS THE COST WITHOUT A BURN•IN TIME 
CSUM•O• 
D Q _ 9 7 l • t, tdL 
CSUM•CSUM•TCI) 

97 CONTINUE 
_JO•NO 
IIIH~ITE<6,98) 
C9•CNO•Cl•NO•C2•CSUM•C3)/iSUM 
jijftlTEC6,99lC.9 ___ __ __ __ _ 

98 FORMAT<' •,•wITH NO BURN lN TIME•> 
99 fORMAT(1X,fl5•4> 

__ NN_D~N0• 1 _ ___ _ _ _____ _ 
30 FORMAT<' •,•euRN•lN TIME 

t11RlTE(6, lO) 
SM_l.N_•lOQ.00_0.0_a ___ _ ____ _ _ 
DO 25 l•l,NNO 
BT IS THE SURN•IN TIME 

cosT•> 

XSUtt__IS _T_HE__ NUMB£fLJlI ClAtA PJllNTS GREAltB lfil .N__ lJiE _auelt~I~ 
XiSUM IS YHE SUM OF THE TIME GREATER THAN THE SURN•IN TIME 
SUM IS THE NUMBER OF PATA POINTS LESS THAN THE BURN•IN TIME 
XiSUM IS I_li[_ _$_U_M _ _or_ tHE- tlME LESS _ft,Uti _ TH£ _-8!J1Ut~l-N l.lN£ __ 
XO IS THE NUMBER or DATA POINTS 
SUM•O, 

_________ . _x_s_uM_•o. 
WQSUIOO • 
8l•TCI> 

_ .0&--15 J_, 1 # ND_ 
lf(TCJ>.LTtBT>GO TO 45 
XSUM•XSUM• 1 • 
XQiU.M•XQSUHt_{_l(J-1~8J l 
ac ro 35 

45 IYM•SUM•T<l) 
35 CONTINUE 



- C 

C 

C 

XBSUM•SU~•(BT•XSUM) 
xg•NO 

37 

_C6 IS THE CCSJ __ .WlllL_A ... t:lUR~~-UL _TJ.KL __ . _ .. _______ --- -------------- --···-
C6•< <X0•C1 >•CXD•C~)+(XSSUM•,5>•<XSUM•C2)+(XQSUM•Cl> >IXQSUM 

40 fQRMAT(3X,El5,11-:K15,4) 
.Wi 1 TE.t6, 40 l-8.T, C.6 . 
1F( C6.GT.SMIN) GO TO 1 
SMIN IS THE MINIMUM COST OF ALL THE COMPUTED COSTS 

. .S M1 N •tC 6_ _ . __ ___ _ __ _ __ _ _ _ ___ _ ____ . 
SSMIN•T<I> 
SSMIN IS TH£ BURN•IN TIME THAT CORRESPONDS TO TH£ MINIMUM COST 

1 CilNTINU[_ _ __ __ ______ _ _ ___________ -------------------
25 CONTINUE 

WRIT£(6,6) 
6 FORMAT<' •,•OPTIMUM TIME MINIMUM COST'> 

Jf.R 1 TE< 6 ~J > ~~~J.fu SM.IN_ _ _ _ ___ __ ______ _ _ ___ _ ---------
1 fCRMAT(1X,E15•81F15e4) 

STOP 
£ND 



38 

OlMENSIO.N T(lOOO) _____ _ 

C THIS PROGRAM COMPUTES THE REPLACEMENT TIM£ WHICH MINIMIZE$ COST 
_ - ~--- . ... llE .~EX1 _,~_flD __ .Rt.A.Q..S.._J_N_T_HJ _..C..Ol.il_AND NUJtl.ER OF DAT.A~•=ND _______ ~ 

C 
C 
C 
C 
C 

C 

C 
C 

C 
C 
C 
C 
C 
C 
C 

CQLUMNS 1•5 ARE COST NUMBER 1 
COLUMNS 6•10 ARE COST NUMBER 2 
,01.UMNS 11 • 1 i _ AR£. _CD_$ T . ...N.UJ-4.8.tlLL ____ ·-- ______ _ 
COLUMNS 16•20 ARE COST NUMBER 6 
CQLUMNS 21•24 ARE THE NUMBER OF DATA 

. __ JU.~.D...L5, .5..0.J_C_ l .,_C..2.LUL~.Ju N.D. _________________ _ 
50 FQRMAT(4F5t2,14) 

fHE NEXT FOUR CARDS REAO IN THE DATA 
e.o 55 I _•J..1.N.o.. __ ____ ··---------------- __ _____ _____ _ 
REA0(5,14) T(I) 

14' YCRMATCE1518) 
55 ..CJJNTl.NUE __ __ --·-·· ____ .. ----··· 

CiUM IS T~E TOTAL OF ALL THE DATA TIMES 
Ci IS THE COST WITHOUT A SURN•IN OR REPLACEMENT TIME 

.. i..SUM-.0 • . _______ . __ _ ··- ____ _ 
00 97 1•1,NO 
CiUM•CSUM•TCI> 

9 7 C!J~ T t~UE 
X0•NO 
•ftITEC6,98> 
Ci• tNO•C 1,-ND@.C.h.C..S1JM1l.C lt.N.O•.c_ULC...SJJ!l _ ---·· ___ _______ _ 
Wi1TEC6,99)C9 

98 roRMATc• •,•wITH NO REPLACEMENT TIME•> 
.. 99. f.OAMATC1.X,f.l5.i.t..l ___ __ ____ -·--·- _____ _ 
70 FCRMAT<• •,•REPLACEMENT TlME COST'> 

WRITE(6,70> 
_ .IMlN•lOOOOOO_t_ _______________ _ 

lll'-40•NO• 1 
00 65 I•l,NNO 
!1J l ~ THE Rf;P_"-~~_[M[Nl T_,_.Mi__ _ _ __ -····-- .. .. .. 
YXQSUM IS TH£ SUM OF THE TIM£ LESS THAN THE R[PLAC[M[NT TIME OF 
Of THOSE CATA POINTS THAT A~£ GREATER THAN THE REPLACEMENT TIME 
T XSUM 1 S TtiE .. $.UM or JHE. _ T lM[ _L...E.U.JitA.N . Ttil: . ..JI.EPL..AC[.MllT THI[ Of' 
TWOSE DATA POINTS THAT ARE LESS THAN THE REPLACEMENT TIME 
YSUM IS THE NUMBER or DATA POINTS LESS THAN TH[ REPLACEMENT TIME, 
YQ IS THE ~~~..8.ll PF:.. Jt~T~ ~-IH_~TS_ ____ __ ···--- _______ _ --·-· · ····----
RT•TC I> 
YXQSUM•0, 

__ _J'XSIJlit~O • 
,sUM•O• 
00 75 J•l,NO 
lfCTCJl1lT18llGO TO 85 
Y~QSUM•YXQSUM+T(J)•RT 
GO TO 75 

____ .... 85 .Y.XSUM•YX.SJJMtI.tJJ _. 
YiUM•YSUtO 1 t 

75 CONTINUE 
YQ•NO 



C 

C 
C 

39 

- --- ·- -··- - ~-- -
C 7 IS TH[ COST WITH A REPLACEMENT TIME 
C7•CYD•Cl+YO•C2+YSUM•C6+C(RT>•<YO•YSUM)+YXSUM)•C3)/((RT> 

1 • l tO•llUk )+ _}' XS..U!U_ __ __ __ _ __ ___ _______ ___ _____ __ _ ______ _ ___ _ 
80 FORMAT(2X,E15,8,6X,f15e4) 

w~ITEC6,80>RT,C7 
IfCC71GT1SMlN) GO TO 1 

--- _ _i,tl N. Is _ JtiE'._ .Hllil...MUJL_C_DU _ _c[. _AL.L - I~r. _t_OMP!JI ED. CJlS rs__ - - -
S&MIN lS THE REPLACEMENT TIME THAT CORRESPONDS TO THE MINIMUM COST 
SNIN•C7 
$iMlN•T<l) 

1 CONTINUE 
65 CONTINUE 

_ ~Rl!Ei 6, _6) _ _ 
6 YORMAT(• ','OPTIMUM TIME 

~N1TEC6,7)SSMIN,SMIN 
l J QRJO T( 1~,£1 .51_8.t F 15 , _4 l __ 

STOP 
ENO 

MINIMUM COST'> 



C 
C 
C_ -
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

40 

NINlMlZE THE COST 
TWE N[XT CARO READS IN THE COSTS, TH[ NUMS£R or ~ATA,THE SIZE 
T ii E_ JU.MPS , TM. . ST ART U!G _P_01M lL ... ilO _ _ttt£_ _£N O 1-NL.f_OlJil 
COLUM~S 1•5 ARE COST NUMBER 1 
COLUMNS 6•10 ARE COST NUM8ER 2 

--~!l_M_Ns__il ... ~ll_A_RLCQS _I _XUMB£1L..1 ___________________________________ _ 
COLUMNS 16•20 ARE COST NUMBER 4 
CQLUMNS 21•25 ARE COST NUMBER 5 
C.OLUJi4NS 26i!l0 . A.BE._CO$l _.NU.MB£8_6. . ... _____ _ 
COLUMNS 31•34 ARE THE NUMBER or DATA 
COLUMNS 3~•37 AR[ THE SIZE or THE JUMPS 
C O~UMN_S 38 ... ~_4J __ A_RE __ _TijE_ __ $ J MU l_N_G_ P_QlNJ ___ ___ _ 
COLUMNS 42•45 ARE THE ENDING POINT 
R£AOC5,90)Cl,C2,Cl,C4,C5,C61ND,NJ,IiP,lEP 

9 Q [ QR MA. T ( 6F 5. L2 ... .__lJh u, lt1.JJt) -- _ --·- ...... _ ... --- ----- ...... 
THE NEXT CARD READS IN TME DATA 
GD 95 I•1,ND 
T<I>•OCl} 

95 CONTINUE 
CSUM•Oe 
DO 91_ l•l,NC __ - -- ------ ---------··-·- -- --- - -- ----- -- _ 
CSUM•CSUM+TCl) 

97 CONTINUE 
-----. __ ..... __ _ X O•NO_ _ _ _ ____ ... ____ ......... __ ___________________ ___ _________________________________ _ 

lr!RITEC6,98) 
C9•CXD•C1+XD•C2+CSUM•C3+XD•C6)/CSUM 
WR1 ... tEC6,9 _Ci..)_'-9 ...... ______ ____ ... ______________________ __ ____ _ 

98 roRMAT(' .,.WITH NO BURN 1N OR R[PLAC[M[NT TIMES'> 
99 FORMAT(1X,F15•4> 

~RI TE.16., 1l Ol _. _ ... . ........ ___ ··--- ... 
110 FORMAT(• •,• IURN•IN TIME REPLACEMENT TIME 

ce•1000000. 
DO 1 O 5 1 • I SP, _ IU, .NJ. _ 
BT•T<l> 
00 115 K•lSP,IEP,NJ 
If < 1 •LT• K) ... .G.Q.10. _ lli _ ..... ... ·---·· _ 
GO TO 115 

116 CONTINUE 
XSUM.~.0 • 
XQSUM•O• 
XSSUM•O• 

. ____ SUM• 0 • 
YXQSUM•Oa 
YSUtoo • 

. 't'.X.SUM-..0 rt 
RT•TC K) 

-
COST'> 



C 

00 125 L•l,NO 
lf'CT<L),LT,BT>GO TO 135 
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_____ ....liUM•XSUM+Lt _________ ______________ ___________ -·---·-- ·- ··--- -· ···-·-- ··-
XQSUMaXQSUM•CTCL)•BT) 
fiO TO 125 

135_ .SUM~SUM+TlLL __ _ _ _ ___ __ ___ . ·---··· 
1~5 CONTINUE 

XBSUM•SUM+CBT•XSUM) 
_ OQ .1_45 M•l ,NJL ______ _______________________________ _ 

lf(TCM),LT1RT)GO TO 155 
YiQSUM•YXQSUM•T<M>•RT 
.GO .l.O 145.. __ ___ _ _______ _ 

155 YXSUM•YXSUM+TCM) 
YiUM•YSUM+le 

.. l4t5. <:iN.lltiU.E .. _________ . ______________ _ 
XO•NO c, IS THE COST WITH A BURN•IN ANO REPLACEMENT TIME 
C 7 • CC.ltO • C 1 )_.t_! X.5..UM !.C.2 l~ _( XO.!.C.t)~ .C.XUUMt._C . .51.+ ( {ULLM~1 .X~ X.S.UM) > •C 6 > + 

ic,cSUM•X8SUM•YXQSUM)•C3))/((CSUM•xeSUM•YXQSUM)) 
WRITEC6,120)BT,RT,C7 

120 f'ORMAT ( lJt, £15 .A, _£.U....!,f-15 f.A_L _ 
1FCC7,LT,C8)G0 TO 165 
GO TO 115 

C ca ts .. THE ,. lRS.t .. _Af!.e.lt.OllM.AI.lON . Of:. TH£ __ .H lHhtUM. COST 
C JI IS TH[ flRST APPROXIMATION Of THE 8URN•1N TIM£ 
C KK IS THE FIRST APPROXIMATION or THE REPLACEMENT TIME 

1Jt5-C8•C.7 _ __ .. _________ ---- -- ·- ---- -----··- __________ .. 
11•1 
fO<•K 

115 CONTINUE __ . __ 
105 CUNTINUE 

llK•II•lO 
llKKwll•lO 
WRITEC6,18) 

18 FORMAT(• • ,•FIRST APPROX') 
. WRlTEC6,l5QlT111l1tCKK),C8 

150 f'ORMATC3X,E15,8,£15e8,F15,4) 
STOP 

- •_Jf!IID \. --·- .... 



C 
C 
C 
C 
C 

C 

C 
C 
C 
C 
C 
C 

C 
C 
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DIMENSION 1(1000) 
THIS PROGRAM COMPUTES THE SURN•IN TIME WHICH MAXIMIZES THE 

_ RE L.U 81 L 1.T Y _ __ _ __ __ ____ _ ___ _ ____ _ __ _ .. __ 
THE NEXT CARO READS lN THE MISSION TIME ANO THE NUMBER Of' DATA 
COLUMNS 1•15 ARE THE MISSION TIME 
CCL UM NS U~ 19 __ AAE _ _!ji[ _ _f>tiJ1•1J3.£ fLCf_ __ J)_j_lL _ _ ___ _ ----- -- ------- - -- --- --
RE AO (51l60) X MT IN O 

160 F0RMATCE15e8,J4) 
T H.E NE X T _ f'.IllllL . .C..U ta . RUL) __ lN _ _JJ~£ tu TA_ - - -·----·-- ----- -
00 245 l•1'NO 
T<l>•DCl) 

2l&5 CONTINUE 
RMIN•O• 
WRITEC6,180) 

180 f'ORMATC' •,•t-UUION _TIM.£ 
NNO•ND•l 
00 255 I•l,NNO 

8..U.RN • UI _ T .lM.£ __ fl£L I A Blil TY ' ) 

XSUM 1S !HE NJ.LM8£tL.Of JlA1A . eJJINlS GREATER THAH TH.£ 8.URN•IN ANO 
MISSION TIMES COMSINEO 
X8SUM IS THE NUMBER OF DATA POINTS GREATER THAN TH[ BURN•IN 
XTO IS THE 8.URN•_tN _ T1M£ ____ _ 
XMT IS THE MISSION TIME 
XT IS A DATA POINT 
XSUM•O• 
,r8S.UK~Ot 
XTO•T<I> 
XAT.exT0•OIT 
00 265 J•l,NO 
XT•TCJ) 
IfCxT.GT,XAT)G0 TO 275 
GO TO 28.5 

275 XSUM•XSUM+le 
285 If(XT,GT,XTO>GO TO 295 

GO TO 26~ 
2Q5 XSSUM•XBSUM+le 
265 CONTINUE 

J~•XSUM/XBSUM _ _ 
~RITEC6,190)XMT,XTO,R 

--- --- --- ---- --- - - ---- - - ---- - ---- -- -- -

190 fORMAT(lX,E15181£15t8,F8•5) 
IF'CR1LT1RMlN) GCl TQ-255 _ 
RMlN IS THE MAXIMUM RELIABILITY 
XMlN IS THE CORRESPONDING BURN•IN TIME 
RMIN•R ____ --------- ----
XMIN•lCT0 

255 CONTINUE 
w A 1 TE ( 6, 16 ) _ - --·- --. 
WRITEC6,17) XMT,XMIN,RMIN 

16 roRMATC' .,.MISSION TIME BURN IN TIME BEST RELIAB1LITY1 ) 

_il FJl.ftiU.t C JX, E 15 1-A,_[_l.S_._a_._f 8-tiL 
STOP 
END 
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