A

J. 'fhl UtahState
University

Introduction

» Single measurement vector (SMV) model:

» Y = AX;s + e: linear non-adaptive noisy
measurements
» Xs € RV*1is the sparse signal of interest

Justification of the Priors

Factor Graph

» Under such modeling, all the distributions of the joint, conditional, and

Y 4 X e » CAMP algorithm adds an additional layer to AMP-SBL algorithm
- posterior densities become Gaussian

[1] using the described priors to encourage the clustered pattern
» To encourage sparsity, we assumed x, ~ N (0, ) as a prior

» y € RM*1 contains measurements (M < N) » The supports of the solution are then specified by the function
» solving the linear inverse problem to find X b(., T) where T is a predetermined threshold

» Assumption: » Based on the threshold, we discard the small-valued components
- Sparse clustered pattern: Non-zero elements of X may appear in clusters of X from being considered as the support of the solution

o,
O

ONSQ

with an unknown structure » The smaller o, is, the higher probability it provides to x, becoming
0 I.e. (discarding s;)

» Proposed model: y = A(soXx) +e
y c R AcRMN gc {0, 1}V x e RV e ¢ RM*T (M <« N)

» S IS the support learning vector and accounts for the non-zero locations of x
» In (s o X), o denotes Hadamard product

Message Passing

PRI » [he reason behind assuming such prior on a:
g Oblizztrlr:,'i;y the sparsity pattern of x " » Message from a function node to a variable node
" | B (XA)]5 (XA) a -
, , _ . (Xp,.)=1 b(xn,.)=0 Xn Mg, —x, XN (@mnXn; Zmn, Cmn),
» Recovering sparse signal x using the noisy SMV model cte cte L where
» Proposed algorithm: 1 cte J Zmn=Ym— Y amglq, and Cmn= 0%+ Y  |amg*Lq
» CAMP: Algorithm to recover sparse signals with unknown clustering pattern cte ¥ ¥ g#n g#n
. . . Cte N N
using approximate message passing framework ! cte R » Message from a variable node to a function node
Oén CnOén
. as . . - Mxn%gm x N Xn; AdnlZin 7
Proposed Statistical Model and Defining Priors » For example consider the case where forcing either s, = 0 or ( ,;m Cn+ n D 1im @ Cnt On D alzn)
| ; | sn, = 1 does not make any change in the evaluation of Sigma-Delta » Cp (Uunder the large-system-limit) is approximated by
» Measure of clumpiness [2]: (XA)s = > ;5 |Si — Si—1|, where s is the support » In this case, though it promotes the clumpiness in the solution, it | M
learning vector of the solution discourages the solution to be sparse Cni = Cn = 27 Z Cmn-
» There exist few transitions for the case where the supports of the solution » Therefore, o, needs to be decreased m=1

» Assumption: Matrix A is normalized with respect to its columns

Z aln — Z amn

have a clustered pattern
» For example, a constant vector (all ones or all zeros) has a XA of O

CAMP Algorithm

» More examples:

I£m
LT LT L] =a=o Therefore,
T < + CAMP: | My g o N (xS iz, Oy
‘ ‘ ‘ ‘ ‘ ‘ [ﬂr ‘ ‘ ‘ ‘ ﬂ’ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ikl Solver of linear inverse SMV problem for the clustered sparse signals: o Ch+ o Ch+
YA=12 . Estimating the posterior on x
I  Definitons > g the p "
» Change in the measure of clumpiness Fr(kn, an, €) = Kz P(xny) o< P(Xn; iy H P(yYm|Xn)
EN: Gn((Jéna C) — ff;”n m=1
(ZA)(support of x) = ‘b(xna T) — b(xn—h T)|> Fl(ap, C) =2 i
— n\&n C+an X an%Xn H Mgméxn) OCN(X[‘), ,Uzn, Vn)
, m=1
» T: a predetermined threshold » Message updates using AMP where
» b(.,.) : returns a binary value Forn—=1.2.... N z"”: 2z (1) and Crovn
b(Xn T) _ 1 1f |Xn| > T Kn = > m_18mnZm+ n Hn £ mn<mn Cot o) n Cot an
’ 0 otherwise. tin = Fo(Kp, ctp, ©) -

Un = Gn(ana C)
End

_ 2 N
C=0%+ 2> 1Vn

» Prior on the solution vector X:

Simulations Settings

vn=1,... N, . . .
X ~ N0 ap) Zn = Ym— SN Gt + 25N Flap €).Ym=1,.... M > Tlhe .sup.por’.[s of the solution are binary and drawr) from a Bernoulli
n » &n distribution in such a way to have clustered sparsity structure
N(e{(m)|b(x”")oe(1z Sendt ) » The entries of X, is drawn i.i.d. from Gaussian distribution with zero
Qp ~ ,02), : - e
» Parameter updates using EM algorithm mean and variance o2 — 1
(ZA)‘b . Slgma Delta eva|uatIOn Of the SUppOrtS Of the SO|UtIOn Wheﬂ Sn % Updatlng O > Tlﬂe true SOIUthn |S Constructed from X —So xnp
IS set to be active vn=1.2,....N. ZsAoIve for o, in » The sensing matrix A € RM*N with ap, ~ N (0 W) where M varies
> 01: A tuning parameter for the emphasis on the measure of clumpiness a3 — ol et }@g+ %20, — Pt — and N =100
» 621 The prior variance on the variance of the variable x, and is updated via which is the minimizer of » The noise components are drawn i.i.d. from N(0, 02) with
' 2 (ZA) (s 10— (ZA) prx g~
the EM algorithm fan) = In(ap) + ot 20 1 (o — R e })2 SNR = 25dB |
» Joint probability distribution of the model: an 0z » The measurement vector y € RM*1is then computed fromy = Ax + e
P(Y. X, v, 01, O, 02) o 7 Updating the noise variance 0 » The cardinality of x is set to K, = 25 for all the simulations
N S ) o a1 o2lHt] — WAt 2ns [0l » In all the simulations, the total number of iterations is set to 1000
P(y|x, 72 IN) H (,D( Xp; 0, ap) Pl e{ B 7 E— »}7 92)) % Updating the variance of a: » [o study the performance, we generate 100 random cases using the
-1 golke1) _ 1 ol =0 )= 2 above settings and then averaging over all the obtained results
: : Zn 1 (a” 1 ) : : : : :
» The measurement noise is assumed to be e ~ N(0, (72//\/) » In the figures, X\ is the sampling rate and is defined as A = M/N
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Reconstruction Examples for Synthetic Data

» Parameters initialization for CAMP algorithm:
» 0y =10, %' =10, 6,°% = 0.5, T = 0.001, and ITER = 1000

» Case 1: SNR = 25dB, N = 100, \ = 0.7, and ksp = 25
» Case 2: SNR = 25dB, N = 100, A = 0.5, and ksp = 25

) | Case1:§NR=25dl§,A=0-7 | Case2 SNR 25dB)\ 05

Estimated signal via CAMP
15H "~ True signal

Estimated signal via CAMP
— — — True signal
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Conclusions

» A new algorithm for the recovery of sparse signals with unknown clustering
pattern for the SMV problem was proposed

» Performance evaluation:
» CAMP provides an overall lower false alarm rate (Pga) compared to
AMP-SBL
» Based on the performance measure of (Pp — Pgs) we showed that CAMP
performs better than AMP-SBL
» The overall normalized mean-squared error (NMSE) between the true and
the estimated solution for the CAMP is lower than the one for AMP-SBL
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