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Introduction
I Single measurement vector (SMV) model:

I y = Axs + e: linear non-adaptive noisy
measurements

I xs ∈ RN×1 is the sparse signal of interest
I y ∈ RM×1 contains measurements (M � N)
I solving the linear inverse problem to find xs

y A x e

I Assumption:
I Sparse clustered pattern: Non-zero elements of x may appear in clusters

with an unknown structure

I Proposed model: y = A(s ◦ x) + e
y ∈ RM×1, A ∈ RM×N, s ∈ {0,1}N×1, x ∈ RN×1, e ∈ RM×1 (M � N)

I s is the support learning vector and accounts for the non-zero locations of x
I In (s ◦ x), ◦ denotes Hadamard product

I Objective:
I Learning the sparsity pattern of x
I Recovering sparse signal x using the noisy SMV model

I Proposed algorithm:
I CAMP: Algorithm to recover sparse signals with unknown clustering pattern

using approximate message passing framework

Proposed Statistical Model and Defining Priors

I Measure of clumpiness [2]: (Σ∆)s =
∑P

i=2 |si − si−1|, where s is the support
learning vector of the solution
I There exist few transitions for the case where the supports of the solution

have a clustered pattern
I For example, a constant vector (all ones or all zeros) has a Σ∆ of 0
I More examples:

I Change in the measure of clumpiness

(Σ∆)(support of x) =
N∑

n=2

|b(xn,T )− b(xn−1,T )|,

I T : a predetermined threshold
I b(., .) : returns a binary value

b(xn,T ) =

{
1 if |xn| > T
0 otherwise.

I Prior on the solution vector x:

∀n = 1, . . . ,N,
xn ∼ N (0, αn)

αn ∼ N (e
{

(Σ∆)|b(xn,.)=0−(Σ∆)|b(xn,.)=1−1

θ1

}
, θ2),

I (Σ∆)|b(xn,.)=1: Sigma-Delta evaluation of the supports of the solution when sn
is set to be active

I θ1: A tuning parameter for the emphasis on the measure of clumpiness
I θ2: The prior variance on the variance of the variable xn and is updated via

the EM algorithm

I Joint probability distribution of the model:
P(y,x,α, θ1, θ2, σ

2)∝

P(y|x, σ2IN)
N∏

n=1

(
P(xn; 0, αn)P(αn; e

{
(Σ∆)|b(xn,.)=0−(Σ∆)|b(xn,.)=1−1

θ1
,
}
, θ2)

)
I The measurement noise is assumed to be e ∼ N (0, σ2IN)

Justification of the Priors

I CAMP algorithm adds an additional layer to AMP-SBL algorithm
[1] using the described priors to encourage the clustered pattern

I To encourage sparsity, we assumed xn ∼ N (0, αn) as a prior
I The supports of the solution are then specified by the function

b(.,T ) where T is a predetermined threshold
I Based on the threshold, we discard the small-valued components

of x from being considered as the support of the solution
I The smaller αn is, the higher probability it provides to xn becoming

0 i.e. (discarding sn)

Behavior of αn with respect to Sigma-Delta

I The reason behind assuming such prior on αn:

(Σ∆)|b(xn,.)=1 (Σ∆)|b(xn,.)=0 αn
cte cte ↓
↑ cte ↓

cte ↓ ↓
cte ↑ ↑
↓ cte ↑

I For example consider the case where forcing either sn = 0 or
sn = 1 does not make any change in the evaluation of Sigma-Delta

I In this case, though it promotes the clumpiness in the solution, it
discourages the solution to be sparse

I Therefore, αn needs to be decreased

CAMP Algorithm

CAMP:
Solver of linear inverse SMV problem for the clustered sparse signals:

I Definitions
Fn(kn, αn, c) = kn

αn
c+αn

Gn(αn, c) = c.αn
c+αn

F ′n(αn, c) = αn
c+αn

I Message updates using AMP
For n = 1,2, . . . ,N

kn =
∑m

m=1 a?mnzm + µn

µn = Fn(kn, αn, c)

νn = Gn(αn, c)

End
c = σ2 + 1

M

∑N
n=1 νn

zm = ym −
∑N

n=1 amnµn + zm
M

∑N
n=1 F ′n(αn, c),∀m = 1, . . . ,M

I Parameter updates using EM algorithm
% Updating α:
∀n = 1,2, . . . ,N, solve for αn in

α3
n − e

{
(Σ∆)|b(xn,.)=0−(Σ∆)|b(xn,.)=1−1

θ1

}
α2

n + θ2
2αn − θ2(µ2

n+νn)
2 = 0

which is the minimizer of

f (αn) = ln(αn) +
µ2

n + νn

αn
+

1
θ2

(αn − e
{

(Σ∆)|b(xn,.)=0−(Σ∆)|b(xn,.)=1−1

θ1

}
)2

% Updating the noise variance σ2:

σ2[k+1] =
‖y−Aµ‖2

2+
∑N

n=1 ‖an‖2
2νn

M

% Updating the variance of α:

θ2
[k+1] = 1

N

∑N
n=1

(
αn − e

{
(Σ∆)|b(xn,.)=0−(Σ∆)|b(xn,.)=1−1

θ1

})2

Factor Graph

I Under such modeling, all the distributions of the joint, conditional, and
posterior densities become Gaussian

gm := P(ym|x,α), m = 1,2, . . . ,M
fn := P(xn; 0, αn), n = 1,2, . . . ,N
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Message Passing

I Message from a function node to a variable node
Mgm→xn∝N (amnxn; zmn, cmn),

where
zmn = ym −

∑
q 6=n

amqµq, and cmn = σ2 +
∑
q 6=n

|amq|2Σq

I Message from a variable node to a function node

Mxn→gm ∝ N
(
xn;
∑
l 6=m

anlzln
αn

cn + αn
∑

l 6=m a2
ln
,

cnαn

cn + αn
∑

l 6=m a2
ln

)
I cnl (under the large-system-limit) is approximated by

cnl ' cn :=
1
M

M∑
m=1

cmn.

I Assumption: Matrix A is normalized with respect to its columns∑
l 6=m

a2
ln '

M∑
m=1

a2
mn = 1.

Therefore,

Mxn→gm ∝ N
(
xn;
∑
l 6=m

anlzln
αn

cn + αn
,

cnαn

cn + αn

)
.

I Estimating the posterior on xn

P(xn|y) ∝ P(xn;αn)
M∏

m=1

P(ym|xn)

∝ Mfn→xn

M∏
m=1

Mgm→xn)∝N (xn;µn, νn)

where

µn =
M∑

m=1

amnzmn(
αn

cn + αn
), and νn =

cnαn

cn + αn

Simulations Settings

I The supports of the solution are binary and drawn from a Bernoulli
distribution in such a way to have clustered sparsity structure

I The entries of xnp is drawn i.i.d. from Gaussian distribution with zero
mean and variance σ2

x = 1
I The true solution is constructed from x = s ◦ xnp

I The sensing matrix A ∈ RM×N, with amn ∼ N (0, 1√
M

), where M varies
and N = 100

I The noise components are drawn i.i.d. from N (0, σ2
n) with

SNR = 25dB
I The measurement vector y ∈ RM×1 is then computed from y = Ax + e
I The cardinality of x is set to Ksp = 25 for all the simulations
I In all the simulations, the total number of iterations is set to 1000
I To study the performance, we generate 100 random cases using the

above settings and then averaging over all the obtained results
I In the figures, λ is the sampling rate and is defined as λ = M/N

Simulation Results (Performance Comparison)
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Reconstruction Examples for Synthetic Data

I Parameters initialization for CAMP algorithm:
I θ1 = 10, c[0] = 10, θ2

[0] = 0.5, T = 0.001, and ITER = 1000
I Case 1: SNR = 25dB, N = 100, λ = 0.7, and ksp = 25
I Case 2: SNR = 25dB, N = 100, λ = 0.5, and ksp = 25
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Case 1 : SNR = 25 dB, λ  = 0.7

Estimated signal via CAMP

True signal
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Conclusions

I A new algorithm for the recovery of sparse signals with unknown clustering
pattern for the SMV problem was proposed

I Performance evaluation:
I CAMP provides an overall lower false alarm rate (PFA) compared to

AMP-SBL
I Based on the performance measure of (PD − PFA) we showed that CAMP

performs better than AMP-SBL
I The overall normalized mean-squared error (NMSE) between the true and

the estimated solution for the CAMP is lower than the one for AMP-SBL
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