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Introduction

Objective:
I Recovering sparse signal X from a small set of linear noisy measurements

using multiple measurement vectors (MMVs)

I Assumption:
I Sparse Clustered Pattern: Non-zero elements of the underlying signal may

appear in clusters with an unknown structure on each column of X
I Joint-Sparsity: non-zero elements of X appear at the same rows (support

set of the solution is the same for all columns of X )

I Model: Y = A(s ◦ X ) + E
Y ∈ RM×N, A ∈ RM×P, s ∈ {0,1}P×1, X ∈ RP×N, E ∈ RM×N, and (M � P),

I s accounts for the supports of the solution and ◦ denotes Hadamard product
I Proposed algorithm:

I C-SBL: sparse Bayesian learning model for sparse signals with unknown
clustered pattern

Proposed Statistical Model and Defining Priors

I Measure of clumpiness: (Σ∆)s =
∑P

i=2 |si − si−1|, where s is the support
learning vector of the solution
I There exist few transitions for the case where the supports of the solution

have a block-sparsity structure
I For example, a constant vector (all ones or all zeros) has a Σ∆ of 0
I More examples:

I Prior on the support-learning component s:
I we model the elements of s as Bernoulli random variables

(sp;ω0,p, ω1,p) ∼ Bernoulli(
ω1,p

ω0,p + ω1,p
),∀p = 1,2, ...,P

ωk ,p = e−α(Σ∆)k ,pBinomial(Σk ,p,P, γp), ∀k = 0,1
I The terms (Σ∆)k ,p and Σk ,p denote the Σ∆ value and the sum over all the

elements of s for the case where sp = k , respectively
sp ∼ Bernoulli(γp), γp ∼ Beta(α0, β0),p = 1, . . . ,P.

I Initial setting: α0 = 10
P and β0 = 1− α0, to encourage sparsity

I Prior on the solution-value matrix X :
I The columns of the solution-value matrix X = [x1, . . . ,xN] are assumed to be

drawn i.i.d. from the following normal-gamma distribution
xn ∼ N (0, τ−1IP), τ ∼ Gamma(a0,b0), n = 1, . . . ,N.

I Due to the lack of prior knowledge on the entries of X , we experimentally set
the hyper-parameters to a0 = b0 = 10−3, endowing X a priori with a fairly
high variance

I a0 and b0 denote the shape and rate of the Gamma distribution, respectively

I Prior on the noise component E:
I The entries of E are assumed to be drawn i.i.d. from a Gaussian distribution

with an unknown precision ε
emn ∼ N (0, ε−1), m = 1, . . . ,M, n = 1, . . . ,N,
ε ∼ Gamma(θ0, θ1).

I The hyper-parameters are set to θ0 = θ1 = 10−3. This setting may vary under
the required precision or prior knowledge on the noise variance

Statistical Model and Defining Priors (Continued)

I Prior on the emphasizing factor on clumpiness of supports α:
α ∼ Gamma(a1,b1)

I Initial setting: a1 = 5 and b1 = 1
I The parameter α > 0 specifies the significance of (Σ∆)
I Large values of α encourage more contiguity in the support of

s, while small values of α cause s to have many transitions

Joint Probability Distribution of the Proposed Model

P(Y ,s,X )∝P(Y |s,X , ε)
( N∏

n=1

P(xn|µx, τ
−1IP)

)
P(τ ; a0,b0)P(ε; θ0, θ1)×

( P∏
p=1

1∏
k=0

P(sp|ω0,p, ω1,p)P(ωk ,p|Σk ,p, γp, α,s)
)
P(γ|s, α0, β0)P(α|s,a1,b1)

Graphical Model of the Proposed Bayesian Model
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C-SBL Algorithm

C-SBL Algorithm for sparse signal recovery of either SMV or MMVs:

{Θ(i)}i=1 to Ncollect = C-SBL(Y ,A,Θ0,Nburn−in,Ncollect)

For Iter = 1 to Nburn−in + Ncollect

% Support-learning vector component
For p = 1 to P

ỹ−p
mn = ymn −

∑P
l 6=p amlslxln, ∀m = 1 to M

c =
1−γp
γp

Σ1,p
P+1−Σ1,p

e−α
(

(Σ∆)0,p−(Σ∆)1,p

)
k = ε

2

(
(‖ap‖2

2 (
∑N

n=1 x2
pn))− 2aT

p (
∑N

n=1 xpnỹ−p
n )
)

(sp|−) ∼ Bernoulli( 1
1+cek )

% Solution-value matrix component
For l = 1 to P

Σx = (τ + εs2
l ‖al‖2

2)−1

µ̄ = εslΣxal

For k = 1 to N
ỹ−l

k = yk − A(s ◦ xk) + slxl ,kal

µx = µ̄T ỹ−l
k

(xl ,k |−) ∼ N (µx,Σx)

End For
End For
(γp|−) ∼ Beta

(
α0 + 2(1 +

∑P
k 6=p sk) , β0 + 2(P −

∑P
k 6=p sk)

)
End For
(τ |−) ∼ Gamma(a0 + NP

2 ,b0 + 1
2 ‖X‖

2
F)

(ε|−) ∼ Gamma(θ0+MN
2 , θ1+1

2 ‖Y−A(s◦X )‖2
F)

(α|−) ∼ Gamma
(
a1 +

∑P
p=1(Σ∆)0,p , b1 +

∑P
p=1(Σ∆)1,p

)
If Iter > Nburn−in

Θ(Iter−Nburn−in) ← Θ

End If
End For

Remark: In these descriptions, conditioning on −, as in (sp|−), is the inference on
sp conditioning upon all relevant variables (including the observations)

Behavior of α with respect to (Σ∆)

I For each element sp we have:

(Σ∆)|1,p (Σ∆)|0,p α
cte cte ↓
↑ cte ↓

cte ↓ ↓
cte ↑ ↑
↓ cte ↑

I For example consider the case where forcing either sp = 0 or sp = 1
does not make any change in the evaluation of (Σ∆)

I In this case, though it promotes the clumpiness in the solution, it
discourages the solution to be sparse

I Therefore, α needs to be decreased

Simulation Results

I Our MMV model is a set of linear equations where
I The supports of the true solution are binary and drawn from a Bernoulli

distribution in such a way to have a random clustered-sparsity structure
I The number of columns in X and Y is set to N = 2
I The entries of x̄n is drawn i.i.d. from N (0, σ2

x IP), where σ2
x = 1

I The true solution is constructed from X = s ◦ X̄
I The sensing matrix A ∈ RM×P, with amn ∼ N (0, 1√

M
), where M varies and

P = 100
I The entries of the noise vector are drawn i.i.d. from N (0, σ2

n), in such a
way to have SNR = 25dB

I The measurement matrix Y is computed from Y = AX + E
I In all the simulations, the sparsity level is set to Ksp = 25
I In the simulations for C-SBL we set Nburn-in = 500 and Ncollect = 500

I We consider two case scenarios
I case 1: the columns of true solution X are uncorrelated i.e., ρ = 0
I case 2: the columns of true solution X have correlation factor of
ρ = 0.85

I In order to investigate the performance, we generate 200 random cases
using the above settings and then averaging over all the obtained results

I In the figures, λ is the sampling rate and is defined as λ := M/P

Simulation Results (Performance of C-SBL)
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Simulation Results (Comparison with other algorithms)
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A Case Scenario (Synthetic data)

I In this example λ = 0.7, N = 2, and SNR = 25dB

True supports
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Conclusions

I A new algorithm for the recovery of sparse signals with unknown clustered
pattern is proposed (C-SBL algorithm)

I The proposed algorithm can be used for either single- or multiple-measurement
vectors in the compressive sensing (CS) applications

I Based on the simulation results, C-SBL outperforms the famous M-SBL [2],
T-SBL [3], and MFOCUSS [4] algorithms
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