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CHAPTER I 

INTRODUCTION 

Most statistical methods require assumptions about the 

populations from which samples are taken. Usually these methods 

measure the parameters, such as variance, standard deviations, means, 

etc., of the respective populations. One example is the assumption 

that a given population can be approximated closely with a normal 

curve. Since these assumptions are not always valid, statisticians 

have developed several alternate techniques known as nonparametric 

tests. The models of such tests do not specify conditions about 

population parameters. 

Certain assumptions, such as (1) observations are independent 

and (2) the variable being studied has underlying continuity, are 

associated with most nonparametric tests. However, these assumptions 

are weaker and less in number than those commonly associated with 

parametric tests. 

Justification of the review 

The chief·advantages of nonparametric tests are: 

1. Most probability statements are exact and accurate regard

less of the shape of the population distribution (in large samples, 

excellent approximations are already available). Some nonparametric 

tests may assume that the shape of two or more populations are identical. 
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Others may assume that the population shapes are symmetrical. They 

also may assume that the underlying distribution is continuous, an 

assumption which they share with parametric tests. 

2. Unless the population distribution is known exactly, 

nonparametric statistical tests are the best . way to treat sample sizes 

as small as n = 5 or n = 6. 

3. Observations from several different populations can be 

adequately treated by nonparametric tests, whereas unrealistic 

assumptions often treat such samples by parametric methods. 

4. Data which are inherently in ranks or data with numerical 

scores having the strength of ranks can be treated. In other words, 

if a variable such as anxiety is considered, the researcher may only 

be able to state that Subject A is more anxious than Subject B without 

being able to say exactly how much more anxious. Even if data can 

be categorized only as plus or minus, better or worse, more or less, 

etc., they can be treated by nonparametric methods. To treat like 

material by parametric methods requires precarious and even unrealistic 

assumptions about the underlying distributions. 

5. Data measured on a nominal scale are easily treated by 

nonparametric methods whereas parametric techniques may not be justified 

for such data . 

6. Nonparametric statistical tests are generally much. easier 

to learn and apply. 

f~onparametric statistical tests are not without their dis

advantages~ however. Some of these disadvantages are: 

1. Nonparametric statistical tests are wasteful of data if 

the measurements are sufficiently strong and if all the assumptions 
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of the parametric statistical model are met. The degree of wasteful

ness is expressed by the power-efficiency of the nonparametric test. 

In other words, if such a test had a power-efficiency of 90 percent, 

the appropriate parametric test (if all test conditions are met) would 

be just as effective with a 10 percent smaller sample. 

2. Interactions in the analysis of variance model cannot be

tested by any known nonparametric method unless special assumptions 

about additivity are made. It should be noted, however, that 

parametric tests also are forced to make the assumption of additivity. 

The problem of higher ordered interactions has not yet been considered 

in nonparametric literature. 

3. Nonparametric statistical tests and their accompanying

tables of significant values have the disadvantage of being widely 

scattered about in various publications. Because many of these 

publications are highly specialized, they are in many cases unavail

able to behavioral scientists. 

Statement of the problem 

One can find most nonparametric tests of fit such as Neyman

Bartman, Smirnov or Cramer, Chi-square, and Kolmogorov,in current 

statistics books. The purpose of this thesis is to assemble in one 

paper many of the more useful nonparametric tests of fit and compare 

those which are similar. The characteristics on which comparison are 

made are (1) ease of application and (2) power. Such comparisons are 

not readily obtainable in most of the statistical texts now available. 
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Method of procedure 

All but two source books used for gathering information and 

material are: Nonparametric Statistics for the Behavioral Sciences 

by S. Siegel; Statistical Theory by B. Lindgren; The Advanced Theory 

of Statistics, Vol. II, by M. Kendall and A. Stuart; and Handbook of 

Nonparametric Statistics, Vol. I, by J. Walsh. The two exceptions 

are papers contained in The Annals of Mathematical Statistics (June 

and December, 1962) by J. Rosenblatt. These can be found in the 

library of the Applied Statistics Computer Science Department. 

General description of nonparametric 
tests of fit 

The Kolmogorov-Smirnov tests are one type of the nonparametric 

tests of fit that several researchers have investigated. Rosenblatt 

(1962) has eliminated the paradox of almost sure rejection of the nu l 

hypothesis when too much data are observed and has extended the test 

to composite hypothesis. Previous to his work, the Kolmogorov

Smirnov tests were suitable only for testing the simple hypothesis 

F = F
0 

against all alternatives. Some of his works are included in 

this paper. 

Let x1 , x2, ... , and xn be independent observati ans on a

random variable with the distribution function F(x) unknown. Suppose 

that we wish to test the hypothesis 

( 1.1) H : F(x) = F (x) 
0 0 
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where F
0

(x) is some particular distribution function (d.f.), which

may be continuous or discrete. The problem of testing (1.1) is called 

a goodness-of-fit problem. Any test of (1. 1) is called a test of fit. 

Hypotheses of fit, like parametric hypotheses, divide 

naturally into simple and composite hypotheses. The above 

hypothesis, (1.1), is simple if F
0

(x) is completely specified; e.g.,

the hypothesis that the n observations have come from a normal 

distribution with specified mean and variance. On the other hand, 

we may wish to test whether the observations have come from a normal 

distribution where .. all, parameters are unspecified, and as such the 

hypothesis would be composite; or in this case it would often be 

called a test of normality. Similarly, if the normal distribution 

has its mean but not its variance specified, the hypothesis remains 

composite. 

This thesis covers Neyman-Barton 11smooth11 and Smi rnov tests 

in the simple hypothesis case and chi-square and Kolmogorov in both 

simple and composite hypothesis cases. 

A general failing of most tests of hypotheses such as these 

is that given a sufficiently large sampl� rejection is sure. This 

is because the true distribution being considered will usually not be 

distributed exactly as specified under the hypothesis. Thus, any 

small difference can be detected by a test of sufficient size. 

Therefore, a much more useful test would test the hypothesis that x 

is distributed approximately as F
0

(x). Such a test has been developed 

and reported in The Annais of Mathe�atieaZ Statistics (June and 

December, 1962) by J. Rosenblatt. 



CHAPTER I I 

SIMPLE HYPOTHESES 

Neyman-Barton 11smooth 11 tests 

Given H
0

:F(x) = F
0
(x), we transform each observation xi,

6 

i = 1, ... ,n as in (2. 1) by the probability integral transformation 

i = 1,2, ... ,n ( 2. 1 ) 

and obtain n independent observations uniformly distributed on the 

interval (0,1) when H
0 

holds. We specify the alternative to H
0 

as 

departures from the uniformity of the Yi, which nevertheless remain

i'ndependent on (0,1). Neymay set up a system of distributions designed 

to allow the alternative to vary smoothly from the H
0 

(uniform) 

distribution in terms of a few parameters. (It is this 11smoothness 11

of the alternatives which has been transferred, by hypallage, to 

become a description of the tests.) In fact, Neyman specified for 

the frequency function of any Yi the alternatives

= c(e
1
, e

2
, ..• ,ek) exp{l+ [ errrr(Y)},

r=l 

0 < Y < 1 , K = 1 ,2 ,3 (2.2) 

where c is a constant which ensures that (2.2) integrates to 1 and the 

k 
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nr(¥) are Legendre polynomials transformed linearly so that they are 

orthonormal on the interval (0,1 ). If we write z = y - 1/2, the 

polynomials are in the fourth order: 

n
1 
(z) = 3112 • 2z 

n
4

(z) = 3 • (70z4 - 1 5z2 + 3/8) 

nu + 1 
(z) = 2z[(2u + 3)(2u + 1)] 112 n (z)/(u + 1)u 

u[(2u + 3)/(2u - 1 )] 112 

nu _ 
1
(z)/(u + 1)

(2. 3) 

The problem now is to find a test statistic for H
0 

against 

Hk. If (2.2) is rewritten as 

= c(e) exp { � ernr(Y)}, 0 < Y < 1 , k = 0,1,2 , ... , 
r=O 

(2.4) 

defining e0 = 1, this includes H
0 

also. We may wish to test the

rr2 (z) = s112 • (6z2 - 1/2) 

rr3(z) = 7112 • (20z3 - 3z) 

k 
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simple 

(2.5) 

or equivalently 

k 

H : I e2
= 0 (2.6) o r=l r 

against its composite negation. It will be seen that (2.4) is an 

alternative of the exponential family, linear in the er and ITr. The

likelihood function for n independent observations is 

L(Y/0) 
k n 

= {c(e)}n exp { I er I IT (Y1)}
r=O l=l r 

Formula (2.7) clearly factorizes into k parts, and each 
n 

(2. 7) 

statistic Tr = .I r(Yi) is sufficient for er; and we therefore may
l=l 

confine ourselves to functions of the Tr in our search for a test

statistic; or we can write 'l'k2 = (1/ n) E�=l · [E�=l ITU F
0
(x) - 1/ 2 ]2;

and reject the null hypothesis if 1f � �(k). Table 1 in Appendix B 

contains values of �(k). 

The main advantage of the Neyman-Barton 1

1smooth 11 tests is that 

a system of alternative hypothesis may be specified which may be an

interesting test. Unfortunately, one frequently has no very precise 

alternative in mind when testing fit; and if that is the case, there 

is no need to use a smooth test according to Kendall and Stuart (1961). 

An example of smooth test from Table 1 follows: Consider 

testing the hypothesis that a distribution is normal with mean 32 and 

= e = o k 
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standard deviation 1.8, using the ten observations 31.0, 31.4, 

33.3, 33.4, 33.5, 33.7, 34.4, 34.9, 36.2, 37.0 with k = 3 and a = .05. 

2 
X. 05 ( 3) = 7. 815

If��> x�05(3), we reject the hypothesis

k m 
�� = � I [ I rr {F

0
(x) - 1/2 }]2. 

µ= 1 i =l µ 

F ( x
2
) = F ( 31 . 4) = • 6 3 

F(x3) = F(33.3) = .76

F(x4) = F(33.4) = .78

F(x5) = F(33.5) = .79 

F(x6) = F(33.7) = .82

F(x7) = F(34.4) = .9

F(x8) = F(34.9) = .95

F ( Xg) = F ( 36 . 2 ) = . 99 



F(x1 0
) = F(37) · .997

n1 (y) = 2 /3 y

2 1 3 10 
2 

'l'J = lO I: [.I n1(2.997)]
µ=l 1 = 1 

2 1 
3 

'!'
3 

= 10 I: [(2/3)(.29) + (2 /3)(.63) + 2 13 (.76) ... +
µ= 1 

+ (2/3)(.997)(2 .977)]2

2 1 2 rr:- 2 ]2 '¥
3 

= 10 {(120.05) + [v5(6(0.2 9 - 1/ 2)) ...... (2.977) 

10 

+ [(/7(2 0(.29)3 - 3(.29)] + /7(2 0(.63)3 - 3(.63)) ... }

By calculating the first n1, we can see the value is much larger

than x�
05(3); and if we finish calculating we have to add the value of

n
2 

and rr
3 

to the value of rr1 which is (12 0.05)2 , and the value of 'l'�

becomes larger. Since 'l'� > x�
05(3)' we reject the hypothesis.

Smirnov or Cramer-van Mises 

To consider x[i]1 for a notational statement of observations, 

1x[i]j = � th 
�rde: statistic for the jth group (i = 1, .... ,n; 

j = 1, ... ,m). x[1J1 - x[1]. 

= 

rr2 (y) = 15" ( 6y2 - 1 /2) 

rr3(y) = ./f (20y3 - 3y) 
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the followin g formulas of Smirnov or Cramer-von Mises can be used: 

or 

00 

= l/12n + � {F(x[i]) - (2i - 1)/2n }2 = nf
_00

[F
0
(x) 

i = 1

-n -

nw(2) = _l_ + � {2i - 1 - F(x[i])}
2

n 1 2n i=l 2n 

I n the first test, reject the null hypothesis if w�l) > Wia,n)_

In the second test, reject the null hypothesis if w�2) > w�a,n)

and w1 (a,n) ::1: w1 (a,00) = w1 (�) where a� 1/2 and n > 20//a.

Table 2 in Appendix B contains values of w1(a) for a = .001

(.001).01(.01).5. w
2
(a,n),; w

2
(a,00) where a< 1/2 and n > 25/vU; 

W
2
(.l,00) = 1.933, W

2
(.05,00) = 2.492, W

2
(.0l,oo) = 3,857,

The test based on w�2) emphasized the tails-of-distribution

function. 

The test based on w�l) should be sensitive to the alternatives
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expressed in the terms of metric 

n f 
_

00

[F
0

(x) - F(x)J2dF
0
(x).

The test based on w�2) should be sensitive to alternatives based on

metric 

n [
�
F

0
(x) - F(x)l2 {F

0
(x)[l - F

0
(x)J}-1dF

0
(x), (Walsh,

1962, p. 361). 

An example of the Smirnov or Cramer-von Mises tests would be 

to test the hypothesis that a distribution is normal with mean 32 and 

standard deviation 1.8, by using the ten observations: 31 .0, 31.4, 

33.3, 33.4, 33.5, 33.7, 34.4, 34.9, 36. 2, 37.0. For x[i], 

and 

F(x[l]) = F ( 31 ) = 4> ( 31 - 32 ) _
1.8 .29 

W(l) 1 + � {F(x[i'J) _ (2i - 1) }2
= 12n t.., 

- -

n 
i =l 

2n 

=-,-+{(220
1) -. 29}2

12n 

- 1
- 120 + .057 = .065

Prpceding in this fashion, one finds nw�2) to be about .88,

whereas for oc = .05 the rejection limit is .461 (Table 2, Appendix B). 

The null hypothesis that the distribution is normal with mean 32 and 

standard deviation 1.8 is rejected at the 5 percent level (Lindgren, 



1962 , p. 334) . 

Chi -square (/) 

When the null hypothesis is simple, the chi-square 

goodness-of-fit test is based on the statistic 

2 k (n. - nP .)
X = I 

1 01 

. l nP . 
1 = 01 

2 

13 

(2. 8) 

where n; = observed number of cases categorized in the ; th category,

nP0; = expected number of cases in ; th category, and P0; = probability

of an observation falling in each class. 

The degree of freedom is k - 1. Thus, Formula (2.8) ordinarily 

is a one-side test where the null hypothesis is rejected when this 

statistic is too large. Since P . are known values, the distribu tion 
01 

of this statistic under the null hypothesis can be determined exactly. 

However, to avoid computational difficulties, approximations in this 

distribution are nearly always used. 

For a small n, Pearson (1900) expressed the formula (2.8) as 

2 1 .2
= -:!lL- ri X n . p . 

1 0 1 

(2.9) 

which is easier to compute, but (2.8) has the advantage over (2.9) of 

being a direct function of the difference between the observed 

frequencies n; and their hypothetical expectations nP
0

;, differences 

which are themselves of obvious interest (Walsh, 1962, p. 447). 

The whole of the chi-square test, which has been discussed so 



14 

far, is valid. However, we can determine the K classes into which 

the observations are grouped for best of fit. For example, in some 

classical experiments on pea-breeding, Mendel observed the frequencies 

of different kinds of seeds in crosses from plants with round yellow 

seeds and plants with wrinkled green seeds. They are given below, 

together with the theoretical probabilities (Kendall and Stuart, 1961, 

p. 422).
Observed frequency Theoretical probability 

Seeds
n·. 

Round and yellow 315 

Wrinkled and yellow l 01

Round and green 108 

Wrinkled and green 32 

n = 556 

The formula (2.9) gives 

16 
= 5:i6 .19, 337.3 - 556 = 0.47.

p 
01 

9/16 

3/16 

3/16 

.!Ll§_ 

l 

For (K - 1) = 3 degrees of freedom, the table of chi-square, 

Table 3, Appendix B, gives the probability of a value exceeding 0.47 

as a number which lies between .90 and .95. Therefore, the fit of the 

observations to the theory is very good indeed. A test of any size 

a <  .90 would not reject the hypothesis (Kendall and Stuart, 1961, 

p. 422-423).

We now must seek some means of avoiding the unpleasant fact 

2 2 2 2 
x2 = ;k-_16 {(31~) + (1~1) + (1~8) + l¥} _ 556 



15 

that there is a multiplicity of possible sets of classes, any of 

which will, in general, give a different result for the same data. 

Wald (1942) and Gumbel (1943) require a rule which is plausible and 

practical. Given K, choose the classes so that the hypothetical 

probabilities P
0i are all equal to 1/K. This procedure is perfectly

definite and unique. This procedure requires that the data be 

available ungrouped for exactness. 

For example, 50 random variables are obtained from the 

distribution: 

df = exp(-x)dx O < x < 00
• 

Arranged in order of variate-value, the observations are: 0.01, 0.01, 

0.04, 0.17, 0.18, 0.22, 0.22, 0.25, 0. 25, 0. 29, o. 42, 0. 46, 0.47, 

0.47, 0.56, 0.59, 0.67, 0 .68, 0.70, 0. 72, 0. 76, 0.78, 0.83, 0. 85, 

0.87, 0.93, l. 00, l . 0 l , l . 01 , l . 02, 1.03, 1.05, 1.32, 1.34, 1.37, 

l . 47, 1. 50, l. 52, l. 59, l . 71 , 1 . 90 , 2 . l O , 2 . 35 , 2 . 46 , 2 . 46 , 2 . 5 0 ,

3.73, 4 .07, 6.03. 

Suppose that we wish to form four classes for a chi-square 

test. A natural grouping with equal-width interval would be 

(Kendall and Stuart, 1961, p. 432). 

Vari ate val ue Observed frequency Hypothetical frequency 

0 - 0.50 14 19.7 

0.51 - 1.00 13 11. 9

l. 01 - 1.50 10 7.2 

l. 51 and over 13 11. 2

50 50 
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The hypothetical frequencies are obtained from the Biometrika 

Table (Pearson and Hartley, 1956, Vol. 1) distribution function of a 

chi-square variable with 2 degrees of freedom which is just twice a 

variable with the distribution alone. We find x
2 = 3.1 with 3 degrees

of freedom, a value which would not reject the hypothetical parent 

distribution for any test of a size less than a = .37. The agreement 

of observation and hypothesis is, therefore, very satisfactory. 

Let us now consider how the same data would be treated by the 

method of the equal probabilities. We first determine the value of 

the hypothetical variable by dividing it into four equal probability 

classes. These are, of course, the quantiles. The Biometrika 

Tables give the values 0. 288, 0.693, 1.386. We now group the classes 

as follows (Kendall and Stuart, 1961, p. 432): 

Variate value Observed 

0 - 0.28 

0.29 - 0.69 

0. 70 - 1.38 

1. 39 and over

frequency 

9 

9 

17 

15 

50 

Hypotheti ca 1 

12.5 

12.5 

12.5 

12.5 

50.0 

frequency 

Chi-square is now easier to calculate, since (2.9) reduces to 

2 k k 2 
X = - [ n1 - nn i =l 

And since all hypothetical probabilities P
0i = t, we find here that

x
2 

= 3.9 would not lead to rejection unless the test size exceeded 

0.27. The result is still very satisfactory, but the equal 
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probabilities test seems more critical of the hypothesis than was the 

other test. There is a little extra arithmetical work involved in 

the equal probabilities method of carrying out the chi-square test. 

Instead of a regular class width, with hypothetical frequencies to 

be looked up in a table (or, if necessary, to be calculated), we have 

irregular class widths determined from the tables so that the 

hypothetical frequencies are equal. The equal probabilities method 

of forming classes for the chi-square test will not necessarily 

increase the power of the test (Kendall and Stuart, 1961, p. 431-433). 

Let us outline some of the advantages and disadvantages of 

chi-square test for goodness-of-fit. First, this test has the general 

advantages and disadvantages of tests based on categorical type data. 

Namely, it has the advantages of being relatively easy to apply and 

being applicable to investigating probability distributions over 

specified restricted sets of points. Second, by grouping the data into 

classes, we do not need to know the values of the individual observa

tions so long as we have k classes for which the hypothetical P
0i can

be computed. On the other hand, the chi-square test is not consistent 

against general alternatives and seems to be somewhat insensitive unless 

the sample size is large. 

The chi-square test of fit also has some additional disadvantages. 

First the signs of the derivations of n. from nP . , and the order in 
l 01 

which these signs occur, are not taken into consideration. Second, 

the relative locations of the disjoint sets from which the categories 

are determined are not considered. Third, there are some difficulties 

of a computational nature. Fourth, the need to group the data into 

classes clearly involves the sacrifice of a certain amount of 
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information (Walsh, 1962, p. 448). 

Kolmogorov 

The Kolmogorov test is the most important of the general tests 

of fit alternative to chi-square. It is based on deviations of the 

sample df Sn(x) from the completely specified continuous hypothetical

df F
0
(x) (simple hypothesis). In a sample df, the distribution 

function is defined by 

0 X < X(l)

n X(r) < X < X(r+l) (2. 10) 

1 x(n) < x

The x(r) are the order-statistics, i.e., the observations arranged to

that x(l) < x(2) < • • • . •  < x(n)· Sn(x) is simple,the proportion of

the observation not exceeding x. 

The Kolmogorov test is defined by 

on = SUP[S (x) - F
0
(x)]

X 
n 

maximum absolute difference between Sn(x) and F
0
(x).

(2 .11) 

The appearance of the modules in the definition (2.11) might 

lead us to expect difficulties in the investigation of the distribution 

of On, but remarkably enough the asymptotic distribution was obtained

by Kolmog0rov (1933) when be first proposed the statistic. The 

derivation which follows is due to Feller (1948) and is found in 

Appendix A. 
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For a given n, a single table is required for the distribution 

function of Dn and can be used for any F0(x). This table can be

computed through the use of recursion formulas and has been computed 

for various sample sizes (Table 4, Appendix B, and Lindgren, 1962, 

p. 329).

For an example, consider testing the hypothesis that a dis

tribution is normal with mean 32 and variance 3.24, by using the ten 

observations, 31.0, 31.4, 33.3, 33.4, 33.5, 33.7, 34.4, 34.9, 36.2, 

37.0. The sample distribution function and the population distribution 

function being tested is sketched in Figure 1. The maximum deviation 

is about .56. According to Table 4, the 95th percentile of the 

distribution of Dn is .409. Since .567 > .409, the distribution

being tested is rejected at the 5 percent level (Lindgren, 1962, p. 

329-330).

J 
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igure 1. The absolute difference between Sn(x) and F0(x). 
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Comparison of the chi-square 
and Kolmogorov tests 

20 

The chi-square test is-definitely less powerful than the 

Kolinogorov test. For very small samples the chi-square te tis not 

appli able at all, but the Kolmogorov test is. 

The chi-square test is suitable for data which are in nominal 

or stronger scales. In many cases the chi-square test may not make 

efficient use of all information in the data. If the populations of 

core are continuously distributed, the Kolmogorov test should be 

chosen in preference to the chi-square test. If the Kolmogorov test 

is used with data which do not meet the assumption of continuity, 

it is till suitable but it operates more conservatively; i.e., the 

obtained value of Pin such cases will be slightly higher than it 

�hould be, and thus the probability of a Type II error will be 

lightly increased. If H
0 

is rejected with such data, confidence

c;e1,1 b had in the decision (Siegel, 1956, p. 47). 

C 



CHAPTER III 

COMPOSITE HYPOTHESES 
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A hypothesis is composite when the observations have come from 

an mal distribution where the parameters are unspecified, and it 

nietrn1es is called a test of normality. In addition, if the normal 

distribution has its mean but not its variance specified, the 

hypothesis remains composite. 

f<e� ri ·tions of chi-square and 
Ko1mogorov tests 

Rosenblatt (1962, p. 513) has eliminated the paradox of almost 

sue rejection of the null hypothesis when too much data are observed 

and has extended the Kolrnogorov test to ·composite hypothesis. Previous 

Lo hi work, the Kolmogorov-Smirnov tests were suitable only for 

testing the simple hypothesis, H
0

:F(x) = F
0

(x), against all alter

natives. 

The same paradox of almost certain rejection of the null 

hypothesis, when numerous observations are used, is also pointed out 

ln the chi-square test-of-fit by Cochran (1952). 

Chi -square (.X:l 

Suppose that F
0
(x) is specified as to its form, b1,1t that some

(JI ' 

0 



(or perhaps all) of the parameters are left unspecified. The 

multinomial formulation of (30.4) on page 420 of The Advanaed

22 

�fheory of Statistias (Kendall and Stuart, 1961) is that the 

theoretical probabilities P
0i are not now inmediately calculable

because they are functions of the S (assumed< k - l) unspecified 

parameters e1, e2, •.. ,es which we may denote collectively bye. Thus,

we must write them P
0i( e). To make progress, we must estimate e by

some vector of estimator T; to be as chi-square distributed multi

nomial maximum likelihood (ML) estimators of the parameters must be 

used (Kendall and Stuart, 1961, p. 426). However, it has been shown 

that ordinary ML estimators are adequate in large samples (Kendall 

and Stuart, 1961, p. 430) and use 

X = 

in the form 

k 
L 

i= 1 

2(n. - nP .) 
1 01 

( 3. 1 ) 

This clearly changes our distribution problem, for now the P0;(t) are 

themselves random variables,and it is not obvious that the asymptotic 

distribution of chi-square will be of the same form as in the case of 

1m ly H
0

• In fact, the term ni - nP
0i(t) does not necessarily have a

zero expectation. We may write chi-square identically as 

2 

2 k l X = ~ --...:...- -- [{n; - nP01.(e)} 2 + n2{P .(t) - p .(0)}
2 

-
i=l nPo;(t) o1 o1 
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(3.2) 

As an example, five 11coins 11 with identical but unknown values 

of P - P (heads) are tossed together 100 times to test the hypothesis 

tha the number of heads per toss follows a binomial distribution. 

(Perhaps some kind of dependence is introduced in the tossing process.) 

The results are given as follows (Lindgren, 1962, p. 327): 

Number of heads 0 l 2 3 4 5 

Frequency 3 16 36 32 11 2 

The maximum likelihood estimate of p is the mean number of 

heads per five coins divided by five, which turns out to be 0.476. 

Using this to calculate the cell probabilities by the binomial formula, 

one obtains the following expected frequencies: 4.0, 17.9, 32.6, 

29.6, 13.5, 2.4. 

The value of chi-square is then found to be 

2 = (3 - 4)2 (2 - 2.4)2 =
X 4 + .... + 2.4 1.53. 

The five percent rejection limit would be the 95th percentile of the

chi-square distribution with 6-1-1-4 degrees of freedom wh ich is 9.49. 

Since 1.53 < 9.49, the null hypothesis is accepted (Lindgren, 1962, 

p. 327).

Kolmo orov 

Test of approximate hypothesis for location scale parameter 

families of distribution are: 

g 



H
0 

= [G:G(x) 

continuous d.f.] 

= F (x-µ) all x, some µ,o > 0, Fe a given
C O 

* 
H

0 
= [F element of D such that ct1(F,G) < K,G element H

0
]

24 

D = is the set of all one-dimensional distribution functions. 

ct1 = Kolmogorov distance ct1(F,G) = MaxlF(x) - G(x)I
y 

/ 
'( 

-/. - / / 

�- ----------------

Figure 2. The determination of the number K. 

The number K is determined from realistic considerations exter

nal to the mathematics. It is associated with -ln envelope shown in 

Figure 2. Any df contained within the dotted lines are in H
0 

for the 

given K. For each G & H
0

, let gG = [H & D:d1(G,H) � K]. If F & D

and F&gG' we have, say 5 d1(F,G) = K + t, JI,> 0.
* 

The test of H
0 

which is proposed by Judah Rosenblatt is 

I · --

* 



* 
RejH

0 
when x1(w) , .... ,xn(w) are ob�erved +-+ infG & H d1

0 
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(Fn,G)(w) .::._ K + hl-a,n = q, where Fn is an empirical function and the

v alue of hl-a,n is given in Table 4, Appendix B.

The test procedure has been worked out by Rosenblatt , and it 

is based upon the following theorem: 

Theorem 1. 

one (µ,a), a >  0. 

infH & H < q if and only if for at least
0 

(x['
J
(w) - µ)/a Kb. ,(x['J(w) - µ)/a > a. 

J J,q J J,q

for all j = l, ... ,n, when a. and b. be any number which Fc(a. )
J ,q J ,q J ,q 

= j/n q,Fc(bj ,q) = (j - 1)/n - q for j = 1, ... ,n, where x[j](w)

is the j th order statistics of the sample. 

The proof of the theorem is in The Annais of Mathematiaai

Statistics, Volume 33, December, 1962, p. 1359. The signifitance 

of thi theorem is that for each q ,x1 (w) , ... ,xn (w) we can determine

wilethe or not there is a (µ,a), a >  0 for which the inequalities in 

Theorem l are all satisified in a finite number of operations. This 

is accomplished geometrically by looking at each inequality in 

Theorem l separately and blocking out those points in the (µ,a) plane 

for which each inequality cannot be satisfied. Only a straight-edge 

a,d graph paper are required. If there are any points (µ,a), a > 0, 

not blocked out for at least one of these inequalities, then we know 

that there is a G in H
0 

for which ct1 (Fn,G)(w) < q. For q = K +

h l-a,n' if there is a {µ,a), a >  O for which Theorem 1 are satisfied,

we accept H
0 

(Rosenblatt, 1962, p. 1358-1359). 

s 

* 
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Examples 

Test the hypothesis that the following random sample comes 

from the populationwiich is approximately normally distributed, 

.41, .38, .28, .02, .39, .58, .37, .79, .21 , .71 , a = .95. In terms 

of H
0 

and H�, the hypothesis may be written 

H = [G: G(x) = F (�)] 
0 C a 

* 

H
0 

= [F & D:ct1(F,G) .::_ K]

* 

where Fe is the standard normal distribution and let K = .001. H
0 

is 

the set of all d.f. such that 

ct1 (F ,G) < .001.

�·irst we rewrite the 1 0 sampl�s in order: .02, .21 , .28, .37, 

.38, .41, .58, . 71, . 79. Let 

q = K = h l �, j = 1 ., ... , n. -a,n

We get the value of hl-a,n; h_05,1 0 = .409 from Table 4,

Appendix B. Let q = .00 1 + .409 = .4 1 0. The a. and b. are found
J ,q J ,q 

from the standard normal distribution in the following manner: 

<P(a. ) = j/n-q 
J ,q 

<P(b. )= 1 -j +q J ,q n 
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The solution of a. and b. for i = 1, ... ,10 are shown below: J ,q J ,q 

j <I>(aj,q) a. <P ( b . ) b. 
J ,q J ,q J ,q 

1 0 - 00 .410 -.22 

2 0 -,co .310 .03 

3 0 - 00 .210 .28 

4 0 .. 00 .110 .56 

5 .090 -. 134 .010 .88 

6 . 190 -.87 -.090 1. 34

7 .290 -.55 1 00 

8 . 390 -.27 1 00 

9 . 490 -.02 1 00 

10 .590 -.23 1 00 

We shall proceed by blocking out the value ofµ and o which 

d not satisfy the inequalities in Theorem 1. 

For j = 1, the inequalities are 

(x1(w) -µ)/o < b
1 ,q 

(.02 -µ)/o < -.22 

(x1 (w) -µ)/o > a1 ,q

(.02 -µ)/o > - oo 

The shaded area of Figure 3 shows the values ofµ and o which 

do not satisfy inequalities (1) for j = 1. Similarly for j = 2, the 

shaded area of Figure 4 shows the vlues ofµ and o which do not satisfy 

inequalities (1) for j = 2. 
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(.21 - µ)/a < .03 (.21 - µ)/a > -oo.

For j = 3, Figure 5 shows the value ofµ and a which do not 

satisfy inequalities (1) for j = 3. 

(.28 - µ)/a <.28 (.28 - µ)/a > -oo. 

For j = 4, Figure 6 shows the value ofµ and a which do not 

satisfy inequalities (1) for j = 4. 

(.37 - µ)/a <.56 (.37 - µ)/a > -oo, 

For j = 5, Figure 7 shows the value ofµ and a which do not 

satisfy inequalities (1) for j = 5. 

(.38 - µ)/a < .88 (.38 - µ)/a > -1.34. 

For j = 6, Figure 8 shows the value ofµ and a which do not 

satisfy inequalities (1) for j = 6. 

(.39 - µ)/a < 1:34 (.39 - µ)/a > -.87. 

For j = 7, Figure 9 shows the value ofµ and a which do not 

satisfy inequalities (l) for j = 7. 

(.41 -µ)/a < + oo (.41 -µ )/a > -.55. 
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For j = 8, Figure 10 shows the value ofµ and a which do not 

satisfy inequalities (1) for j = 8. 

( .58 -µ)/a < +oo (.58 - v}/a > .27. 

For j = 9, Figure 11 shows the value ofµ and a which do not 

satisfy inequalities (1) for j = 9. 

(. 71 -µ)/a_< +"° (.71 -µ)/a > -.02. 

For j = 10, Figure 12 shows the value ofµ and a which do not 

satisfy inequalities (1) for j = 10: 

( . 79 -µ) /a < +oo (.79 -�µ)/a > .23. 

All of the shaded regions given in Figures 3 to 12 are super

imposed in Figure 13. Since the complete plane is not covered, we 

accept the hypothesis. 

Comparison of Kolmogorov 1 s 
statistic with chi-square 

Massey (1952) established a lower bound to the power 

of the Kolmogorov test in large samples as follows: 

Write F1(x) for the d f. under the alternative hypothesis

H1 ,F
0
(x) for the d.f. being tested in Advanced Theory of Statistics

Kendall and Stuart, 1961, Chapter 30) and 

(3.3) 



T 

Figure 3. The values ofµ and a which do not satisfy 
inequalities in Theorem l for j = 1. 
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( . 21 - µ)/CJ < • o 3 . 
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( .21 - µ)/CJ > -00 ,,,,,,,,,,,,,,,,,,,, 
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Figure 4. The values ofµ and o which do not satisfy 
inequalities in Theorem 1 for j = 2. 
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Figure 5. The values ofµ and a which do not satisfy 
inequalities in Theorem 1 for j = 3. 
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(.28 - µ)/9_,,..< 
·-

(.28 - µ)/O_! 



·-

(.37 - µ)/0 < .56 

(.37 - µ)/0 > -00 

(--i \ 

Figure 6. The values ofµ and a which do not satisfy 
inequalities in Theorem l for j = 4. 
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(.38 - µ)/o < .88 

(.38 - µ)/o > -.1.34 
, .. ., 

j --

'6' 

Figure 7. The values ofµ and o which do not satisfy 
inequalities in Theorem l for j 

= 5. 
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l II) 

The values ofµ and a which do not satisfy 
inequalities in Theorem l for j = 6. 
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Figure 10. The values ofµ and a which do not satisfy 
inequalities in Theorem 1 for j = 8. 
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inequalities in Theorem 1 for j = 9. 
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if dais the critical value of On as before, the power we require is

This is the probability of an inequality arising for some x. 

Clearly this is no less than the probability that it occurs at any 

particular value of x. Let us choose a particular value, x�, at 

which F
0 

and F1 are at their farthest apart, i.e.,

(3.4) 

Thus we h.ave 

r 

Now, Sn(x6) is binomially distributed with probability

F1(x�) of falling below x6• Thus, we may approximate the right-hand

side of (3.5) using the approximation to the binomial distribution, 

i.e., asymptotically

P > 1 - ( 2II) -l / 2 {F1( 1 - F
1
)/M} 112

F
0 

-

F1 - da
exp (-1 /2u2 )dµ

(3.6) 

P = P{Sup IS (x) - F (x) I > d / H1} 
x n o a 
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F
0 

and F
1 

are evaluated at x6in (3.6) and hereafter. If F
1

is specified, (3.6) is the required lower bound for the power. 

Clearly, as n � 00, both limits of integration increase. If 

they will both tend to +00 if F0 > F
1 

and to -00 if F0 < F1. Thus

the integral will tend to zero and the power to 1. As n increases, 

d declines, so (3.7) is always ultimately satisfied. Hence, the 
a 

power � 1 and the test is consistent. If F1 is not completely

specified, we may still obtain a (worse) lower bound to the power from 

(3.6). Since F
1
(1 - F

1
) < 1/4, we have, for large enough n, 

P > 1 - ( 2IT)
- l / 2 exp(-1;2u2)dµ

which, using the symmetry of the normal distribution, if F
0

<< F1, we

1nay write as 

P > 1 - (2rr)-112

2n112(li + d)
a. 

2n112(6 - d)
a 

2 
exp(-l/2u )dµ (3.8) 

(3 . 7) 
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The bound (3.8) is in terms of the maximum deviation 6 above. 

Using (3.8) and calculations made by Williams (1950), Massey 

(1952) compared the value of 6 for which the large-sample powers of the 

chi-square and the On tests are at least 0.5. For test size a = .05, 

the On test can detect with power 0.5 a 6 about half the magnitude

of that which the chi-square test can detect with this power. Even 

with n = 200, the ratio of 6 1 s is 0.6, and it declines steadily in 

favor of On as n increases. Since this comparison is based on the

poor lower bound (3.8) to the power of On, we must conclude that On

is a much more sensitive test for the fit of a continuous distribution 

(Kendall and Stuart, 1961, p. 458). 

Let us suppose that a sample of 40 observations is in hand, 

where values are arranged in order: 0.0475, 0.2153, 0.2287, 0.2824, 

0.3743, 0.3868, 0.4421, 0.503�, 0.5945, 0.6004, 0.6255, 0.6331, 

0.6478, 0.7867, 0.8878, 0.8930, 0.9335, 0.9602, 1.0448, 1.0556, 

1 ,0894, 1. 0999, 1. 1765, 1.2036, 1.2344, 1.2712, 1 . 3515, 1. 3528, 

1.3774, 1. 4209, 1 . 4304, 1.5137, 1.5288, 1.5291, 1. 5677, 1. 7238, 

1.7919, 1.8794. 

We wish to test, with a = .05, whether the parent F
0
(x) is 

norma 1 with mean 1 and variance 6. From Birnbaum's {1952) Table, we 

find for n = 40, a = .05, that d = .2101. Consider the smallest 
a 

observation, x(l)" To be acceptable, F
0
(x(1)) should lie between

O and d ,  i.e., in the interval (9,0.2101). The observed value of 

x(l) is 0.0475; and from Table of the normal d.f. in Statistiaal

Theory (Lindgren, 1962, p. 478), we find F
0
(x(l)) = 0.0098, within

the above interval. So the hypothesis is not rejected by this/ 

observation. Further, it cannot possibly be rejcted by the next 
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higher observations until we reach an x(l) for which either (a)

1/40 - 0.2101 > .0098, i.e., i > 8.796, or (b) F
0
(x(i)) > .2101 +

1/40, i.e., x(i) > . 7052 (from the tables again). The 1/40 is added

on the right of (b) because we know that Sn(x(i)) � 1/40 for i > 1.

Now from the data, x(i) > .7052 for i � 14. We will not need, there-

fore, to examine i = 9 (from the inequality (a)). We find there the 

acceptance interval for F
0
(x{q))

= (0.0149, .4101) 

We find from the tables F0(x{q)) = F
0
(0.59�5) = • 1603, which is

acceptable. 

or 

To reject H
0

, we now require either 

1 / 40 - 0 . 21 0 1 > • 16 0 3 , i . e • , i > 1 4 . 82 

F
0
(x(i)) > .4101 + 1/40, i.e., x(i) > .9052, i.e., i > 17.

We therefore proceed to i = 15, and so on. One should note that only 

the six values, i = 1, 9, 15, 21, 27, 34, require computations in this 

case. The hypothesis is accepted because in every one of these six 

cases the value of F
0 

lies in the confidence interval. It would have 

been rejected, and computations ended, if any one value had lain out

side the interval (Kendall and St14art, 1961.., p. 460-461). 
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The distribution of On is completely distribution-free when

H
0 

holds; because if Sn(x) and F
0
(x) are plotted as ordinates against

x as Absissa, On is simply the value of the largest vertical difference

between them. Clearly, if we make any one-to-one transformation of x, 

this will not affect the vertical difference at any point and, in 

particular, the value of Dn will be unaffected.

Now consider the values x
10

, x
20

, ... ,xn-l ,O defined by

(A-1.1) 

(If for some k, (A-1.1) holds within an interval, we take xko to be

the lower end-point of the interval.) Let c be a positive integer. 

If, for some value x, 

> £
n ,

(A-1.2) 

the inequality (A-1.2) will hold for all values of x in some interval 

where at the upper end-point x' it becomes an equality; i.e., 

S (x') - F (x') = £ 
n o n 

(A-1.3) 

Since Sn(x) is by definition a step-function with values which

are multiples of 1/n and c is an integer, it follows from (A-1.3) that 
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F
0
(x 1) is a multip�e of 1/n; and thus from (A-1.1), x 1 = xko for

some k, so that (A-1.3) becomes

k+c
-- (A-1.4) 

From the definition of Sn(x) at (2.10) in Part 4 of Chapter 2,

this means that exactly (k+c) of the observed values of x are less

t,1an xko' the hypothetical value below which k of them should fall.

Conversely, if x(k+c) < xko < x(k+c+l)' (A-1.2) will follow immediately.

We have, therefore, established the preliminary result that the 

equa 1 ity 

hold for some x if and only if for some k

(A-1.5) 

We may therefore confine ourselves to consideration of the probability 

that (A-1 .5) occurs. 

We denote the event (A-1.5) by Ak(c). From (2.11) in Part 4 

of Chapter 2, we see that the statistic On will exceed c/n if and

only if at least one of the 2n events 

(A-1.6) 

s ( X ) = F ( X ) = c/n n ko o ko ' 
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occurs. We now define the 2n mutually exclusive events U and V . U r r r 
occurs if Ar(c) is the first event in the sequence (A-1.6) to occur,

and Vr occurs if Ar(-c) is the first. Evidently

(A-1.7) 

We have, from the definitions of Ar(c) and Ur, Vr, the relations

k 
= L [P{Ur}P{Ak(c)jAr(c)} + P{Vr}P{Ak(c)IAr(-c)}],

r=l 

k 
P{Ak(-c)} = L [P{Ur}P{Ak(-c)IAr(c)} + P{Vr}P{Ak(-c)jA (-c)}]

r=l r 

From (A-1.5) and (A-1.1), we see that P{Ak(c)} is the

probability that exactly (k::ac) "successes" occur in n binomial 

trials with probability k/n, ie., 

Similarly, for r k, 

( ) k-r k-r n-(k+c)= (n - r+c ) ( k- r) ( 1 _ -) K-r n-r n-r 

(ll-\r-<:), k-r k-r+2c k-r n-(k+c)
P{Ak(c)IAr(-c)} = · k-r+2c\/(n-r) (l - n-r) 

(A-1.8) 

(A-1.9) 

(A-1.10) 

n 
P{Dn > f} = r~l [P{Ur} + P{Vr}] 

P{Ak(c)} = ( n k k+c k n-(k+c) k+c) (n) (l - -) n 
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Formulas (A-1.9) and (A-1. 10) hold for negative as well as 

positive c. Using them we see that (A-1.8) is a set of 2n linear 

equations for the 2n unknown P{Ur}, P{Vr}. If we solved these, and

substituted into (A-1.7), we should obtain P{Dn>c/n} for any c.

we have 

If we now unite 

-k kk+c
Pk(c) = 

e (k+c)! '

Then if we define 

(A-1.11) 

(A-1.12) 

(A-1 . 13) 

and substitute (A-l.9--A-1.13) into (A-1.8), the latter becomes simply 

(A-1.14) 

k 
Pk(-c) = ~ [U Pk r(-2c) + V Pk (O)] r=l r - r -r 



The system (A-1 .14) is to be solved for 

We therefore define 

1 k 1 k Pk = 
Pn(o) � Pk-r (-c) Ur' qk = Pn(o) � Pk-r (c) Vr�, 

�, 

so that, from (A-1.16) 

� [P{Ur} + P{Vr}] = Pn + qnr=l 
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(A-1.15) 

( A-1.16) 

( A-1.17) 

We now set up generating functions for the Pk and qk, i.e., 

If we also define generating functions for the Uk' Vk and ( for 

convenience) n-112Pk(c), i.e.,

G (t) u 

and 

00 

V l 
k 

we have from (A�l.16), the relationships 

n 

co 

n 
L [P (~c) Ur+ Pn-r(c) Vr] r::;l n-r 

k 
= L Ukt , G (t) = L 

k=l V k=l 

- l /2 co k G(t,c) = n L Pk(c)t , 
k=l 
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(A- 1. 18) 

To consider the limiting form of (A-1 .18), we put 

c = zn -1 /2

and let n + 
00 and c + 00 with it so that z remains fixed. We see from 

(A-1.11) that Pk(c) is simply the probability of the value (k+c)

for a poisson variate with parameter k, i.e., the probability of its 

being c/k1 /2 standard deviations above its mean. If k/n tends to some

fixed value m, then as the poisson variate tends to normality. 

2 
Pk(c) + (2ITK)- 1 12 exp (-1/2 �)

or, putting k = mn, c = zn 1 /2

(A-1.19) 

Now, since G(t,c) is a generating function for the n1 12Pk(c),

we have 

-1/2
n 

00 

I 
k=l 

P (zn l /2)e-tk/n
k 

and under our limiting process this tends by (A-1. 1 9) to 



00 

lim G(e-t/n, zn112) = (2IT)-1/2

n-+o:> I
2 

n-1/2 exp(-tm - 1/2 �) dm.

(A-1. 20) 

If we differentiate the integral I on the right of (A-1.20) 

with respect to 1/22�, we then find the simple differential equation 

al ---2- - -

a(l/2'2.) 
( t ) I
1 ; 2z

2 

whos solution is 

Thus 

1/2 
2 

1/2

I= (i) exp{-(2tz ) }. 

t/ 1/2 
-1/2

2 
1/2

lim G(e- n, zn ) = (2t) exp{-2tz ) } 
n-+o:> 

(A-1. 21) is an even function of z, and therefore of c. 

Since from (A-1 .14) 

G(t,c) = Gu(t)G(t,o) + Gv(t)G(t,2c),

G(t,-c) = Gu(t)G(t,-2c) + Gv(t)G(t,o)

this evenn�ss of (A-1. 21) in c gives us 

(A-1. 21) 

(A-1 . 22) 



= lim G (e-t/n)
n--+oo

V 

= lim G(e-t/n, zn 112)
lim G(e-t/n ,0) + lim G(e-t/n, 2zn1/2)

by (A-1.2 1). Thus in (A-1 . 18), remembering that 

(A-1.21) and (A-1.23) give 

2 l /2 exp{-(8tz ) } = L(t) 
l + exp{-(8tz2) 112 }

This may be expanded into geometric series as 

L(t) 
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(A-1 . 2 3) 

(A-1.2 4) 

By the same integration as at (A-1, 20), L(t) is seen to be one-sided 

Laplace transform f
00

e-mtf(m)dm of the function

= exp{-(2tz 2)1/ 2} 
1 + exp{-(8tz 2)1/ 2} 

0 



f(m) = ; (-l)r-lexp{-2r2z2/m}.
r=l 
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(A-1.25) 

The formula (A-1.25) is thus the result of inverting either of the 

limiting generating functions of the Pk or qk' of which the first is

ll·m n-lG (e-t/n) _ . -1; P e-tk/n = f �lim P )e-tmdm.- l1m n k=l k k 
� p 

0 

From (A-1.7) and (A-1 .1 7), we require the value (pn + qn). We thus

put k = n, i.e., m = 1, in (A-1.25) and after multiplying by 2, 

obtain our final result 

00 

lim P{Dn zn112 } = 2 � (-l)r-lexp{-2r
2z2}.

n� r=l 
(A-1. 26) 

(Kendall and Stuart, 1961, p. 458-459) 
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Tables 1 through 4 are included as an appendix because they 

are too cumbersome to include in the main body of the paper. They 

are, however, extremely valuable for obtaining values used in the 

various types of nonparametric tests. 



Tab 1 e 1. Values of x
2(k) for .005 < a <  .995 and k = 1(1)(30) 
a 

k
a 

l 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

when k > 30 and 2/7k < a <  1 - l/2k, x
2(k) � . - - a 

k(l - 2/9k + k /2/9k)3

Cl. 

.995 .990 .980 .975 . 950 . ,900 

393xl0-7 157xl0-6
628xl0-

6 
982xl0-6 393xl0-

5 . . 0158
.0100 . 0201 .0404 .0506 .1026 .2107 
.0717 . 1148 .185 .2158 .3518 .5844 
.2070 .2971 .429 .4844 .7107 1. 064
.4117 .5543 .752 .8312 1. 145 1.610 

.6757 . 7821 1. 134 1 .237 1. 635 2.204 

.9893 1 .269 1.564 1 .690 2.167 2.833 
1. 344 1.646 2.032 2 .180 2.733 3.490 
1. 735 2.088 2.532 2.700 3.325 4 .168 
2. 156 2.558 3.059 3.247 3.940 4.865 

2.603 3.053 3.609 3. 816 4.575 5.578 
3.074 3. 571 4.178 4.404 5.266 6.304 
3.565 4.107 4.765 5.009 5.892 7.042 
4.075 4.660 5.368 5.629 6. 571 7.790 
4.601 5.229 5.985 6.262 7 .261 8.547 

5. 142 5.812 6.614 6.908 7.962 9.312 
5.697 6.408 7.255 7.564 8.672 10.09 
6.265 7.015 7.906 8. 231 9.390 10.86 
6.844 7.633 8.567 8.907 10.12 11. 65
7.434 8.260 9.237 9.591 10.85 12.44

8.034 8.897 9.915 10.28 11 .59 13.24 
8.643 9.542 10.60 10.98 12.34 14.04 
9.260 10 .20 11.29 11.69 13. 09 14.85 
9.886 10. 86 11 . 99 12.40 13.85 15.66 

10.52 11 . 52 12.70 13. 12 14. 61 16.47 

11 .16 12.20 13. 41 13. 84 15.38 17.29 
11 . 81 12.88 14. 13 14.57 16. 15 18.11 
12.46 13 .56 14.85 15. 31 16.93 18.94 
13. 12 14.26 15.57 16 .05 17. 71 19.77 
13. 79 14.95 16. 31 16.79 18.49 20.60 

.800 

.0642 

.446 
1. 005
1. 649
2.343

3.070 
3.822 
4.594 
5.380 
6. 179

6.989 
7.807 
8.634 
9.467 

10. 31

11 .15 
12.00 
12.86 
13. 72
14.58

15 .45 
16.31 
17. 19
18.06
18.94

19 .82 
20.70 
21.59 
22.48 
23.36 



Table 1. Continued 

ka .750 .700 .500 .300 .250 .200 

1 .1015 .148 .4549 1. 074 1. 323 1. 642

2 .5754 . 713 1. 386 2.408 2.773 3.219

3 1. 213 1.424 2.366 3.665 4. 108 4.642

4 1. 923 2 .195 3.357 4.878 5.385 5.989

5 2.675 3.000 4.351 6.064 6.626 7 .289

6 3.455 3.828 5.348 7.231 7 .841 8.558 

7 4.255 4.671 6.346 8.383 9.037 9.803 

8 5.071 5.527 7.344 9.524 10 .22 11 .03 

9 5.899 6.393 8.343 10 .66 11 .39 12.24 

10 6.737 7.267 9.342 11 . 78 12.55 13.44 

11 7.584 8.148 10.34 12.90 13.70 14.63 

12 8.438 9.034 11. 34 14. 01 14.85 15 .81 

13 9.299 9.926 12.34 15. 12 15.98 16.99 

14 10. 17 10.82 13.34 16.22 17 .12 18 .15 

15 11. 04 11. 72 14.34 17.32 18.25 19. 31

16 11. 91 12.62 15.34 18.42 19. 37 20.47 

17 12.79 13. 53 16.34 19. 51 20.48 21. 62

18 13.68 14.44 17.34 20.60 21 .60 22.76

19 14.56 15.35 18. 34 21 .69 22. 72 23.90

20 15.45 16 .27 19.34 22.78 23.83 25.04

21 16.34 17. 18 20.34 23.86 24.93 26 .17 

22 17 .24 18.10 21.34 24.94 26.04 27.30 

23 18. 15 19.02 22.34 26.02 27 .14 28.43 

24 19.04 19.94 23.34 27. 10 28.24 29.55 

25 19.94 20.87 24. 34 28.17 29.34 30.68 

26 20.84 21. 79 25.34 29.25 30.43 31 .80 

27 21 .75 22. 72 26.34 30.32 31 .53 32. 91

28 22.66 23.65 27.34 31.39 32.62 34.03

29 23.57 24.58 28.34 32 .46 33.71 35 .14

30 24.48 25. 51 29.34 33.53 34.80 36.25
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Table 1. Continued 

ka . 100 .050 .025 .020 .010 .005 

1 2. 760 3.841 5.024 5.412 6.635 7.879 
2 4.605 5.991 7.378 7.824 9.210 10.60 
3 6-. 251 7.815 9.348 9.837 11. 34 12.84 
4 7. 779 9.488 11 .14 11 .67 13 .28 14.86 
5 9.236 11 .07 12.83 13. 39 15.09 16.75 

6 10.64 12.59 14.45 15.03 16. 81 18.55 
7 12. 02 14.07 16. 01 16.62 18.48 20.28 
8 13.36 15. 51 17. 53 18.17 20.09 21 .96 
9 14.68 16.92 19.02 19.68 21 .67 23.59 

10 15.99 18. 31 20.48 21.16 23.21 25. 19

11 17. 28 19.68 21. 92 22.62 24. 72 26.76 
12 18.55 21.03 23.34 24.05 26.22 28.30 
13 19. 81 22.36 24.74 25.47 27.69 29 .82 
14 21 . 06 23.68 26. 12 26.87 29. 14 31. 32
15 22. 31 25.00 27.49 28.26 30.58 32.80

16 23.54 26.30 28.85 29.63 32 .00 34.27 
17 24. 77 27.59 30 .19 31.00 33. 41 35. 72
18 25.99 28.87 31 .53 32.35 34 .81 37 .16
19 27.20 30 .14 32.85 33.69 36 .19 38.58
20 28.41 31 .41 34. 17 35.02 37.57 40.00

21 29.62 32.67 35.48 36.34 38.93 41 .40 
22 30. 81 33.92 36. 78 37.66 40.29 42.80 
23 32 .01 35. 17 38.08 38.97 41 .64 44.18 
24 33.20 36.42 39.36 40.27 42.98 45.56 
25 34.38 37.65 40.65 41 .57 44. 31 46.93 

26 35.56 38.89 41 . 92 42.86 45.64 48.29 
27 36.74 40. 11 43 .19 44.14 46.96 49.64 
28 37.92 41 .34 44.46 45.42 48.28 50.99 
29 39.09 42.56 45. 72 46.69 49.59 52.34 
30 40.26 43. 77 46.98 47. 96 50.89 53.67 

Based on the table in R. A. Fisher's StatistiaaZ methods for 
research workers (12th edition), Oliver and Boyd, Ltd., and on the 
table of the paper: Tables of percentage points of the incomplete 
beta function and of the chi-square distribution, C. M. Thompson, 
Biometrika 32:188-189 (1941). Used with the kind permission of the 
authors, R. A. Fisher and C. M. Thompson, and of the publishers. 
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Table 2. Values of w1 
(a) versus a for a = . 001 (. 001 ) . 01 (. 01 ) . 5

a

a w1 (a) wl 
(a) wl (a)

.001 l. 168 . 12 .318 .32 .1757 

.002 l. 039 . 13 .306 .33 . 1716 

.003 .963 .14 .295 .34 .1677 

.004 .910 . 15 .284 .35 .1639 
.005 .870 .16 .274 .36 .1602 

.006 .836 .17 .265 .37 .1566 

.007 .808 .18 .257 .38 .1532 

.008 .784 .19 .249 .39 . 1499 

.009 .763 .20 .241 .40 .1466 

.010 .743 .21 .234 .41 .1435 

.020 .620 .22 .227 .42 .1405 
.030 .549 .23 .221 .43 .1375 
.040 .499 .24 .215 .44 .1346 
.050 .461 .25 .209 .45 . 1318 
.060 . 431 .26 .204 .46 . 1291 

.070 .405 .27 .1987 .47 .1265 

.080 .383 .28 .1937 .48 .1239 
.090 .364 .29 .1889 .49 .1213 
.100 .347 .30 .1843 .50 . 1189 

a 
Anderson, T. W., and D. A. Darling, Asymptotic 

theory of certain 11goodness-of-fit 11 criteri a based on stoch astic 
processes. 

a 



Table 3. Table of critical values of chi-square a

Probability under H that x
2 .s_ chi-square. 

df 
. ' o. . . 

.99 .98 .95 .90 .80 .70 .50 

1 .00016 .00063 .0039 .016 .064 . 15 .46 
2 .02 .04 . 10 .21 .45 . 71 1.39 
3 . 12 . 18 .35 .58 1.00 1. 42 2.37 
4 .30 .43 . 71 1.06 1.65 2.20 3.36 
5 .55 .75 1.14 1.61 2.34 3.00 4.35 

6 .87 1. 13 1.64 2.20 3.07 3.83 5.35 
7 1. 24 1.56 2. 17 2.83 3.82 4.67 6.35 
8 1. 65 2.03 2.73 3.49 4.59 5.53 7.34 
9 2.09 2.53 3.32 4.17 5.38 6.39 8.34 

10 2.56 3.06 3.94 4.86 6. 18 7.27 9.34 

11 3.05 3.61 4.58 5.58 6.99 8. 15 10.34 
12 3.57 4 .18 5.23 6.30 7. 81 9.03 11 . 34 
13 4.11 4.76 5.89 7.04 8.63 9.93 12.34 
14 4.66 5.47 6.57 7.79 9.47 10.82 13.34 
15 5.23 5.98 7.26 8.55 10. 31 11. 72 14.34 

16 5. 81 6.61 7 .96 9. 31 11. 15 12.62 15.34 
17 6.41 7.26 8.67 10.08 12.00 13.53 16.34 
18 7.02 7.91 9.39 10.86 12.86 14.44 17.34 
19 7.63 8.57 10. 12 11. 65 13. 72 15.35 18.34 
20 8.26 9.24 10.85 12.44 14 .58 16.27 19.34 

21 8.90 9.92 11 .59 13.24 15.44 17 .18 20.34 
22 9.54 10.60 12.34 14.04 16. 31 18 .10 21.24 
23 10.20 11.29 13.09 14.85 17. 19 19.02 22.34 
24 10.86 11 . 99 13. 85 15.66 18. 06 19.94 23.34 
25 11 . 52 12.70 14. 61 16.47 18.94 20.87 24.34 

26 12.20 13. 41 15.38 17. 29 19 .82 21 .79 25.34 
27 12.88 14. 12 16. 15 18. 11 20.70 22. 72 26.34 
28 13. 56 14. 85 16.93 18.94 21.59 23.65 27 .34 
29 14.26 15.57 17. 71 19. 77 22.48 24.58 28.34 
30 14. 95 16. 31 18.49 20.60 23.36 25.51 29.34 



Table 3. 

df 
.30 

1 1.07 
2 2. 41
3 3.66
4 4.88
5 6.06

6 7.23 
7 8.38 
8 9.52 
9 10.66 

10 11. 78

11 12.90 
12 14. 01
13 15. 12
14 16.22 
15 17. 32

16 18.42 
17 19. 51
18 20.60 
19 21 .69 
20 22.78 

21 23.86 
22 24.94 
23 26.02 
24 27 .10 
25 28.17 

26 29.25 
27 30.32 
28 31. 39
29 32 .46 
30 33.53 

Continued 

Probability under H
0

that x2
� chi-square 

.20 .10 .05 .02 .01 

1.64 2.71 3.84 5. 41 6.64 
3.22 4.60 5.99 7.83 9.21 
4.64 6.25 7.82 9.84 11. 34
5.99 7.78 9.49 11.67 13.28 
7.29 9.24 11 . 07 13.39 15.09 

8.56 10.64 12.59 15.03 16. 81
9.80 12.02 14.07 16.62 18.48

11 .03 13.36 15. 51 l 8. 17 20.09
12.24 14.68 16.92 19.68 21.67
13.44 15.99 18. 31 21. 16 23.21

14.63 17 .28 19.68 22.62 24. 72
15. 81 18.55 21 .03 24.05 26.22
16.98 19. 81 22.36 25.47 27.69
18. 15 21 .06 23.68 26.87 29 .14
19. 31 22. 31 25.00 28.26 30.58

20.46 23.54 26.30 29.63 32.00 
21. 62 24.77 27.59 31. 00 33.41 
22. 76 25.99 28.87 32.35 34.80 
23.90 27.20 30 .14 33.69 36. 19
25.04 28.41 31 .41 35.02 37.57 

26. 17 29.62 322.67 36.34 38.93 
27.30 30 .81 33.92 37.66 40.29 
28.43 32.01 35 .17 38.97 41 .64 
29.55 33.20 36.42 40.27 42.98 
30.68 34.38 37.65 41 .57 44 .31 

31 .80 35.56 38.88 42. 86 45.64 
32. 91 36.74 40.11 44.14 46.96 
34.03 37.92 41 .34 45.42 48.28 
35 .14 39.09 42.56 46.69 49.59 
36.25 40.26 43. 77 47.96 50.89 

a
Table 3 is abridged from Table 4 of Fisher and Yates 

by permission of the authors and publishers. 

. 001 

10 .83 
13 .82 
16.27 
18.46 
20.52 

22.46 
24.32 
26 .12 
27.88 
29.59 

31 .26 
32. 91
34.53
36. 12
37.70

39.29 
40.75 
42. 31
43.82
45 .32

46.80 
48.27 
49.73 
51.18 
52.62 

54.05 
55.48 
56.89 
58.30 
59.70 

_ ( 1950) 
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Table 4. Acceptance limits for the Kolmogorov-Smirnov test of 
goodness of fit 

Sample size (n) Significance level 

.20 . 15 .10 .05 . 01 

1 .900 . 925 . 950 .975 .995 
2 .684 .726 .776 .842 .929 
3 .565 .597 .642 .708 .829 
4 .494 .525 .564 .624 .734 
5 .446 .474 .510 .563 .669 

6 .410 .436 .470 .521 .618 
7 . 381 .405 .438 .486 .577 
8 .358 . 381 .411 .457 .543 
9 .339 .360 .388 .432 .514 

10 .322 .342 .368 .409 .486 

11 .307 .326 .352 .391 .468 
12 .295 .313 .338 .375 .450 
13 .284 .302 .325 .361 .433 
14 .274 .292 . 314 .349 .418 
15 .266 .283 .304 .338 .404 

16 .258 .274 .295 .328 . 391 
17 .250 .266 .286 .318 .380 
18 .244 .259 .278 .309 .370 
19 .237 .252 .272 .301 .361 
20 . 231 .246 .264 .294 .352 

25 .21 .22 .24 .264 .32 
30 .19 .20 .22 .242 .29 
35 . 18 . 19 .21 ·:23 .27 
40 .21 .25 
50 .19 .23 
60 .17 .21 
70 .16 .19 
80 .15 . 18 
90 . 14

100 .14

1.07 1.14 1.22 1.36 1.63 
Asymptotic 

rn rn rn rn rn formula: 

Reject the hypothetical distribution F(x) if d1(F,G) = SUPx IF(x) - G(x)I exceeds the tabulated value. 
(For a = .01 and .05, asymptotic formulas give values which 

are too high by l .5 percent for n = 80.) 
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