University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on River Connectivity (Fish Passage 2018)

Dec 12th, 1:30 PM - 3:10 PM

Assessing multi slot versus single slot pool-type fishways suitability for potamodromous cyprinids: An experimental approach using numerical modelling and fish

Ana L. Quaresma

António N. Pinheiro

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Quaresma, Ana L. and Pinheiro, António N., "Assessing multi slot versus single slot pool-type fishways suitability for potamodromous cyprinids: An experimental approach using numerical modelling and fish" (2018). *International Conference on Engineering and Ecohydrology for Fish Passage*. 23.

https://scholarworks.umass.edu/fishpassage_conference/2018/December12/23

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@libraryumass.edu.

ASSESSING MULTI SLOT VS SINGLE SLOT POOL-TYPE FISHWAYS

SUITABILITY FOR POTAMODROMOUS CYPRINIDS:

AN EXPERIMENTAL APPROACH USING NUMERICAL MODELLING AND FISH

Ana L. Quaresma (analopesquaresma@tecnico.ulisboa.pt)

Filipe Romão, Susana D. Amaral, Paulo Branco, José M. Santos, M. Teresa Ferreira,

& António N. Pinheiro

(antonio.pinheiro@tecnico.ulisboa.pt)

Motivation

consumption

flow periods

Introduction

Orifice and notch pool-type fishways

Quite common in Southwest Europe

Relatively low water requirement

Some maintenance problems

Orifice clogging

Notch clogging

Introduction

Vertical Slot Fishway (VSF)

- ✓ Fish can swim through the slot at any desired depth.
- Remain operational for a wide range of water depth.
- ✓ Less susceptible to clogging.

But larger flow discharges are required relatively to alternative orifice and notch configurations

VSF at Coimbra dam

Introduction

Multi-Slot Fishway (MSF)

Variation on the VSF, based on Enature® fishpass , Tauber & Mader, 2009,

Mader & Tauber, 2010

www.maba-fishpass.com; www.fischaufstieg.at

Splits the drop between pools (~ΔH/2), increasing head loss coefficient per pool, which means smaller discharges for a specific slot width and equal pool mean depth

Simulate and compare the hydrodynamics and

assess the **hydraulic suitability**

for different fish species of a widely used VSF configuration

Simulate and compare the hydrodynamics and

assess the **hydraulic suitability**

for different fish species

of a widely used VSF configuration

and of two MSF variants using 3D modelling

Experimental setup

10 m long, 1.00 m wide and 1.20 m high hydraulic measurements and tests with fish

Velocity Measurements

• 6 pools;

each 1.85 m long x 1.00 m wide x 1.20 m high ;

- slots width = 0.10 m wide;
- s = 8.5%; $\Delta h = 0.16 \text{ m}$; $h_m = 0.80 \text{ m}$;
- Q(VSF) = 81 l/s;

Q(MSF1) = 56 l/s.

MSF1

Materials and Methods Velocity Measurements

VSF - 3D velocity components (u; v; w) measured with ADV in the 2nd pool

Numerical model

- FLOW-3D[®] was used with:
 - ✓ Cartesian structured mesh grid of variable-sized hexahedral cells :
 - > 4 cm mesh for the entire flume,
 - > 2 cm mesh for the cross-walls and the 2nd 4th pool,
 - 1 cm mesh for the VSF slots
 - ✓ Volume of fluid (VOF) method
 - ✓ Fractional Area/Volume Obstacle Representation (FAVOR[™])
 - ✓ Turbulence model: Large eddy simulation (LES)
 - Second order monotonicity preserving momentum advection method

Numerical model validation

Fishway configuration	Pool mean water depth (cm)			Discharge (ls-1)		
	Experimental	Numerical model	Relative difference (%)	Experimental	Numerical model	Relative difference (%)
VSF	80	81	1.8	81	80	-1.3
MSF1	80	83	4.2	56	58	3.3

Numerical model validation

Fishway configuration	Pool mean water depth (cm)			Discharge (Is ⁻¹)		
	Experimental	Numerical model	Relative difference (%)	Experimental	Numerical model	Relative difference (%)
VSF	80	81	1.8	81	80	-1.3
MSF1	80	83	4.2	56	58	3.3

<u>Maximum</u> relative differences of $\approx 3\%$ for <u>flow discharges</u>

and

\approx <u>4%</u> for pool <u>mean water depths</u>

A quite good approximation between experimental and numerical results

Numerical model validation

Fishway configuration	Discharge (Ls ⁻¹)	Relative difference (%)
VSF	80.0	-
MSF1	57.9	-27.6
MSF2	63.0	-21.2

MSF operates with a much smaller discharge

Numerical model validation

Maximum relative differences of 5% for maximum and average mean velocity magnitude (\overline{U})

Low mean absolute differences for k and $|\tau_{uv}|$

Materials and Methods Numerical model validation

MSF - mean velocity magnitudes are much lower than for the VSF

Results (% pool volume)

for different Iberian species of ecological / economic interest

Number of fish / trial	5	
Total of trials	5/configuration (25 fish/configuration)	
Acclimation period	30 minutes	
Trial duration	90 minutes	
Methods of fish behaviour observation	Direct observation and video recording	
	Entrance time	
Assassed variables	Entry efficiency	
ASSESSEU Vallables	Number of upstream movements	
	Timing and number of successes	

No significant differences, also in:

- the time to enter
- the time to negotiate the fishway
- the entry efficiency

Conclusions

- ✓ The MSF configurations require a much lower discharge to operate than the VSF, for similar mean flow depth and slot width
- ✓ Accordingly, the velocity, the turbulent kinetic energy, and the Reynolds shear stress values in the MSFs are much lower than the corresponding values of VSF
- ✓ The modelled MSF configurations presented <u>larger suitable pool volume</u> % for <u>multiple fish species</u> comparatively to VSF, thus MSF could be <u>less selective</u>
- Numerical modelling complemented with laboratory fish experiments can be an important tool to develop cost-effective fishways

Quaresma AL, Romão F, Branco P, Ferreira MT & Pinheiro AN (2018). *Multi slot versus single slot pool-type fishways: a modelling approach to compare hydrodynamics*. Ecological Engineering 122: 197-206

Romão, F., Branco, P., Quaresma A.L., Amaral, S. & Pinheiro, A.N. (2018). *Effectiveness of a multi-slot vertical slot fishway versus a standard vertical slot fishway for potamodromous cyprinids*. Hydrobiologia 816: 153-163

Acknowledgments

Ana L. Quaresma (SFRH/BD/87843/2012), **Filipe Romão** (PD/BD/52512/2014) and **Susana D. Amaral** (SFRH/BD/110562/2015) were supported by PhD grants from **Fundação para a Ciência e Tecnolologia (FCT)**.

Paulo Branco (SFRH/BPD/94686/2013) was funded by a post-doctoral grant from **FCT**. **José Maria Santos** was funded by a post-doctoral grant (MARS/BI/2/2014) from the **MARS project** (http://www.mars-project.eu/) and is presently the recipient of a **FCT** researcher contract (IF/00020/2015).

A special thanks to the **staff of LNEC** for all the support during the experiments

ERIS IVIL ENGINEERING RESEARCH AND INOVATION FOR SUSTAINABILITY ÉCNICO LISBOA

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

Thank you for listening

Ana L. Quaresma analopesquaresma@tecnico.ulisboa.pt

António N. Pinheiro antonio.pinheiro@tecnico.ulisboa.pt

Simulate and compare the hydrodynamics and

assess the hydraulic suitability for different fish species

of a widely used VSF configuration and of two MSF variants

using 3D CFD modelling

