University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on River Connectivity (Fish Passage 2018)

Dec 12th, 11:00 AM - 12:40 PM

Surface bypass as a means to protect downstreammigrating fish – lack of standardized evaluation criteria complicates evaluation of efficacy

Elena-Maria Klopries RWTH Aachen University, Pacific Northwest National Laboratory

Zhiqun (Daniel) Deng Pacific Northwest National Laboratory

Theresa Ursula Lachmann *RWTH Aachen University*

Holger Schüttrumpf *RWTH Aachen University*

Bradly A. Trumbo U.S. Army Corps of Engineers,

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Klopries, Elena-Maria; Deng, Zhiqun (Daniel); Lachmann, Theresa Ursula; Schüttrumpf, Holger; and Trumbo, Bradly A., "Surface bypass as a means to protect downstream-migrating fish – lack of standardized evaluation criteria complicates evaluation of efficacy" (2018). *International Conference on Engineering and Ecohydrology for Fish Passage*. 12. https://scholarworks.umass.edu/fishpassage_conference/2018/December12/12

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

12.12.2018 -1st Symposium on Hydropower and Fish Management

Surface bypass as a means of protecting downstream migrating fish

Elena-Maria Klopries^{A,B}, Zhiqun Daniel Deng^{B,C}, Theresa U. Lachmann^A, Holger Schüttrumpf^A, Bradly A. Trumbo^D

^A Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University

^B Pacific Northwest National Laboratory, Energy and Environment Directorate

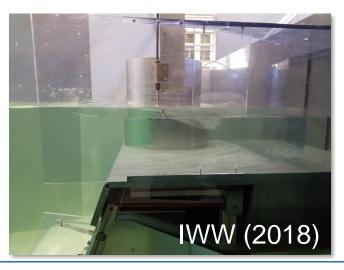
^C Department of Mechanical Engineering, Virginia Tech

^D US Army Corps of Engineers, Walla Walla District

Motivation

Surface bypass as a means of protecting downstream migrating fish

Elena-Maria Klopries


12.12.2018

Bypasses as a means of protecting downstream migrating fish

RNTHAACHEN UNIVERSITY

- Types of bypasses: submerged ↔ surface
- Surface bypasses: especially advantageous for salmonids

- \rightarrow Are they feasible for other species?
- → Which parameters are responsible for a good performance?

Literature study

- 50 papers, reports and books from North America, Europe and Australia
- Species studied:
 - Atlantic salmon
 - Pacific salmon
 - Brown trout
 - Steelhead
 - Eels
- 148 datasets containing study year, species, bypass type, bypass dimension, guiding structures, behavioural guiding measures, trash-rack spacing, bypass efficiency, ...
- Supplementary material available with all datasets

Surface bypass as a means of protecting downstreammigrating fish: lack of standardised evaluation criteria complicates evaluation of efficacy

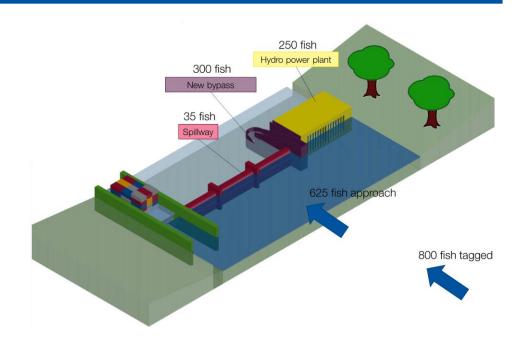
Elena-Maria Klopries ^(D) ^{A, B, E}, Zhiqun Daniel Deng^{B, C}, Theresa U. Lachmann^A, Holger Schüttrumpf^A and Bradly A. Trumbo^D

Marine and Freshwater Research https://doi.org/10.1071/MF18097

Marine and Freshwater Research https://doi.org/10.1071/MF18097

Bypass performance

SPECIAL ISSUE


Review

Bypass performance

- When is a bypass working well?
- Efficiency: how many fish pass through a bypass?
 → percentage of fish
 - \rightarrow what is the right basic population?

Case study:

New bypass:	300 fish
 Turbine. 	250 fish
Spillway:	35 fish
 Fish tagged for study 	: 800 fish
 Fish that approached 	dam: 625 fish

R

Bypass performance

- When is a bypass working well?
- Efficiency: how many fish pass through a bypass?

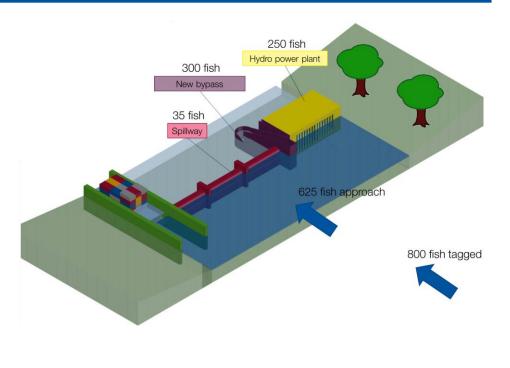
300 fish

250 fish

35 fish

800 fish

625 fish


- \rightarrow percentage of fish
- \rightarrow what is the right basic population?

Case study:

- New bypass:
- Turbine.
- Spillway:
- Fish tagged for study:
- Fish that approached dam:

Definition	1 (passed dam):
Definition 2	2 (approached HPP):
Definition	3 (bypass + turbine) :
Definition 4	4 (tagged):

300/585 = 51.3 % 300/625 = 48.0 % 300/550 = 54,5 % 300/800 = 37,5 %

Bypass performance

- Bypass 1
- Efficiency: 50 %
- \rightarrow Which one is better?
- Bypass inflow: 50 %

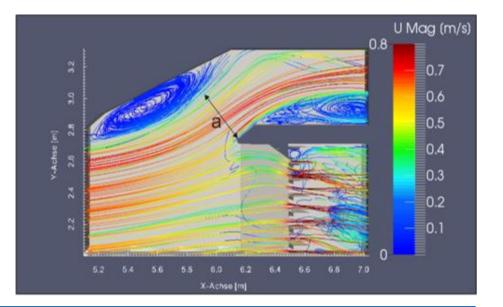
- Bypass 2
- Efficiency: 40 %


Bypass inflow: 10 %

Effectiveness: 1

• Effectiveness: 4

 $effectiveness = \frac{efficiency}{proportion of inflow}$ $proportion of inflow = \frac{bypass spill}{mean annual discharge}$

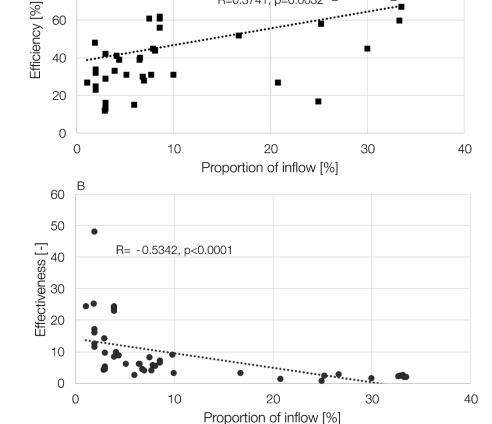

7

8

- Bypass efficiency statistically dependent on
 - Bypass area (Pearson correlation r = 0.33, p-value = 0.0036)
 - Proportion of inflow (Pearson correlation r = 0.37, p-value = 0.0032)
- No statistical evidence but possible factors of influence
 - Guiding structures
 - Trash-rack spacing
 - Flow-field characteristics

Elena-Maria Klopries

Surface bypass as a means of protecting downstream migrating fish


100

80

60

40

. .

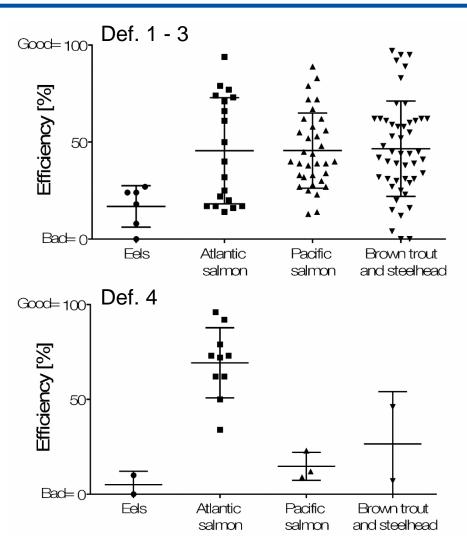
- Proportion of inflow increases bypass efficiency
- Proportion of inflow decreases bypass effectiveness
- \rightarrow Economical aspects should be considered in the design process as well

Results and conclusions

Result 2

IWW

R=0.3741, p=0.0032


·····

12.12.2018

Results and conclusions

Result 3

- Efficiency higher for Atlantic salmon, Pacific salmon, brown trout and steelhead than for eels
- Potamodromous species not considered because insufficient data available
- \rightarrow If several species need to be considered at one site, several bypass types could be a solution

Results and conclusions

Result 4

Results concerning statistical dependents were derived
without differentiation among species and efficiency
definitions

- → List of biological parameters and engineering and hydraulic parameters is given (standardized performance parameters)
- → Make the most of studies with regard to meta-analysis and cost-benefit analysis
- \rightarrow Combining and exchanging findings from all over the world

Parameters	Unit
Biological parameters	
Fish species	-
Body length	cm
Bypass efficiency	%
Bypass-efficiency definit	ion -
Passage time	S
Injuries	-
Engineering and hydraulic pa	arameters
Study year	-
Country	-
Project specifics	
Number of turbines	-
• • •	
Elena-Maria Klopries	12.12.2018

Thank you for your attention!

Proudly Operated by Battelle Since 1965

This research was supported by the German Academic Exchange Service, Institute of Hydraulic Engineering at RWTH Aachen University, and Pacific Northwest National Laboratory, which is operated by Battelle for the US department of Energy

12