University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Internation Ecohydrology for Fish Passage

International Conference on River Connectivity (Fish Passage 2018)

Dec 12th, 3:40 PM - 5:20 PM

Advances in machine vision scanning

Tom Shearer Whooshh Innovations

Steve Dearden Whooshh Innovations

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

Shearer, Tom and Dearden, Steve, "Advances in machine vision scanning" (2018). *International Conference on Engineering and Ecohydrology for Fish Passage*. 7.

https://scholarworks.umass.edu/fishpassage_conference/2018/December12/7

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@libraryumass.edu.

Whooshh Innovations Machine Vision in Fisheries Management

Machine vision in Fisheries Management

- Review of data needs
- Historical approaches
- Requirements driving new approach
- The Whooshh Scanner
 - Overview
 - Applications
 - Future development
- Summary

Data needs

- Fish counts
- Time of day/date
- Size
 - fork length, weight typical
- Species
- Hatchery vs wild
- Fish condition damage and predation assessment

• Also

• Flow rate, DO, water temperature etc.

Historical approaches for data gathering

Automated

- Resistive counters
- Optical (break beam) counters

Manual

- Count window
- Sorting box

Black River Pump Station WA. Fish counter

Adding operators, cameras and computers

• Batch

- Camera records all transits
- Addition of time of day tags
- In swim-channel reference marks for measurement estimates
- Post analysis by biologists
- Human assist
 - Count window
 - Camera records for validation and break-time extrapolation
 - Operator counts fish manually by "clicker" or keyboard

Count window

Sorting Box PGE Clackamas OR – Youtube Video

Sorting Box – hatchery vs wild

Count window at Winchester Dam, Roseburg OR

Requirements driving new approach

- Increased accuracy less human error
- Management possibilities
 - Exclusion of invasives
 - 24/7 Separation of hatchery or tagged fish
 - Faster automated decision making
- Data completeness -> continuous collection
- Operable in highly turbid water
- Additional real time data integration
 - PIT tags
 - CWT detection
 - Floy tag detection

System overview

- Block diagram and overview
- Fish slide
 - Partially dewatered gravity slide
- Accurate outline detection
- Coaxial cameras, visible and infra red
- Fish detection
- Timers
- Image processing and decision making

Block diagram

Fish slide

Machine learning process

Scanning of learning set
Manual analysis/identification
Machine "teaching" using learning set
Machine analysis of test set
Manual analysis of test set
Verification/feedback

Typical Installation

• Installing scanner in existing ladder

Scanned images

Chum salmon

Scanned images

Steelhead

Scanned images

Chinook salmon

- detail and silhouette

Fish length distribution

Length and girth

Scanning Capabilities

<u>Current Capabilities</u>:

- Size (Girth, Width, Length)
- Speciation by size (Girth, Length)
- <u>Upcoming Developments</u>:
- Hatchery vs. Wild
 - Adipose fin presence detection
- 2019 collection/learning programs
 - Great Lakes species
 - West coast US anadromous species

Applications

- Basic monitoring
 - Collection of migration data (time, date, species, size)
- Sorting applications
 - For studies
 - Invasive removal
 - Selective passage
 - Sizing for passage solutions like WFTS

Summary

- Combine machine learning with high speed imagery
- Fish out of water
 - Turbidity no longer an issue
- More complete data
 - Timing
 - Girth and forklength
 - Weight estimates possible from species
 - Additional marking (fin clip, gill cover clip, floy tag etc)
 - Combine with PIT tag, CWT detection

Real time automated decision making now possible

At Whooshh, We are Serious About Moving Live Fish

