University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and	International Conference on River Connectivity
Ecohydrology for Fish Passage	(Fish Passage 2018)

Dec 11th, 3:40 PM - 5:20 PM

The ecosystem service values of fish ladders in poor counties: Who should pay?

Bethany Cooper University of South Australia

Lin Crase University of South Australia

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Cooper, Bethany and Crase, Lin, "The ecosystem service values of fish ladders in poor counties: Who should pay?" (2018). *International Conference on Engineering and Ecohydrology for Fish Passage*. 25. https://scholarworks.umass.edu/fishpassage_conference/2018/December11/25

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Benefits and costs of fish passages in the Mekong

Dr Bethany Cooper, Prof Lin Crase & Adam Henderson International Conference on River Connectivity (Fish Passage 2018), 10-14 December 2018

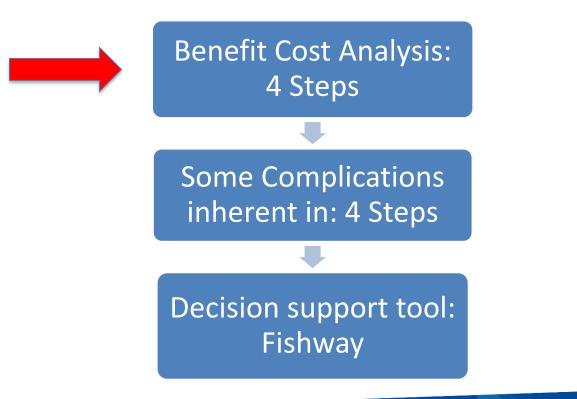
FFMC

Outline

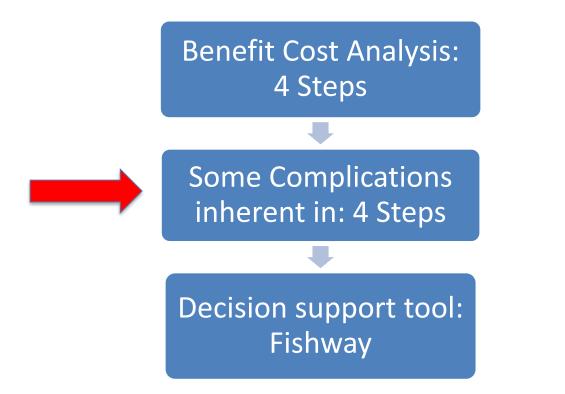
- What is Benefit Cost Analysis?
- The steps in Benefit Cost Analysis
- Some complications inherent in applying BCA to fish passages
- Designing a decision support tool to help

What is Benefit Cost Analysis?

- BCA 1950s formalised mechanism for improving choices between ۲ public projects
- Tool to assist decision-making: not the immutable truth!
- **Benefits**
 - Increase wellbeing (marginal)
- Costs
 - Putting a dollar value on the extra resources used to deliver the project (marginal)



University of


South Australia

School

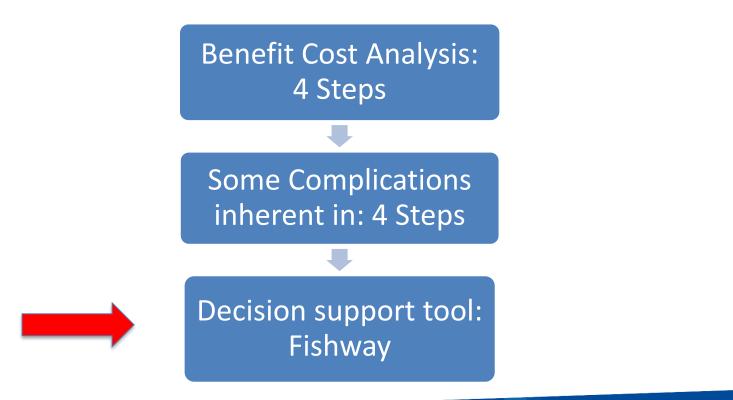
1. Establish scope of benefits and costs

- Who are the 'material winners' and who are the 'material losers'?
 - 'Materiality' to what extent do flow on effects matter?
 - Geographical scope; temporal scope (fishways are part of an entire river system)
- For consistency benefits and costs need to be measured at the same scale
- In this Case:
 - Geographic scope = Direct effects of Fishway
 - Local Benefits and Costs
 - Temporal scope = Lifespan of Fishway

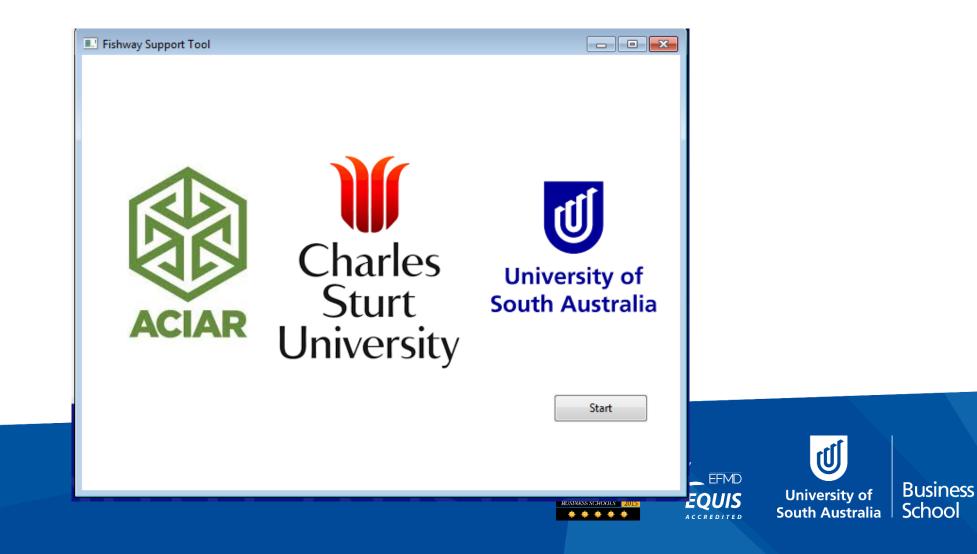
2. Assign a value to each benefit and cost

- Ideally these will be in a common form
- Monetary values generally preferred (though far from perfect)
- In this case:
 - Benefit: Additional fish assigned a monetary market value for lifespan of fishway (Hortle 2007)
 - Cost: Build and maintenance for lifespan on fishway
- Note:
 - Other benefits not captured by fish market?
 - Design choices will impact on Effectiveness of Fishway and drive the yield of fish

3. Express monetary values in common time – discount future benefits and costs


- Some costs are commonly up-front (e.g. construction)
- Benefits (and some costs e.g. maintenance) accrue over the life of project
- A \$ today is worth more than a \$ tomorrow
- 'Net present value' a way of comparing all current costs and benefits along with future costs and benefits
- In this case:
 - Allowed for different scenarios for discount rate over lifespan of Fishway
 - Assume constant returns over time in first instance

4. Apply decision rule


- Only choose projects where benefits > costs
- Ideally use economic merit i.e. proceed with the highest and positive net benefits sequentially
- Or, if benefits uncertain choose projects with lowest cost
- But...
 - Distributional considerations might change order of projects e.g. projects that benefit the poor may get priority
 - Other social and ethical considerations e.g. priority to projects that deliver higher environmental, cultural, gender benefits
- In this case:
- Presented to the decision maker:
 - Net Present Value; Benefit Cost Ratio; Break even time period; Additional Edible protein;
 Conversion of protein to human nutrition
- Does a proposed fishway warrant further investigation i.e. a more detailed design?

Pilot: Fishway Decision Support Tool

Fishway Decision Support Tool

Fishway Support Tool			
Height			
Area Effected			
Fishway Type			
Sub Type			
Distance from Manufacture	Price	-0	\$1 per kg
Size of Species	Flow		100%
Type of Build	Capacity	0	100%
Hydrology of site	Discount	0	1%
Intended Lifespan 🗸 🗸	Maintenance	0	0.1%

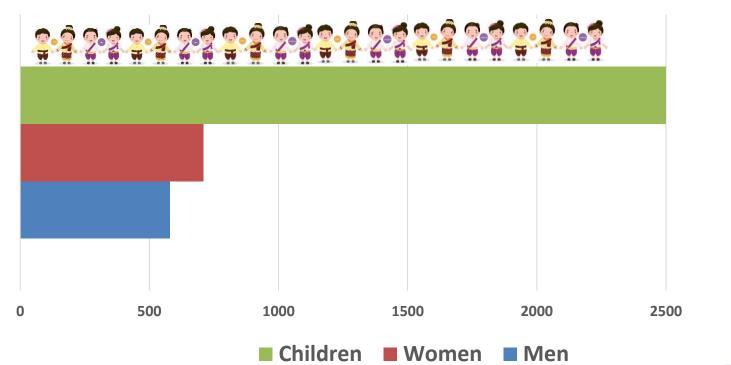
Calculate

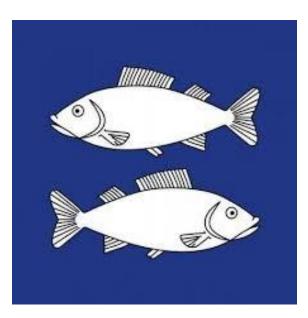
Example: Fishway Benefits and Costs

💵 Fishway Support Tool					
Height	4.5				
Area Effected	750				
Fishway Type	Cone 🔻				
Sub Type	Standard 🔻				
Distance from Manufacture	10 💌	Price		\$2.5per kg	
Size of Species	Large and Small 🔹	Flow		80%	
Type of Build	New Build 🔻	Capacity		80%	
Hydrology of site	between 95% and 🔻	Discount	-0	5.0%	
Intended Lifespan	20 to 40 years 15 to 20 years 20 to 40 years 40+ years	Maintenance	-0	1.0%	
				Calculate	
					ST.

EFMD

ACCREDITE



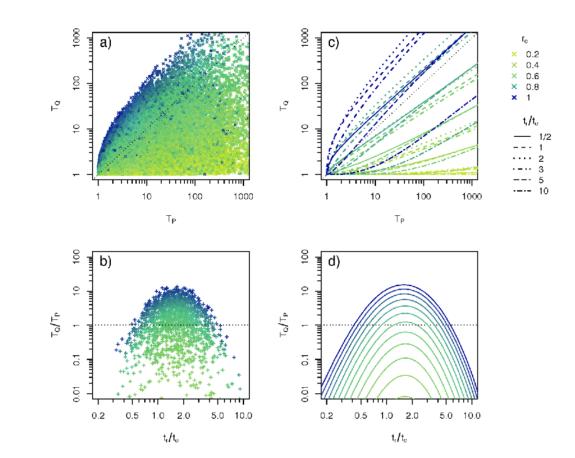

Example: Fishway Benefits and Costs

Т	ype of Build	New Build 🔻	Capacity	0	— 80%		
F	lydrology of site	between 95% and 🔻	Discount	-0		6	
Ir	ntended Lifespan	20 to 40 years 👻	Maintenance	-0	1.0%	6	
ſ	Decula						
	Result						
		iding maintance \$430312.5					
		f additional fish \$: 120000.0 e in edible protien : 11925.0kg			Calcula	ite	
	Net present va	lue \$: 967921	5	C.			
	Break even: 4()	/ears)					
		ſ					
		l	ОК				
L		11 m			QUIS		Business
				BUSINESS SCHOOLS 2015		outh Australia	School

Extensions: Nutrition

Number of additional people who's daily protein requirements are met per annum

- Edible protein factor (Mogensen ٠ 2001)
- Required daily protein intake ٠ (World Health Organisation 2007)


3000

FFMD

Extensions: Uncertainty

- Flood damage (frequency and timing): impacts on Cost e.g. lifespan of fishway
- Incorporate Monte Carlo simulation to capture uncertainty

Concluding Remarks

- Benefit Cost Analysis: tool to assist decision making
- Useful tool: Fishways
- Complexities: applying to Fishways
- Decision Support Tool
 - Does a proposed fishway warrant further investigation i.e. a more detailed design?

University of South Australia

Thank you

bethany.cooper@unisa.edu.au