University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on River Connectivity (Fish Passage 2018)

Dec 11th, 1:30 PM - 3:10 PM

A Cross-section of Hydraulic Design Solutions to Address Vertical Profile Constraints at Road Crossing Design Projects

Michael Garello HDR Engineering, Inc.

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Garello, Michael, "A Cross-section of Hydraulic Design Solutions to Address Vertical Profile Constraints at Road Crossing Design Projects" (2018). *International Conference on Engineering and Ecohydrology for Fish Passage*. 16. https://scholarworks.umass.edu/fishpassage_conference/2018/December11/16

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

A cross section of hydraulic design solutions to address vertical profile constraints at road crossing design projects

Michael C. Garello PE, Shaun Bevan PE, and Anna Mallonee EIT Session 2-5: Fish Passage Design – Road Crossings II, December 11, 2018

FISH PASSAGE 2018 - INTERNATIONAL CONFERENCE ON RIVER CONNECTIVITY INCORPORATING THE FIRST SYMPOSIUM ON HYDROPOWER AND FISH MANAGEMENT DECEMBER 10-14, 2018 | ALBURY, NEW SOUTH WALES (AUSTRALIA)

FC

Road Crossing Design Strategies

02 Project Constraints and the Hydraulic Design Method

Common Hydraulic Design Solutions

Hydraulic Design Solutions Applied at Example Projects

Why is Road Crossing Design Important?

- Importance of Road Crossing Design
 - o Provides fish access to habitat located upstream of road crossing impediments
 - $_{\odot}~$ Not just a fish passage project Aquatic Organism Passage (AOP) Design
 - $_{\odot}~$ Improves geomorphic and ecological connectivity
 - $_{\odot}~$ Focuses on the reduction of long-term maintenance costs for transportation corridors

Road Crossing Design Strategies

Geomorphic and Stream Simulation Design

 Mimics character and natural processes exhibited in the existing creek or river

Hydraulic Design

 Introduces designed elements that target a specific hydraulic outcome

Road Crossing Design Strategies - Comparison

Geomorphic Design

- Simplified design approach
- Mimics hydraulic and fish passage characteristics of adjacent reaches
- Accommodates more effective Aquatic Organism Passage (AOP)
- Higher levels of ecologic and geomorphic continuity
- Generally lower maintenance and long-term costs

Hydraulic Design

- More complex design approach: 1D, 2D, and 3D models may be used to approximate hydraulic characteristics and bioenergetics.
- Targets a defined set of hydraulic design objectives for select fish species and life stages
- Project elements are designed to accommodate constraints and can limit natural process and continuity.
- Generally higher maintenance and higher longterm costs.

Hydraulic Designs Can Require

- More complex hydraulic and hydrodynamic modeling using more sophisticated software,
- Strict compliance with known design guidelines under the purview of government agencies
- Agreement on design criteria for target species behavior and biology (example: swimming and leaping capability)
- Scour analysis and countermeasures
- More detailed flood conveyance and flood damage mitigation analysis

...a lot more time, effort, and detailed analysis...

Project Constraints and the Hydraulic Design Method

Common Constraints Experienced at Road Crossing Projects

- Property ownership and right-of-way boundaries,
- $_{\odot}\,$ Upstream or downstream structures,
- $_{\circ}\,$ Geologic features,
- $_{\circ}\,$ Retaining walls,
- $_{\odot}\,$ Buildings and structures,
- $_{\circ}\,$ Road and rail embankments,
- $_{\circ}\,$ Utilities (UG and OH),
- $_{\rm \circ}\,$ Funding,
- $_{\circ}$ Others....

Project Constraints Influence the Use of Hydraulic Design Strategies

- Constraints introduce planform and profile irregularities not characteristic of a stream's form and function
- Hydraulic forces become unbalanced with regard to conveyance or bed composition
- If not addressed, un-intentional channel adjustments and instability will occur
- Measures to counter, stabilize, and/or fix streambeds in place require a more complex hydraulic design approach

Example of Project with Multiple Constraining Factors

D B Common Hydraulic Design Solutions

Roughened Channels and Rock Ramps

Rock Weirs and Log Weirs

Rock Riffles and Rock Slope Protection

Hydraulic Training Structures Engineered Wood Structures

Technical Fish Ladders

Culvert Retrofits and Hydraulic Baffles

Hydraulic Design Solutions Applied at Example Projects

Fischer Creek - Pre Project Conditions

Fischer Creek – Post Project Conditions

Fischer Creek – Completed Project

El Jaro Creek Crossing at San Julian Ranch Pre-Project Conditions

El Jaro Creek Crossing at San Julian Ranch Pre-Project Conditions

El Jaro Creek Crossing at San Julian Ranch Completed Project

El Jaro Creek Crossing at San Julian Ranch Completed Project

China Creek Pre-Project Conditions

China Creek – Completed Project

Big Meadow Creek Culvert Pre-Project Conditions

Big Meadow Creek Culvert - Pre Project Conditions

Big Meadow Culvert Retrofit Completed Project

Conclusions

- Road crossing design projects often experience constraints that necessitate the use of more complex hydraulic design techniques and methods
- Hydraulic design strategies often require more effort and more complex calculation tools to improve certainty of hydraulic performance
- There are common design elements and features that can be used to stabilize channel gradients in Road Crossing projects

