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Directed by: Professor Hanna Wallach

Social science data often comes in the form of high-dimensional discrete data

such as categorical survey responses, social interaction records, or text. These data

sets exhibit high degrees of sparsity, missingness, overdispersion, and burstiness, all

of which present challenges to traditional statistical modeling techniques. The frame-

work of Poisson factorization (PF) has emerged in recent years as a natural way to

model high-dimensional discrete data sets. This framework assumes that each ob-

served count in a data set is a Poisson random variable yδ ∼ Pois (µδ) whose rate

parameter µδ is a function of shared model parameters. This thesis examines a specific

subset of Poisson factorization models that constrain µδ to be a multilinear function

of shared model parameters. This subset of models—hereby referred to as allocative

v



Poisson factorization (APF)—enjoys a significant computational advantage: poste-

rior inference scales linearly with only the number of non-zero counts in the data

set. A challenge to constructing and performing inference in APF models is that

the multilinear constraint on µδ—which must be non-negative, by the definition of

the Poisson distribution—means that the shared model parameters must themselves

be non-negative. Constructing models that capture the complex dependency struc-

tures inherent to social processes—e.g., networks with overlapping communities of

actors or bursty temporal dynamics—without relying on the analytic convenience and

tractability of the Gaussian distribution requires novel constructions of non-negative

distributions—e.g., gamma and Dirichlet—and innovative posterior inference tech-

niques. This thesis presents the APF analogue to several widely-used models—i.e.,

CP decomposition (Chapter 4), Tucker decomposition (Chapter 5), and linear dy-

namical systems (Chapters 6 and 7) and shows how to perform Bayesian inference

in APF models under local differential privacy (Chapter 8). Most of these chap-

ters introduce novel auxiliary-variable augmentation schemes to facilitate posterior

inference using both Markov chain Monte Carlo and variational inference algorithms.

While the task of modeling international relations event data is a recurrent theme,

the models presented are applicable to a wide range of tasks in many fields.

vi
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Much of the work in this thesis is motivated by modeling political dyadic event

data—i.e., micro-records of the form “country i took action a to country j at time

t”—that political scientists have collected and analyzed for several decades. Dyadic

event data concretize the phenomena of international relations into a series of pair-

wise country–country interactions. These interactions are recorded in a standardized

scheme wherein country actors and possible actions types are assigned categorical

codes. Such data permit empirical and reproducible approaches to answering polit-

ical science questions—e.g., what causes war?—via statistical modeling. However,

dyadic events present challenges to the standard statistics toolkit. Some of these

challenges stem from the data consisting of rare events, as observed by King and

Zeng [2001], who explain political scientists’ interest in such data:

“Many of the most significant events in international relations—wars,
coups, revolutions, massive economic depressions, economic shocks—are
rare events. They occur infrequently but are considered of great impor-
tance.”

The types of events political scientists choose to track are those that are significant

or noteworthy and these tend to be rare. Dyadic event data sets are thus natu-

rally sparse—i.e., most event types are never observed—since most countries do not

take most actions towards most other countries at most times (see Fig. 1.1a). Fur-

ther challenges are introduced by the source from which dyadic event data sets are
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collected—i.e., the news—which strains the interpretation that they directly measure

international relations. Schrodt [1995] instead offers a more nuanced interpretation:

“Event data are a formal method of measuring the phenomena that
contribute to foreign policy perceptions. Event data are generated
by examining thousands of newspaper reports on the day to day interac-
tions of nation-states and assigning each reported interaction a numerical
score or a categorical code.”

Dyadic events do not directly provide a complete or “objective” account of interna-

tional relations. Rather, they provide an account of what shaped collective perception

of international relations—i.e., what the media paid attention to, when, and to what

degree. What the media deems newsworthy and when is thus a critical factor influ-

encing the empirical patterns in dyadic event data sets. Boydstun [2013] describes

the dynamics of media attention:

“[The news] does not ebb and flow; rather it fixates and explodes. In
turn, the explosive nature of media dynamics exacerbates the degree of
skew in news coverage across policy issues, such that a few issues re-
ceive the lion’s share of coverage while most issues go unnoticed. These
patterns—explosiveness and skew—are endemic to the media as an
institution, they have far-reaching implications for politics and society.”

Dyadic event data sets are bursty—i.e., many similar events are observed suddenly

around the same time (see Fig. 1.1b). Burstiness is itself a form of overdispersion—

i.e., unobserved heterogeneity—across time. Other modes of the data also exhibit

overdispersion—e.g., some countries are observed sending many more actions than

others. Moreover, these data sets conflate the inherent burstiness of international

relations phenomena with the “explosive and skewed” dynamics of media attention.

Finally, while many political events are truly rare, events that do occur may go unre-

ported in the news—thus, these data sets conflate missingness with non-occurrence.

In addition to the challenging statistical properties of dyadic event data, the pres-

ence of what King [2001] refers to as “complex dependence structures in international

relations” tie observations in a way that violates the independence assumptions of

the standard regression toolkit. Stewart [2014] explains:
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(a) Two sender-by-receiver slices of the
data tensor for a single time step and ac-
tion type. The circled points correspond
to the counts for the pairs USA→Iraq,
Israel→Palestine, and Palestine→Israel
for the action “Threaten” during July
2002. Countries are ordered by activity;
only the top 50×50 are displayed. The
tensor becomes sparse quickly moving
from out from the top left.

(b) Count time-series for action type “Consult” taken
between all six undirected pairs of Russia, South
Korea, North Korea, and Japan. These four countries,
along with the USA and China, were involved in
the Six Party Talks in 2003, a series of multilateral
talks about disarming North Korea. The event counts
for these pairs are correlated due to an underlying
multilateral relation. The dynamics they exhibit
are bursty—i.e., they remain near zero for extended
periods, abruptly burst, and then return.

Figure 1.1: Two ways to represent dyadic event counts: slices of a count tensor
(left) or count time-series (right). These two representations highlight two different
characteristic properties of high-dimensional discrete data: sparsity and burstiness.

“Regression, in particular the generalized linear model (GLM), plays a
central role in the social sciences as the default statistical method for the
analysis of relationships in quantitative data. GLMs leverage the assump-
tion that observations are conditionally independent given the covariates
in order to allow for tractable inference. Methodologists have periodi-
cally warned of the inaccuracy of these standard regression tools in the
presence of unmodeled dependence between units.”

Stewart [2014] continues by advocating for models of latent dependence structure:

“One way to think about dependence is as arising due to unobserved
heterogeneity between repeated units within the data. Thus if we
had the right set of control variables, we could treat the remain-
ing stochastic error as independent across observations. Subject matter
experts often have an implicit understanding of unmodeled dependence
and are able to specify the important groups within the data.”

Over the past twenty years, political scientists have debated whether international

relations and the inherently multilateral phenomena therein (e.g., treaties, alliances)
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can be validly studied using only dyadic (i.e., pairwise or bilateral) events. This de-

bate began with Green et al. [2001]’s demonstration that many regression analyses

based on dyadic events were biased due to implausible independence assumptions.

Researchers continued to expose such biases, e.g., [Erikson et al., 2014], and some,

like Poast [2010], have even advocated eschewing dyadic data on principle, calling

instead for the development of multilateral event data sets. Taking the opposite

viewpoint—i.e., that dyadic events can be used conduct meaningful analyses of mul-

tilateral phenomena—other researchers have been developing latent factor regression

models which explicitly infer unobserved dependence structure and then condition on

it in subsequent regression analyses. Hoff and Ward [2004] pioneered this approach

for analyzing dyadic events with a latent factor model for inferring (and thus control-

ling for) latent network efforts. This approach has seen an increase in interest and

activity over the past few years e.g., [Stewart, 2014, Hoff, 2015, Hoff et al., 2016].

The challenging statistical properties of dyadic event data—sparsity, missingness,

overdispersion, burstiness—are generally characteristic of high-dimensional discrete

data which arise throughout the social sciences. Quantitative social science was

traditionally dominated by the analysis of social surveys which solicit categorical

responses—e.g., What is your party affiliation? Circle one: {Dem, Rep, Green,

. . . }—on a series of questions and demographic variables. These responses are ana-

lyzed collectively as contingency tables of sparse counts [Yvonne et al., 1975, Clogg

and Goodman, 1984, Wickens, 2014] wherein zeros conflate missingness with true non-

occurrence as well as with “structural zeros” [Yvonne et al., 1975, Chapter 5]—i.e.,

impossible event types. Analysis of US Senate voting behavior is often performed on

the basis of a categorical Senators-by-bills voting matrix [Bafumi et al., 2005] and may

additionally involve the actual text of bills [Gerrish and Blei, 2011]. More generally,

the analysis of text—perhaps the must abundant source of high-dimensional discrete

data in any field—is ubiquitous throughout social science [Grimmer and Stewart,
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2013]. High-dimensional discrete data arises in many other fields beyond the social

sciences as well. Sparse and overdispersed count matrices arise in both population

genetics [Pritchard et al., 2000] and analysis of RNA sequencing [Lee et al., 2013].

Sparse and bursty neural spike trains are the study of intense study in neuroscience

motivating models for multivariate time-series [Macke et al., 2011] and latent net-

work structure [Linderman and Adams, 2014, Dunson and Xing, 2009]. Burstiness is

a property observed in discrete events sequences across many other social and physi-

cal processes as well [Kleinberg, 2003, Goh and Barabási, 2008]. In ecology, discrete

data sets that conflate missingness with true non-occurrence are commonplace and

referred to as “presence-only data” [Pearce and Boyce, 2006].

In summary, due to the inherent rareness of noteworthy political events and the

explosive dynamics of media attention, dyadic event data sets exhibit certain statisti-

cal properties that challenge the distributional assumptions of the traditional regres-

sion toolkit while the presence of “complex dependence structures” violates standard

independence assumptions. Empirical and reproducible approaches to meaningfully

test hypotheses about international relations phenomena require the development of

“good” models for dyadic event data—i.e., models that are robust to the challenging

statistical properties and ones that can faithfully infer hypothesized dependencies like

temporal and network structures. Such models have the potential to address similar

problems throughout the social and physical sciences that feature high-dimensional

discrete data with complex dependence structure.

1.2 Contributions

This thesis defines and develops allocative Poisson factorization (APF), a class of

statistical models that are tailored to but general within the class of problems involv-

ing high-dimensional discrete data. Many models in statistics, machine learning, and

signal processing are unified under APF by the basic probabilistic assumption (some-
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times made implicitly) that observations are conditionally independent Poisson ran-

dom variables—yδ ∼ Pois (µδ)—whose latent rates are multilinear functions of shared

model parameters µδ=
∑
κ∈K µδκ. This assumption is natural for discrete data of rare

events and yields models that are robust to sparsity, missingness, overdispersion, and

burstiness. Moreover this basic assumption näıvely yields inference algorithms whose

time and memory complexity scale linearly with only the set of observed events as

opposed to the number of possible event types. The non-negative constraint on model

parameters permits their interpretation in multiple overlapping ways. This facilitates

the way in which social scientists use models to encode substantive hypotheses about

complex dependence structure underlying their data.

The main challenge to constructing and performing inference in APF models stems

from the multilinear structure of the latent rate µδ which must be non-negative, by

definition of the Poisson distribution. This multilinear structure is necessary in ob-

taining the attractive computational property of APF models but excludes the use

of non-linear functions to link real-valued parameters to the non-negative rate. Con-

structing models that capture the complex dependence structures inherent to social

processes—e.g., networks that link overlapping communities of actors or excitatory

temporal patterns—without relying on the analytic convenience and tractability of

the Gaussian distribution requires novel constructions of non-negative distributions—

e.g., gamma and Dirichlet—and innovative posterior inference techniques. Recent

advances in auxiliary variable augmentation schemes and newfound connections dif-

ferent probability distributions have rapidly expanded the class of APF models that

admit tractable posterior inference. The main technical goal of this thesis is to fa-

cilitate that expansion by providing concrete examples of novel APF models capable

of capturing complex dependence structure and exploit new auxiliary variable tech-

niques for tractable posterior inference. Towards that goal, this thesis also introduces
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several new augmentation schemes and introduces novel properties of probability dis-

tributions that have applicability beyond APF.

• Chapter 2 provides background on Bayesian latent variable modeling (BLVM)

and tensor decomposition, the two frameworks within which APF is defined.

The search for a “good” model is an iterative cycle for which these frameworks

are well-suited. BLVM cleanly distinguishes three phases of modeling [Blei,

2014]—i.e., model building, model fitting, and model critiquing—while tensor

decomposition further organizes the model building phase by distinguishing a

model’s relational assumptions from its distributional ones. These complemen-

tary frameworks promote modularity and highlight the connections between

models thus facilitating the iterative cycle of modeling. In this chapter, I also

provide background on that iterative cycle—i.e., the hypothetico-deductive ap-

proach—and how concept of measurement in social science motivates it.

• In Chapter 3, I define APF and describe its core properties. I discuss the

trade-offs between the two common choices of non-negative prior distributions—

gamma and Dirichlet—notably, the difference in the way missing data can be

handled under each. I also sketch different motifs of posterior inference in

APF models—i.e., thinning, latent source aggregation, masking, imputation,

and conjugacy. Finally, I provide historical notes that trace the lineage of

APF—which unifies convergent threads in statistics, machine learning, and sig-

nal processing—and highlight connections to and applications in many fields.

• Chapter 4 introduces an APF version of CP decomposition—the most widely

used form of tensor decomposition—along with a scalable variational infer-

ence algorithm. I demonstrate that this model infers interpretable dependence

structure in dyadic event data—i.e., multilateral relations—and that its out-of-

sample predictive performance is more robust to the inherent sparsity of dyadic
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event data than widely-used non-APF equivalents. I also detail some of its

connections to other popular methods and models.

• Chapter 5 introduces an APF version of Tucker decomposition—the second most

widely used form of tensor decomposition. When applied to dyadic event data,

this model infers dependence structure that yields classic network structures—

i.e., communities of countries—separate from the structure it learns along other

modes (e.g., action types). It further obtains superior out-of-sample predictive

performance as compared to comparable models for network data. For posterior

inference, I derive a Gibbs sampling algorithm—i.e., compositional allocation—

that exploits the structure of the Tucker decomposition to significantly speed

up the main bottleneck in APF inference (allocation). I also introduce a novel

hierarchical shrinkage prior over the core tensor and introduce a novel auxiliary

variable augmentation schemes for inference.

• Chapter 6 introduces an APF version of linear dynamical systems (LDS)—a

widely used model for multivariate time series. I apply this model to several

discrete multivariate time-series, including ones based on dyadic events, and

demonstrate that this model outperforms the standard Gaussian LDS at both

smoothing and forecasting, particularly when the time series are bursty. This

model relies on a non-conjugate construction that chains gamma-distributed

latent states together via their shape parameters. I introduce a novel aug-

mentation scheme that yields an efficient backward filtering forward sampling

for block updates of these latent states. This scheme relies on the iterative

application of an augmentation scheme [Zhou and Carin, 2012] that I provide

exposition on and offer insight into why its special structure facilitates tractable

inference in a range of different models.
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• Chapter 7 introduces another APF version of linear dynamical systems. This

model introduces intermediate Poisson-distributed latent states that sit between

the gamma-distributed latent states linked to the data. This change results in

substantial improvements over the previous model, including superior smooth-

ing and forecasting performance on tensors of dyadic event data and MCMC

inference that can be easily extended to scalable stochastic alternatives. This

model also introduces the general motif of gamma–Poisson–gamma chains that

has wide applicability. I derive multiple algorithms for efficient closed-form in-

ference in such chains. Under a certain setting of the hyperparameters, this

chain permits true sparsity—i.e., values of exactly zero—in the gamma latent

states. This setting motivates the derivation of a Rao-Blackwellized algorithm—

i.e., one which integrates out the gamma states to re-sample the Poisson states.

This algorithm relies on sampling from a novel probability distribution—hereby

called the size-biased confluent hypergeometric (SCH) distribution—which I de-

rive and describe.

• Chapter 8 imports the framework of differential privacy [Dwork et al., 2014] and

introduces a method for locally private Bayesian inference in any APF model.

In this setting, the true count data are sensitive and the model only conditions

on a noisy version of them. This chapter introduces a novel relationship be-

tween the Bessel and Skellam distributions to derive a scheme for sampling the

underlying sensitive counts as latent variables. This approach outperforms the

näıve approach—which treats the noised data as if it were the true data—in

two case studies on topic modeling and community detection. In some settings,

the private method even outperforms the non-private method.

• Finally, in Chapter 9, I sketch promising future directions for expanding the

framework of APF and suggest other applications.
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CHAPTER 2

BACKGROUND

2.1 Computational social science

Computational social science (CSS) is a growing interdisciplinary research area

dedicated to the development of data science methods for the study of complex social

processes [Lazer et al., 2009, Alvarez, 2016]. The role of data science within CSS

research can be broken down into three categories [Shmueli, 2010, Wallach, 2012]:

1. Exploratory—Surfacing patterns in data sets that help social scientists gen-

erate hypotheses and build theories about unobserved structures.

2. Explanatory—Testing existing hypotheses and theories.

3. Predictive—De-noising corrupted observations, imputing missing observables,

or forecasting future ones.

In many cases, the scope of social science questions is so broad—e.g., What are the

precursors to civil war?—that a directly predictive approach is untenable due to the

scarcity of data on the object of interest. A central concept in social science research

is thus measurement—i.e., the “[most] neglected topic in statistics” according to

Gelman [2015] who provides the following definition:

“[Measurement] is the idea of considering the connection between the data
you gather and the underlying object of your study.”

The concept of measurement applies both to case where the data is corrupted—

i.e., what Gelman et al. [2013, Chapter 8] call “measurement error”—as well as to
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the process of constructing a model whose parameters and latent variables have a

close correspondence to unobserved but hypothesized objects in the real world. This

latter process conforms to the theory of representational measurement which Hand

[1996] describes in terms of a prescribed mapping between hypothesized objects and

“numbers” (i.e., parameters or latent variables in a model); once this mapping is set:

“Statistical operations can then be carried out on the numbers and the
aim is that conclusions reached about relationships between the numbers
will reflect corresponding relationships between the objects.”

Competing theories of measurement exist, in particular operational measurement

which is also described by Hand [1996]:

“Operationalism defines scientific concepts in terms of the operations used
to identify or measure them. It avoids assuming an underlying reality and
so is fundamentally different from representationalism, which is based on
a mapping from an assumed underlying reality. In operationalism, things
start with the measurement procedure.”

In terms of dyadic event data, the representationalist may hypothesize the presence

of unobserved country community structure (i.e., the “object”) that is confound-

ing their regression analysis. They may then design a model whose latent variables

(i.e., the “numbers”) are supposed to measure those communities. Before using this

measurement model to correct their regression however, they may perform construct

validation “which assesses the extent to which the measure conforms with the theo-

retical predictions of relationships with other variables” [Hand, 1996]. The key point

here is that the representationalist uses the model only if its inferred representation

is consistent with their theory. The operationalist, on the other hand, does not con-

strain the model’s inferred representation to conform to any theory or hypothesis

of international relations. Instead, a model is “good” so long as performs well at

some measurable operation—e.g., forecasting future dyadic events. The representa-

tionalism versus operationalism distinction is analogous to a rift in early artificial

intelligence research—i.e., reductionism versus connectionism [Minsky, 1990].
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Representational measurement is central to social science where direct data of the

object of interest is scarce but theory about their connection is abundant. Computa-

tional social scientists carefully design exploratory (or “descriptive” [Shmueli, 2010])

methods so that the patterns they surface measure the latent structures whose pres-

ence is predicted by social scientific theory. In so doing, they encode their theory into

a data analysis method and may then compare it to competing theories (encoded

as methods) on predictive tasks [Hopkins and King, 2010, Schrodt, 2014, Wallach,

2012]. This results in an iterative process by which theories are encoded as methods,

critiqued, and then updated. It is thus critical for computational social scientists to

have an array of data analysis methods that are:

1. Interpretable—amenable to measurement tasks.

2. Modular—built from reusable or repurposable sub-units.

3. Translatable—described in a consistent and unified language that facilitates

comparisons and surfaces connections between methods.

2.2 Bayesian latent variable modeling

Bayesian latent variable modeling (BLVM) is a framework for formalizing the re-

lationships among observable data and hypothesized latent variables. It cleanly sepa-

rates three phases of modeling—model building, model fitting, and model critiquing—

which facilitates the iterative cycle of generating, testing, and refining substantive hy-

potheses about the data [Blei, 2014]. The approach to modeling wherein we restrict

attention to a subset of models whose structure encode substantive hypotheses—i.e.,

representational measurement—and then choose among them by comparing their pre-

dictive performance is known as the hypothetico-deductive approach for which Gelman

et al. [2013] motivate the BLVM framework.
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2.2.1 Model building

A model formalizes the relationships among observables D and latent variables Z

via a joint probability distribution P (D,Z |H) that conditions on the set of prior as-

sumptions and fixed hyperparameters H. This joint distribution is often constructed

via its factorization,

P (D,Z |H) = P (D |Z,H)︸ ︷︷ ︸
likelihood

P (Z |H)︸ ︷︷ ︸
prior

, (2.1)

where the likelihood formalizes our hypothesis about how the latent variables influence

the observables and the prior formalizes our hypothesis about the structure of the

latent variables.

2.2.2 Model fitting

Given a model (i.e., joint distribution), the goal of Bayesian inference is to compute

the posterior distribution which describes our uncertainty about the values of the

latent variables conditioned on observables and assumptions. By Bayes’ rule, it equals

P (Z |D,H)︸ ︷︷ ︸
posterior

=
P (D,Z |H)

P (D |H)︸ ︷︷ ︸
evidence

. (2.2)

In most cases, the posterior is intractable—i.e., cannot be computed analytically—due

to the evidence term in the denominator which is itself an intractable integral—i.e.,

P (D |H) =
∫

dZ P (D,Z |H). In these cases, the posterior must be approximated;

the field of Bayesian inference is concerned with the task of computing surrogate

distributions that approximate the posterior in some way—i.e., Q (Z) ≈ P (Z |D,H).

2.2.2.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods (e.g., Robert and Casella [2013],

Gelman et al. [2013]) approximate the posterior using a set of samples Q (Z) ,
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{Z(s)}Ss=1 drawn from the exact posterior Z(s) ∼ P (Z |D,H). One can interpret this

set of samples as a histogram whose contours converge to the probability density (or

mass) function of the exact posterior as the number of samples grows large S →∞.

While the exact posterior may be intractable, we can generate samples from it by

constructing a Markov chain that iteratively explores the state space of the latent

variables. This chain is defined by its transition operator T (Z(s) → Z(s+1)) which

specifies the probability of transitioning from one state to the next—if it satisfies

mild conditions, the chain is asymptotically guaranteed to converge to its stationary

distribution, which is the exact posterior.

The most common example of a valid transition operator is one which re-samples

each latent variable from its complete conditional—i.e.,

(zn | −) ∼ P (zn | Z\n, D,H), (2.3)

where Z\n is the set of all latent variables except the nth one (which we are re-

sampling). MCMC based on this transition operator is called Gibbs sampling.

2.2.2.2 Mean-field variational inference

Variational methods [Jordan et al., 1999] turn posterior inference into an opti-

mization problem. In this case, we approximate the full posterior with a surrogate

distribution from a simpler parametric family P (Z |D,H) ≈ Q (Z;γ) whose param-

eters γ we optimize to minimize some divergence between it and the exact posterior.

The most common divergence to minimize is the KL divergence:

γ∗ = argmin
γ

KL
(
Q (Z;γ) ||P (Z |D,H)

)
. (2.4)

We select the parametric family of surrogate distributions to facilitate optimization.

In mean-field variational inference, this family factorizes over all latent variables:
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Q (Z;γ) =
N∏

n=1

Q (zn;γn) . (2.5)

A common algorithm for mean-field is coordinate ascent variational inference (CAVI)

wherein the parameters of each factor Q (zn;γn) are iteratively optimized to minimize

the conditional objective. As shown by Bishop [2006, Chapter 10], the optimal factor

Q∗ (zn;γ∗n)—i.e., the one that minimizes the KL divergence in Eq. (2.4) when the

parameters to all other factors are fixed—is proportional to the geometric expected

value of the complete conditional for zn,

Q∗(zn;γ∗n) ∝ GQ\zn

[
P (zn | Z\n, D,H)

]
, (2.6)

where the geometric expected value—i.e., G[·] = exp (E[log ·])—is taken with respect

to all factors of the surrogate distribution except Q(zn;γn). Blei et al. [2017] provide

an alternative derivation of this fact along with a statistical perspective on CAVI.

2.2.2.3 Auxiliary variables and augmentation schemes

Sometimes we augment our model (i.e., joint distribution) with a set of auxil-

iary (latent) variables A such that the original joint is equal to the augmented joint

with the auxiliary variables marginalized out—i.e., P (D,Z |H) =
∫
dA (D,Z,A |H).

Auxiliary variables can be incorporated into either Gibbs sampling or CAVI by treat-

ing them as any other latent variable.

In some cases, the complete conditional for a latent variable zn in the original

model—i.e., P
(
zn | Z\n,D,H

)
—is not available in closed form but its complete con-

ditional in the augmented model—i.e., P
(
zn | Z\n,D,A,H

)
—is. This is typically the

scenario that motivates augmentation schemes.
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2.2.3 Model critiquing: Prediction as validation

Given some set of models that each encode competing substantive hypotheses, the

hypothetico-deductivist may then choose among them by comparing their posterior

predictive distributions on heldout data D′—i.e.,

P (D′ | D,H)︸ ︷︷ ︸
posterior predictive

=

∫
dZ P (D′ | Z,H)︸ ︷︷ ︸

heldout likelihood

P (Z |D,H)︸ ︷︷ ︸
posterior

, (2.7)

which is equal, in expectation, to the heldout likelihood averaged over samples of the

latent variables drawn from the exact posterior (e.g., those returned by MCMC):

≈ 1

S

S∑

s=1

P (D′ | Z(s),H). (2.8)

It is also common to use samples from the surrogate distribution Z(s) ∼ Q(Z;γ) when

using variational inference—though this estimator of the posterior predictive likeli-

hood may be biased if the variational family does not contain the exact posterior—or

a point estimate—e.g., Z∗ = EQ [Z].

Gelman and Shalizi [2013] advocate for posterior predictive checks (PPCs) [Rubin,

1984, Gelman et al., 1996] as a means of model comparison. This framework pro-

vides a flexible way to compare “relevant” functions of models’ posterior predictive

distributions; it also permits (though does not require) this comparison without the

use of a heldout data set. In this thesis, I will instead use prediction of heldout data

as the primary means of model comparison, which can also be used to compare to

non-Bayesian or non-probabilistic approaches.

2.3 Tensor decomposition

Tensor decomposition is a framework for representing an observed tensor—i.e.,

a multidimensional array—as a multilinear function of latent factors (that are fewer
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than the number of data entries). Tensor decompositions represent compressions of

the data that yield patterns and signatures of underlying dependence structure. This

framework originated in psychometrics but was developed largely in signal-processing.

Several thorough surveys and textbooks explain and catalog these methods—e.g., Kolda

and Bader [2009], Cichocki et al. [2009], Sidiropoulos et al. [2017]. In this section, I

introduce some terms and concepts that I refer to throughout this thesis.

2.3.1 Matrix decomposition

A special case of tensor decomposition is matrix decomposition (or matrix factor-

ization) which assumes that an observed matrix Y ∈ RD×V is a noisy version of the

product of two factor matrices Θ ∈ RD×K and Φ ∈ RV×K that each have a latent

mode of cardinality K:

Y ≈ ΘΦT . (2.9)

This assumption can be equivalently made in terms of the individual entries:

ydv ≈
K∑

k=1

θdkφkv. (2.10)

Given an observed matrix, the goal is then to find “good” values of the factor matrices

which are traditionally defined as those that minimize some divergence D(Y, ΘΦT )

plus some regularization constraint on the parameters R(Θ,ΦT ).

2.3.2 Probabilistic matrix decomposition

Probabilistic matrix decomposition assumes some likelihood P (Y |Θ,Φ) under

which a sufficient statistic is decomposed—e.g., the expected value E [Y ] = ΘΦT .

The goal is then to find parameter values that maximize this likelihood. These two
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approaches coincide when minimizing the loss function yields equivalent solutions to

maximizing the likelihood—i.e.,

argmin
Θ,Φ

D(Y, ΘΦT ) = argmax
Θ,Φ

P (Y |Θ,Φ). (2.11)

An example is the equivalence between minimizing Euclidean distance and maximiz-

ing the Gaussian likelihood—i.e.,

argmin
Θ,Φ

∑

d,v

(
ydv −

K∑

k=1

θdkφkv

)2

= argmax
Θ,Φ

∏

d,v

N
(
ydv;

K∑

k=1

θdkφkv, σ

)
. (2.12)

Probabilistic matrix decomposition may further assume prior distributions over the

factors and then find their values that maximize the joint distribution P (Y,Θ,Φ)—

i.e., maximum a posteriori (MAP) estimation. Analogous equivalences exist between

regularizers and priors. For instance, minimizing any divergence plus an `2-regularizer

is equivalent to performing MAP estimation with Gaussian priors.

2.3.3 Canonical polyadic decomposition

Canonical polyadic (CP) decomposition, also known as CANDECOMP or PARAFAC

[Harshman, 1970], is a generalization of matrix factorization to tensors. In this case,

an observed M -mode tensor Y ∈ RL1×···×LM is assumed to be the noisy version of

the tensor product of M factor matrices Θ(1) ∈ RK×L1 , . . . ,Θ(M) ∈ RK×LM that all

share a K-dimensional latent mode. This is equivalent to the following assumption

about a single element in the observed tensor:

yδ1...δM ≈
K∑

k=1

M∏

m=1

θ
(m)
kδm

. (2.13)

The indices δ1 ∈ {1, . . . , L1}, . . . , δM ∈ {1, . . . , LM} collectively form a multi-index

that can be written as δ and so that the data is written as yδ ≡ yδ1...δM .
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We may also introduce per-component weights λk, so that the decomposition is:

yδ ≈
K∑

k=1

λk

M∏

m=1

θ
(m)
kδm

. (2.14)

Singular value decomposition is an example of a 2-mode (matrix) version of this.

2.3.4 Tucker decomposition

Tucker decomposition [Tucker, 1964] is a different generalization of matrix factor-

ization to tensors. In this case, the M factor matrices are not constrained to share

the same cardinality K—i.e., Θ(1) ∈ RK1×L1 , . . . ,Θ(M) ∈ RKM×LM . To combine the

(potentially differently sized) factor matrices, we then introduce an M -mode core

tensor Λ ∈ RK1×···×KM . This makes the following assumption about a single element

in the observed tensor,

yδ ≈
K1∑

κ1=1

· · ·
KM∑

κM=1

λκ

M∏

m=1

θ
(m)
κmδm

, (2.15)

where here multi-index notation is additionally employed to describe the core tensor

elements λκ ≡ λκ1...κM for κm ∈ {1, . . . , Km}. The CP and Tucker decompositions

coincide when K1 = · · · = KM and the off-diagonal entries of the core tensor are

all zero. When the number of modes equals 2, tensor decomposition is matrix de-

composition and Tucker decomposition corresponds to bilinear matrix decomposition

[Nickel et al., 2015], also known as matrix trifactorization [Yoo and Choi, 2009].

2.3.5 Non-negative tensor decomposition

When the observed tensor is non-negative Y ∈ RL1×···×LM
+ we may encode that

prior knowledge into the model by constraining the model parameters to also be non-

negative. Along with encoding a natural inductive bias, this constraint also allows us

to interpret the model parameters in a number of different ways. See Cichocki et al.
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[2007]’s textbook for a survey on these methods. Here, I highlight the multiple over-

lapping interpretations of model parameters that the non-negative constraint permits.

2.3.5.1 Embeddings and mixed-membership.

We may view the columns of the factor matrices—under both CP and Tucker

decomposition—as representing embeddings of the various entities present in the data.

The ith column in the mth factor matrix θ
(m)
:i = (θ

(m)
1i , . . . , θ

(m)
Kmi

) is vector-based rep-

resentation of the ith entity in the mth mode. We should expect entities that exhibit

similar behavior to be described by similar vectors. The embeddings interpretation

is available under all forms of tensor decomposition. Non-negative tensor decompo-

sition allows another interpretation of θ
(m)
i as describing the mixed membership of

entity i in each of Km different components or clusters. In some applications, we

may believe that entities truly do have mixed membership in different components.

In other applications, we may believe that entities are members of only one, in which

case the non-negative vector θ
(m)
:i may be interpreted as our posterior belief about i’s

single membership—this is sometimes referred to as soft clustering.

2.3.5.2 Topics, components, and latent classes

We may also interpret the rows of the factor matrices in which case the inter-

pretations under the CP and Tucker decompositions diverge. Under Tucker decom-

position, the mth factor matrix has its own latent cardinality Km. The kth row

θ
(m)
k: = (θ

(m)
k1 , . . . , θ

(m)
kLm

) can be interpreted as describing how relevant each entity in

themth mode is to the kth component or cluster of that mode. The elements of the core

tensor then describe the rate of interactions between the different components of the

M modes. In CP decomposition, each factor matrix is constrained to have the same

cardinality K. In this case, we interpret the kth rows of all M factor matrices as collec-

tively providing a signature for a latent class of the data. The latent class interpreta-
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tion is also available under Tucker decomposition; in this case though, a latent class is

composed of a unique combination of M components or clusters, i.e., κ = (κ1, . . . κM).

2.4 Representing discrete data: tokens, types, tables, tensors

A discrete dataset consists of N tokens D ≡ {e1, . . . , eN}. Each token en records

a single observed co-occurrence of M discrete (categorical or ordinal) variables en =

(en1, . . . , enM) where the mth variable takes values in a discrete set enm ∈ [Lm]. The

notation [Lm] ≡ {1, . . . , Lm} refers to a discrete set with Lm levels.

There are
∏M

m=1 Lm possible values—i.e., types—that a token can take. Each

type δ ≡ (δ1, . . . δM) is a unique value in the Cartesian product of the M discrete sets

δ ∈ [L1] × · · · × [LM ]. This thesis will employ multi-index notation—i.e., δ—when

discussing tensor decomposition at a general level.

The type count yδ represents the total number of tokens taking type δ:

yδ =
N∑

n=1

1 [en = δ] , (2.16)

where the indicator function 1 [x] equals 1 if the predicate x is true and 0 otherwise.

The counts for all types δ can be represented in a contingency table (also known as a

pivot table) which simply enumerates all possible types in an unstructured manner.

Alternatively, the type counts can be organized into an M -mode count tensor Y ∈

N
L1×···×LM
0 . The notation N0 refers to the set of possible counts—i.e., the natural

numbers and zero, N0 = N ∪ {0} where the natural numbers are N = {1, 2, 3, . . . }.

Example 1: Text corpora. The “bag-of-words” representation of a text corpus

represents it as a collection of 2-dimensional tokens. A token en = (d, v) taking type

(d, v) records a single instance of word type v occurring in document d. If there are

D documents and V unique vocabulary items, the type counts can be organized into

a 2-mode count tensor (or, matrix) Y ∈ ND×V
0 .

21



Example 2: Multinetworks. A multinetwork is a network with multiple edge

types. A network with V actors and A possible edge types can be represented as

a collection of 3-dimensional tokens where a token en = (i, j, a) taking type (i, j, a)

records a single instance of actor i being connected to actor j with edge type a. The

type counts can be organized into a 3-mode count tensor Y ∈ NV×V×A
0 .
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CHAPTER 3

ALLOCATIVE POISSON FACTORIZATION

“God made the natural numbers; all else is man’s work.” –Leopold Kronecker, 1893

“Ah, ah, ah!” –Count Von Count, Sesame Street

Allocative Poisson factorization defines a class of models wherein the factorization

of a count tensor coincides with an allocation of event tokens. Inference in APF

models thus scales with the number of event tokens while tensor decomposition, in

general, scales linearly (or worse) with the size of the tensor—i.e., the number of

possible event types. APF models yield two equivalent mathematical representations:

a multilinear decomposition of the Poisson rate parameter (factorization) and the

multinomial thinning of the total observed count (allocation).

3.1 Basic definition of APF: factorization

APF is a subset of Poisson factorization [Canny, 2004, Titsias, 2008, Cemgil,

2009, Zhou and Carin, 2012, Gopalan and Blei, 2013, Paisley et al., 2014], a broad

class of models for learning latent structure from discrete data. Poisson factorization

assumes that each type count is a Poisson random variable,

yδ ∼ Pois (µδ) , (3.1)

where µδ ≥ 0 is the rate parameter where if µδ=0 then yδ=0 almost surely. The rate

µδ is then defined to be a function of shared model parameters—i.e., µδ = f(Zδ)—

where Zδ are the set of model parameters indexed by some subset of the multi-index

δ=(δ1, . . . , δM) and f(·) is an arbitrary link function whose range is non-negative.
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Definition 3.1: Poisson distribution

A Poisson random variable y ∼ Pois (µ) is a count y ∈ N0 whose distribution

is defined by non-negative rate parameter µ ≥ 0 and PMF:

Pois (y; µ) =
µy

y!
e−µ. (3.2)

The expected value and variance are equal:

E[y;µ] = V[y;µ] = µ. (3.3)

The standard definition of the Poisson assumes a positive rate parameter µ > 0.

However, if we adopt the common convention that 00 = 1, the distribution is

defined for µ=0; in this case, the count is zero y=0 almost surely:

Pois (y=0; µ=0)=1. (3.4)
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Figure 3.1: Probability mass function of the Poisson distribution for three
different values of the rate µ which defines both the expected value and variance.
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APF is the subset of Poisson factorization models for which the rate parameter

is defined to be a multilinear function of shared model parameters. In this case,

the rate may be defined as a sum over latent classes—µδ =
∑
κ∈K µδκ—where κ is

the multi-index for a latent class, K is the set of all latent classes, and µδκ is some

function of shared model parameters that are indexed by both the type δ and latent

class κ. The canonical form for allocative Poisson factorization is thus

yδ ∼ Pois

(∑

κ∈K

µδκ

)
. (3.5)

Example 1: Poisson matrix factorization is typically written as

yij ∼ Pois

(
K∑

k=1

θikφkj

)
. (3.6)

We may re-express this model as in Eq. (3.5) by defining the type as δ= (i, j), the

latent class as κ = k and then the rates µδκ = θikφkj.

Example 2: Poisson bilinear matrix factorization for community detection in

networks (e.g., [Karrer and Newman, 2011, Zhou, 2015]) is typically described as

yij ∼ Pois

(
K∑

k1=1

θik1

K∑

k2=1

πk1k2θjk2

)
. (3.7)

We may re-express this model as in Eq. (3.5) by defining the type as δ = (i, j),

each latent class as a unique pair of communities κ = (k1, k2) and then the rates

µδκ=θik1πk1k2θjk2 .
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3.2 Latent source representation: allocation

The defining assumption of APF, given in Eq. (3.5), can be equivalently made

by assuming that the observed type count is the sum of latent sub-counts—or latent

sources [Cemgil, 2009]—each of which is an independent Poisson random variable:

yδ ,
∑

κ∈K

yδκ, (3.8)

yδκ ∼ Pois (µδκ) for κ ∈ K.

This alternative representation is available due to Poisson additivity.

Definition 3.2: Poisson additivity

The Poisson distribution is closed under convolution. Define the sum of K

count random variables y· ,
∑K

k=1 yk. If each yk is an independent Poisson

random variable yk ∼ Pois (µk) then their sum is marginally Poisson distributed

y· ∼ Pois (µ·) with rate parameter equal to the sum of their rates µ· ,
∑K

k=1 µk.

A recurrent motif in APF is latent source aggregation wherein arbitrary sums of

latent sources are marginally Poisson-distributed (again due to Poisson additivity).

A common example of this is to consider the sum of all latent sources whose observed

index at the mth mode takes a particular value—e.g., δm = d—and whose latent index

at the mth mode takes a particular value—e.g., κm = k:

y
(m)
dk ,

∑

δ∈∆

∑

κ∈K

1 [δm = d]1 [κm = k] yδκ. (3.9)

Marginally—i.e., not conditioned on its sub-counts—y
(m)
dk is Poisson distributed:

y
(m)
dk ∼ Pois

(∑

δ∈∆

∑

κ∈K

1 [δm = d]1 [κm = k] µδκ

)
. (3.10)
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We will return to this property later in this chapter when deriving conditionally-

conjugate parameter updates. A common theme is that latent parameters are ren-

dered independent of the data (and often conditionally independent of each other)

when conditioned on aggregations of latent sources. Thus, posterior inference in

APF—both MCMC and variational—hinges on inferring the latent sources. The

complete conditional of the latent sources—i.e., yδ≡(yδκ)κ∈K—is multinomial:

(
(yδκ)κ∈K | −

)
∼ Multinom

(
yδ,

(
µδκ∑

κ′∈K µδκ′

)

κ∈K

)
. (3.11)

The multinomial distribution is a multivariate count distribution [Johnson et al., 1997,

Chapter 35] that conditions on the total count yδ and the relative—i.e., normalized—

per-class rates. We may also use a generalization of the multinomial (Definition 3.3)

that permits the following compact description with unnormalized rates µδ≡(µδκ)κ∈K:

(
yδ | −

)
∼ Multinom (yδ, µδ) . (3.12)

This complete conditional follows from a well-known connection between the Pois-

son and multinomial distributions—i.e., Poisson–multinomial thinning (see Defini-

tion 3.4)—which was first referenced, in a footnote, by Fisher [1922] and later given

more explicitly by Steel [1953].

A key property of the multinomial distribution is that the sub-counts are almost

surely 0 if yδ = 0. Standard algorithms for simulating multinomial random variables

have O(|K|) time complexity where |K| is the number of latent classes [Devroye, 2006,

Chapter 11]. Thus, inference in APF models scales with O(|∆+| |K|) where ∆+ ,

{δ ∈ ∆ : yδ > 0} is the set of types associated with non-zero counts. It is common for

high-dimensional discrete data to contain exponentially more types than non-zeros

[Kunihama and Dunson, 2013]. This therefore represents a significant computational

speedup over analogous non-APF decompositions that scale with O(|∆| |K|).
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Definition 3.3: Multinomial distribution (unnormalized rates)

A multinomial random variable y ∼ Multinom (y·,µ) is a K-dimensional count

vector y ≡ (y1, . . . , yK) ∈ NK
0 . The distribution is defined by the total count

y· ∈ N0, a K-dimensional non-negative rate vector µ ≡ (µ1, . . . , µK) ∈ RK
0+

whose sum µ· ,
∑K

k=1 µk is positive µ·>0, and probability mass function:

Multinom (y; y·,µ) = 1
[
y·=

K∑

k=1

yk

] y·!∏K
k=1 yk!

K∏

k=1

(
µk
µ·

)yk
. (3.13)

The standard definition assumes the rates are normalized—i.e., µ· = 1. This

definition is preferable for two reasons. First, it is faithful to algorithms for

multinomial sampling that do not require a normalized rate vector. Second,

the PMF under this representation can be easily manipulated to illuminate

the multinomial’s connection to the Poisson distribution (see Definition 3.4),

which facilitates derivation of inference schemes in APF models:

Multinom (y; y·,µ) = 1
[
y·=

K∑

k=1

yk

] y·!
µy··

K∏

k=1

µykk
yk!

(3.14)

= 1
[
y·=

K∑

k=1

yk

] ∏K
k=1 Pois (yk; µk)

Pois (y·, µ·)
.

The expected value of a single element yk can be defined as

E [yk | y·,µ]=µk
y·
µ·
. (3.15)

An important property of the multinomial distribution that holds for any µ ∈

R
K
+ is that all elements are zero yk=0 almost surely if y·=0:

Multinom (y=0; y·=0,µ) = 1. (3.16)
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Definition 3.4: Poisson–multinomial thinning

Consider K independent Poisson random variables yk ∼ Pois (µk) and define

their sum y· ,
∑K

k=1 yk and the sum of their rates µ· ,
∑K

k=1 µk. Then the

joint distribution of the counts when further conditioned on their sum—i.e.,

P (y | y·,µ)—is the multinomial given in Definition 3.3. Combining this with

Poisson additivity (Definition 3.2) further implies that the joint distribution of

the counts and their sum can be factorized (by definition) as

P (y, y· |µ) = P (y· |y)P (y |µ) = 1
[
y·=

K∑

k=1

yk

] K∏

k=1

Pois (yk; µk) , (3.17)

or alternatively into the marginal distribution of their sum (which is Poisson)

and the distribution conditioned on their sum (which is multinomial):

P (y, y· |µ) = P (y· |µ)P (y | y·,µ) = Pois (y·; µ·) Multinom (y; y·,µ) . (3.18)

Note the delta function in Eq. (3.17) is present in the multinomial PMF.

3.2.1 Thinning in CAVI

In the context of MCMC, the multinomial in Eq. (3.12) defines the complete

conditional from which the latent sources are sampled. In the context of coordinate

ascent variational inference (CAVI), the optimal surrogate distribution for the latent

sources can be derived by plugging in the multinomial PMF into Eq. (2.6) [Bishop,

2006]; it’s here where the multinomial PMF with unnormalized rates is helpful:

Q∗ (yδ) ∝ GQ\yδ
[Multinom (yδ; yδ, µδ)] (3.19)

∝ GQ\yδ

[
1

[
yδ=

∑

κ∈K

yδκ

] yδ!
µyδδ

∏

κ∈K

µyδκδκ
yδκ!

]
. (3.20)
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We can drop the terms µyδ and yδ! since neither depend on the sources yδκ. The

Dirac function can also be brought outside the expectation since it only depends on

the observed data yδ and the latent sources yδκ, neither of which are governed by Q\yδ :

∝ 1
[
yδ=

∑

κ∈K

yδκ

]
GQ\yδ

[∏

κ∈K

µyδκδκ
yδκ!

]
. (3.21)

The geometric expectation pushes into the product and we may equivalently substi-

tute Q for Q\yδ to simply notation:

∝ 1
[
yδ=

∑

κ∈K

yδκ

] ∏

κ∈K

GQ [µδκ]yδκ

yδκ!
. (3.22)

This is the unnormalized form of a multinomial distribution,

∝ Multinom (yδ; yδ, GQ [µδ]) , (3.23)

where the unnormalized rates of this multinomial GQ [µδ] ≡ (GQ [µδκ])κ∈K consist

of the geometric expectation under the surrogate distribution of µδκ. When µδκ is a

product of latent variables whose surrogate distributions are gamma or Dirichlet, this

expectation is available in closed form. The messages1 this factor passes to other fac-

tors are of the form EQ [yδκ] = yδ
GQ[µδκ]∑

κ′∈KGQ[µδκ′ ]
which needn’t be computed for yδ = 0.

3.2.2 Thinning via allocation

We may equivalently represent the multinomial thinning step in Eq. (3.12) in

terms of categorical indicators zn ∈ K that allocate the N tokens in the data set to

latent classes. Recall that each observed token en ∈ ∆ is a multi-index.

1CAVI can be understood as a “message-passing algorithm”. For more on this interpretation
see Winn and Bishop [2005] and Blei et al. [2017].
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(
zn | −

)
∼ Categorical

(
µen
)

for n = 1, . . . , N (3.24)

yδκ ,
N∑

n=1

1 [en = δ]1 [zn = κ] for δ ∈ ∆

The equivalence between multinomial thinning and categorical allocation connects

many existing models to Poisson factorization—any model that specifies a per-token

categorical likelihood but assumes that tokens are conditionally independent (or ex-

changeable) admits a representation as a multinomial or conditionally Poisson model.

Definition 3.5: Categorical distribution (unnormalized rates)

A categorical random variable z ∼ Cat(µ) takes values z ∈ K in a discrete

set with K elements K = {κ1, . . . ,κK}. The distribution is defined by a K-

dimensional non-negative rate vector µ (as in Definition 3.3) and PMF:

Cat(z;µ) =
K∏

k=1

(
µk
µ·

)1[z=κk]

. (3.25)

A special case of the categorical distributiona is the one for which the set of out-

comes is the set of integers that index them—i.e., K = {1, . . . , K} and κk = k.

This definition applies to cases where outcomes are multi-indices—e.g., all

possible undirected pairs of V countries: K = {(1↔2), (1↔3), . . . , (V ↔V−1)}.

aThe categorical (or “discrete”) distribution is often conflated with a special case of the
multinomial distribution for y· =1. This special case has been called the “multinoulli distribu-
tion” by Murphy [2012, Section 2.3.2] who also conflates it with the categorical distribution.
This conflation is the source of abuses in notation and software implementation errors—e.g.,
the sum of multinoulli random variables is a multinomial random variable (analogous to the
Bernoulli–binomial relationship) however a sum of categorical variables is not. It is impor-
tant to distinguish categorical and multinoulli random variables: the former takes values in
K while the latter takes values in the set of K-dimensional “one-hot” vectors that are 1 at
one level and 0 everywhere else.
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Definition 3.6: Categorical allocation

A multinomial random variable y ∼ Multinom (y·,µ) can be represented in

terms of auxiliary categorical random variables as,

en ∼ Cat(µ) for n=1, . . . , y· (3.26)

yκ =

y·∑

n=1

1

[
en=κ

]
for κ ∈ K (3.27)

where the last step bin-counts the categorical variables into the entries of y.

3.3 Missing data: masking, imputing, and marginalizing

Missingness manifests itself in multiple ways in discrete data. Zero-valued counts

frequently conflate true non-occurrence with unobserved occurrence—such data sets

are sometimes referred to as “presence-only data” [Pearce and Boyce, 2006]. Statis-

tical literaure on contingency table analysis further distinguishes “sampling zeros”—

i.e., zero-valued counts of possible but unobserved events—with “structural zeros”—

i.e., counts of structurally impossible events that are zero-valued by definition [Agresti,

2003, Chapter 2.1.4, pp. 392].

3.3.1 Masking

To explicitly model structural zeros, we introduce a binary maskB ∈ {0, 1}L1×···×LM

which is the same size as the observed count tensor Y ∈ NL1×···×LM
0 . A zero-valued

entry yδ=0 is a structural zero if bδ=0 and a sampling zero if bδ=1. The likelihood

of allocative Poisson factorization using such a mask is

yδ ∼ Pois

(
bδ
∑

κ∈K

µδκ

)
, (3.28)

32



where we appeal to the convention that a Poisson random variable is 0 almost surely

if its rate is 0 (see Definition 3.1). The definition for Poisson factorization given pre-

viously in this chapter is consistent with this one—it simply assumes that there are

no structural zeros (i.e., the mask is one everywhere).

We may treat the mask as observed or latent, depending on the application. For

instance, in recommender systems, the “exposure” of a user to a particular item is

sometimes explicitly modeled as a binary latent variable which deconflates structural

and sampling zeros [Liang et al., 2016]. More generally, masked Poisson factorization

corresponds to a “misrecorded” or “zero-inflated” Poisson model [Johnson et al., 2005,

Chapter 4.10.3] when the mask is latent.

In this thesis, I only consider cases where the mask is observed. It is common in

machine learning to create a heldout data set for the purpose of testing a model’s

out-of-sample prediction performance. In this case, the mask denotes which entries

of the observed tensor have been held out.

3.3.2 Imputing

The simplest way to accommodate masked data during posterior inference in

APF models is via imputation [Rubin, 1996] whereby the masked entries are treated

as latent variables whose complete conditional is Pois (yδ;µδ). In the context of

MCMC, we would re-sample each heldout entry—i.e.,
(
yδ | −

)
∼ Pois (µδ). We may

equivalently treat the latent sources yδκ as conditionally independent Poisson random

variables—i.e.,
(
yδκ | −

)
∼ Pois (µδκ)—since they are no longer conditioned on their

sum. This latter representation is useful for incorporating missing data into mean-

field variational inference, wherein each yδκ is given its own surrogate distribution,
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Q∗(yδκ) ∝ GQ\yδκ
[Pois (yδκ; µδκ)] (3.29)

∝ GQ\yδκ

[
µyδκδκ
yδκ!

]
(3.30)

∝ (GQ [µδκ])yδκ

yδκ!
(3.31)

∝ Pois (yδκ; GQ [µδκ]) , (3.32)

where the geometric expectation GQ [µδκ] is the same as those that appear in the

optimal surrogate distribution for the latent sources in Eq. (3.23). The messages this

factor passes to other factors take the form EQ [yδκ] = GQ [µδκ] which collectively

constitute an imputation of yδ—i.e., EQ [yδ] =
∑
κ∈KGQ [µδκ]. I illustrate this point

in greater detail later in the chapter.

In both MCMC and VI, imputation scales with O (|K| · |1−B|1) where |1−B|1 is

the number of heldout entries and |K| is the number of latent classes.

3.3.3 Marginalizing

Imputation augments the set of latent variables with the heldout data entries.

If the number of heldout entries is large, imputation may significantly hamper the

mixing or convergence rates of posterior inference. In that case, marginalizing out

heldout entries may be preferable, if possible. However there is no free lunch: the

computational cost of marginalization is greater than that of imputation by a factor

of M—i.e., O (M · |K| · |1−B|1)—where M is the number of modes. The additional

computational cost introduced by marginalization is somewhat obfuscated. Where it

appears is during latent source aggregation. I illustrate this point in greater detail

later in the chapter. Intuitively though, we can view imputation as updating the held-

out entries once per interation while in marginalization, computing the expectation

over the heldout entries during the parameter updates to the M modes is morally the

same as re-sampling the heldout entries M different times per iteration.
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3.4 Conjugate priors: gamma and Dirichlet

In this section, I give details about the two main choices of non-negative prior

distribution for the latent parameters in APF: gamma (Definition 7.1) and Dirichlet

Definition 3.9). Both have a conjugate relationship to a form of the likelihood—the

gamma is conjugate to the Poisson (Definition 3.8), while the Dirichlet is conjugate to

the multinomial (Definition 3.10). An important and widely overlooked consideration

in choosing between these two is that marginalization of missing data is incompati-

ble with multinomial–Dirichlet conjugacy—i.e., models based on Dirichlet-distributed

parameters must impute missing data to exploit conjugacy for efficient parameter up-

dates. I will illustrate this point in more detail after introducing some definitions and

detailing how the two distributions are closely related (Definitions 3.13 and 3.14).

To illustrate their trade-offs, I will construct an APF model and derive its com-

plete conditionals under gamma and Dirichlet priors. The model is based on the CP

decomposition of a 3-mode count tensor Y ∈ NV×V×A
0 of dyadic events counts, each of

which y
i
a−→j

represents the number of times country i took action a towards country j.

This model is a simpler version of the model in Chapter 4, which includes a 4th mode

(time step). We will not allow self-actions i
a−→i and use the mask to denote them as

structural zeros—i.e., b
i
a−→j

=0 for all i = j and 1 otherwise. This model’s likelihood is

y
i
a−→j
∼ Pois

(
b
i
a−→j

K∑

k=1

θ
(1)
ik θ

(2)
jk θ

(3)
ak

)
, (3.33)

where the non-negative latent parameters for the sender, receiver, and action modes

are θ
(1)
ik , θ

(2)
jk , and θ

(3)
ak respectively.

3.4.1 Gamma priors

Assume the parameters of the first mode are gamma distributed:

θ
(1)
ik ∼ Γ(α0, β0). (3.34)
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Definition 3.7: Gamma distribution

A gamma random variable θ ∼ Γ (α, β) takes values in the positive reals θ > 0.

Its distribution is defined by shape α > 0 and rate β > 0 parameters and PDF:

Γ(θ;α, β) =
βα

Γ(α)
θα−1e−θβ. (3.35)

The (arithmetic) expected value and variance are

E [θ] = αβ−1 and V [θ] = αβ−2. (3.36)

The geometric expected value is defined in terms of the digamma function Ψ(·):

G [θ] = exp
(

Ψ(α)− ln β
)
. (3.37)
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Figure 3.2: PDF of the gamma distribution for four combinations of the shape α and rate β.

Definition 3.8: Gamma–Poisson conjugacy

Consider a gamma random variable θ ∼ Γ(α, β) as in Definition 7.1 and N

independent Poisson random variables yn ∼ Pois (θ ζn) for n = 1, . . . , N each of

whose rate is a product of θ and some constant ζn ≥ 0. Then the posterior or

inverse distribution of θ—i.e., its distribution conditioned on the Poisson counts

y ≡ (y1, . . . , yN) and constants ζ ≡ (ζ1, . . . , ζN) follows a gamma distribution

that depends only on the sums y· and ζ· of the counts and constants:

P (θ |y, ζ, α, β) = P (θ | y·, ζ·, α, β) = Γ (θ;α + y·, β + ζ·) (3.38)
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This prior does not have a directly conjugate relationship to the likelihood in

Eq. (3.33). However, this prior does have a conjugate relationship to the (marginal)

distribution of the following latent source aggregation,

y
(1)
ik ,

V∑

j=1

A∑

a=1

y
i
a−→j k

, (3.39)

which represents the total number of dyadic events involving sender i that are allo-

cated to component k. Marginally—i.e., not conditioned on y
i
a−→j

—it is a Poisson

random variable:

y
(1)
ik ∼ Pois

(
V∑

j=1

A∑

a=1

b
i
a−→j
θ

(1)
ik θ

(2)
jk θ

(3)
ak

)
. (3.40)

We may pull θ
(1)
ik outside the sum and rewrite its rate as

y
(1)
ik ∼ Pois

(
θ

(1)
ik ζ

(1)
ik

)
, (3.41)

where we’ve defined ζ
(1)
ik as the multilinear combination of the other parameters:

ζ
(1)
ik ,

V∑

j=1

A∑

a=1

b
i
a−→j
θ

(2)
jk θ

(3)
ak . (3.42)

Eq. (3.41) describes the marginal distribution for the count of all events whose rates

depend on θ
(1)
ik —it is to this Poisson distribution that θ

(1)
ik ’s gamma prior is conjugate.

We may apply Definition 3.8 to obtain θ
(1)
ik ’s complete conditional:

(
θ

(1)
ik | −

)
∼ Γ

(
α0 + y

(1)
ik , β0 + ζ

(1)
ik

)
. (3.43)
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In the context of MCMC, this complete conditional describes how to resample θ
(1)
ik .

For CAVI, the optimal surrogate distribution for θ
(1)
ik is then proportional to

Q∗
(
θ

(1)
ik

)
∝ GQ

\θ(1)
ik

[
Γ
(
θ

(1)
ik ;α0 + y

(1)
ik , β0 + ζ

(1)
ik

)]
. (3.44)

Plugging in only the terms in the gamma PDF that involve θ
(1)
ik :

∝ GQ
\θ(1)
ik

[
(θ

(1)
ik )α0+y

(1)
ik −1 e−(β0+ζ

(1)
ik )θ

(1)
ik

]
. (3.45)

The geometric expectation pushes into the exponents and becomes an arithmetic

expectation. We may also equivalently replace Q\θ(1)
ik

with Q:

∝ (θ
(1)
ik )

α0+EQ

[
y

(1)
ik

]
−1
e
−
(
β0+EQ

[
ζ

(1)
ik

])
θ
(1)
ik . (3.46)

This is proportional to the following gamma distribution,

∝ Γ
(
θ

(1)
ik ; α0 +EQ

[
y

(1)
ik

]
, β0 +EQ

[
ζ

(1)
ik

])
, (3.47)

where EQ

[
y

(1)
ik

]
is the message from the multinomial factor described (in its general

form) in Eq. (3.23) and the expectation in the rate parameter is equal to

EQ

[
ζ

(1)
ik

]
=

V∑

j=1

A∑

a=1

b
i
a−→j
EQ

[
θ

(2)
jk

]
EQ

[
θ

(3)
ak

]
, (3.48)

since the mask is fixed and θ
(2)
jk , θ

(3)
ak are independent under the surrogate distribution.
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Note that if there are no structural zeros—i.e., if b
i
a−→j

= 1 everywhere—the ex-

pression for the constant ζ
(1)
ik can be rewritten by pushing the sums in:

ζ
(1)
ik =

(
V∑

j=1

θ
(2)
jk

)(
A∑

a=1

θ
(3)
ak

)
. (3.49)

In this case, we can compute ζ
(1)
ik by summing each parameter vector and multiplying

the resultant scalars in O(V +A) time. However, if there are structural zeros, the

presence of the mask term b
i
a−→j

prevents the sums from pushing in fully; we may

rewrite Eq. (3.42) as

ζ
(1)
ik =

V∑

j=1

θ
(2)
jk

(
A∑

a=1

b
i
a−→j

θ
(3)
ak

)
, (3.50)

which näıvely suggests that we compute ζ
(1)
ik as a bilinear combination of the V×A slice

of mask indexed by the ith sender B
i

:−→:
with the A- and V -length parameter vectors in

O(V A) time. However, we can exploit the binary nature of the mask to rewrite this as

ζ
(1)
ik =

(
V∑

j=1

θ
(2)
jk

)(
A∑

a=1

θ
(3)
ak

)
−

V∑

j=1

A∑

a=1

(
1− b

i
a−→j

)
θ

(2)
jk θ

(3)
ak , (3.51)

where the first term is the O(V+A) expression for the fully observed ζ
(1)
ik in Eq. (3.49)

and the second is a correction term that subtracts off the bilinear terms for the entries

of the mask that are 0. The second term represents the additional computational cost

of marginalization which is O(|1−B
i

:−→:
|1) where |1−B

i
:−→:
|1 is the number of zeros

in the mask slice; this number is at most V A, if all entries in the slice are structural

zeros, but often a small fraction of that, in practice. The additional cost of marginal-

ization in computing the analogous constants for all senders i and components k is

then O
(
K ·∑V

i=1 |1−Bi
:−→:
|1
)

= O(K · |1−B|1).

More generally, if the parameters for all modes in an APF model are gamma-

distributed, the additional cost of marginalization is O (M · |K| · |1−B|1).
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3.4.2 Dirichlet priors

Now assume that each column of the third parameter matrix—e.g., the kth column

θ̃
(3)

:k ≡ (θ̃
(3)
1k , . . . , θ̃

(3)
Ak)—is a Dirichlet random variable. Note I’ve added a tilde to the

parameter to denote that the vector is normalized—i.e.,
∑A

a=1 θ̃
(3)
ak = 1.

θ̃
(3)

:k ∼ Dir(α0). (3.52)

Definition 3.9: Dirichlet distribution

An N -dimensional Dirichlet random variable θ̃ ∼ Dir (α1, . . . , αN) takes values

in the (N−1)-simplex—i.e., θ̃≡(θ̃N , . . . , θ̃N), θ̃n ≥ 0, and
∑N

n=1 θ̃n=1. Its dis-

tribution is defined by N shape parameters α≡(α1, . . . , αN), αn > 0, and PDF:

Dir(θ̃;α) =
Γ (α·)∏K
k=1 Γ(αk)

K∏

k=1

θ̃ αk−1
k . (3.53)

The arithmetic and geometric expected values are:

E

[
θ̃n |α

]
=
αn
α·
, (3.54)

G

[
θ̃n |α

]
= exp

(
ψ(αn)− ψ(α·)

)
. (3.55)

where ψ(·) is the digamma function.

Definition 3.10: Dirichlet–multinomial conjugacy

Consider an N -dimensional Dirichlet random variable θ̃ ∼ Dir(α) as in Defini-

tion 7.1 and a multinomial random variable y ∼ Multinom
(
y·, θ̃

)
. Then the

inverse distribution of θ̃—i.e., its distribution conditioned y—is Dirichlet:

P (θ̃ |y, α) = Dir
(
θ̃;α1+y1, . . . , αN+yN

)
. (3.56)
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Definition 3.11: Dirichlet–Poisson conjugacy

Consider an N -dimensional Dirichlet random variable θ̃ ∼ Dir(α) as in Defini-

tion 7.1 and N independent Poisson random variables yn
ind∼ Pois

(
θ̃n ζ

)
where

the constant ζ ≥ 0 is shared across all N . Then the inverse distribution of θ̃ is

Dirichlet and independent of ζ:

P (θ̃ |y, ζ, α) = P (θ̃ |y, α) = Dir
(
θ̃;α1+y1, . . . , αN+yN

)
(3.57)

Proof: By Poisson–multinomial thinning, the joint distribution of theN Poisson

random variables along with their sum y· is equal to,

1

[
y· =

N∑

n=1

yn

]
N∏

n=1

Pois
(
yn; θ̃n ζ

)
= Pois (y·; ζ) Multinom

(
y; y·, θ̃

)
(3.58)

where the Poisson rate for y·—i.e.,
∑N

n=1 θ̃n ζ = ζ(
∑N

n=1 θ̃n) = ζ—does not

include contain any θ̃n terms because they sum to 1 and the (normalized)

multinomial rates—e.g., θ̃n ζ∑N
n′=1 θ̃n′ ζ

= θ̃n∑N
n′=1 θ̃n′

= θ̃n—do not include ζ because

it is constant across all N . Since the only dependence on θ̃ is through the

multinomial term, the prior is conjugate via Dirichlet–multinomial conjugacy.

Note that this conjugate relationship holds only if ζ is shared by all N Poisson

random variables—if the Poisson random variables have heterogeneous con-

stants ζn 6= ζn′ , the Dirichlet is not conjugate to their joint distribution.

This prior does not have a directly conjugate relationship to the Poisson likelihood

in Eq. (3.33). However, consider the following latent source aggregation,

y
(3)
ak ,

V∑

i=1

V∑

j=1

y
i
a−→j
, (3.59)
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which counts all events involving action type a allocated to component k. Its marginal

distribution is Poisson,

y
(3)
ak ∼ Pois

(
V∑

i=1

V∑

j=1

b
i
a−→j
θ

(1)
ik θ

(2)
jk θ̃

(3)
ak

)
, (3.60)

which may be rewritten as,

y
(3)
ak ∼ Pois

(
θ̃

(3)
ak ζ

(3)
ak

)
(3.61)

ζ
(3)
ak ,

V∑

i=1

V∑

j=1

b
i
a−→j
θ

(1)
ik θ

(2)
jk . (3.62)

Consider all A of such latent sources aggregations y
(3)
:k ≡ (y

(3)
1k , . . . , y

(3)
Ak) for the kth

component. By Definition 3.11, the Dirichlet prior over θ̃:k is not conjugate to their

joint distribution, due to the fact that their constants are heterogeneous ζ
(3)
ak 6= ζ

(3)
a′k.

However, that heterogeneity is solely due to the presence of the mask. In the case

where there are no heldout entries—i.e., b
i
a−→j

= 1 everywhere—the form of the con-

stants simplify to a form that is homogeneous across action types:

ζ
(3)
ak = ζ

(3)
a′k =

(
V∑

i=1

θ
(1)
ik

) (
V∑

j=1

θ
(2)
jk

)
(3.63)

Thus, it is only in the fully observed or imputed model that we may apply Dirichlet–

Poisson conjugacy to obtain the following complete conditional for θ̃:k:

(
θ̃:k | −

)
∼ Dir

(
α01+y

(3)
1k , . . . , α0A+y

(3)
Ak

)
(3.64)
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3.4.3 Connection between the gamma and Dirichlet distributions

The gamma and Dirichlet distributions have a deep relationship. Understanding

their relationship allows us to draw connections between seemingly disparate models—

i.e., Dirichlet–categorical models and gamma–Poisson models. Moreover, their rela-

tionship is based on unique conditional independence properties, described by Lukacs

[1955]’s theorem, that can be exploited for efficient and elegant posterior inference; I

describe this in Definitions 3.13 and 3.14 (which depend on Definition 3.12).

Definition 3.12: Gamma additivity

The gamma distribution with fixed rate is closed under convolution. Consider

K gamma random variables θk ∼ Γ(αk, β) for k = 1, . . . , K with possibly het-

erogeneous shape parameters αk but shared rate parameter β. Then the sum θ·

is marginally gamma distributed and depends only on the sum α· of the shapes:

P (θ·;α, β) = P (θ·;α·, β) = Γ (θ· ; α·, β) . (3.65)

The gamma distribution is not closed under convolution for varying rate βn.

Definition 3.13: Gamma proportions are Dirichlet distributed

Consider K independent gamma random variables θ ≡ (θ1, . . . , θK) with pos-

sibly heterogeneous shapes αk but shared rate β—i.e., θk
ind∼ Γ(αk, β). Define

their sum θ· and proportions vector θ̃ , θ/θ· so that
∑K

k=1 θ̃k=1. The propor-

tions vector is marginally Dirichlet-distributed and independent of the rate β :

P (θ̃ |α, β) = P (θ̃ |α) = Dir (α) . (3.66)

A related fact is that the proportions are also independent of the sum θ·. This

is only true of gamma random variables (Lukacs [1955], see Definition 3.14).
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Definition 3.14: Sum–proportion independence of gammas

Consider K non-negative random variables θ1, . . . , θK drawn from an arbitrary

distribution and define their sum θ· and proportion vector θ̃ (as in Defini-

tion 3.13). Lukacs [1955] showed that the sum and proportion vector are

independent random variables if and only if the original random variables are

independently gamma-distributed with shared rate θk
ind∼ Γ(αk, β). Thus, the

joint distribution of such gamma random variables along with their sum and

normalized vector—i.e., P (θ, θ·, θ̃ |α, β)—can be factorized (by definition) as

P (θ, θ·, θ̃ |α, β) = P (θ·, θ̃ |θ)P (θ |α, β) (3.67)

= 1

[
θ̃=

θ

θ·

]
1

[
θ·=

K∑

k=1

θk

][
K∏

k=1

Γ (θk;αk, β)

]
, (3.68)

or alternatively by drawing the sum θ· (by gamma additivity) and the

normalized vector θ̃ (as a Dirichlet random variable) which then determine θ:

P (θ, θ·, θ̃ |α, β) = P (θ | θ·, θ̃)P (θ·, θ̃ |α, β) (3.69)

= P (θ | θ·, θ̃)P (θ· |α, β)P (θ̃ |α) (3.70)

= 1
[
θ= θ̃ θ·

]
Γ (θ·; α·, β) Dir(θ̃;α). (3.71)

It is only for these specific parametric forms given here that the two graphical

models below encode the same joint distribution.
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<latexit sha1_base64="sxxy95SYSzXqD5FA66cVR6Ni9e0=">AAACBnicbVDLSsNAFL2pr1pfUZciDBbBVUlE0GXRjcsK9gFNKJPJtB06mYSZiVBCVm78FTcuFHHrN7jzb5y0WWjrgWEO59zLvfcECWdKO863VVlZXVvfqG7WtrZ3dvfs/YOOilNJaJvEPJa9ACvKmaBtzTSnvURSHAWcdoPJTeF3H6hULBb3eppQP8IjwYaMYG2kgX2ceUHMQzWNzJd5mvGQZh7myRjneT6w607DmQEtE7ckdSjRGthfXhiTNKJCE46V6rtOov0MS80Ip3nNSxVNMJngEe0bKnBElZ/NzsjRqVFCNIyleUKjmfq7I8ORKhY1lRHWY7XoFeJ/Xj/Vwys/YyJJNRVkPmiYcqRjVGSCQiYp0XxqCCaSmV0RGWOJiTbJ1UwI7uLJy6Rz3nCdhnt3UW9el3FU4QhO4AxcuIQm3EIL2kDgEZ7hFd6sJ+vFerc+5qUVq+w5hD+wPn8AAzWaGA==</latexit><latexit sha1_base64="sxxy95SYSzXqD5FA66cVR6Ni9e0=">AAACBnicbVDLSsNAFL2pr1pfUZciDBbBVUlE0GXRjcsK9gFNKJPJtB06mYSZiVBCVm78FTcuFHHrN7jzb5y0WWjrgWEO59zLvfcECWdKO863VVlZXVvfqG7WtrZ3dvfs/YOOilNJaJvEPJa9ACvKmaBtzTSnvURSHAWcdoPJTeF3H6hULBb3eppQP8IjwYaMYG2kgX2ceUHMQzWNzJd5mvGQZh7myRjneT6w607DmQEtE7ckdSjRGthfXhiTNKJCE46V6rtOov0MS80Ip3nNSxVNMJngEe0bKnBElZ/NzsjRqVFCNIyleUKjmfq7I8ORKhY1lRHWY7XoFeJ/Xj/Vwys/YyJJNRVkPmiYcqRjVGSCQiYp0XxqCCaSmV0RGWOJiTbJ1UwI7uLJy6Rz3nCdhnt3UW9el3FU4QhO4AxcuIQm3EIL2kDgEZ7hFd6sJ+vFerc+5qUVq+w5hD+wPn8AAzWaGA==</latexit><latexit sha1_base64="sxxy95SYSzXqD5FA66cVR6Ni9e0=">AAACBnicbVDLSsNAFL2pr1pfUZciDBbBVUlE0GXRjcsK9gFNKJPJtB06mYSZiVBCVm78FTcuFHHrN7jzb5y0WWjrgWEO59zLvfcECWdKO863VVlZXVvfqG7WtrZ3dvfs/YOOilNJaJvEPJa9ACvKmaBtzTSnvURSHAWcdoPJTeF3H6hULBb3eppQP8IjwYaMYG2kgX2ceUHMQzWNzJd5mvGQZh7myRjneT6w607DmQEtE7ckdSjRGthfXhiTNKJCE46V6rtOov0MS80Ip3nNSxVNMJngEe0bKnBElZ/NzsjRqVFCNIyleUKjmfq7I8ORKhY1lRHWY7XoFeJ/Xj/Vwys/YyJJNRVkPmiYcqRjVGSCQiYp0XxqCCaSmV0RGWOJiTbJ1UwI7uLJy6Rz3nCdhnt3UW9el3FU4QhO4AxcuIQm3EIL2kDgEZ7hFd6sJ+vFerc+5qUVq+w5hD+wPn8AAzWaGA==</latexit><latexit sha1_base64="sxxy95SYSzXqD5FA66cVR6Ni9e0=">AAACBnicbVDLSsNAFL2pr1pfUZciDBbBVUlE0GXRjcsK9gFNKJPJtB06mYSZiVBCVm78FTcuFHHrN7jzb5y0WWjrgWEO59zLvfcECWdKO863VVlZXVvfqG7WtrZ3dvfs/YOOilNJaJvEPJa9ACvKmaBtzTSnvURSHAWcdoPJTeF3H6hULBb3eppQP8IjwYaMYG2kgX2ceUHMQzWNzJd5mvGQZh7myRjneT6w607DmQEtE7ckdSjRGthfXhiTNKJCE46V6rtOov0MS80Ip3nNSxVNMJngEe0bKnBElZ/NzsjRqVFCNIyleUKjmfq7I8ORKhY1lRHWY7XoFeJ/Xj/Vwys/YyJJNRVkPmiYcqRjVGSCQiYp0XxqCCaSmV0RGWOJiTbJ1UwI7uLJy6Rz3nCdhnt3UW9el3FU4QhO4AxcuIQm3EIL2kDgEZ7hFd6sJ+vFerc+5qUVq+w5hD+wPn8AAzWaGA==</latexit>

�
<latexit sha1_base64="8MzdY9xWePsViGumrVRX3IPm9UE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMFWwttKJvtpF262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIY8rxvp7S2vrG5Vd6u7Ozu7R9UD4/aJsk0xxZPZKI7ITMohcIWCZLYSTWyOJT4GI5vZ/7jE2ojEvVAkxSDmA2ViARnZKVWL0Ri/WrNq3tzuKvEL0gNCjT71a/eIOFZjIq4ZMZ0fS+lIGeaBJc4rfQygynjYzbErqWKxWiCfH7s1D2zysCNEm1LkTtXf0/kLDZmEoe2M2Y0MsveTPzP62YUXQe5UGlGqPhiUZRJlxJ39rk7EBo5yYkljGthb3X5iGnGyeZTsSH4yy+vkvZF3ffq/v1lrXFTxFGGEziFc/DhChpwB01oAQcBz/AKb45yXpx352PRWnKKmWP4A+fzB8PWjqQ=</latexit><latexit sha1_base64="8MzdY9xWePsViGumrVRX3IPm9UE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMFWwttKJvtpF262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIY8rxvp7S2vrG5Vd6u7Ozu7R9UD4/aJsk0xxZPZKI7ITMohcIWCZLYSTWyOJT4GI5vZ/7jE2ojEvVAkxSDmA2ViARnZKVWL0Ri/WrNq3tzuKvEL0gNCjT71a/eIOFZjIq4ZMZ0fS+lIGeaBJc4rfQygynjYzbErqWKxWiCfH7s1D2zysCNEm1LkTtXf0/kLDZmEoe2M2Y0MsveTPzP62YUXQe5UGlGqPhiUZRJlxJ39rk7EBo5yYkljGthb3X5iGnGyeZTsSH4yy+vkvZF3ffq/v1lrXFTxFGGEziFc/DhChpwB01oAQcBz/AKb45yXpx352PRWnKKmWP4A+fzB8PWjqQ=</latexit><latexit sha1_base64="8MzdY9xWePsViGumrVRX3IPm9UE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMFWwttKJvtpF262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIY8rxvp7S2vrG5Vd6u7Ozu7R9UD4/aJsk0xxZPZKI7ITMohcIWCZLYSTWyOJT4GI5vZ/7jE2ojEvVAkxSDmA2ViARnZKVWL0Ri/WrNq3tzuKvEL0gNCjT71a/eIOFZjIq4ZMZ0fS+lIGeaBJc4rfQygynjYzbErqWKxWiCfH7s1D2zysCNEm1LkTtXf0/kLDZmEoe2M2Y0MsveTPzP62YUXQe5UGlGqPhiUZRJlxJ39rk7EBo5yYkljGthb3X5iGnGyeZTsSH4yy+vkvZF3ffq/v1lrXFTxFGGEziFc/DhChpwB01oAQcBz/AKb45yXpx352PRWnKKmWP4A+fzB8PWjqQ=</latexit><latexit sha1_base64="8MzdY9xWePsViGumrVRX3IPm9UE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMFWwttKJvtpF262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIY8rxvp7S2vrG5Vd6u7Ozu7R9UD4/aJsk0xxZPZKI7ITMohcIWCZLYSTWyOJT4GI5vZ/7jE2ojEvVAkxSDmA2ViARnZKVWL0Ri/WrNq3tzuKvEL0gNCjT71a/eIOFZjIq4ZMZ0fS+lIGeaBJc4rfQygynjYzbErqWKxWiCfH7s1D2zysCNEm1LkTtXf0/kLDZmEoe2M2Y0MsveTPzP62YUXQe5UGlGqPhiUZRJlxJ39rk7EBo5yYkljGthb3X5iGnGyeZTsSH4yy+vkvZF3ffq/v1lrXFTxFGGEziFc/DhChpwB01oAQcBz/AKb45yXpx352PRWnKKmWP4A+fzB8PWjqQ=</latexit>

✓̃
<latexit sha1_base64="XWOeMBY1CYHfZfKLpNFwfmZCijE=">AAACBHicbVDLSsNAFJ3UV62vqMtugkVwVRIRdFl047KCfUAbymRy0w6dPJi5EUrIwo2/4saFIm79CHf+jZM2C209MNzDOfcy9x4vEVyhbX8blbX1jc2t6nZtZ3dv/8A8POqqOJUMOiwWsex7VIHgEXSQo4B+IoGGnoCeN70p/N4DSMXj6B5nCbghHUc84IyilkZmfejFwlezUJdsiFz4oMsEkOb5yGzYTXsOa5U4JWmQEu2R+TX0Y5aGECETVKmBYyfoZlQiZwLy2jBVkFA2pWMYaBrREJSbzY/IrVOt+FYQS/0itObq74mMhqrYU3eGFCdq2SvE/7xBisGVm/EoSREitvgoSIWFsVUkYvlcAkMx04QyyfWuFptQSRnq3Go6BGf55FXSPW86dtO5u2i0rss4qqROTsgZccglaZFb0iYdwsgjeSav5M14Ml6Md+Nj0Voxyplj8gfG5w9Alpkc</latexit><latexit sha1_base64="XWOeMBY1CYHfZfKLpNFwfmZCijE=">AAACBHicbVDLSsNAFJ3UV62vqMtugkVwVRIRdFl047KCfUAbymRy0w6dPJi5EUrIwo2/4saFIm79CHf+jZM2C209MNzDOfcy9x4vEVyhbX8blbX1jc2t6nZtZ3dv/8A8POqqOJUMOiwWsex7VIHgEXSQo4B+IoGGnoCeN70p/N4DSMXj6B5nCbghHUc84IyilkZmfejFwlezUJdsiFz4oMsEkOb5yGzYTXsOa5U4JWmQEu2R+TX0Y5aGECETVKmBYyfoZlQiZwLy2jBVkFA2pWMYaBrREJSbzY/IrVOt+FYQS/0itObq74mMhqrYU3eGFCdq2SvE/7xBisGVm/EoSREitvgoSIWFsVUkYvlcAkMx04QyyfWuFptQSRnq3Go6BGf55FXSPW86dtO5u2i0rss4qqROTsgZccglaZFb0iYdwsgjeSav5M14Ml6Md+Nj0Voxyplj8gfG5w9Alpkc</latexit><latexit sha1_base64="XWOeMBY1CYHfZfKLpNFwfmZCijE=">AAACBHicbVDLSsNAFJ3UV62vqMtugkVwVRIRdFl047KCfUAbymRy0w6dPJi5EUrIwo2/4saFIm79CHf+jZM2C209MNzDOfcy9x4vEVyhbX8blbX1jc2t6nZtZ3dv/8A8POqqOJUMOiwWsex7VIHgEXSQo4B+IoGGnoCeN70p/N4DSMXj6B5nCbghHUc84IyilkZmfejFwlezUJdsiFz4oMsEkOb5yGzYTXsOa5U4JWmQEu2R+TX0Y5aGECETVKmBYyfoZlQiZwLy2jBVkFA2pWMYaBrREJSbzY/IrVOt+FYQS/0itObq74mMhqrYU3eGFCdq2SvE/7xBisGVm/EoSREitvgoSIWFsVUkYvlcAkMx04QyyfWuFptQSRnq3Go6BGf55FXSPW86dtO5u2i0rss4qqROTsgZccglaZFb0iYdwsgjeSav5M14Ml6Md+Nj0Voxyplj8gfG5w9Alpkc</latexit><latexit sha1_base64="XWOeMBY1CYHfZfKLpNFwfmZCijE=">AAACBHicbVDLSsNAFJ3UV62vqMtugkVwVRIRdFl047KCfUAbymRy0w6dPJi5EUrIwo2/4saFIm79CHf+jZM2C209MNzDOfcy9x4vEVyhbX8blbX1jc2t6nZtZ3dv/8A8POqqOJUMOiwWsex7VIHgEXSQo4B+IoGGnoCeN70p/N4DSMXj6B5nCbghHUc84IyilkZmfejFwlezUJdsiFz4oMsEkOb5yGzYTXsOa5U4JWmQEu2R+TX0Y5aGECETVKmBYyfoZlQiZwLy2jBVkFA2pWMYaBrREJSbzY/IrVOt+FYQS/0itObq74mMhqrYU3eGFCdq2SvE/7xBisGVm/EoSREitvgoSIWFsVUkYvlcAkMx04QyyfWuFptQSRnq3Go6BGf55FXSPW86dtO5u2i0rss4qqROTsgZccglaZFb0iYdwsgjeSav5M14Ml6Md+Nj0Voxyplj8gfG5w9Alpkc</latexit>

✓·<latexit sha1_base64="W7ukVxHHvEyB8oLNwf2JQuKW5ts=">AAAB83icbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxWMFWwtNKJvNpF262Q27E6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvygQ36HnfTmVtfWNzq7pd29nd2z+oHx51jco1gw5TQuleRA0ILqGDHAX0Mg00jQQ8RuPbmf/4BNpwJR9wkkGY0qHkCWcUrRQEOAKkg4DFCgf1htf05nBXiV+SBinRHtS/glixPAWJTFBj+r6XYVhQjZwJmNaC3EBG2ZgOoW+ppCmYsJjfPHXPrBK7idK2JLpz9fdEQVNjJmlkO1OKI7PszcT/vH6OyXVYcJnlCJItFiW5cFG5swDcmGtgKCaWUKa5vdVlI6opQxtTzYbgL7+8SroXTd9r+veXjdZNGUeVnJBTck58ckVa5I60SYcwkpFn8krenNx5cd6dj0VrxSlnjskfOJ8/N1+RyQ==</latexit><latexit sha1_base64="W7ukVxHHvEyB8oLNwf2JQuKW5ts=">AAAB83icbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxWMFWwtNKJvNpF262Q27E6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvygQ36HnfTmVtfWNzq7pd29nd2z+oHx51jco1gw5TQuleRA0ILqGDHAX0Mg00jQQ8RuPbmf/4BNpwJR9wkkGY0qHkCWcUrRQEOAKkg4DFCgf1htf05nBXiV+SBinRHtS/glixPAWJTFBj+r6XYVhQjZwJmNaC3EBG2ZgOoW+ppCmYsJjfPHXPrBK7idK2JLpz9fdEQVNjJmlkO1OKI7PszcT/vH6OyXVYcJnlCJItFiW5cFG5swDcmGtgKCaWUKa5vdVlI6opQxtTzYbgL7+8SroXTd9r+veXjdZNGUeVnJBTck58ckVa5I60SYcwkpFn8krenNx5cd6dj0VrxSlnjskfOJ8/N1+RyQ==</latexit><latexit sha1_base64="W7ukVxHHvEyB8oLNwf2JQuKW5ts=">AAAB83icbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxWMFWwtNKJvNpF262Q27E6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvygQ36HnfTmVtfWNzq7pd29nd2z+oHx51jco1gw5TQuleRA0ILqGDHAX0Mg00jQQ8RuPbmf/4BNpwJR9wkkGY0qHkCWcUrRQEOAKkg4DFCgf1htf05nBXiV+SBinRHtS/glixPAWJTFBj+r6XYVhQjZwJmNaC3EBG2ZgOoW+ppCmYsJjfPHXPrBK7idK2JLpz9fdEQVNjJmlkO1OKI7PszcT/vH6OyXVYcJnlCJItFiW5cFG5swDcmGtgKCaWUKa5vdVlI6opQxtTzYbgL7+8SroXTd9r+veXjdZNGUeVnJBTck58ckVa5I60SYcwkpFn8krenNx5cd6dj0VrxSlnjskfOJ8/N1+RyQ==</latexit><latexit sha1_base64="W7ukVxHHvEyB8oLNwf2JQuKW5ts=">AAAB83icbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxWMFWwtNKJvNpF262Q27E6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvygQ36HnfTmVtfWNzq7pd29nd2z+oHx51jco1gw5TQuleRA0ILqGDHAX0Mg00jQQ8RuPbmf/4BNpwJR9wkkGY0qHkCWcUrRQEOAKkg4DFCgf1htf05nBXiV+SBinRHtS/glixPAWJTFBj+r6XYVhQjZwJmNaC3EBG2ZgOoW+ppCmYsJjfPHXPrBK7idK2JLpz9fdEQVNjJmlkO1OKI7PszcT/vH6OyXVYcJnlCJItFiW5cFG5swDcmGtgKCaWUKa5vdVlI6opQxtTzYbgL7+8SroXTd9r+veXjdZNGUeVnJBTck58ckVa5I60SYcwkpFn8krenNx5cd6dj0VrxSlnjskfOJ8/N1+RyQ==</latexit> ✓̃
<latexit sha1_base64="XWOeMBY1CYHfZfKLpNFwfmZCijE=">AAACBHicbVDLSsNAFJ3UV62vqMtugkVwVRIRdFl047KCfUAbymRy0w6dPJi5EUrIwo2/4saFIm79CHf+jZM2C209MNzDOfcy9x4vEVyhbX8blbX1jc2t6nZtZ3dv/8A8POqqOJUMOiwWsex7VIHgEXSQo4B+IoGGnoCeN70p/N4DSMXj6B5nCbghHUc84IyilkZmfejFwlezUJdsiFz4oMsEkOb5yGzYTXsOa5U4JWmQEu2R+TX0Y5aGECETVKmBYyfoZlQiZwLy2jBVkFA2pWMYaBrREJSbzY/IrVOt+FYQS/0itObq74mMhqrYU3eGFCdq2SvE/7xBisGVm/EoSREitvgoSIWFsVUkYvlcAkMx04QyyfWuFptQSRnq3Go6BGf55FXSPW86dtO5u2i0rss4qqROTsgZccglaZFb0iYdwsgjeSav5M14Ml6Md+Nj0Voxyplj8gfG5w9Alpkc</latexit><latexit sha1_base64="XWOeMBY1CYHfZfKLpNFwfmZCijE=">AAACBHicbVDLSsNAFJ3UV62vqMtugkVwVRIRdFl047KCfUAbymRy0w6dPJi5EUrIwo2/4saFIm79CHf+jZM2C209MNzDOfcy9x4vEVyhbX8blbX1jc2t6nZtZ3dv/8A8POqqOJUMOiwWsex7VIHgEXSQo4B+IoGGnoCeN70p/N4DSMXj6B5nCbghHUc84IyilkZmfejFwlezUJdsiFz4oMsEkOb5yGzYTXsOa5U4JWmQEu2R+TX0Y5aGECETVKmBYyfoZlQiZwLy2jBVkFA2pWMYaBrREJSbzY/IrVOt+FYQS/0itObq74mMhqrYU3eGFCdq2SvE/7xBisGVm/EoSREitvgoSIWFsVUkYvlcAkMx04QyyfWuFptQSRnq3Go6BGf55FXSPW86dtO5u2i0rss4qqROTsgZccglaZFb0iYdwsgjeSav5M14Ml6Md+Nj0Voxyplj8gfG5w9Alpkc</latexit><latexit sha1_base64="XWOeMBY1CYHfZfKLpNFwfmZCijE=">AAACBHicbVDLSsNAFJ3UV62vqMtugkVwVRIRdFl047KCfUAbymRy0w6dPJi5EUrIwo2/4saFIm79CHf+jZM2C209MNzDOfcy9x4vEVyhbX8blbX1jc2t6nZtZ3dv/8A8POqqOJUMOiwWsex7VIHgEXSQo4B+IoGGnoCeN70p/N4DSMXj6B5nCbghHUc84IyilkZmfejFwlezUJdsiFz4oMsEkOb5yGzYTXsOa5U4JWmQEu2R+TX0Y5aGECETVKmBYyfoZlQiZwLy2jBVkFA2pWMYaBrREJSbzY/IrVOt+FYQS/0itObq74mMhqrYU3eGFCdq2SvE/7xBisGVm/EoSREitvgoSIWFsVUkYvlcAkMx04QyyfWuFptQSRnq3Go6BGf55FXSPW86dtO5u2i0rss4qqROTsgZccglaZFb0iYdwsgjeSav5M14Ml6Md+Nj0Voxyplj8gfG5w9Alpkc</latexit><latexit sha1_base64="XWOeMBY1CYHfZfKLpNFwfmZCijE=">AAACBHicbVDLSsNAFJ3UV62vqMtugkVwVRIRdFl047KCfUAbymRy0w6dPJi5EUrIwo2/4saFIm79CHf+jZM2C209MNzDOfcy9x4vEVyhbX8blbX1jc2t6nZtZ3dv/8A8POqqOJUMOiwWsex7VIHgEXSQo4B+IoGGnoCeN70p/N4DSMXj6B5nCbghHUc84IyilkZmfejFwlezUJdsiFz4oMsEkOb5yGzYTXsOa5U4JWmQEu2R+TX0Y5aGECETVKmBYyfoZlQiZwLy2jBVkFA2pWMYaBrREJSbzY/IrVOt+FYQS/0itObq74mMhqrYU3eGFCdq2SvE/7xBisGVm/EoSREitvgoSIWFsVUkYvlcAkMx04QyyfWuFptQSRnq3Go6BGf55FXSPW86dtO5u2i0rss4qqROTsgZccglaZFb0iYdwsgjeSav5M14Ml6Md+Nj0Voxyplj8gfG5w9Alpkc</latexit>

↵·<latexit sha1_base64="cvy2p18TNFEoS57BdfKCVV+hW4I=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FLx4r2FroLiWbzbah2SQkWaEs/RtePCji1T/jzX9j2u5BWx8MPN6bYWZerDgz1ve/vcra+sbmVnW7trO7t39QPzzqGplrQjtEcql7MTaUM0E7lllOe0pTnMWcPsbj25n/+ES1YVI82ImiUYaHgqWMYOukMMRcjfAgJIm0g3rDb/pzoFUSlKQBJdqD+leYSJJnVFjCsTH9wFc2KrC2jHA6rYW5oQqTMR7SvqMCZ9RExfzmKTpzSoJSqV0Ji+bq74kCZ8ZMsth1ZtiOzLI3E//z+rlNr6OCCZVbKshiUZpzZCWaBYASpimxfOIIJpq5WxEZYY2JdTHVXAjB8surpHvRDPxmcH/ZaN2UcVThBE7hHAK4ghbcQRs6QEDBM7zCm5d7L96797ForXjlzDH8gff5Ax6Jkbk=</latexit><latexit sha1_base64="cvy2p18TNFEoS57BdfKCVV+hW4I=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FLx4r2FroLiWbzbah2SQkWaEs/RtePCji1T/jzX9j2u5BWx8MPN6bYWZerDgz1ve/vcra+sbmVnW7trO7t39QPzzqGplrQjtEcql7MTaUM0E7lllOe0pTnMWcPsbj25n/+ES1YVI82ImiUYaHgqWMYOukMMRcjfAgJIm0g3rDb/pzoFUSlKQBJdqD+leYSJJnVFjCsTH9wFc2KrC2jHA6rYW5oQqTMR7SvqMCZ9RExfzmKTpzSoJSqV0Ji+bq74kCZ8ZMsth1ZtiOzLI3E//z+rlNr6OCCZVbKshiUZpzZCWaBYASpimxfOIIJpq5WxEZYY2JdTHVXAjB8surpHvRDPxmcH/ZaN2UcVThBE7hHAK4ghbcQRs6QEDBM7zCm5d7L96797ForXjlzDH8gff5Ax6Jkbk=</latexit><latexit sha1_base64="cvy2p18TNFEoS57BdfKCVV+hW4I=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FLx4r2FroLiWbzbah2SQkWaEs/RtePCji1T/jzX9j2u5BWx8MPN6bYWZerDgz1ve/vcra+sbmVnW7trO7t39QPzzqGplrQjtEcql7MTaUM0E7lllOe0pTnMWcPsbj25n/+ES1YVI82ImiUYaHgqWMYOukMMRcjfAgJIm0g3rDb/pzoFUSlKQBJdqD+leYSJJnVFjCsTH9wFc2KrC2jHA6rYW5oQqTMR7SvqMCZ9RExfzmKTpzSoJSqV0Ji+bq74kCZ8ZMsth1ZtiOzLI3E//z+rlNr6OCCZVbKshiUZpzZCWaBYASpimxfOIIJpq5WxEZYY2JdTHVXAjB8surpHvRDPxmcH/ZaN2UcVThBE7hHAK4ghbcQRs6QEDBM7zCm5d7L96797ForXjlzDH8gff5Ax6Jkbk=</latexit><latexit sha1_base64="cvy2p18TNFEoS57BdfKCVV+hW4I=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FLx4r2FroLiWbzbah2SQkWaEs/RtePCji1T/jzX9j2u5BWx8MPN6bYWZerDgz1ve/vcra+sbmVnW7trO7t39QPzzqGplrQjtEcql7MTaUM0E7lllOe0pTnMWcPsbj25n/+ES1YVI82ImiUYaHgqWMYOukMMRcjfAgJIm0g3rDb/pzoFUSlKQBJdqD+leYSJJnVFjCsTH9wFc2KrC2jHA6rYW5oQqTMR7SvqMCZ9RExfzmKTpzSoJSqV0Ji+bq74kCZ8ZMsth1ZtiOzLI3E//z+rlNr6OCCZVbKshiUZpzZCWaBYASpimxfOIIJpq5WxEZYY2JdTHVXAjB8surpHvRDPxmcH/ZaN2UcVThBE7hHAK4ghbcQRs6QEDBM7zCm5d7L96797ForXjlzDH8gff5Ax6Jkbk=</latexit> ↵̃
<latexit sha1_base64="sxxy95SYSzXqD5FA66cVR6Ni9e0=">AAACBnicbVDLSsNAFL2pr1pfUZciDBbBVUlE0GXRjcsK9gFNKJPJtB06mYSZiVBCVm78FTcuFHHrN7jzb5y0WWjrgWEO59zLvfcECWdKO863VVlZXVvfqG7WtrZ3dvfs/YOOilNJaJvEPJa9ACvKmaBtzTSnvURSHAWcdoPJTeF3H6hULBb3eppQP8IjwYaMYG2kgX2ceUHMQzWNzJd5mvGQZh7myRjneT6w607DmQEtE7ckdSjRGthfXhiTNKJCE46V6rtOov0MS80Ip3nNSxVNMJngEe0bKnBElZ/NzsjRqVFCNIyleUKjmfq7I8ORKhY1lRHWY7XoFeJ/Xj/Vwys/YyJJNRVkPmiYcqRjVGSCQiYp0XxqCCaSmV0RGWOJiTbJ1UwI7uLJy6Rz3nCdhnt3UW9el3FU4QhO4AxcuIQm3EIL2kDgEZ7hFd6sJ+vFerc+5qUVq+w5hD+wPn8AAzWaGA==</latexit><latexit sha1_base64="sxxy95SYSzXqD5FA66cVR6Ni9e0=">AAACBnicbVDLSsNAFL2pr1pfUZciDBbBVUlE0GXRjcsK9gFNKJPJtB06mYSZiVBCVm78FTcuFHHrN7jzb5y0WWjrgWEO59zLvfcECWdKO863VVlZXVvfqG7WtrZ3dvfs/YOOilNJaJvEPJa9ACvKmaBtzTSnvURSHAWcdoPJTeF3H6hULBb3eppQP8IjwYaMYG2kgX2ceUHMQzWNzJd5mvGQZh7myRjneT6w607DmQEtE7ckdSjRGthfXhiTNKJCE46V6rtOov0MS80Ip3nNSxVNMJngEe0bKnBElZ/NzsjRqVFCNIyleUKjmfq7I8ORKhY1lRHWY7XoFeJ/Xj/Vwys/YyJJNRVkPmiYcqRjVGSCQiYp0XxqCCaSmV0RGWOJiTbJ1UwI7uLJy6Rz3nCdhnt3UW9el3FU4QhO4AxcuIQm3EIL2kDgEZ7hFd6sJ+vFerc+5qUVq+w5hD+wPn8AAzWaGA==</latexit><latexit sha1_base64="sxxy95SYSzXqD5FA66cVR6Ni9e0=">AAACBnicbVDLSsNAFL2pr1pfUZciDBbBVUlE0GXRjcsK9gFNKJPJtB06mYSZiVBCVm78FTcuFHHrN7jzb5y0WWjrgWEO59zLvfcECWdKO863VVlZXVvfqG7WtrZ3dvfs/YOOilNJaJvEPJa9ACvKmaBtzTSnvURSHAWcdoPJTeF3H6hULBb3eppQP8IjwYaMYG2kgX2ceUHMQzWNzJd5mvGQZh7myRjneT6w607DmQEtE7ckdSjRGthfXhiTNKJCE46V6rtOov0MS80Ip3nNSxVNMJngEe0bKnBElZ/NzsjRqVFCNIyleUKjmfq7I8ORKhY1lRHWY7XoFeJ/Xj/Vwys/YyJJNRVkPmiYcqRjVGSCQiYp0XxqCCaSmV0RGWOJiTbJ1UwI7uLJy6Rz3nCdhnt3UW9el3FU4QhO4AxcuIQm3EIL2kDgEZ7hFd6sJ+vFerc+5qUVq+w5hD+wPn8AAzWaGA==</latexit><latexit sha1_base64="sxxy95SYSzXqD5FA66cVR6Ni9e0=">AAACBnicbVDLSsNAFL2pr1pfUZciDBbBVUlE0GXRjcsK9gFNKJPJtB06mYSZiVBCVm78FTcuFHHrN7jzb5y0WWjrgWEO59zLvfcECWdKO863VVlZXVvfqG7WtrZ3dvfs/YOOilNJaJvEPJa9ACvKmaBtzTSnvURSHAWcdoPJTeF3H6hULBb3eppQP8IjwYaMYG2kgX2ceUHMQzWNzJd5mvGQZh7myRjneT6w607DmQEtE7ckdSjRGthfXhiTNKJCE46V6rtOov0MS80Ip3nNSxVNMJngEe0bKnBElZ/NzsjRqVFCNIyleUKjmfq7I8ORKhY1lRHWY7XoFeJ/Xj/Vwys/YyJJNRVkPmiYcqRjVGSCQiYp0XxqCCaSmV0RGWOJiTbJ1UwI7uLJy6Rz3nCdhnt3UW9el3FU4QhO4AxcuIQm3EIL2kDgEZ7hFd6sJ+vFerc+5qUVq+w5hD+wPn8AAzWaGA==</latexit>

�
<latexit sha1_base64="8MzdY9xWePsViGumrVRX3IPm9UE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMFWwttKJvtpF262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIY8rxvp7S2vrG5Vd6u7Ozu7R9UD4/aJsk0xxZPZKI7ITMohcIWCZLYSTWyOJT4GI5vZ/7jE2ojEvVAkxSDmA2ViARnZKVWL0Ri/WrNq3tzuKvEL0gNCjT71a/eIOFZjIq4ZMZ0fS+lIGeaBJc4rfQygynjYzbErqWKxWiCfH7s1D2zysCNEm1LkTtXf0/kLDZmEoe2M2Y0MsveTPzP62YUXQe5UGlGqPhiUZRJlxJ39rk7EBo5yYkljGthb3X5iGnGyeZTsSH4yy+vkvZF3ffq/v1lrXFTxFGGEziFc/DhChpwB01oAQcBz/AKb45yXpx352PRWnKKmWP4A+fzB8PWjqQ=</latexit><latexit sha1_base64="8MzdY9xWePsViGumrVRX3IPm9UE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMFWwttKJvtpF262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIY8rxvp7S2vrG5Vd6u7Ozu7R9UD4/aJsk0xxZPZKI7ITMohcIWCZLYSTWyOJT4GI5vZ/7jE2ojEvVAkxSDmA2ViARnZKVWL0Ri/WrNq3tzuKvEL0gNCjT71a/eIOFZjIq4ZMZ0fS+lIGeaBJc4rfQygynjYzbErqWKxWiCfH7s1D2zysCNEm1LkTtXf0/kLDZmEoe2M2Y0MsveTPzP62YUXQe5UGlGqPhiUZRJlxJ39rk7EBo5yYkljGthb3X5iGnGyeZTsSH4yy+vkvZF3ffq/v1lrXFTxFGGEziFc/DhChpwB01oAQcBz/AKb45yXpx352PRWnKKmWP4A+fzB8PWjqQ=</latexit><latexit sha1_base64="8MzdY9xWePsViGumrVRX3IPm9UE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMFWwttKJvtpF262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIY8rxvp7S2vrG5Vd6u7Ozu7R9UD4/aJsk0xxZPZKI7ITMohcIWCZLYSTWyOJT4GI5vZ/7jE2ojEvVAkxSDmA2ViARnZKVWL0Ri/WrNq3tzuKvEL0gNCjT71a/eIOFZjIq4ZMZ0fS+lIGeaBJc4rfQygynjYzbErqWKxWiCfH7s1D2zysCNEm1LkTtXf0/kLDZmEoe2M2Y0MsveTPzP62YUXQe5UGlGqPhiUZRJlxJ39rk7EBo5yYkljGthb3X5iGnGyeZTsSH4yy+vkvZF3ffq/v1lrXFTxFGGEziFc/DhChpwB01oAQcBz/AKb45yXpx352PRWnKKmWP4A+fzB8PWjqQ=</latexit><latexit sha1_base64="8MzdY9xWePsViGumrVRX3IPm9UE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMFWwttKJvtpF262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIY8rxvp7S2vrG5Vd6u7Ozu7R9UD4/aJsk0xxZPZKI7ITMohcIWCZLYSTWyOJT4GI5vZ/7jE2ojEvVAkxSDmA2ViARnZKVWL0Ri/WrNq3tzuKvEL0gNCjT71a/eIOFZjIq4ZMZ0fS+lIGeaBJc4rfQygynjYzbErqWKxWiCfH7s1D2zysCNEm1LkTtXf0/kLDZmEoe2M2Y0MsveTPzP62YUXQe5UGlGqPhiUZRJlxJ39rk7EBo5yYkljGthb3X5iGnGyeZTsSH4yy+vkvZF3ffq/v1lrXFTxFGGEziFc/DhChpwB01oAQcBz/AKb45yXpx352PRWnKKmWP4A+fzB8PWjqQ=</latexit>

deterministic
<latexit sha1_base64="jPPmdlQVU16/0RUKYQ0V5S4F+aI=">AAAB/3icbVDLSgMxFM34rPU1KrhxEyyCqzIjBV0W3LisYB/QDiWTudOGJpkhyYhl7MJfceNCEbf+hjv/xrSdhbYeCBzOua+cMOVMG8/7dlZW19Y3Nktb5e2d3b199+CwpZNMUWjShCeqExINnEloGmY4dFIFRIQc2uHoeuq370Fplsg7M04hEGQgWcwoMVbqu8c9Aw9GiTwCA0owaVcyOum7Fa/qzYCXiV+QCirQ6LtfvSihmQBpKCdad30vNUFOlJ3GYVLuZRpSQkdkAF1LJRGgg3x2/wSfWSXCcaLskwbP1N8dORFaj0VoKwUxQ73oTcX/vG5m4qsgZzLNDEg6XxRnHJsET8PAEVNADR9bQqhi9lZMh0QRarPQZRuCv/jlZdK6qPpe1b+tVeq1Io4SOkGn6Bz56BLV0Q1qoCai6BE9o1f05jw5L8678zEvXXGKniP0B87nD1hIluU=</latexit><latexit sha1_base64="jPPmdlQVU16/0RUKYQ0V5S4F+aI=">AAAB/3icbVDLSgMxFM34rPU1KrhxEyyCqzIjBV0W3LisYB/QDiWTudOGJpkhyYhl7MJfceNCEbf+hjv/xrSdhbYeCBzOua+cMOVMG8/7dlZW19Y3Nktb5e2d3b199+CwpZNMUWjShCeqExINnEloGmY4dFIFRIQc2uHoeuq370Fplsg7M04hEGQgWcwoMVbqu8c9Aw9GiTwCA0owaVcyOum7Fa/qzYCXiV+QCirQ6LtfvSihmQBpKCdad30vNUFOlJ3GYVLuZRpSQkdkAF1LJRGgg3x2/wSfWSXCcaLskwbP1N8dORFaj0VoKwUxQ73oTcX/vG5m4qsgZzLNDEg6XxRnHJsET8PAEVNADR9bQqhi9lZMh0QRarPQZRuCv/jlZdK6qPpe1b+tVeq1Io4SOkGn6Bz56BLV0Q1qoCai6BE9o1f05jw5L8678zEvXXGKniP0B87nD1hIluU=</latexit><latexit sha1_base64="jPPmdlQVU16/0RUKYQ0V5S4F+aI=">AAAB/3icbVDLSgMxFM34rPU1KrhxEyyCqzIjBV0W3LisYB/QDiWTudOGJpkhyYhl7MJfceNCEbf+hjv/xrSdhbYeCBzOua+cMOVMG8/7dlZW19Y3Nktb5e2d3b199+CwpZNMUWjShCeqExINnEloGmY4dFIFRIQc2uHoeuq370Fplsg7M04hEGQgWcwoMVbqu8c9Aw9GiTwCA0owaVcyOum7Fa/qzYCXiV+QCirQ6LtfvSihmQBpKCdad30vNUFOlJ3GYVLuZRpSQkdkAF1LJRGgg3x2/wSfWSXCcaLskwbP1N8dORFaj0VoKwUxQ73oTcX/vG5m4qsgZzLNDEg6XxRnHJsET8PAEVNADR9bQqhi9lZMh0QRarPQZRuCv/jlZdK6qPpe1b+tVeq1Io4SOkGn6Bz56BLV0Q1qoCai6BE9o1f05jw5L8678zEvXXGKniP0B87nD1hIluU=</latexit><latexit sha1_base64="jPPmdlQVU16/0RUKYQ0V5S4F+aI=">AAAB/3icbVDLSgMxFM34rPU1KrhxEyyCqzIjBV0W3LisYB/QDiWTudOGJpkhyYhl7MJfceNCEbf+hjv/xrSdhbYeCBzOua+cMOVMG8/7dlZW19Y3Nktb5e2d3b199+CwpZNMUWjShCeqExINnEloGmY4dFIFRIQc2uHoeuq370Fplsg7M04hEGQgWcwoMVbqu8c9Aw9GiTwCA0owaVcyOum7Fa/qzYCXiV+QCirQ6LtfvSihmQBpKCdad30vNUFOlJ3GYVLuZRpSQkdkAF1LJRGgg3x2/wSfWSXCcaLskwbP1N8dORFaj0VoKwUxQ73oTcX/vG5m4qsgZzLNDEg6XxRnHJsET8PAEVNADR9bQqhi9lZMh0QRarPQZRuCv/jlZdK6qPpe1b+tVeq1Io4SOkGn6Bz56BLV0Q1qoCai6BE9o1f05jw5L8678zEvXXGKniP0B87nD1hIluU=</latexit>

random
<latexit sha1_base64="6LlWyuTJjLcPC+RLmLXU9ibpljc=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiBT0WvHisYD+gDWWz2bRLdzdhdyLW0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmhangBjzv2yltbG5t75R3K3v7B4dV9+i4Y5JMU9amiUh0LySGCa5YGzgI1ks1IzIUrBtObuZ+94FpwxN1D9OUBZKMFI85JWCloVsdAHsELXNNVJTI2dCteXVvAbxO/ILUUIHW0P0aRAnNJFNABTGm73spBDnRwKlgs8ogMywldEJGrG+pIpKZIF8cPsPnVolwnGhbCvBC/T2RE2nMVIa2UxIYm1VvLv7n9TOIr4OcqzQDpuhyUZwJDAmep4AjrhkFMbWEUM3trZiOiSYUbFYVG4K/+vI66VzWfa/u3zVqzUYRRxmdojN0gXx0hZroFrVQG1GUoWf0it6cJ+fFeXc+lq0lp5g5QX/gfP4Apf2TrA==</latexit><latexit sha1_base64="6LlWyuTJjLcPC+RLmLXU9ibpljc=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiBT0WvHisYD+gDWWz2bRLdzdhdyLW0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmhangBjzv2yltbG5t75R3K3v7B4dV9+i4Y5JMU9amiUh0LySGCa5YGzgI1ks1IzIUrBtObuZ+94FpwxN1D9OUBZKMFI85JWCloVsdAHsELXNNVJTI2dCteXVvAbxO/ILUUIHW0P0aRAnNJFNABTGm73spBDnRwKlgs8ogMywldEJGrG+pIpKZIF8cPsPnVolwnGhbCvBC/T2RE2nMVIa2UxIYm1VvLv7n9TOIr4OcqzQDpuhyUZwJDAmep4AjrhkFMbWEUM3trZiOiSYUbFYVG4K/+vI66VzWfa/u3zVqzUYRRxmdojN0gXx0hZroFrVQG1GUoWf0it6cJ+fFeXc+lq0lp5g5QX/gfP4Apf2TrA==</latexit><latexit sha1_base64="6LlWyuTJjLcPC+RLmLXU9ibpljc=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiBT0WvHisYD+gDWWz2bRLdzdhdyLW0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmhangBjzv2yltbG5t75R3K3v7B4dV9+i4Y5JMU9amiUh0LySGCa5YGzgI1ks1IzIUrBtObuZ+94FpwxN1D9OUBZKMFI85JWCloVsdAHsELXNNVJTI2dCteXVvAbxO/ILUUIHW0P0aRAnNJFNABTGm73spBDnRwKlgs8ogMywldEJGrG+pIpKZIF8cPsPnVolwnGhbCvBC/T2RE2nMVIa2UxIYm1VvLv7n9TOIr4OcqzQDpuhyUZwJDAmep4AjrhkFMbWEUM3trZiOiSYUbFYVG4K/+vI66VzWfa/u3zVqzUYRRxmdojN0gXx0hZroFrVQG1GUoWf0it6cJ+fFeXc+lq0lp5g5QX/gfP4Apf2TrA==</latexit><latexit sha1_base64="6LlWyuTJjLcPC+RLmLXU9ibpljc=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiBT0WvHisYD+gDWWz2bRLdzdhdyLW0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmhangBjzv2yltbG5t75R3K3v7B4dV9+i4Y5JMU9amiUh0LySGCa5YGzgI1ks1IzIUrBtObuZ+94FpwxN1D9OUBZKMFI85JWCloVsdAHsELXNNVJTI2dCteXVvAbxO/ILUUIHW0P0aRAnNJFNABTGm73spBDnRwKlgs8ogMywldEJGrG+pIpKZIF8cPsPnVolwnGhbCvBC/T2RE2nMVIa2UxIYm1VvLv7n9TOIr4OcqzQDpuhyUZwJDAmep4AjrhkFMbWEUM3trZiOiSYUbFYVG4K/+vI66VzWfa/u3zVqzUYRRxmdojN0gXx0hZroFrVQG1GUoWf0it6cJ+fFeXc+lq0lp5g5QX/gfP4Apf2TrA==</latexit>

fixed
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3.5 Negative binomial magic

Definition 3.15: Negative binomial distribution

A negative binomial random variable y ∼ NB (r, p) is a count y ∈ N0. Its distri-

bution is defined by a shape r≥0 and probability p∈(0, 1) parameter and PMF:

P (y | r, p) =
Γ(r + y)

y! Γ(r)
(1−p)r py. (3.72)

Its expected value, variance, and variance-to-mean ratio (VMR) are:

E[y | r, p] =
r p

(1−p) , (3.73)

V[y | r, p] =
r p

(1−p)2
, (3.74)

VMR[y | r, p] = (1−p)−1. (3.75)

Since its VMR is always greater than 1, the negative binomial is overdispersed.

0 20 40 60 80 100 120
y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
(y
|r
,p

)

r= 100, p= 0.30
r= 0.90, p= 0.90
r= 1, p= 0.98
r= 3.50, p= 0.85

Figure 3.3: Probability mass function of the negative binomial distribution for
four combinations of shape r and probability p parameter.
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Recent auxiliary variable schemes based on augmentations of the negative bi-

nomial distribution—i.e., augment-and-conquer [Zhou and Carin, 2012]—have made

posterior inference tractable in many new APF models, particularly those based on

hierarchies of gamma and Dirichlet priors. These techniques are based on a handful

of facts which I present here for later chapters to refer back to. I also attempt to

provide intuition as to why these facts are special and how we might exploit them.

Definition 3.16: Negative binomial as a gamma–Poisson mixture

Consider a Poisson random variable y ∼ Pois (θ ζ) whose rate is a product of

constant ζ > 0 and θ ∼ Γ(α, β) which is a gamma random variable with shape

α and rate β. The marginal distribution of y is negative binomial:

P (y | ζ, α, β) =

∫
dθP (y | θ, ζ)P (θ |α, β) (3.76)

=

∫
dθPois (y; θ ζ) Γ(θ; α, β) (3.77)

= NB

(
y; α,

ζ

ζ + β

)
. (3.78)

Definition 3.17: Negative binomial as a compound Poisson

The negative binomial is a compound Poisson distribution [Adelson, 1966]—i.e.,

it can be constructed as the sum of a Poisson-distributed number of i.i.d. ran-

dom variables. If y ∼ SL(`, p) is a sum–logarithmic random variable, as in

Definition 3.19, that depends on fixed p∈ (0, 1), random ` ∼ Pois
(
r ln

(
1

1−p

))

then its marginal distribution—i.e., not conditioned on `—is negative binomial:

P (y | r, p) =
∞∑

`=0

P (y | `, p)P (` | r, p) (3.79)

=
∞∑

`=0

SL(y; `, p) Pois
(
`; r ln

(
1

1−p

))
(3.80)

= NB (y; r, p) . (3.81)
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Definition 3.18: Chinese restaurant table (CRT) distribution

A Chinese restaurant table random variable [Zhou and Carin, 2015]

` ∼ CRT (y, r) is a bounded count ` ∈ {0, . . . , y}. Its distribution is defined by

a shape r≥0 and count-valued population y∈ N0 parameter and PMF,

P (` | r, y) =
Γ(r)

Γ(y + r)
|s(y, `)| r`, (3.82)

where | · | denotes absolute value and s(·, ·) are the Stirling numbers of the first

kind [Johnson et al., 2005, pp. 12]. A CRT random variable can be generated

as a sum ` ,
∑y

i=1 bi of independent Bernoulli random variables, each drawn:

bi
ind∼ Bern

(
r

r + i− 1

)
for i = 1, . . . , y. (3.83)

Thus if y ≥ 1 then ` ≥ 1, almost surely, and if y = 0 then ` = 0, almost surely.
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Figure 3.4: Probability mass function of the Chinese restaurant table
distribution for four combinations of shape r and population y parameter.
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Definition 3.19: Sum-Logarithmic (SumLog) distribution

A sum-logarithmic random variable [Zhou and Carin, 2015] y ∼ SL (`, p) is a

count y ∈ N0. Its distribution is defined by a count-valued scale parameter

` ∈ N0, a probability parameter p∈ (0, 1), and PMF,

P (y | `, p) =
py `! |s(y, `)|
y!
(

ln( 1
1−p)
)` . (3.84)

A sum-logarithmic random variable can be generated as a sum y ,
∑`

i=1 ui of

i.i.d. logarithmic random variables [Johnson et al., 2005, pp. 302], each drawn:

ui
iid∼ Log (p) for i = 1, . . . , `. (3.85)

If ` ≥ 1 then y ≥ 1, almost surely, and if ` = 0 then y = 0. The logarithmic

distribution—i.e., Log(y; p) = py

y ln( 1
1−p )

for y ≥ 1—is a special case for ` = 1.
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Figure 3.5: Probability mass function of the sum–logarithmic distribution for
five combinations of scale ` and probability p parameter.
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Definition 3.20: Magic bivariate count distribution

Consider a negative binomial under its compound Poisson construction (Defini-

tion 3.17) which is a sum–logarithmic random variable y∼SL (`, p) whose scale

parameter `∼ Pois
(
r ln

(
1

1−p

))
is Poisson-distributed. By definition, and by

conditional probability, the bivariate distribution can be factorized in two ways:

P (y, ` | r, p) = P (y | `, p)P (` | r, p) = SL(y; `, p) Pois
(
`; r ln

(
1

1−p

))
(3.86)

= P (` | y, r, p)
∞∑

`=0

P (y, ` | r, p) = P (` | y, r, p) NB (y; r, p) , (3.87)

where P (` | y, r, p) is the inverse distribution of `—i.e., its distribution condi-

tioned on y. Remarkably, this distribution does not depend on p and is a Chi-

nese restaurant table distribution—i.e., P (` | y, r, p) =P (` | y, r) = CRT(`; y, r).

Thus, we have the following magica identity, proven by Zhou and Carin [2015]:

SL(y; `, p) Pois
(
`; r ln

(
1

1−p

))
= CRT(`; y, r) NB (y; r, p) (3.88)
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<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

random
<latexit sha1_base64="6LlWyuTJjLcPC+RLmLXU9ibpljc=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiBT0WvHisYD+gDWWz2bRLdzdhdyLW0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmhangBjzv2yltbG5t75R3K3v7B4dV9+i4Y5JMU9amiUh0LySGCa5YGzgI1ks1IzIUrBtObuZ+94FpwxN1D9OUBZKMFI85JWCloVsdAHsELXNNVJTI2dCteXVvAbxO/ILUUIHW0P0aRAnNJFNABTGm73spBDnRwKlgs8ogMywldEJGrG+pIpKZIF8cPsPnVolwnGhbCvBC/T2RE2nMVIa2UxIYm1VvLv7n9TOIr4OcqzQDpuhyUZwJDAmep4AjrhkFMbWEUM3trZiOiSYUbFYVG4K/+vI66VzWfa/u3zVqzUYRRxmdojN0gXx0hZroFrVQG1GUoWf0it6cJ+fFeXc+lq0lp5g5QX/gfP4Apf2TrA==</latexit><latexit sha1_base64="6LlWyuTJjLcPC+RLmLXU9ibpljc=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiBT0WvHisYD+gDWWz2bRLdzdhdyLW0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmhangBjzv2yltbG5t75R3K3v7B4dV9+i4Y5JMU9amiUh0LySGCa5YGzgI1ks1IzIUrBtObuZ+94FpwxN1D9OUBZKMFI85JWCloVsdAHsELXNNVJTI2dCteXVvAbxO/ILUUIHW0P0aRAnNJFNABTGm73spBDnRwKlgs8ogMywldEJGrG+pIpKZIF8cPsPnVolwnGhbCvBC/T2RE2nMVIa2UxIYm1VvLv7n9TOIr4OcqzQDpuhyUZwJDAmep4AjrhkFMbWEUM3trZiOiSYUbFYVG4K/+vI66VzWfa/u3zVqzUYRRxmdojN0gXx0hZroFrVQG1GUoWf0it6cJ+fFeXc+lq0lp5g5QX/gfP4Apf2TrA==</latexit><latexit sha1_base64="6LlWyuTJjLcPC+RLmLXU9ibpljc=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiBT0WvHisYD+gDWWz2bRLdzdhdyLW0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmhangBjzv2yltbG5t75R3K3v7B4dV9+i4Y5JMU9amiUh0LySGCa5YGzgI1ks1IzIUrBtObuZ+94FpwxN1D9OUBZKMFI85JWCloVsdAHsELXNNVJTI2dCteXVvAbxO/ILUUIHW0P0aRAnNJFNABTGm73spBDnRwKlgs8ogMywldEJGrG+pIpKZIF8cPsPnVolwnGhbCvBC/T2RE2nMVIa2UxIYm1VvLv7n9TOIr4OcqzQDpuhyUZwJDAmep4AjrhkFMbWEUM3trZiOiSYUbFYVG4K/+vI66VzWfa/u3zVqzUYRRxmdojN0gXx0hZroFrVQG1GUoWf0it6cJ+fFeXc+lq0lp5g5QX/gfP4Apf2TrA==</latexit><latexit sha1_base64="6LlWyuTJjLcPC+RLmLXU9ibpljc=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiBT0WvHisYD+gDWWz2bRLdzdhdyLW0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmhangBjzv2yltbG5t75R3K3v7B4dV9+i4Y5JMU9amiUh0LySGCa5YGzgI1ks1IzIUrBtObuZ+94FpwxN1D9OUBZKMFI85JWCloVsdAHsELXNNVJTI2dCteXVvAbxO/ILUUIHW0P0aRAnNJFNABTGm73spBDnRwKlgs8ogMywldEJGrG+pIpKZIF8cPsPnVolwnGhbCvBC/T2RE2nMVIa2UxIYm1VvLv7n9TOIr4OcqzQDpuhyUZwJDAmep4AjrhkFMbWEUM3trZiOiSYUbFYVG4K/+vI66VzWfa/u3zVqzUYRRxmdojN0gXx0hZroFrVQG1GUoWf0it6cJ+fFeXc+lq0lp5g5QX/gfP4Apf2TrA==</latexit>

fixed
<latexit sha1_base64="z4XWL3kDTY7GrPv/4JWbcXGcfkg=">AAAB9XicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHgxWMF+wFtLZvNpF26uwm7E20J/R9ePCji1f/izX/jts1BWx8MPN6bYWZekAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqmjjVDBosFrFuB9SA4AoayFFAO9FAZSCgFYxuZn7rEbThsbrHSQI9SQeKR5xRtNJDF2GMWmYRH0M47ZcrXtWbw10lfk4qJEe9X/7qhjFLJShkghrT8b0EexnVyJmAaambGkgoG9EBdCxVVILpZfOrp+6ZVUI3irUthe5c/T2RUWnMRAa2U1IcmmVvJv7ndVKMrnsZV0mKoNhiUZQKF2N3FoEbcg0MxcQSyjS3t7psSDVlaIMq2RD85ZdXSfOi6ntV/+6yUrvM4yiSE3JKzolPrkiN3JI6aRBGNHkmr+TNeXJenHfnY9FacPKZY/IHzucPV/STAA==</latexit><latexit sha1_base64="z4XWL3kDTY7GrPv/4JWbcXGcfkg=">AAAB9XicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHgxWMF+wFtLZvNpF26uwm7E20J/R9ePCji1f/izX/jts1BWx8MPN6bYWZekAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqmjjVDBosFrFuB9SA4AoayFFAO9FAZSCgFYxuZn7rEbThsbrHSQI9SQeKR5xRtNJDF2GMWmYRH0M47ZcrXtWbw10lfk4qJEe9X/7qhjFLJShkghrT8b0EexnVyJmAaambGkgoG9EBdCxVVILpZfOrp+6ZVUI3irUthe5c/T2RUWnMRAa2U1IcmmVvJv7ndVKMrnsZV0mKoNhiUZQKF2N3FoEbcg0MxcQSyjS3t7psSDVlaIMq2RD85ZdXSfOi6ntV/+6yUrvM4yiSE3JKzolPrkiN3JI6aRBGNHkmr+TNeXJenHfnY9FacPKZY/IHzucPV/STAA==</latexit><latexit sha1_base64="z4XWL3kDTY7GrPv/4JWbcXGcfkg=">AAAB9XicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHgxWMF+wFtLZvNpF26uwm7E20J/R9ePCji1f/izX/jts1BWx8MPN6bYWZekAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqmjjVDBosFrFuB9SA4AoayFFAO9FAZSCgFYxuZn7rEbThsbrHSQI9SQeKR5xRtNJDF2GMWmYRH0M47ZcrXtWbw10lfk4qJEe9X/7qhjFLJShkghrT8b0EexnVyJmAaambGkgoG9EBdCxVVILpZfOrp+6ZVUI3irUthe5c/T2RUWnMRAa2U1IcmmVvJv7ndVKMrnsZV0mKoNhiUZQKF2N3FoEbcg0MxcQSyjS3t7psSDVlaIMq2RD85ZdXSfOi6ntV/+6yUrvM4yiSE3JKzolPrkiN3JI6aRBGNHkmr+TNeXJenHfnY9FacPKZY/IHzucPV/STAA==</latexit><latexit sha1_base64="z4XWL3kDTY7GrPv/4JWbcXGcfkg=">AAAB9XicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHgxWMF+wFtLZvNpF26uwm7E20J/R9ePCji1f/izX/jts1BWx8MPN6bYWZekAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqmjjVDBosFrFuB9SA4AoayFFAO9FAZSCgFYxuZn7rEbThsbrHSQI9SQeKR5xRtNJDF2GMWmYRH0M47ZcrXtWbw10lfk4qJEe9X/7qhjFLJShkghrT8b0EexnVyJmAaambGkgoG9EBdCxVVILpZfOrp+6ZVUI3irUthe5c/T2RUWnMRAa2U1IcmmVvJv7ndVKMrnsZV0mKoNhiUZQKF2N3FoEbcg0MxcQSyjS3t7psSDVlaIMq2RD85ZdXSfOi6ntV/+6yUrvM4yiSE3JKzolPrkiN3JI6aRBGNHkmr+TNeXJenHfnY9FacPKZY/IHzucPV/STAA==</latexit>

<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

p
<latexit sha1_base64="C50pkrGeTYlIc0VWLblfqsQv1p8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A2hmM9A==</latexit><latexit sha1_base64="C50pkrGeTYlIc0VWLblfqsQv1p8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A2hmM9A==</latexit><latexit sha1_base64="C50pkrGeTYlIc0VWLblfqsQv1p8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A2hmM9A==</latexit><latexit sha1_base64="C50pkrGeTYlIc0VWLblfqsQv1p8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A2hmM9A==</latexit>

r
<latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

Figure 3.6: In general, these two graphical models only encode the same joint
distribution when the shaded arrow is present. However, in the special case
where the distributions take the parametric forms written above, these graph-
ical models encode the same bivariate distribution without the shaded arrow.

aI’m using “magic” informally to mean unusual, interesting, and powerful—this fact en-
ables tractable posterior inference in a vast array of models that were previously intractable.
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3.6 Historical notes

Allocative Poisson factorization unifies convergent threads in statistics, signal-

processing, and machine learning. I review some of those threads here. The purpose

of this section is not to exhaustively catalogue all papers on Poisson factorization but

rather to trace the roots of the main ideas.

3.6.1 Poisson and the Law(s) of Small Numbers

The Poisson distribution has long been understood as a natural and inevitable

distribution for the counts of independent rare events. It was first derived as a limiting

form of the binomial distribution in 1711 by Abraham de Moivre and again in 1837

by Siméon Denis Poisson, for whom the distribution is named [Johnson et al., 2005,

Chapter 4.2]. Specifically, the probability mass function of a binomial random variable

y ∼ Binom(n, p) converges to that of a Poisson random variable y ∼ Pois (µ) as

n ∈ N0 grows large n→∞ but the product of n and p ∈ [0, 1] is fixed to µ , np. This

is often referred to as the “law of small numbers” (LSN) [Whitaker, 1914] since the

probability of any individual event becomes small p→ 0 when µ is fixed in the limit.

The Law of Small Numbers2 is the title of an 1898 book by Ladislaus Bortkiewicz

who popularized the Poisson distribution to model counts of Prussian soldiers acci-

dentally killed by horse kicks. Quine and Seneta [1987] point out that Bortkiewicz’s

use of “law of small numbers” does not refer to the binomial limit. Rather, it refers to

a related property that a sample of V independent but heterogeneous Poisson random

variables yv
ind∼ Pois (µv) for v ∈ {1, . . . , V } will resemble a sample (of size V ) of a

homogeneous Poisson random variable yv
iid∼ Pois (µ∗). Specifically, what Bortkiewicz

called the “divergence coefficient”—i.e., the variance-to-mean ratio (VMR) σ̂2

ȳ
where

σ̂2 is the sample variance and ȳ is the sample mean—tends to 1 even when the

2Bortkiewicz may have intended the seeming reference to “law of large numbers”, a phrase which
was coined by Poisson in 1837 (https://en.wikipedia.org/wiki/Law_of_large_numbers).
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rates µ1, . . . , µV are heterogeneous. In expectation, heterogeneity produces overdis-

persion—i.e., VMR exceeding 1. Indeed, the presence of overdispersion via VMR

is the standard test for heterogeneity in count data; it’s sometimes called the “in-

dex of dispersion” [Cox and Lewis, 1966] or, when calculated on subsets of the data,

the “Fano factor” [Fano, 1947]. However, Bortkiewicz showed that this test has low

power—i.e., it will often fail to correctly identify heterogeneity—when the “field of

experience” (i.e., the number of counts V ) is small and/or the “scale of experience”

(i.e., the scale of the rates µv) is small. Related to Bortkiewicz’s LSN is the the-

orem of Le Cam et al. [1960] which establishes sharp bounds on the error induced

by approximating the distribution of a sum of possibly dependent Bernoulli random

variables—i.e., a Poissonian binomial random variable [Johnson et al., 2005, Chapter

3.12]—with a Poisson distribution. Harremoës et al. [2010] relate these properties

back to the binomial limit via what they call the “laws of thin numbers”.

An implication of Bortkiewicz’s LSN is that a single Poisson distribution often fits

a sample of heterogeneous Poisson random variables well. This suggests that APF

model are inherently conservative—i.e., the Poisson likelihood assumption encodes an

inductive bias towards parsimony. APF models use shared parameters to construct

the (heterogeneous) rates of the observed Poisson-distributed counts; the closer those

rates are to each other, the fewer shared parameters are needed to construct them.

3.6.2 Statistical analysis of contingency tables

There is a vast literature on the analysis of multivariate categorical data orga-

nized into contingency tables [Agresti, 2003]. A contingency table Y—i.e., a count

tensor (see Section 2.4)—contains the counts yδ of all possible (multivariate) event

types δ ≡ (δ1, . . . , δM) ∈ ∆. The goal of contingency table analysis is typically to

estimate the probability table Π containing the probabilities πδ of each type, such

that
∑

δ∈∆ πδ = 1. Conditioned on the probability table, each event token is a cate-
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gorical random variable en ∼ Cat (vec(Π)). Equivalently, the (raveled) contingency

table is multinomial vec(Y ) ∼ Multinom (N, vec(Π)) where N is the total number of

observed tokens—i.e., the sum of all the cells in the table N =
∑

δ∈∆ yδ.

N is often considered fixed (since it is always observed). However, treating N

as a Poisson random variable induces a Poisson assumption on the cells yδ due to

the relationship between the Poisson and multinomial (Definition 3.4). This con-

nection is well-known in the contingency table literature—e.g., see Lauritzen [1996,

pp. 69–71] for a discussion of Poisson versus multinomial “sampling schemes” as well

as [Agresti, 2003, pp. 8–9, 39–40]. Under the multinomial sampling scheme we have

yδ/N ≈ πδ—thus, in an idealized setting, we needn’t model the raw count magnitudes

in order to estimate Π. However, in the presence of missingness or “censorship”, the

observed relative proportions yδ/N conflate the sampling probabilities πδ with the

censorship process. Yvonne et al. [1975, Chapter 5] and Agresti [2003, pp. 392] refer

to this issue as “sampling” versus “structural zeros” with respect to the zero-valued

cells. Winship et al. [2002] discuss models for contingency tables involving masks that

explicitly indicate missing cells. Approaches to maximum likelihood estimation for

incomplete multinomial distributions—i.e., those with censored entries—are surveyed

in Johnson et al. [1997, pp. 71-72]. Explicitly modeling the count magnitudes (e.g.,

by assuming a Poisson sampling scheme) may help propagate uncertainty about N

to the estimation of Π. Murray and Reiter [2016] refer to the presence of “complex

dependence” in contingency tables of survey response data as the main challenge in

dealing with missing values. A related issue is correcting for measurement error in

contingency tables [Manrique-Vallier and Reiter, 2017] which also motivates explicitly

modeling magnitudes (not just relative proportions).

Estimation of the probability table Π was traditionally performed using log-linear

models [Fienberg and Rinaldo, 2007] wherein log πδ is modeled as a linear function of

parameters indexed by δ1, . . . , δM and interactions between them. Log-linear models
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that consider interaction effects have many parameters; to reduce dimensionalilty,

L1-regularization is commonly employed to zero out parameters [Nardi et al., 2012].

An early alternative to the log-linear approach is known as latent structure (or

“class”) analysis [Lazarsfeld and Henry, 1968, McCutcheon, 1987]. This approach

posits a set of latent variables—one for each observed event token zn—that index

into a set of latent classes zn ∈ K and which render the tokens conditionally inde-

pendent. Each latent class κ is associated with a simplistic representation of the prob-

ability table that makes strong independence assumptions—e.g., πδκ ∝
∏M

m=1 φ
(m)
δmκm

.

Marginalizing over the latent variables thus induces a mixture model over the cells of

the probability table—e.g., πδ ∝
∑

κ∈K λκ
∏M

m=1 φ
(m)
δmκm

. Since the number of latent

classes is typically far fewer than the number of cells—i.e., K � ∆—these models

have far fewer parameters than their log-linear counterparts and their parsimony ob-

viates the need for aggressive regularization. Goodman [2002] details the history of

the latent class approach and traces its origins all the way back to Peirce [1884].

Dunson and Xing [2009] and Bhattacharya and Dunson [2012] establish the equiv-

alences between latent class analysis and tensor decomposition. Johndrow et al. [2017]

further establishes a connection between them and shows tensor decomposition to be

a form of regularized log-linear modeling. Both of these approaches are unified under

the framework of probabilistic graphical models for discrete random variables [Lau-

ritzen, 1996] which a recent preprint by Cemgil et al. [2019] shows in detail.

3.6.3 I-divergence minimization

A contingency table is a special case of a multiway array or tensor whose elements

are count-valued. The tensor decomposition literature has traditionally treated count-

valued tensors simply as instances of non-negative tensors. There is a vast literature

on non-negative tensor (NNT) decomposition [Cichocki et al., 2007, Kolda and Bader,

2009]. The traditional approach to tensor decomposition involves minimizing some
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divergence between the observed tensor Y and its reconstruction µ. A commonly

used divergence for the non-negative decomposition is known as the generalized KL-

divergence, unnormalized KL-divergence, or I-divergence. The I-divergence is defined

for two non-negative arrays as

I (p||q) =
∑

δ∈∆

pδ log

(
qδ
pδ

)
+
∑

δ∈∆

pδ −
∑

δ∈∆

qδ. (3.89)

When p and q are probability vectors, the last two sums cancel out and the I-

divergence equals the (normalized) KL-divergence. When used for non-negative ten-

sor decomposition, the I-divergence is minimized with respect to the parameters

governing the reconstruction rates µδ. Thus, any terms only involving the data yδ

are constants and can be dropped; doing so reveals that I-divergence minimization

is equivalent to maximization of the Poisson likelihood:

I(Y ||µ) =
∑

δ∈∆

yδ log

(
µδ
yδ

)
+
∑

δ∈∆

yδ −
∑

δ∈∆

µδ (3.90)

∝
∑

δ∈∆

yδ log µδ −
∑

δ∈∆

µδ (3.91)

∝ −
∑

δ∈∆

log Pois (yδ; µδ) (3.92)

Lee and Seung [1999] introduced the now widely-used multiplicative updates

for non-negative matrix factorization (NMF) for both Euclidean distance and I-

divergence. Welling and Weber [2001] generalized the NMF multiplicative updates

to CP decomposition of non-negative tensors while Kim and Choi [2007] general-

ized them to Tucker decomposition. The I-divergence can be unified under different

divergence families. Sra and Dhillon [2006] introduced NMF for general Bregman

divergences while Cichocki et al. [2007] developed non-negative tensor decomposition

for the family of β-divergences.
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Direct minimization of the I-divergence corresponds to maximum likelihood esti-

mation in a Poisson factorization model. These algorithms may be unstable, particu-

larly when the tensor is very sparse. Gonzalez and Zhang [2005] showed for Euclidean

distance that Lee and Seung [1999]’s multiplicative updates may not converge to a lo-

cal minimum. Finesso and Spreij [2006] established the theoretical convergence of the

NMF updates for I-divergence. However, Chi and Kolda [2012] later demonstrated

that I-divergence minimization may still not converge to a local minimum, in practice,

due to numerical instability and parameters converging to “inadmissable zeros”. Chi

and Kolda [2012] propose an alternative algorithm for I-divergence minimization that

is more stable. Other heuristic solutions have been proposed, like Gillis and Glineur

[2008], who clipped parameters above some small value ε > 0. The instability in these

algorithms motivate a subsequent line of probabilistic and Bayesian approaches that

enjoy “implicit regularization” [Nakajima and Sugiyama, 2010] via priors.

3.6.4 Probabilistic and Bayesian Poisson factorization

The roots of Poisson factorization within the machine learning community are in

topic models of document-by-word count matrices. Hofmann [1999] introduced prob-

abilistic latent semantic analysis (pLSA) which consists of fitting the “aspect model”

(previously coined by Hofmann et al. [1999]) with the EM algorithm [Dempster et al.,

1977] to document-by-word matrices. The aspect model can be written as

P (en = (d, v)) =
K∑

k=1

P (k)P (d | k)P (v | k), (3.93)

which is the canonical form of latent class analysis and equivalent to the model of Saul

and Pereira [1997] among others in the statistics literature on contingency tables.

Blei et al. [2001] introduced Latent Dirichlet allocation (LDA) by imposing Dirich-

let priors over the document-topic factors of the aspect model—i.e., θdk ≡ P (k | d)

where θd ∼ Dir(· · · )—and introduced a variational EM algorithm to fit it. Griffiths
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[2002] further imposed Dirichlet priors over the word-topic factors—i.e., φkv ≡ P (v | k)

where φk ∼ Dir(· · · )—and introduced the now widely-used collapsed Gibbs sampler

(CGS) for inference of the topic indicators zn. Minka and Lafferty [2002] introduced

an expectation propagation algorithm [Minka, 2001] for the full model and Blei et al.

[2003] introduced a mean-field variational inference algorithm. LDA was also concur-

rently introduced in the statistical genetics community by Pritchard et al. [2000].

The connections between pLSA, LDA, and NMF were quickly noticed. Buntine

[2002] introduced multinomial PCA (mPCA) and showed that it unified the aspect

model, LDA, and the (implicit) model of NMF with I-divergence. Girolami and

Kabán [2003] established the equivalence of pLSA and to fitting LDA with variational

EM and uniform Dirichlet priors. Gaussier and Goutte [2005] established that pLSA

solves the NMF objective—i.e., all the solutions to pLSA are local minima for NMF.

As in traditional contingency table analysis, LDA and pLSA are mainly mod-

els for the relative proportions of counts, not their raw magnitudes. Canny [2004]

introduced the gamma–Poisson (GaP) model which was one of the first explicit in-

stance of Poisson matrix factorization. The GaP model imposes independent gamma

priors over the elements of one factor matrix and treats the other as fixed. Canny

[2004] provides an EM-like algorithm and discusses its similarity to the multiplica-

tive updates for NMF. Dunson and Herring [2005] introduced a Gibbs sampler for a

Poisson matrix factorization model that includes covariates; equation 9 of their paper

includes one of the first explicit references to the latent source representation (see

Section 3.2). Buntine and Jakulin [2006] introduced Discrete Component Analysis

which further generalized NMF, pLSA, LDA, mPCA, and GaP; Lemma 1 of their

paper establishes the equivalence of LDA to gamma–Poisson models. Titsias [2008]

introduced Bayesian non-parametric gamma–Poisson matrix factorization along with

a Gibbs sampler. Cemgil [2009] introduced mean-field variational inference for Pois-

son factorization with gamma priors and discussed the algorithm’s similarity to the
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multiplicative updates of NMF. Paisley et al. [2014] introduced the corresponding

algorithm for stochastic variational inference [Hoffman et al., 2013]. Gopalan et al.

[2014a] introduced a variational algorithm for a Bayesian non-parametric Poisson MF

and Gopalan et al. [2015] introduced a stochastic variational algorithm for Poisson

MF with hierarchical priors over the rate parameters of the gamma priors.

Zhou et al. [2012] introduced a formal treatment of Bayesian non-parametric

gamma–Poisson matrix factorization (or “Poisson Factor Analysis”) in the language of

completely random measures (CRMs) [Kingman, 1967, Jordan, 2010] which yields the

beta–negative binomial process (BNBP). Virtually the same Bayesian non-parametric

process was introduced concurrently by Broderick et al. [2011, 2015]. This model also

goes beyond that of Titsias [2008] by imposing hierarchical priors over both the shape

and rate of the gamma priors over factors. Zhou and Carin [2012] introduced a novel

auxiliary variable scheme based on augmentation of the negative binomial distribu-

tion (discussed in Section 3.5) to perform closed-form inference for the shape of the

gamma prior. Zhou and Carin [2015] expanded on this augmentation scheme and

detailed its applications to different hierarchical models.

Finally, much of the Bayesian models for Poisson matrix factorization have been

generalized to tensor decomposition. Mean-field variational inference for gamma–

Poisson CP decomposition was introduced by Ermis and Cemgil [2014] (concurrently

with Schein et al. [2014]). Although Ermis and Cemgil [2014] focus on CP decompo-

sition, they employ the generalized coupled tensor factorization (GCTF) framework

of Yılmaz et al. [2011] and their algorithm thus implies an algorithm for Tucker de-

composition which Schein et al. [2016b] later introduced explicitly. Hu et al. [2015]

introduced stochastic variational inference for Poisson CP decomposition with hier-

archical priors. Many more instances of Bayesian Poisson tensor decompositions have

since been introduced.
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CHAPTER 4

BAYESIAN POISSON TENSOR FACTORIZATION FOR
INFERRING MULTILATERAL RELATIONS FROM

SPARSE DYADIC EVENT COUNTS

Over the past fifteen years, political scientists have engaged in an ongoing debate

about using dyadic events to study inherently multilateral phenomena. This debate,

as summarized by Stewart [2014], began with Green et al. [2001]’s demonstration

that many regression analyses based on dyadic events were biased due to implausible

independence assumptions. Researchers continue to expose such biases, e.g., [Erikson

et al., 2014], and some have even advocated eschewing dyadic data on principle, calling

instead for the development of multilateral event data sets [Poast, 2010]. Taking

the opposite viewpoint—i.e., that dyadic events can be used to conduct meaningful

analyses of multilateral phenomena—other researchers, beginning with Hoff and Ward

[2004], have developed Bayesian latent factor regression models that explicitly model

unobserved dependencies as occurring in some latent space, thereby controlling for

their effects in analyses. This line of research has seen an increase in interest and

activity over the past few years [Hoff et al., 2016, Stewart, 2014, Hoff, 2015].

This chapter proposes an APF model for measuring a particular kind of “complex

dependence structure in international relations” [King, 2001] implicit in dyadic event

data—i.e., multilateral relations. An example of an inferred multilateral relation is

given in Fig. 4.1. This chapter is based on work published in KDD 2014 [Schein

et al., 2015]. I have factored out many of the details originally presented in that

paper into the preceding three chapters of this thesis. The example model in Sec-

tion 3.4 with gamma priors is the 3-mode analogue of the one in this chapter and
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Figure 4.1: Our model infers latent classes that correspond to multilateral relations.
Each class consists of four factor vectors summarizing sender, receiver, action-type,
and time-step activity, respectively. Here we visualize a single class, for which we
plot the top ten sender, receiver, and action-type factors sorted in decreasing order.
We also plot the entire vector of time-step factors in chronological order. We found
that the interpretation of each class was either immediately clear from our existing
knowledge or easy to discover via a web search. This class was inferred from ICEWS
data spanning 1995 through 2012 (with monthly time steps). It corresponds to events
surrounding the US-led War on Terror following the September 11, 2001 attacks. The
largest time-step factor is that of October 2001—the month during which the invasion
of Afghanistan occurred. There is also a blip in August 1998, when the Clinton
administration ordered missile attacks on terrorist bases in Afghanistan Wikipedia
contributors [2018c].
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the derivation of CAVI updates for that model apply to this one. This chapter thus

omits derivations but includes more details and intuition about the CAVI updates

including their close relationship to analogous maximum likelihood approaches [Lee

and Seung, 1999]. This chapter also explores the geometric versus arithmetic expec-

tations that appear in gamma–Poisson CAVI and advocates for the former to be used

in constructing point estimates. Results are presented that demonstrate empirically

that BPTF has better out-of-sample predictive performance than its maximum like-

lihood and non-Poisson counterparts. This chapter also explores the inferred latent

parameter matrices and shows they capture structures that conform to and inform

our knowledge of international affairs.

4.1 International relations dyadic event data

Over the past few years, researchers have created large data sets of dyadic events

by automatically extracting them from Internet news archives. The largest of these

data sets is the Global Database of Events, Location, and Tone (GDELT), introduced

in 2013, which contains over a quarter of a billion events from 1979 to the present,

and is updated with new events daily [Leetaru and Schrodt, 2013]. In parallel, gov-

ernment agencies (e.g., DARPA) and their contractors have also started to collect

and analyze dyadic events, in order to forecast political instability and to develop

early-warning systems [O’Brien, 2010]; Lockheed Martin publicly released the Inte-

grated Crisis Early Warning System (ICEWS) database in early 2015. Ward et al.

[2013] provide a comparison of GDELT and ICEWS.

GDELT and ICEWS use the CAMEO coding scheme [Gerner et al.]. A CAMEO-

coded dyadic event consists of four pieces of information: a sender, a receiver, an

action type, and a time stamp. An example of such an event (top) and a sentence

from which it could have been extracted (bottom) is

(Turkey, Syria, Fight, 12/25/2014)
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Dec. 25, 2014: “Turkish jets bombed targets in Syria.”

CAMEO assumes that senders and receivers belong to a single set of actors, coded

for their country of origin and sector (e.g., government or civilian) as well as other in-

formation (such as religion or ethnicity). CAMEO also assumes a hierarchy of action

types, with the top level consisting of twenty basic action classes. These classes are

loosely ranked based on sentiment from Make Public Statement to Use Unconven-

tional Mass Violence. Each action class is subdivided into more specific actions; for

example, Make Public Statement contains Make Empathetic Comment. When study-

ing international relations using CAMEO-coded data, researchers commonly consider

only the countries of origin as actors and only the twenty basic action classes as action

types. In ICEWS, there are 249 unique country actors (which include non-universally

recognized countries, such as Taiwan and Palestine); in GDELT, there are 223.

A data set of dyadic events can be aggregated into a 4-mode tensor Y of size

V×V×A×T , where V is the number of country actors and A is the number of action

types, by aggregating the events into T time steps on the basis of their timestamps.

Each element y
(t)

i
a−→j

of Y is a count of the number of actions of type a taken by

country i toward country j during time step t. We experimented with various date

ranges and time step granularities. For example, in one set of experiments, we used

the entire ICEWS data set, spanning 1995 through 2012 (i.e., 18 years) with monthly

time steps—i.e., a 249×249×20×216 tensor with 267,844,320 elements. In this tensor,

only 0.54% of the elements (roughly 1.5 million elements) are non-zero. Moreover,

these non-zero counts are highly dispersed with a variance-to-mean ratio (VMR) of

57. Any realistic model of such data must therefore be robust to sparsity and capable

of representing high levels of dispersion.
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4.2 Model: Bayesian Poisson Tensor Factorization

BPTF assumes each count is an independent Poisson random variable,

y
(t)

i
a−→j
∼ Pois

(
µ

(t)

i
a−→j

)
(4.1)

µ
(t)

i
a−→j
,

K∑

k=1

θ
(1)
ki θ

(2)
kj θ

(3)
ka θ

(4)
kt , (4.2)

which corresponds to a CP decomposition (see Section 2.3.3) of the observed tensor

into four latent parameter matrices where Θ(1) and Θ(2) are both K×V matrices whose

columns represent the embeddings of all V country actors as senders and receivers,

respectively, Θ(3) is a K×A matrix whose columns embed action types, and Θ(4) is a

K×T whose columns embed time steps. We assume independent gamma priors for

all elements of the parameter matrices e.g.,

θ
(1)
ki ∼ Γ(α0, α0 β

(1)), (4.3)

where α0 is set to a small value and β(m) (one for each for the four modes) is inferred.

This prior structure represents the tensor generalization of the prior structure for

Bayesian Poisson matrix factorization introduced by Cemgil [2009] who showed that

these gamma priors improve interpretability and prevent overfitting by promoting

parameter shrinkage. Under this parameterization of the gamma distribution, where

the rate parameter is the product of the shape parameter and β(1), the mean of the

prior is completely determined by β(1) (since E[θ
(1)
ki ] = α0

α0β(1) = 1
β(1) ) Cemgil [2009],

Liang et al. [2014]. The shape parameter α0, which determines the shrinkage of the

latent parameter matrices, can be set by the user; in our experiments, we use α0 =0.1.

4.3 Variational inference

Given an observed tensor Y , Bayesian inference of the latent factors involves

“inverting” the generative process described in the previous section to obtain the
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posterior distribution of the latent parameter matrices conditioned on Y and the

model hyperparameters H ≡ {α0, β
(1), β(2), β(3), β(4)}:

P
(
Θ(1),Θ(2),Θ(3),Θ(4) |Y,H

)
. (4.4)

The posterior distribution for BPTF is analytically intractable and must be ap-

proximated. Variational inference turns the process of approximating the posterior

distribution into an optimization algorithm. It involves first specifying a parametric

family of distributions Q over the latent variables of interest, indexed by the values

of a set of variational parameters S. The functional form of Q is typically chosen so

as to facilitate efficient optimization of S. Here, we use a fully factorized mean-field

approximation (see Section 2.2.2.2). As shown in Section 3.4 the optimal family for

each factor—e.g., for θ
(1)
ki —is,

Q(θ
(1)
ki ;S(1)

ki ) = Γ (θ
(1)
ki ; γ

(1)
ki , δ

(1)
ki ), (4.5)

where S(1) ≡
((
γ

(1)
ki , δ

(1)
ki

)V
i=1

)K
k=1

. The full set of variational parameters is thus S ≡

{S(1),S(2),S(3),S(4)}. This form ofQ is similar to that used in Bayesian PMF [Cemgil,

2009, Paisley et al., 2014, Gopalan et al., 2015].

The variational parameters are then fit so as to yield the closest member of Q

to the exact posterior. Specifically, the algorithm sets the values of S to those that

minimize the KL divergence of the exact posterior from Q. It can be shown (e.g.,

see [Blei et al., 2017]) that these values are the same as those that maximize a lower

bound on P (Y |H), known as the evidence lower bound (ELBO):

B(S) = EQ
[
log
(
P (Y ,Θ(1),Θ(2),Θ(3),Θ(4) |H)

)]
+H(Q),

where H(Q) is the entropy of Q. When Q is a fully factorized approximation, finding

values of S that maximize the ELBO can be achieved by performing coordinate ascent,
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iteratively updating each variational parameter, while holding the others fixed, until

convergence (defined by change in the ELBO). For γ
(1)
ki and δ

(1)
ki , the updates:

γ
(1)
ki := α0 +

∑

j,a,t

y
(t)

i
a−→j

GQ

[
θ

(1)
ki θ

(2)
kj θ

(3)
ka θ

(4)
tk

]

∑K
k=1GQ

[
θ

(1)
ki θ

(2)
kj θ

(3)
ka θ

(4)
tk

] (4.6)

δ
(1)
ki := α0 β

(1) +
∑

j,a,t

EQ

[
θ

(2)
kj θ

(3)
ka θ

(4)
tk

]
, (4.7)

where EQ [·] and GQ [·] = exp (EQ [log (·)]) denote arithmetic and geometric expec-

tations. Since Q is fully factorized, each expectation of a product can be factorized

into a product of individual expectations, which, e.g., for θ
(1)
ki are

EQ

[
θ

(1)
ki

]
=
γ

(1)
ki

δ
(1)
ki

and GQ

[
θ

(1)
ki

]
=

exp
(
Ψ
(
γ

(1)
ki

))

δ
(1)
ki

, (4.8)

where Ψ(·) is the digamma function. Each expectation—a sufficient statistic—can

be cached to improve efficiency. Note that the summand in Eq. (4.6) need only be

computed for those values of j, a, and t for which y
(t)

i
a−→j

> 0; provided Y is very

sparse, inference is efficient even for very large tensors.

The hyperparameters β(1), β(2), β(3), and β(4) can be optimized via an empirical

Bayes method, in which each hyperparameter is iteratively updated along with the

variational parameters according to the following update equation:

β(1) :=

(∑

i,k

EQ

[
θ

(1)
ki

])−1

. (4.9)

Eqs. (4.6), (4.7) and (4.9) completely specify the variational inference algorithm

for BPTF. Our Python implementation, which is intended to support arbitrary M -

mode tensors in addition to the four-mode tensors described in this paper, is available

for use under an open-source license1.

1https://github.com/aschein/bptf
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4.4 Predictive Analysis

This section compares BPTF’s predictive performance to that of standard meth-

ods for non-negative tensor factorization involving maximum likelihood estimation.

Baselines: Non-Bayesian methods for CP decomposition find values of the latent

parameter matrices that minimize some divergence of the observed tensor Y and its

reconstruction µ. Researchers have proposed many divergences, but most often use

Euclidean distance or generalized KL divergence (or I-divergence), preferring the lat-

ter when the observed tensor consists of sparse counts. Generalized KL divergence is

I(Y ||µ) = −
∑

i,j,a,t

(
y

(t)

i
a−→j

log
(
µ

(t)

i
a−→j

)
− µ(t)

i
a−→j

)
+ C, (4.10)

where constant C ≡∑i,j,a,t

(
y

(t)

i
a−→j

log
(
y

(t)

i
a−→j

)
− y(t)

i
a−→j

)
depends on the observed data

only. The standard method for estimating the values of the latent factors involves

multiplicative update equations, originally introduced for matrix factorization by Lee

and Seung [1999] and later generalized to tensors by Welling and Weber [2001]. The

multiplicative nature of these update equations acts as a non-negativity constraint on

the factors which promotes interpretability and gives the algorithm its name: non-

negative tensor factorization (NTF).

Some divergences also permit a probabilistic interpretation: finding values of the

latent factors that minimize them is equivalent to maximum likelihood estimation of

a probabilistic model. The log likelihood function of a Poisson tensor factorization

model—y
(t)

i
a−→j
∼ Pois

(
y

(t)

i
a−→j

;µ
(t)

i
a−→j

)
—is

log
∏

i,j,a,t

Pois
(
y

(t)

i
a−→j

;µ
(t)

i
a−→j

)
=
∑

i,j,a,t

y
(t)

i
a−→j

log
(
µ

(t)

i
a−→j

)
− log

(
y

(t)

i
a−→j

!
)
− µ(t)

i
a−→j

(4.11)

=
∑

i,j,a,t

(
y

(t)

i
a−→j

log (µ
(t)

i
a−→j

)− µ(t)

i
a−→j

)
+ C, (4.12)
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Table 4.1: Out-of-sample predictive performance for our model (BPTF) and non-negative tensor
factorization with Euclidean distance (NTF-LS) and generalized KL divergence (NTF-KL or, equiva-
lently, PTF). Each row contains the results of a single experiment. “I-top-25” means the experiment
used data from ICEWS and we predicted the upper-left 25×25 portion of each test slice (and treated
its complement as observed). “G-top-100c” means the experiment used data from GDELT and we
predicted the complement of the upper-left 100×100 portion of each test slice. For each experiment,
we state the density (percentage of non-zero elements) and VMR (i.e., dispersion) of the unobserved
portion of the test set. We report three types of error: mean absolute error (MAE), mean absolute
error on non-zero elements (MAE-NZ), and Hamming loss on the zero elements (HAM-Z). All mod-
els achieved comparable scores when we predicted the sparser portion of each test slice (bottom four
rows). BPTF significantly outperformed the other models when we predicted the denser 25×25 or
100×100 portion (top four rows).

NTF-LS NTF-KL (PTF) BPTF

Density VMR MAE -NZ HAM-Z MAE -NZ HAM-Z MAE -NZ HAM-Z

I-top-25 0.1217 105.8755 34.4 217 0.271 8.37 56.7 0.138 1.99 12.9 0.113
G-top-25 0.2638 180.4143 52.5 167 0.549 15.5 53.7 0.327 8.94 29.8 0.292
I-top-100 0.0264 63.1118 29.8 979 0.0792 10.5 346 0.0333 0.178 5.05 0.0142
G-top-100 0.0588 111.8676 42.6 470 0.217 4 58.6 0.0926 0.95 12.2 0.0682

I-top-25c 0.0021 8.6302 0.00657 2.27 0.00023 0.0148 2.72 0.00256 0.0104 2.31 0.00161
G-top-25c 0.0060 20.4858 0.0435 4.4 0.00474 0.0606 4.9 0.00893 0.0412 4.01 0.00601
I-top-100c 0.0004 4.4570 0.000685 1.63 3.33e-07 0.0011 1.55 5.43e-05 0.00109 1.56 4.97e-05
G-top-100c 0.0015 9.9432 0.00584 3.23 0.000112 0.0084 2.97 0.00109 0.00803 3 0.000957

where constant C ≡ −∑i,j,a,t log
(
y

(t)

i
a−→j

!
)

depends on the observed data only. Since

Eq. (4.10) is equal to the negative of Eq. (4.12) up to a constant, maximum likelihood

estimation for Poisson tensor factorization is equivalent to minimizing the generalized

KL divergence of µ from Y .

We compared the out-of-sample predictive performance of BPTF to that of non-

negative tensor factorization with Euclidean distance (NTF-LS) and non-negative

tensor factorization with generalized KL divergence (NTF-KL or, equivalently PTF).

Experimental design: Using both ICEWS and GDELT, we explored how well

each model generalizes to out-of-sample data with varying degrees of sparsity and

dispersion. For each data set—ICEWS or GDELT—we sorted the country actors by

their overall activity (as both sender and receiver) so that the V ×V sender–receiver

slices of the observed tensor were denser toward the upper-left corner. Section 4.4

depicts this property. We then divided the observed tensor into a training set and a

test set by randomly constructing an 80%–20% split of the time steps. We defined
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Figure 4.2: Sender–receiver slices from the GDELT tensor spanning 1990 through
2007, with monthly time steps (i.e., T = 216). Both slices correspond to t = 151
(July 2002). The left slice corresponds to Intend to Cooperate, while the right slice
corresponds to Threaten. We sorted the country actors by their overall activity so that
the slices were generally denser toward the upper-left corner; only the upper-left 35×35
portion of each slice is shown here. The three darkest elements (i.e., highest counts) in
the second slice correspond to Israel→ Palestine, Palestine→ Israel, and US→ Iraq.

training set Y train to be the V×V×A slices of Y indexed by the time steps in the 80%

split and defined test set Y test to be the V ×V ×A slices indexed by the time steps

in the 20% split. We compared the models’ predictive performance in two scenarios,

intended to test their abilities to handle different levels of sparsity and dispersion: one

in which we treated the denser upper-left V ′×V ′ (for some V ′ < V ) portion of each

test slice as observed at test time and predicted its complement, and one in which we

observed the complement at test time and predicted the denser V ′×V ′ portion.

In each setting, we used an experimental strategy analogous to strong generaliza-

tion for collaborative filtering [Marlin, 2004]. During training, we fit each model to

the fully observed training set. We then fixed the values of the variational parameters

for the sender, receiver, and action-type parameter matrices (or direct point estimates
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of the factors, for the non-Bayesian models) to those inferred from the training set.

For each test slice, indexed by time step t, we used the observed upper-left V ′×V ′ por-

tion (or its complement) to infer variational parameters for (or direct point estimates

of) its time-step factors {θ(4)
kt }Kk=1. Finally, we reconstructed the missing portion of

each test slice using µ
(t)

i
a−→j

. For the reconstruction step, we can obtain point esti-

mates of the latent factors by taking their arithmetic expectations or their geometric

expectations—i.e., EQ

[
µ

(t)

i
a−→j

]
or GQ

[
µ

(t)

i
a−→j

]
. In this section, we report results ob-

tained using geometric expectations only; we explain this choice in Section 4.6.

We used the entire ICEWS data set from 1995 through 2012 (i.e., 18 years)2, with

events aggregated into monthly time steps. The resultant tensor was of size 249×249×

20×216. Since GDELT covers a larger date range (1979 to the present) than ICEWS,

we therefore selected an 18-year subset of GDELT spanning 1990 through 2007, and

aggregated events into monthly time steps to yield a tensor of size 223×223×20×216.

Since we are interested in interactions between countries, we omitted self-actions so

that the diagonal of each V ×V sender–receiver slice was zero. Ranking the country

actors by their overall activity (as both sender and receiver), the top four actors in the

ICEWS tensor are USA, Russia, China, and Israel, while the top four actors in the

GDELT tensor are USA, Russia, Israel, and Iraq. The GDELT tensor contains many

more events than the ICEWS tensor (26 million events versus six million events). It

is also much denser (1.6% of the elements are non-zero, as opposed to 0.54%) and

exhibits a much higher level of dispersion (VMR of 100, as opposed to 57).

Summary of results: The out-of-sample predictive performance of each model is

shown in Table 4.1. We experimented with several different values ofK and found that

all three models were insensitive to its value; we therefore report only those results

obtained using K = 50. We computed three types of error: mean absolute error

2At the time these experiments were performed, this represented the entire ICEWS data set.
ICEWS now contains events in subsequent years.
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(MAE), mean absolute error on only non-zero elements (MAE-NZ), and Hamming

loss on only the zero elements (HAM-Z). HAM-Z corresponds to the fraction of true

zeros in the unobserved portion of the test set (i.e., elements for which y
(t)

i
a−→j

= 0)

whose reconstructions were (incorrectly) predicted as being greater than 0.5. For

each data set, we generated three training–test splits, and averaged the error scores

for each model across them. For each experiment included in Table 4.1, we display

the density and dispersion of the corresponding test set. When we treated the dense

upper-left V ′×V ′ portion as observed at test time (and predicted its complement),

all models performed comparably. In this scenario, NTF-LS consistently achieved the

lowest MAE score and the lowest HAM-Z score, but not the lowest MAE-NZ score.

This pattern suggests that NTF-LS overfits the sparsity of the training set: when

the unobserved portion of the test set is much sparser than the training set (as it

is in this scenario), NTF-LS achieves lower error scores by simply predicting many

more zeros than NTF-KL (i.e., PTF) or BPTF. In the opposite scenario, when we

observed the complement at test time and predicted the denser V ′×V ′ portion, NTF-

LS produced significantly worse predictions than the other models, and our model

(BPTF) achieved the lowest MAE, MAE-NZ, and HAM-Z scores—in some cases by

an order of magnitude over NTF-KL. These results suggest that in the presence of

sparsity, BPTF is a much better model for the “interesting” portion of the tensor—i.e.,

the dense non-zero portion. This observation is consistent with previous work by Chi

and Kolda [2012] which demonstrated that NTF can be unstable, particularly when

the observed tensor is very sparse. In Section 4.6, we provide a detailed discussion

comparing NTF and BPTF, and explain why BPTF overcomes the sparsity-related

issues often suffered by NTF.
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Figure 4.3: Julian Assange, editor-in-chief of WikiLeaks, sought asylum at the
Ecuadorian embassy in the UK during June through August 2012. This component
inferred from GDELT (2011 through 2012, with weekly time steps) had the sparsest
time-step factor vector. We performed a web search for ecuador UK sweden june 2012
to interpret this component.

4.5 Exploratory Analysis

In this section, we focus on the interpretability of the latent components inferred

using our model. (Recall that each latent parameter matrix has K rows; a single

index k ∈ {1, . . . , K} indexes a row in each matrix—
(
θ

(1)
ki

)V
i=1

,
(
θ

(2)
kj

)V
j=1

,
(
θ

(3)
ka

)A
a=1

,

and
(
θ

(4)
kt

)T
t=1

—collectively known as a component.) We used our model to explore

data from GDELT and ICEWS with several date ranges and time step granularities,

including the 18-year, monthly-time-step tensors described in the previous section

(treated here as fully observed).

When inferring parameter matrices from data that span a large date range (e.g.,

18 years), we expect that the inferred components will correspond to multilateral
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relations that persist or recur over time. We found that many of the components

inferred from 18-year tensors summarize regional relations—i.e., multilateral relations

that persist due to geographic proximity—similar to those found by Hoff [2015]. We

further found a high correspondence between the regional components inferred from

GDELT and the regional components inferred from ICEWS, despite the five-year

difference in their date ranges. Fig. 4.4 illustrates this correspondence. We also

found that components summarizing regional relations exhibited the least sparsity in

their sender, receiver, and time-step factors. For example, the component depicted

in Fig. 4.4 has near-uniform values for the top ten sender and receiver actors (all of

whom are regional to Central Asia), while the time-step factors possess high activity

throughout. In contrast, the time-step factors for the component shown in the second

plot of Fig. 4.1 (i.e., the War on Terror) exhibit a major spike in October 2001. This

component’s sender and receiver factors also exhibit uneven activity over the top ten

actors, with the US, Afghanistan, and Pakistan dominating.

These “regional relations” components conform to our understanding of interna-

tional affairs and foster confidence in BPTF as an exploratory analysis tool. However,

for the same reason, they are also less interesting. To explore temporally localized

multilateral relations—i.e., anomalous interaction patterns that do not simply re-

flect usual activity—we used our model to infer components from several subsets of

GDELT and ICEWS, each spanning a two-year date range with weekly time steps. We

ranked the inferred components by the sparsity of their time-step factors, measured

using the Gini coefficient [Dorfman, 1979]. Ranking components by their Gini coef-

ficients is a form of anomaly detection: components with high Gini coefficients have

unequal time-step factor values—i.e., dramatic spikes. Fig. 4.3 shows the highest-

ranked (i.e., most anomalous) component inferred from a subset of GDELT spanning

2011–2012. This component features an unusual group of top actors and a clear

burst of activity around June 2012. To interpret this component, we performed a

71



Apr 1990 Jul 1991 Nov 1992 Mar 1994 Jul 1995 Nov 1996 Mar 1998 Jul 1999 Oct 2000 Feb 2002 Jun 2003 Oct 2004 Feb 2006 Jun 2007 Oct 2008
0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
us

si
a

T
aj

ik
is

ta
n

Ir
an

A
fg

ha
ni

st
an

U
zb

ek
is

ta
n

K
yr

gy
zs

ta
n

K
az

ak
hs

ta
n

P
ak

is
ta

n
T

ur
km

en
is

ta
n

C
hi

na

0.0

0.1

0.2

0.3

0.4

0.5

A
fg

ha
ni

st
an

R
us

si
a

T
aj

ik
is

ta
n

Ir
an

U
zb

ek
is

ta
n

K
yr

gy
zs

ta
n

K
az

ak
hs

ta
n

T
ur

km
en

is
ta

n

P
ak

is
ta

n

C
hi

na

C
on

su
lt

C
oo

pe
ra

te
(D

ip
lo

m
at

ic
)

In
te

nd
to

C
oo

pe
ra

te
M

ak
e

S
ta

te
m

en
t

F
ig

ht

A
pp

ea
l

C
oo

pe
ra

te
(M

at
er

ia
l)

C
oe

rc
e

A
id

Y
ie

ld

time steps

senders

receivers

action types

Apr 1995 Jul 1996 Nov 1997 Mar 1999 Jul 2000 Nov 2001 Mar 2003 Jul 2004 Oct 2005 Feb 2007 Jun 2008 Oct 2009 Feb 2011 Jun 2012 Oct 2013
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

R
us

si
an

Fe
de

ra
ti

on
K

az
ak

hs
ta

n

C
hi

na
K

yr
gy

zs
ta

n

T
aj

ik
is

ta
n

U
zb

ek
is

ta
n

Ir
an

U
ni

te
d

S
ta

te
s

T
ur

km
en

is
ta

n

B
el

ar
us

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
us

si
an

Fe
de

ra
ti

on
K

az
ak

hs
ta

n
K

yr
gy

zs
ta

n

C
hi

na

T
aj

ik
is

ta
n

U
zb

ek
is

ta
n

Ir
an

T
ur

km
en

is
ta

n
U

ni
te

d
S

ta
te

s

B
el

ar
us

C
on

su
lt

C
oo

pe
ra

te
(D

ip
lo

m
at

ic
)

In
te

nd
to

C
oo

pe
ra

te
M

ak
e

S
ta

te
m

en
t

C
oe

rc
e

A
pp

ea
l

A
id

C
oo

pe
ra

te
(M

at
er

ia
l)

A
ss

au
lt

D
is

ap
pr

ov
e

time steps

senders

receivers

action types

Figure 4.4: Regional relations between Central Asian republics and regional super-
powers, found in both GDELT (left; spanning 1990 through 2007, with monthly time
steps) and ICEWS (right; spanning 1995 through 2012, with monthly time steps).
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web search for ecuador UK sweden june 2012 and found that the top hit was a

Wikipedia page [Wikipedia contributors, 2018b] about Julian Assange, the editor-

in-chief of the website WikiLeaks—an Australian national, wanted by the US and

Sweden, who sought political asylum at the Ecuadorian embassy in the UK during

June through August 2012. These countries are indeed the top actors for this compo-

nent, while the time-step factors and top action types (i.e., Consult, Aid, and Appeal)

track the dates and nature of the reported events. In general, we found that when our

existing knowledge was insufficient to interpret an inferred component, performing a

web search for the top two-to-four actors along with the top time step resulted in

either a Wikipedia page or a news article that provided an explanation. We present

further examples of the most anomalous components inferred from other two-year

date ranges in Figs. 4.5a and 4.5b along with the web searches that we performed in

order to interpret them.
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Figure 4.5: Two anomalous components and their interpretations.

(a) Protests erupted in Islamic countries after a Danish newspaper published cartoons depicting
the Prophet Muhammad Wikipedia contributors [2018e]. Denmark and Iran cut diplomatic ties in
February 2006 after protesters attacked the Danish embassy in Tehran. This component inferred
from GDELT (2006 through 2007, weekly time steps) had the second sparsest time-step factor vector.
Web search: denmark iran january 2006.
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(b) Three Japanese citizens were taken hostage in Iraq during April 2004 and a third was found
murdered in October 2004 Wikipedia contributors [2018d]. This component inferred from GDELT
(2004 through 2005, weekly time steps) had the sparsest time-step factor vector. We performed a
web search for japan iraq april 2004 to interpret this component.
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4.6 Technical Discussion

Previous work on Bayesian Poisson matrix factorization (e.g., Cemgil [2009], Pais-

ley et al. [2014], Gopalan et al. [2015]) presented update equations for the variational

parameters in terms of auxiliary variables, known as latent sources. In contrast, we

write the update equations for Bayesian Poisson tensor factorization in the form of

Eqs. (4.6) and (4.7) in order to highlight their relationship to Lee and Seung [1999]’s

multiplicative updates for non-negative tensor factorization—a parallel also drawn

by Cemgil [2009]—and to show that our update equations suggest a new way of

making out-of-sample predictions when using BPTF. In this section, we provide a

discussion of these connections and their implications.

When performing NTF by minimizing the generalized KL divergence of recon-

struction µ from observed tensor Y (which is equivalent to MLE for PTF), the

multiplicative update equation for, e.g., θ
(1)
ki is

θ
(1)
ki := θ

(1)
ki

∑

j,a,t

θ
(2)
kj θ

(3)
ka θ

(4)
tk∑

j,a,t θ
(2)
kj θ

(3)
ka θ

(4)
tk



y

(t)

i
a−→j

µ
(t)

i
a−→j


 . (4.13)

These update equations sometimes converge to locally non-optimal values when

the observed tensor is very sparse [Gonzalez and Zhang, 2005, Lin, 2007, Chi and

Kolda, 2012]. This problem occurs when parameters are set to inadmissible zeros ;

the algorithm cannot recover from these values due to the multiplicative nature of

the update equations. Several solutions have been proposed to correct this behavior

when minimizing Euclidean distance. For example, Gillis and Glineur [2008] add a

small constant ε to each factor to prevent them from ever becoming exactly zero. For

KL divergence, Chi and Kolda [2012] proposed an algorithm—Alternating Poisson

Regression—that “scooches” parameters away from zero more selectively (i.e., some

parameters are still permitted to be zero).
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In BPTF, point estimates of the latent parameters are not estimated directly.

Instead, variational parameters for each factor, e.g., γ
(1)
ki and δ

(1)
ki for factor θ

(1)
ki , are

estimated. These parameters then define a gamma distribution over the factor as in

Eq. (4.5), thereby preserving uncertainty about its value. In practice, this approach

solves the instability issues suffered by MLE methods, without any efficiency sacrifice.

This assertion is supported empirically by the out-of-sample predictive performance

results reported in Section 4.4, but can also be verified by comparing the form of the

update in Eq. (4.13) with those of the updates in Eqs. (4.6) and (4.7). Specifically, if

Eqs. (4.6) and (4.7) are substituted into the expression for the arithmetic expectation

of a single latent factor, e.g., E
[
θ

(1)
ki

]
=

γ
(1)
ki

δ
(1)
ki

, then the resultant update equation is

very similar to the update in Eq. (4.13):

EQ

[
θ

(1)
ki

]
:=

α0 +
∑

j,a,tGQ

[
θ

(1)
ki θ

(2)
kj θ

(3)
ka θ

(4)
tk

] y
(t)

i
a−→j

µ
(t)

i
a−→j

α0 β(1) +
∑

j,a,tEQ

[
θ

(2)
kj θ

(3)
ka θ

(4)
kt

] ,

where µ
(t)

i
a−→j
≡ ∑K

k=1GQ

[
θ

(1)
ki θ

(2)
kj θ

(3)
ka θ

(4)
tk

]
. Pulling GQ

[
θ

(1)
ki

]
outside the sum in the

numerator and letting α0 → 0, yields

EQ

[
θ

(1)
ki

]
:= GQ

[
θ

(1)
ki

]
∑

j,a,tGQ

[
θ

(2)
kj θ

(3)
ka θ

(4)
tk

] y
(t)

i
a−→j

µ
(t)

i
a−→j

∑
j,a,tEQ

[
θ

(2)
kj θ

(3)
ka θ

(4)
kt

] ,

which is exactly the form of Eq. (4.13), except that the point estimates of the factors

are replaced with two kinds of expectation. This equation makes it clear that the

properties that differentiate variational inference for BPTF from the multiplicative

updates for PTF are 1) the hyperparameters α0 and β(1) and 2) the use of arithmetic

and geometric expectations of the factors instead of direct point estimates.

Since the hyperparameters provide a form of implicit correction, BPTF should

not suffer from inadmissible zeros, unlike non-Bayesian PTF. It is also interesting to
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Table 4.2: Predictive performance obtained using geometric and arithmetic expecta-
tions. (The experimental design was identical to that used to obtain the results in
Table 4.1.) Using geometric expectations resulted in the same or better performance
than that obtained using arithmetic expectations.

BPTF-ARI BPTF-GEO

Density MAE HAM-Z MAE HAM-Z

I-top-25 0.1217 2.03 0.121 1.99 0.113
G-top-25 0.2638 8.96 0.3 8.94 0.292
I-top-100 0.0264 0.197 0.0236 0.178 0.0142
G-top-100 0.0588 1 0.0857 0.95 0.0682

I-top-25c 0.0021 0.0104 0.00163 0.0104 0.00161
G-top-25c 0.0060 0.0414 0.00606 0.0412 0.00601
I-top100c 0.0004 0.0011 5.03e-05 0.00109 4.97e-05
G-top100c 0.0015 0.00804 0.000959 0.00803 0.000957

explore the contribution of the geometric expectations. The fact that each µ
(t)

i
a−→j

is

defined in terms of a geometric expectation suggests that when constructing point

estimates of the latent factors from the variational distribution (e.g., for use in predic-

tion), the geometric expectation is more appropriate than the arithmetic expectation

(which is commonly used in Bayesian Poisson matrix factorization) since the inference

algorithm is implicitly optimizing the reconstruction as defined in terms of geometric

expectations of the factors.

To explore the practical differences between geometric and arithmetic expectations

of the latent factors under the variational distribution, it is illustrative to consider

the form of Γ (θ; a, b). Most relevantly, the gamma distribution is asymmetric, and

its mean (i.e., its arithmetic expectation) is greater than its mode. When shape

parameter a ≥ 1, Mode (θ) = (a−1)
b

; when a < 1, the mode is undefined, but most of

the distribution’s probability mass is concentrated near zero—i.e., the PDF increases

monotonically as θ → 0. In this scenario, the gamma distribution’s heavy tail pulls

the arithmetic mean away from zero and into a region of lower probability.

The geometric expectation is upper-bounded by the arithmetic expectation—i.e.,

G [θ] = exp (Ψ(a))
b

≤ a
b

= E [θ]. Unlike the mode, it is well-defined for a ∈ (0, 1) and
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grows quadratically over this interval, since exp (Ψ(a)) ≈ a2

2
for a ∈ (0, 1); in contrast,

the arithmetic expectation grows linearly over this interval. As a result, when a < 1,

the geometric expectation yields point estimates that are much closer to zero than

those obtained using the arithmetic expectation. When a ≥ 1, exp (Ψ(a)) ≈ a − 0.5

and the geometric expectation is approximately equidistant between the arithmetic

expectation and the mode—i.e., a
b
≥ a−0.5

b
≥ a−1

b
. These properties are depicted in

Fig. 4.6; the key point to take away from this figure is that when a < 1, the geometric

expectation has a much more probable value than the arithmetic expectation, while

when a ≥ 1, the geometric and arithmetic expectations are very close. This obser-

vation suggests that the geometric expectation should yield similar or better point

estimates of the latent factors than those obtained using the arithmetic expectation.

In Table 4.2, we provide a comparison of the out-of-sample predictive performance

for BPTF using arithmetic and geometric expectations. These results suggest that

the performance obtained using geometric expectations is either the same as or better

than the performance obtained instead using arithmetic expectations.
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Figure 4.6: The mode, arithmetic expectation, and geometric expectation of a gamma-distributed random variable θ. First :
The three quantities for different values of shape a ≥ 1 (x axis) with rate b = 0.5. All three grow linearly with a and
E [θ] ≥ G [θ] ≥ Mode (θ). Second : Geometric and arithmetic expectations for different values of shape a ∈ (0, 1), where the
mode is undefined, with rate b = 0.5. G [θ] grows more slowly than E [θ]. This property is most apparent when a < 0.4.
Third : pdf of a gamma distribution with shape a = 10 and rate b = 0.5. The three quantities are shown as vertical lines.
All three are close in the area of highest density, differing by about a half unit of inverse rate, i.e., 1

2b
= 1. Fourth: PDF of

a gamma distribution with a = 0.3 and b = 0.5. The geometric and arithmetic expectations are shown as vertical lines (the
mode is undefined). The two quantities differ greatly, with G [θ] much closer to zero and in an area of higher density. If these
expectations were used as point estimates to predict the presence or absence of a rare event—e.g., y = 0 if θ̂ < 0.5; otherwise
y = 1—they would yield different predictions.
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CHAPTER 5

BAYESIAN POISSON TUCKER DECOMPOSITION FOR
LEARNING THE STRUCTURE OF INTERNATIONAL

RELATIONS

Like their inhabitants, countries interact with one another: they consult, negoti-

ate, trade, threaten, and fight. These interactions are seldom uncoordinated. Rather,

they are connected by a fabric of overlapping communities, such as security coalitions,

treaties, trade cartels, and military alliances. For example, OPEC coordinates the

petroleum export policies of its thirteen member countries, LAIA fosters trade among

Latin American countries, and NATO guarantees collective defense against attacks

by external parties. A single country can belong to multiple communities, reflect-

ing its different identities. For example, Venezuela—an oil-producing country and a

Latin American country—is a member of both OPEC and LAIA. When Venezuela

interacts with other countries, it sometimes does so as an OPEC member and some-

times does so as a LAIA member. Countries engage in both within-community and

between-community interactions. For example, when acting as an OPEC member,

Venezuela consults with other OPEC countries, but trades with non-OPEC, oil-

importing countries. Moreover, although Venezuela engages in between-community

interactions when trading as an OPEC member, it engages in within-community in-

teractions when trading as a LAIA member. To understand or predict how countries

interact, we must account for their respective community memberships and how those

communities influence their particular actions.

Models based on the CP decomposition, like the one presented in last chapter,

require each latent class to jointly summarize information about senders, receivers,
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actions, and time steps. This requirement conflates communities of countries with

the inferred latent spaces of other modes—e.g.,“topics” of action types—potentially

forcing each class to express redundant information. Moreover, by definition, these

models cannot express between-community interactions and cannot express sender–

receiver asymmetry without learning separate latent parameter matrices for senders

and receivers. These limitations make it hard to interpret CP decomposition models

as learning latent community memberships.

This chapter is based on work published by Schein et al. [2016b] which presents

the APF analogue to Tucker decomposition—i.e., Bayesian Poisson Tucker decompo-

sition (BPTD). The Tucker decomposition (see Section 2.3.4) decomposes a tensor,

such as Y , into latent parameter matrices that embed each dimension into its own

space—e.g., senders and receivers into communities, actions into topics, and time

steps into regime. By inferring separate latent structure for each mode, this model

yields interpretable latent structure that aligns with well-known concepts in networks

analysis when applied to dyadic event data. Exploratory results that demonstrate

this are provided in Section 5.6. The Tucker decomposition also makes more effi-

cient use of its parameters than the CP decomposition—Section 5.5 demonstrates

empirically that BPTD has better out-of-sample predictive performance than the CP

decomposition model presented the last Chapter 4 when both are granted the same

number of parameters. BPTD also generalizes many existing block models from the

networks community which Section 5.5 includes as baselines. Finally, the Tucker de-

composition of the Poisson rate parameter further can be exploited to improve the

computational complexity of the allocation step during posterior inference—this leads

to an algorithm called compositional allocation described in Section 5.3.
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Figure 5.1: Latent structure learned by BPTD from country–country interaction
events between 1995 and 2000. Top right : A community–community interaction net-
work specific to a single topic of actions and temporal regime. The inferred topic
placed most of its mass on the Intend to Cooperate and Consult actions, so this net-
work represents cooperative community–community interactions. The two strongest
between-community interactions (circled) are 2−→5 and 2−→7. Left : Each row depicts
the overlapping community memberships for a single country. We show only those
countries whose strongest community membership is to either community 2, 5, or 7.
We ordered the countries accordingly. Countries strongly associated with community
7 are at highlighted in red; countries associated with community 5 are highlighted in
green; and countries associated with community 2 are highlighted in purple. Bottom
right : Each country is colored according to its strongest community membership.
The latent communities have a very strong geographic interpretation.
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5.1 Model: Bayesian Poisson Tucker Decomposition

BPTD models each element of the count tensor Y described in Section 4.1 as:

y
(t)

i
a−→j
∼ Pois

(
C∑

c=1

ψic

C∑

d=1

ψjd

K∑

k=1

φak

R∑

r=1

θ(t)
r λ

(r)

c
k−→d

)
, (5.1)

where ψic and ψjd capture the rates at which countries i and j participate in commu-

nities c and d, respectively; factor φak captures the strength of association between

action a and topic k; and θ
(t)
r captures how well regime r explains the events in time

step t. We can collectively view the V × C country–community factors as a latent

factor matrix Ψ, where the ith row represents country i’s community memberships.

Similarly, we can view the A×K action–topic factors and the T×R time-step–regime

factors as latent parameter matrices Φ and Θ, respectively. Factor λ
(r)

c
k−→d

captures the

rate at which community c takes actions associated with topic k toward community d

during regime r; these factors collectively form a core tensor Λ of size C×C×K×R

that interacts communities, topics, and regimes. From this perspective, this model

corresponds to a Tucker decomposition (see Section 2.3.4) of the observed four-mode

tensor into the four parameter matrices and the core tensor

We assume the country–community factors are gamma-distributed,

ψic ∼ Γ(αi, βi) , (5.2)

where the shape and rate parameters αi and βi are specific to country i. We place an

uninformative gamma prior over these shape and rate parameters: αi, βi ∼ Γ(ε0, ε0).

This hierarchical prior enables BPTD to express heterogeneity in the countries’ rates

of activity—e.g., we expect to observe more events involving China than Micronesia.

The action–topic and time-step–regime factors are also gamma-distributed; how-

ever, we assume that these factors are drawn from an uninformative gamma prior:

φak, θ
(t)
r ∼ Γ(ε0, ε0) (5.3)
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Because BPTD learns a single embedding of countries into communities, it pre-

serves the traditional network-based notion of community membership. Sender–

receiver asymmetry is then captured by the core tensor Λ, which can be viewed

as a compression of count tensor Y . By allowing on-diagonal elements, which we de-

note by λ
(r)

c �k
and off-diagonal elements to be non-zero, the core tensor can represent

both within- and between-community interactions. The elements of the core tensor

are gamma-distributed,

λ
(r)

c �k
∼ Γ

(
η �

c η
↔
c νk ρr, δ

)
(5.4)

λ
(r)

c
k−→d
∼ Γ(η↔c η↔d νk ρr, δ) for c 6= d. (5.5)

Each community c ∈ [C]—where [C] ≡ {1, . . . , C}—has two positive weights η �

c and

η↔c that capture its rates of within- and between-community interaction, respectively.

Each topic k ∈ [K] has a positive weight νk, while each regime r ∈ [R] has a positive

weight ρr. We place an uninformative prior over the within-community interaction

rates and gamma shrinkage priors over the other weights: η �
c ∼ Γ(ε0, ε0), η↔c ∼

Γ(γ0 /C, ξ), νk ∼ Γ(γ0 /K, ξ), and ρr ∼ Γ(γ0 /R, ξ). These priors bias BPTD toward

inferring parsimonious latent structure. Finally, we assume that δ and ξ are drawn

from an uninformative gamma prior: δ, ξ ∼ Γ(ε0, ε0).

BPTD as a measurement model for international relations data. An

advantage of the Tucker over the CP decomposition is the decoupling of the latent

cardinalities of each factor matrix. This allows for the interpretation of each factor

matrix as independently embedding the entities of that mode into their own latent

space. As a measurement model, BPTD can be understood as measuring static

structures in dynamic multinetworks—i.e., time-evolving networks with multiple edge

types. These static structures are communities of actors, topics of action types,

and network regimes which are characterized by the interactions of communities and

topics. The presence of the core tensor in the Tucker decomposition also allows the
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model to learn a single country–community embedding matrix Ψ while still expressing

sender–receiver asymmetry in the data; in other words, the Poisson rates for the

two counts y
(t)

i
a−→j

and y
(t)

j
a−→i

are not necessarily equal, so long as the core tensor is

asymmetric in its community–community interactions—i.e., λ
(r)

c
k−→d
6= λ

(r)

d
k−→c

. Contrast

this with CP decomposition (Chapter 4), in which two separate parameter matrices

that embed actors as senders and as receivers—i.e., Ψ(→), Ψ(←)—are required to

express sender–receiver asymmetry, thus straining their interpretation as measuring

communities. For a given regime r and topic k the corresponding C × C slice of

the core tensor Λ
(r)

:
k−→:

at what rates the communities interact with one another; we

visualize one such slice along with country–community factor matrix Ψ in Fig. 5.1.

5.2 Connections to Previous Work

Poisson CP decomposition and latent class models: Recall that we can

represent a data set of dyadic events as a set of N event tokens, where a single

token en= (i
a−→j, t) indicates that sender country i ∈ [V ] took action a ∈ [A] toward

receiver country j ∈ [V ] during time step t ∈ [T ]. DuBois and Smyth [2010] developed

a model that assigns each event token (ignoring time steps) to one of Q latent classes,

where each class q ∈ [Q] is characterized by three categorical distributions—θ→q over

senders, θ←q over receivers, and φq over actions—i.e.,

P (en=(i
a−→j, t) | zn=q) = θ

(→)
iq θ

(←)
jq φaq. (5.6)

Due to the connection between categorical allocation and Poisson factorization (see

Section 3.2.2), this model corresponds to the 3-mode CP decomposition model given

as an example in Section 3.4; its four-mode generalization (including time step) pre-

sented in the last chapter can be rewritten (using this chapter’s notation) as

y
(t)

i
a−→j
∼ Pois

(
Q∑

q=1

θ
(→)
iq θ

(←)
jq φaq ψtq

)
, (5.7)
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where the corresponding allocation step may be written,

P (en=(i
a−→j, t) | zn=q) ∝ θ

(→)
iq θ

(←)
jq φaq ψtq. (5.8)

We may also add a per-class positive weight λq,

y
(t)

i
a−→j
∼ Pois

(
Q∑

q=1

θ
(→)
iq θ

(←)
jq φaq ψtq λq.

)
(5.9)

Tucker decomposition is equivalent to CP decomposition when the cardinalities of the

latent dimensions are equal and the off-diagonal elements of the core tensor are zero.

DuBois and Smyth’s and Schein et al.’s models therefore constitute a constrained spe-

cial case of BPTD that cannot capture dimension-specific structure, such as topics of

actions or communities of countries that engage in between-community interactions.

Infinite relational models: The infinite relational model (IRM) of Kemp et al.

[2006] also learns latent structure specific to each dimension of an M -mode tensor;

however, unlike BPTD, the elements of this tensor are binary, indicating the presence

or absence of the corresponding event type. The IRM therefore uses a Bernoulli likeli-

hood. Schmidt and Mørup [2013] extended the IRM to model a tensor of event counts

by replacing the Bernoulli likelihood with a Poisson likelihood (and gamma priors):

y
(t)

i
a−→j
∼ Pois

(
λ

(zt)

zi
za−→zj

)
, (5.10)

where zi, zj ∈ [C] are the respective community assignments of countries i and j,

za ∈ [K] is the topic assignment of action a, and zt ∈ [R] is the regime assignment of

time step t. This model, which we refer to as the gamma–Poisson IRM (GPIRM), al-

locates M -dimensional event types to M -dimensional latent classes—e.g., it allocates

all tokens of type (i
a−→j, t) to class (zi

za−→zj, zt).

The GPIRM is a special case of BPTD, in which the rows of the latent parameter

matrices are constrained to be “one-hot” binary vectors—i.e., ψic = 1(zi = c), ψjd =
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1(zj =d), φak =1(za=k), and θ
(t)
r =1(zt= r). With this constraint, the Poisson rate

in Eq. (5.1) is equal to the Poisson rate in Eq. (5.10). Unlike BPTD, the GPIRM

is a single-membership model. In addition, it cannot express heterogeneity in the

countries’ rates of activity. The latter limitation can be remedied by allowing θizi

and θjzj to be positive real numbers. We refer to this variant of the GPIRM as the

degree-corrected GPIRM (DCGPIRM).

Stochastic block models: The IRM itself generalizes the stochastic block model

(SBM) of Nowicki and Snijders [2001], which learns latent structure from binary net-

works. Although the SBM was originally specified using a Bernoulli likelihood, Karrer

and Newman [2011] introduced an alternative that uses the Poisson likelihood:

yi−→j ∼ Pois

(
C∑

c=1

ψic

C∑

d=1

ψjd λc−→d

)
, (5.11)

where ψic = 1(zi = c), θj = 1(zj = d), and λc−→d is a positive real number. Like the

IRM and the GPIRM, the SBM is a single-membership model and cannot express

heterogeneity in the countries’ rates of activity. Airoldi et al. [2008] addressed the

former limitation by letting ψic ∈ [0, 1] such that
∑C

c=1 ψic = 1. Meanwhile, Karrer

and Newman [2011] addressed the latter limitation by allowing both θizi and θjzj to

be positive real numbers, much like the DCGPIRM. Ball et al. [2011] simultaneously

addressed both limitations by letting ψic, ψjd ≥ 0, but constrained λc−→d = λd−→c.

Finally, Zhou [2015] extended Ball et al.’s model to be nonparametric and introduced

the Poisson–Bernoulli distribution to link binary data to the Poisson likelihood in a

principled fashion. In this model, the elements of the core matrix and their corre-

sponding factors constitute a draw from a relational gamma process.

Non-Poisson Tucker decomposition: Researchers sometimes refer to the Pois-

son rate in Eq. (5.11) as being “bilinear” because it can equivalently be written

as θj Λθ>i . Nickel et al. [2012] introduced RESCAL—a non-probabilistic bilinear

model for binary data that achieves state-of-the-art performance at relation extrac-
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tion. Nickel et al. [2015] then introduced several extensions for extracting relations of

different types. Bilinear models, such as RESCAL and its extensions, are all special

cases (albeit non-probabilistic ones) of Tucker decomposition. ? developed a model

based on the Tucker decomposition for analyzing dyadic event data. This model uses

a Gaussian likelihood and thus does not naturally yield an inference algorithm that

takes advantage of the sparsity of the data. Finally, there are many other Tucker

decomposition methods [Kolda and Bader, 2009] including nonparametric [Xu et al.,

2012] and nonnegative variants [Kim and Choi, 2007, Mørup et al., 2008, Cichocki

et al., 2009].

5.3 MCMC Inference

Complete conditionals for all latent variables are available in closed form. We

use augment-and-conquer schemes (see Section 3.5) to obtain the complete condi-

tionals for hierarchical gamma random variables—e.g., for η �

c and η↔c . As usual, the

complete conditionals depend on the latent sources—in this case, y
(tr)

ic
ak−→jd

—which are

re-sampled in the allocation step. The structure of the Tucker decomposition may

be exploited to improve the complexity of this step, resulting in an algorithm called

compositional allocation.

5.3.1 Compositional allocation

The latent source representation (see Section 3.2) of this model is:

y
(tr)

ic
ak−→jd

∼ Pois
(
ψic ψjd φak θ

(t)
r λ

(r)

c
k−→d

)
(5.12)

y
(t)

i
a−→j

=
C∑

c=1

D∑

d=1

K∑

k=1

R∑

r=1

y
(tr)

ic
ak−→jd

. (5.13)

where the count for type (i
a−→j, t) is thinned across latent classes. Unlike in CP de-

composition, where latent classes are identified by a single index, here latent classes
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are compositional—i.e., they are identified by a multi-index representing a unique

combination of a sender community, receiver community, action topic, and regime

e.g., (c
k−→d, r). We can view each latent source in terms of its token representation,

y
(tr)

ic
ak−→jd

=
N∑

n=1

1

[
en=(i

a−→j, t)
]
1

[
zn=(c

k−→d, r)
]
, (5.14)

The complete conditional for each token’s class assignment is categorical:

P
(
zn=(c

k−→d, r) | en=(i
a−→j, t),−

)
∝ ψic ψjd φak θ

(t)
r λ

(r)

c
k−→d

(5.15)

where the main computational bottleneck is computing the normalizing constant:

Z
(t)

i
a−→j
,

C∑

c=1

C∑

d=1

K∑

k=1

R∑

r=1

ψic ψjd φak θ
(t)
r λ

(r)

c
k−→d

(5.16)

The näıve implementation enumerates all C ·C ·K ·R summands—i.e., one for each

latent class—and performs 4 multiplications for each. For a general M -mode Tucker

decomposition, the näıve implementation thus involves O(M
∏M

m=1 Lm) operations

where Lm is the cardinality of the mth mode. However, since the Tucker decomposi-

tion is multilinear, we may push sums in to suggest a more efficient dynamic program1

for computing the normalizing constant. Note that each sum is itself a normalizing

constant for a different categorical probability:

Z
(t)

i
a−→j

=
C∑

c=1

ψic

C∑

d=1

ψjd

K∑

k=1

θak

R∑

r=1

θ(t)
r λ

(r)

c
k−→d

︸ ︷︷ ︸
=Z

(t)

c
k−→d︸ ︷︷ ︸

=Z
(t)

c
a−→d︸ ︷︷ ︸

=Z
(t)

c
a−→j

, (5.17)

1This algorithm can be understood as a form of “variable elimination” [Koller et al., 2009].
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Figure 5.2: Compositional allocation. For clarity, we show the allocation process for
a three-mode count tensor (ignoring time steps). Observed three-dimensional event
tokens (left) are compositionally allocated to three-dimensional latent classes (right).

where for instance, Z
(t)

c
a−→j

is the normalizing constant for:

P
(
zn 2: =(

k−→d, r) | zn1 = c, en ==(i
a−→j, t)

)
=
ψjd φak θ

(t)
r λ

(r)

c
k−→d

Z
(t)

c
a−→j

(5.18)

where zn 2: ≡ (zn2, zn3, zn4) denotes the last three indices of the multi-index for the

latent class assignment of the nth token. This categorical probability is the prob-

ability of allocating the receiver community to d, the action type to topic k and

the time step to regime r given that the sender was already allocated to commu-

nity c. Compositional allocation is a dynamic program that caches the intermediate

marginal probabilities along the way to computing the full probability in Eq. (5.17);

it then allocates each per-mode indicator conditioned on the previous ones—i.e.,

P (zn | −) =
∏M

m=1 P (znm | zn:m,−). In the general M -mode case, this reduces the

computational complexity by a factor of M , down to O
(∏M

m=1 Lm

)
. A graphical

illustration of compositional allocation is provided in Fig. 5.2.
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5.3.2 Complete conditionals

We assume that Y is partially observed and include a binary mask B, where

b
(t)

i
a−→j

= 0 means that y
(t)

i
a−→j

= 0 is heldout, not an observed zero. The complete

conditionals for the first-level parameters—i.e., ψic, φak, θ
(t)
r , and λ

(r)

c
k−→d

—follow from

previous derivations. These involve computing latent source aggregations and their

corresponding constants.

Country–Community Factors:

y
(·)
ic
·↔·
,
∑

j 6=i

C∑

d=1

A∑

a=1

K∑

k=1

T∑

t=1

R∑

r=1

(
y

(tr)

ic
ak−→dj

+ y
(tr)

jd
ak−→ci

)

ζic ,
∑

j 6=i

A∑

a=1

T∑

t=1

C∑

d=1

ψjd

K∑

k=1

φak

R∑

r=1

θ(t)
r

(
b

(t)

i
a−→j
λ

(r)

c
k−→d

+ b
(t)

j
a−→i
λ

(r)

d
k−→c

)

(ψic | −) ∼ Γ
(
αi + y

(·)
ic
·↔·
, βi + ζic

)

Action–Topic Factors:

y
(·)

·ak↔·
,

V∑

i=1

C∑

c=1

∑

j 6=i

C∑

d=1

T∑

t=1

R∑

r=1

y
(tr)

ic
ak−→dj

ζak ,
V∑

i=1

∑

j 6=i

T∑

t=1

b
(t)

i
a−→j

C∑

c=1

ψic

C∑

d=1

ψjd

R∑

r=1

θ(t)
r λ

(r)

c
k−→d

(φak | −) ∼ Γ
(
ε0 + y

(·)

·ak↔·
, ε0 + ζak

)

Time-Step–Regime Factors:

y
(tr)

·
·−→· ,

V∑

i=1

C∑

c=1

∑

j 6=i

C∑

d=1

A∑

a=1

K∑

k=1

y
(tr)

ic
ak−→dj

ζtr ,
V∑

i=1

∑

j 6=i

A∑

a=1

b
(t)

i
a−→j

C∑

c=1

ψic

C∑

d=1

ψjd

K∑

k=1

φak λ
(r)

c
k−→d

(θ(t)
r | −) ∼ Γ

(
ε0 + y

(tr)

·
·−→·, ε0 + ζtr

)
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Diagonal Elements of the Core Tensor:

ω
(r)

c �k
, η �

c η
↔
c νkρr

y
(r)

c �k
,

V∑

i=1

∑

j 6=i

A∑

a=1

T∑

t=1

y
(tr)

ic
ak−→cj

ζ
(r)

c �k
,

V∑

i=1

ψic
∑

j 6=i

θjc

A∑

a=1

φak

T∑

t=1

θ(t)
r b

(t)

i
a−→j

(
λ

(r)

c �k
| −
)
∼ Γ

(
ω

(r)

c �k
+ y

(r)

c �k
, δ + ζ

(r)

c �k

)

Off-Diagonal Elements of the Core Tensor:

ω
(r)

c
k−→d
, η↔c η

↔
d νkρr c 6= d

y
(r)

c
k−→d
,

V∑

i=1

∑

j 6=i

A∑

a=1

T∑

t=1

y
(tr)

ic
ak−→dj

c 6= d

ζ
(r)

c
k−→d
,

V∑

i=1

ψic
∑

j 6=i

ψjd

A∑

a=1

φak

T∑

t=1

θ(t)
r b

(t)

i
a−→j

c 6= d

(
λ

(r)

c
k−→d
| −
)
∼ Γ

(
ω

(r)

c
k−→d

+ +y
(r)

c
k−→d
, δ + ζ

(r)

c
k−→d

)
c 6= d

Complete conditionals for the hierarchical priors over gamma rate parameters are

available via gamma–gamma conjugacy.

Per-Country Rate Parameters:

(βi | −) ∼ Γ

(
ε0 + Cαi, ε0 +

C∑

c=1

ψic

)

Core Rate Parameter:

(δ | −) ∼ Γ
(
ε0 + ω

(·)
· ·↔·
, ε0 + λ

(·)
· ·↔·

)

Weights Rate Parameter:

(ξ | −) ∼ Γ

(
ε0 + 4γ0, ε0 +

C∑

c=1

η �

c +
C∑

c=1

η↔c +
K∑

k=1

νk+
R∑

r=1

ρr

)
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The complete conditionals for the hierarchical priors over gamma shape parame-

ters are available using augment-and-conquer schemes (see Section 3.5). These rely on

the latent source aggregations and corresponding constants defined above and intro-

duce auxiliary count random variables whose complete conditionals follow the Chinese

Restaurant table distribution. Throughout this section, we use g(x) , ln(1 + x).

Auxiliary Latent Country–Community Counts:

(`ic | −) ∼ CRT
(
y

(·)
ic
·↔·
, αi

)

Per-Country Shape Parameters:

(αi | −) ∼ Γ

(
ε0 +

C∑

c=1

`ic, ε0 +
C∑

c=1

g
(
ζic βi

−1
)
)

Diagonal Auxiliary Latent Core Counts:

`
(r)

c �k
∼ CRT

(
y

(r)

c �k
, ω

(r)

c �k

)

Off-Diagonal Auxiliary Latent Core Counts:

`
(r)

c
k−→d
∼ CRT

(
y

(r)

c
k−→d
, ω

(r)

c
k−→d

)
c 6= d

Within-Community Weights:

`
(·)
c �· ,

K∑

k=1

R∑

r=1

`
(r)

c �k

ζ �

c ,
R∑

r=1

ρr

K∑

k=1

νk
∑

d 6=c

η↔d

(
g
(
ζ

(r)

c
k−→d

δ−1
)

+ g
(
ζ

(r)

d
k−→c
δ−1
))

(η �

c | −) ∼ Γ
(γ0

C
+ `

(·)
c �· , ξ + ζ �

c

)
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Between-Community Weights:

`
(·)
c
·↔·
, `

(·)
c �· +

∑

d6=c

K∑

k=1

R∑

r=1

(
`

(r)

c
k−→d

+ `
(r)

d
k−→c

)

ζ↔c ,
R∑

r=1

ρr

K∑

k=1

νk

[
η �

c g
(
ζ

(r)

c �k
δ−1
)

+
∑

d6=c

η↔d

(
g
(
ζ

(r)

c
k−→d

δ−1
)

+ g
(
ζ

(r)

d
k−→c
δ−1
))]

(η↔c | −) ∼ Γ
(γ0

C
+ `

(·)
c
·↔·
, ξ + ζ↔c

)

Topic Weights:

`
(·)

·
k−→· ,

C∑

c=1

C∑

d=1

R∑

r=1

`
(r)

c
k−→d

ζk ,
R∑

r=1

ρr

C∑

c=1

η↔c

[
η �

c g
(
ζ

(r)

c �k
δ−1
)

+
∑

d6=c

η↔d

(
g
(
ζ

(r)

c
k−→d

δ−1
)

+ g
(
ζ

(r)

d
k−→c
δ−1
))]

(νk | −) ∼ Γ
(γ0

K
+ `

(·)

·
k−→·, ξ + ζk

)

Regime Weights:

`
(r)

·
·−→· ,

C∑

c=1

C∑

d=1

K∑

k=1

`
(r)

c
k−→d

ζr ,
K∑

k=1

νk

C∑

c=1

η↔c

[
η �

c g
(
ζ

(r)

c �k
δ−1
)

+
∑

d6=c

η↔d

(
g
(
ζ

(r)

c
k−→d

δ−1
)

+ g
(
ζ

(r)

d
k−→c
δ−1
))]

(ρr | −) ∼ Γ
(γ0

R
+ `

(r)

·
·−→·, ξ + ζr

)

5.4 International relations dyadic event data

We used data from the Integrated Crisis Early Warning System (ICEWS) [Boschee

et al., 2015] and the Global Database of Events, Language, and Tone (GDELT) [Lee-

taru and Schrodt, 2013]. ICEWS and GDELT both use the Conflict and Mediation

Event Observations (CAMEO) hierarchy [Gerner et al.] for senders, receivers, and

actions. The top level for actions, which we use in our analyses, consists of twenty

action classes, roughly ranked according to their overall sentiment. For example, the

most negative is 20—Use Unconventional Mass Violence. CAMEO further
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divides these actions into the QuadClass scheme: Verbal Cooperation (actions 2–

5), Material Cooperation (actions 6–7), Verbal Conflict (actions 8–16), and Material

Conflict (16–20). The first action (1—Make Statement) is neutral.

5.5 Predictive Analysis

Baseline models: We compared BPTD’s predictive performance to that of three

baseline models, described in Section 5.2: 1) GPIRM, 2) DCGPIRM, and 3) the

Bayesian Poisson tensor factorization (BPTF) model of Schein et al. [2015]. All three

models use a Poisson likelihood and have the same two hyperparameters as BPTD—

i.e., ε0 and γ0. We set ε0 = 0.1 and γ0 so that (γ0 /C)2 (γ0 /K) (γ0 /R) = 0.01. This

parameterization encourages shrinkage among the elements of the core tensor Λ. We

implemented an MCMC inference algorithm for each model.

GPIRM and DCGPIRM are both Tucker decomposition models and thus allocate

events to four-dimensional latent classes. The cardinalities of these latent dimen-

sions are the same as BPTD’s—i.e., C, K, and R. In contrast, BPTF is a CP

decomposition model and thus allocates events to one-dimensional latent classes. We

set the cardinality of this dimension so that the total number of latent paramters

in BPTF was equal to the total number of latent paramters in BPTD—i.e., Q =

d (V×C)+(A×K)+(T×R)+(C2×K×R)
V+V+A+T+1

e. We could have alternatively set BPTF and BPTD

to use the same number of latent classes—i.e., Q=C2 × K × R—however, CP de-

composition models tend to overfit when Q is large [Zhao et al., 2015]. Throughout

our predictive experiments, we let C = 25, K = 6, and R = 3. These values were

well-supported by the data, as we explain in Section 5.6.

Experimental setup: We constructed twelve different observed tensors—six

from ICEWS and six from GDELT. Five of the six tensors for each source (ICEWS

or GDELT) correspond to one-year time spans with monthly time steps, starting

with 2004 and ending with 2008; the sixth corresponds to a five-year time span with
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monthly time steps, spanning 1995–2000. We divided each tensor Y into a training

tensor Y train = Y (1), . . . ,Y (T−3) and a test tensor Y test = Y (T−2),Y (T−1),Y (T ). We

further divided each test tensor into a held-out portion and an observed portion

via a binary mask. We experimented with two different masks: one that treats the

elements involving the most active fifteen countries as the held-out portion and the

remaining elements as the observed portion, and one that does the opposite. The first

mask enabled us to evaluate the models’ reconstructions of the densest (and arguably

most interesting) portion of each test tensor, while the second mask enabled us to

evaluate their reconstructions of its complement. Across the entire GDELT database,

for example, the elements involving the most active fifteen countries—i.e., 6% of all

233 countries—account for 30% of the event tokens. Moreover, 40% of these elements

are non-zero. These non-zero elements are highly dispersed, with a variance-to-mean

ratio of 220. In contrast, only 0.7% of the elements involving the other countries are

non-zero. These elements have a variance-to-mean ratio of 26.

For each combination of the four models, twelve tensors, and two masks, we ran

5,000 iterations of MCMC inference on the training tensor. We then clamped the

country–community factors, the action–topic factors, and the core tensor and inferred

the time-step–regime factors for the test tensor using its observed portion by running

1,000 iterations of MCMC inference. We saved every tenth sample after the first 500.

We used each sample, along with the clamped country–community factors, the action–

topic factors, and the core tensor, to compute the Poisson rate for each element in the

held-out portion of the test tensor. Finally, we averaged these rates across samples

and used each element’s average rate—i.e., for each type δ ∈ ∆heldout in the set of

heldout indices, we estimate its rate by averaging over S samples of the time factors:

µδ =
1

S

S∑

s=1

R∑

r=1

(
θ(δ4)
r

)(s)
µ

(r)

δ1
δ2−→δ3

(5.19)
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where µ
(r)

δ1
δ2−→δ3

= ψic ψjd φak λ
(r)

c
k−→d

is clamped.

Given a point-estimate, averaged over the posterior, of each heldout entry’s Pois-

son rate we compute the geometric mean of their likelihoods which is equivalent to

inverse perplexity. Perplexity, is defined as,

Perp (Y heldout;µheldout) = exp

(
− 1

|∆heldout|
∑

δ∈∆heldout

log Pois (yδ;µδ)

)
, (5.20)

while its inverse is equal to the geometric mean of the Poisson heldout likelihoods:

Perp (Y heldout;µheldout)
−1 = exp

(
1

|∆heldout|
∑

δ∈∆heldout

log Pois (yδ;µδ)

)
(5.21)

=
∏

δ∈∆heldout

[
Pois (yδ;µδ)

]1 / |∆heldout|
. (5.22)

We chose this combination strategy to ensure that the models were penalized heavily

for making poor predictions on the non-zero elements and were not rewarded exces-

sively for making good predictions on the zero elements since the Poisson PMF penal-

izes underestimation more than overestimation. By clamping the country–community

factors, the action–topic factors, and the core tensor after training, our experimen-

tal setup is analogous to that used to assess collaborative filtering models’ strong

generalization ability [Marlin, 2004].

Results: Figure 5.3 reports the results for each combination of the four models,

twelve tensors, and two masks. The top row contains the results from the twelve

experiments involving the first mask, where the elements involving the most active

fifteen countries were treated as the held-out portion. BPTD outperformed the base-

lines significantly. BPTF performed better than BPTD in only one study. In general,

the Tucker decomposition allows BPTD to learn richer latent structure that general-

izes better to held-out data. The bottom row contains the results from the studies

involving the second mask. The models’ performance was closer in these studies,
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Figure 5.3: Predictive performance. Each plot shows the inverse perplexity (higher is
better) for the four models: the GPIRM (blue), the DCGPIRM (green), BPTF (red),
and BPTD (yellow). In the experiments depicted in the top row, we treated the ele-
ments involving the most active countries as the held-out portion; in the experiments
depicted in the bottom row, we treated the remaining elements as the held-out por-
tion. For ease of comparison, we scaled the inverse perplexities to lie between zero and
one; we give the scales in the top-left corners of the plots. BPTD outperformed the
baselines significantly when predicting the denser portion of each test tensor (top row).

probably because of the large proportion of easy-to-predict zero elements. BPTD and

BPTF performed indistinguishably in these studies, and both models outperformed

the GPIRM and the DCGPIRM. The single-membership nature of the GPIRM and

the DCGPIRM prevents them from expressing high levels of heterogeneity in the

countries’ rates of activity. When the held-out elements were highly dispersed, these

models sometimes made extremely inaccurate predictions.

5.6 Exploratory Analysis

We used a tensor of ICEWS events spanning 1995–2000, with monthly time steps,

to explore the latent structure discovered by BPTD. We initially let C = 50, K = 8,

and R=3—i.e., C×C×K×R=60, 000 latent classes—and used the shrinkage priors to

infer the most appropriate numbers of communities, topics, and regimes. We found

C = 15 communities and K = 5 topics with weights that were significantly greater

than zero. We provide a plot of the community weights in Fig. 5.4. Although all

three regimes had non-zero weights, one had a much larger weight than the other

two. For comparison, Schein et al. [2015] used fifty latent classes to model the same

data, while ? used C=4, K=4, and R=4 to model a similar tensor from GDELT.
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Figure 5.4: Top twenty inferred community weights η↔1 , . . . , η
↔
C .

Topics of actions: We show the inferred action–topic factors as a heatmap

in the left subplot of Fig. 5.5. We ordered the topics by their weights ν1, . . . , νK ,

which we display above the heatmap. The inferred topics correspond very closely to

CAMEO’s QuadClass scheme. Moving from left to right, the topics place their mass

on increasingly negative actions. Topics 1 and 2 place most of their mass on Verbal

Cooperation actions; topic 3 places most of its mass on Material Cooperation actions

and the neutral 1—Make Statement action; topic 4 places most of its mass on

Verbal Conflict actions and the 1—Make Statement action; and topics 5 and 6

place their mass on Material Conflict actions.

Topic-partitioned community–community networks: In the right subplot

of Fig. 5.5, we visualize the inferred community structure for topic k = 1 and the

most active regime r. The bottom-left heatmap is the community–community inter-

action network Λ
(r)
k . The top-left heatmap depicts the rate at which each country i

acts as a sender in each community c—i.e., ψic
∑V

j=1

∑C
d=1 ψjd λ

(r)

c
k−→d

. Similarly, the

bottom-right heatmap depicts the rate at which each country acts as a receiver in

each community. The top-right heatmap depicts the number of times each coun-

try i took an action associated with topic k toward each country j during regime

r—i.e.,
∑C

c=1

∑C
d=1

∑A
a=1

∑T
t=1 y

(tr)

ic
ak−→jd

. We grouped the countries by their strongest

community memberships and ordered the communities by their within-community
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Figure 5.5: Left: Action–topic factors. The topics are ordered by ν1, . . . , νK (above
the heatmap). Right: Latent structure discovered by BPTD for topic k = 1 and
the most active regime, including the community–community interaction network
(bottom left), the rate at which each country acts as a sender (top left) and a receiver
(bottom right) in each community, and the number of times each country i took an
action associated with topic k toward each country j during regime r (top right). We
show only the most active 100 countries.

interaction weights η �

1 , . . . , η

�

C , from smallest to largest; the thin green lines separate

the countries that are strongly associated with one community from the countries

that are strongly associated with its adjacent communities.

Some communities contain only one or two strongly associated countries. For ex-

ample, community 1 contains only the US, community 6 contains only China, and

community 7 contains only Russia and Belarus. These communities mostly engage

in between-community interaction. Other larger communities, such as communities
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9 and 15, mostly engage in within-community interaction. Most communities have a

strong geographic interpretation. Moving upward from the bottom, there are commu-

nities that correspond to Eastern Europe, East Africa, South-Central Africa, Latin

America, Australasia, Central Europe, Central Asia, etc. The community–community

interaction network summarizes the patterns in the top-right heatmap. This topic is

dominated by the 4–Consult action, so the network is symmetric; the more negative

topics have asymmetric community–community interaction networks. We therefore

hypothesize that cooperation is an inherently reciprocal type of interaction. We pro-

vide visualizations for the other five topics figures 5.6– 5.11.
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Figure 5.6: Latent structure discovered by BPTD for topic k = 1 (mostly Verbal
Cooperation action types) and the most active regime, including the community–
community interaction network (bottom left), the rate at which each country acts as
a sender (top left) and a receiver (bottom right) in each community, and the number
of times each country i took an action associated with topic k toward each country j
during regime r (top right). We show only the most active 100 countries.
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Figure 5.7: Latent structure for topic k=2 (Verbal Cooperation).
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Figure 5.8: Latent structure for topic k=3 (Material Cooperation).
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Figure 5.9: Latent structure for topic k=4 (Verbal Conflict).
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Figure 5.10: Latent structure for topic k=5 (Material Conflict).
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Figure 5.11: Latent structure for topic k=6 (Material Conflict).
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CHAPTER 6

POISSON–GAMMA DYNAMICAL SYSTEMS

Sequentially observed count vectors y(1), . . . ,y(T ) are the main object of study in

many real-world applications, including text analysis, social network analysis, and

recommender systems. Count data pose unique statistical and computational chal-

lenges when they are high-dimensional, sparse, and overdispersed, as is often the case

in real-world applications. For example, when tracking counts of user interactions

in a social network, only a tiny fraction of possible edges are ever active, exhibiting

bursty periods of activity when they are. Models of such data should exploit this

sparsity in order to scale to high dimensions and be robust to overdispersed tempo-

ral patterns. In addition to these characteristics, sequentially observed multivariate

count data often exhibit complex dependencies within and across time steps. For

example, scientific papers about one topic may encourage researchers to write papers

about another related topic in the following year. Models of such data should there-

fore capture the topic structure of individual documents as well as the excitatory

relationships between topics.

The linear dynamical system (LDS) is a widely used model for sequentially ob-

served data, with many well-developed inference techniques based on the Kalman

filter [Kalman, 1960, Ghahramani and Roweis, 1998]. The LDS assumes that each se-

quentially observed V -dimensional vector r(t) is real valued and Gaussian distributed:

r(t) ∼ N (Φθ(t),Σ), where θ(t) ∈ RK is a latent state, with K components, that is

linked to the observed space via Φ ∈ RV×K . The LDS derives its expressive power

from the way it assumes that the latent states evolve: θ(t) ∼ N (Πθ(t−1),∆), where
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Π ∈ RK×K is a transition matrix that captures between-component dependencies

across time steps. Although the LDS can be linked to non-real observations via the ex-

tended Kalman filter [Haykin, 2001], it cannot efficiently model real-world count data

because inference scales at least linearly O(V ) and sometimes cubically O((K+V )3)

with dimensionality of the data. [Ghahramani and Roweis, 1998].

Many previous approaches to modeling sequentially observed count data rely on

the generalized linear modeling framework [McCullagh and Nelder, 1989] to link the

observations to a latent Gaussian space—e.g., via the Poisson–lognormal link [Bulmer,

1974]. Researchers have used this construction to factorize sequentially observed

count matrices under a Poisson likelihood, while modeling the temporal structure

using well-studied Gaussian techniques [Blei and Lafferty, 2006, Charlin et al., 2015].

Most of these previous approaches assume a simple Gaussian state-space model—

i.e., θ(t) ∼ N (θ(t−1),∆)—that lacks the expressive transition structure of the LDS;

one notable exception is the Poisson linear dynamical system [Macke et al., 2011].

In practice, these approaches exhibit prohibitive computational complexity in high

dimensions, and the Gaussian assumption may fail to accommodate the burstiness

often inherent to real-world count data [Kleinberg, 2003].

This chapter is based on work published at NIPS 2016 [Schein et al., 2016a] and

presents the Poisson–gamma dynamical system (PGDS)—an APF analogue to the

LDS. As an APF model, PGDS is robust to “bursty” data and posterior inference

scales with only the number of non-zeros. The main challenge is in deriving tractable

inference for the non-conjugate chains of gamma random variables, that are linked

via their shape parameter. We develop a novel augment-and-conquer scheme (see

Section 3.5) to obtain an elegant and efficient “backward filtering–forward sampling”

algorithm. We also examine the way in which the dynamical gamma–Poisson con-

struction propagates information and derive the model’s steady state, which involves

the Lambert W function [Corless et al., 1996]. Finally, we use the PGDS to analyze a

109



1988 1991 1994 1997 2000
5

10

15

20

25

Figure 6.1: The time-step factors for three components inferred by PGDS from a cor-
pus of NIPS papers. Each component is associated with a feature factor for each word
type in the corpus; we list the words with the largest factors. The inferred structure
tells a familiar story about the rise and fall of certain subfields of machine learning.

diverse range of real-world data sets, showing that it exhibits excellent predictive per-

formance on smoothing and forecasting tasks and infers interpretable latent structure,

an example of which is depicted in Fig. 6.1.

While the previous chapters in this thesis focused on modeling count tensors

of dyadic events data, this chapter presents PGDS as a model for dynamic count

matrices. This is mainly for ease of exposition and comparison to the Gaussian LDS,

which is standardly specified for matrices. The generalization of PGDS to tensors is

presented and applied to count tensors in Chapter 7.

6.1 Model: Poisson–Gamma Dynamical Systems

We can represent a data set of V -dimensional sequentially observed count vectors

y(1), . . . ,y(T ) as a V ×T count matrix Y . The PGDS likelihood corresponds to stan-

dard allocative Poisson matrix factorization, where a single count y
(t)
v is modeled as

110



y(t)
v ∼ Pois

(
ρ(t)

K∑

k=1

φ̃vk θ
(t)
k

)
, (6.1)

where the positive latent factors φ̃vk and θ
(t)
k represent the strength of feature v in

component k and the strength of component k at time step t, respectively. The scaling

factor ρ(t) captures the scale of the counts at time step t, and therefore obviates the

need to rescale the data as a preprocessing step. We refer to the PGDS as stationary

if ρ(t) =ρ for all t. The defining property of PGDS is how the latent states evolve:

θ
(t)
k ∼ Γ

(
τ0

K∑

k2=1

πkk2 θ
(t−1)
k2

, τ0

)
. (6.2)

The PGDS is characterized by its expressive transition structure, which assumes

that each time-step factor θ
(t)
k is drawn from a gamma distribution, whose shape pa-

rameter is a linear combination of the K factors at the previous time step. The latent

transition weights π11, . . . , πk1k2 , . . . , πKK , which we can view collectively as a K×K

transition matrix Π, capture the excitatory relationships between components. The

vector θ(t) = (θ
(t)
1 , . . . , θ

(t)
K ) has expected value E[θ(t) |θ(t−1),Π] = Πθ(t−1) and is thus

analogous to the latent state in linear dynamical systems [Kalman, 1960, Ghahramani

and Roweis, 1998]. The concentration parameter τ0 determines the variance of θ(t)—

specifically, Var (θ(t) |θ(t−1),Π) = (Πθ(t−1)) τ−1
0 —without affecting its expected value.

To model the strength of each component, we introduce K component weights

ν = (ν1, . . . , νK) and place a shrinkage prior over them. We assume that the time-

step factors and transition weights for component k are tied to its component weight

νk. Specifically, we define the following structure:

θ
(1)
k ∼ Γ(τ0 νk, τ0) (6.3)

πk ∼ Dir(ν1νk, . . . , ξνk . . . , νKνk) (6.4)

νk ∼ Γ
(γ0

K
, β
)
, (6.5)
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where πk = (π1k, . . . , πKk) is the kth column of Π. Because
∑K

k1=1 πk1k = 1, we can

interpret πk1k as the probability of transitioning from component k to component k1.

(We note that interpreting Π as a stochastic transition matrix relates the PGDS to

the discrete hidden Markov model.) For a fixed value of γ0, increasing K will encour-

age many of the component weights to be small. A small value of νk will shrink θ
(1)
k ,

as well as the transition weights in the kth row of Π. Small values of the transition

weights in the kth row of Π therefore prevent component k from being excited by

the other components and by itself. Specifically, because the shape parameter for

the gamma prior over θ
(t)
k involves a linear combination of θ(t−1) and the transition

weights in the kth row of Π, small transition weights will result in a small shape pa-

rameter, shrinking θ
(t)
k . Thus, the component weights play a critical role in the PGDS

by enabling it to automatically turn off any unneeded capacity and avoid overfitting.

Finally, we place Dirichlet priors over the feature factors φ̃k = (φ̃1k, . . . , φ̃V k),

φ̃k ∼ Dir(η0, . . . , η0), (6.6)

and draw the other parameters from a non-informative gamma prior:

ρ(t), ξ, β ∼ Γ(ε0, ε0). (6.7)

The PGDS has four positive hyperparameters to be set by the user: τ0, γ0, η0, and ε0.

6.2 MCMC Inference

PGDS is based on chaining gamma random variables via their shape parameter.

This non-conjugate hierarchy makes deriving coordinate-ascent variational inference

challenging. However, we can derive an augmentation scheme that facilitates an effi-

cient Gibbs sampler. Our approach is similar to that used to develop Gibbs sampling

algorithms for several other related models [Zhou and Carin, 2012, 2015, Acharya
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et al., 2015, Zhou, 2015]; however, we extend this approach to handle the unique

properties of the PGDS. The main technical challenge is sampling Θ from its con-

ditional posterior, which does not have a closed form. We address this challenge by

introducing a set of auxiliary variables. Under this augmented version of the model,

marginalizing over Θ becomes tractable and its conditional posterior has a closed

form. Moreover, by introducing these auxiliary variables and marginalizing over Θ,

we obtain an alternative model specification that we can subsequently exploit to ob-

tain closed-form conditional posteriors for Π, ν, and ξ. We marginalize over Θ by

performing a “backward filtering” pass, starting with θ(T ). We iteratively appeal to

three definitions in order to do this:

1. Poisson–multinomial thinning as it appears in Definition 3.4,

2. the magic bivariate count distribution as it appears in Definition 3.20 and,

3. a reparameterized version of Definition 3.16 (gamma–Poisson construction of

the negative binomial), given below.

Definition 6.1: Reparameterized gamma–Poisson mixture

Consider a Poisson random variable y ∼ Pois (θ c) whose rate is a product of

constant c > 0 and θ ∼ Γ(a, b) which is a gamma random variable with shape

a and rate b. The marginal distribution—i.e., y ∼ NB
(
a, c

c+b

)
—is a negative

binomial which can be equivalently expressed in a reparameterized form as:

y ∼ NB
(
a, g(ζ)

)
(6.8)

ζ , ln
(

1 +
c

b

)
, (6.9)

where g(x) = 1−exp(−x) is the Bernoulli–Poisson link function [Zhou, 2015].
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6.2.1 Marginalizing over Θ

We first re-express the Poisson likelihood in terms of the latent source: y
(t)
v ≡

y
(t)
v· =

∑K
k=1 y

(t)
vk and y

(t)
vk ∼ Pois

(
ρ(t) φ̃vk θ

(t)
k

)
. We then define the aggregation

y
(t)
·k ,

∑V
v=1 y

(t)
vk which has marginal distribution y

(t)
·k ∼ Pois(ρ(t) θ

(t)
k ) due to Pois-

son additivity and because
∑V

v=1 φ̃vk = 1. We start with the last state θ
(T )
k since no

future gamma random variables depend on it; marginalizing over θ
(T )
k yields:

y
(T )
·k ∼ NB

(
τ0

K∑

k2=1

πkk2 θ
(T−1)
k2

, g(ζ(T ))

)
(6.10)

ζ(T ) , ln

(
1 +

ρ(T )

τ0

)
. (6.11)

Next, we marginalize out θ
(T−1)
k . To do so, we first augment with an auxiliary variable:

l
(T )
k ∼ CRT

(
y

(T )
·k , τ0

K∑

k2=1

πkk2 θ
(T−1)
k2

)
. (6.12)

We can then re-express the (magic) bivariate distribution over y
(T )
·k and l

(T )
k as

y
(T )
·k ∼ SumLog

(
l
(T )
k , g(ζ(T )

)
(6.13)

l
(T )
k ∼ Pois

(
ζ(T ) τ0

K∑

k2=1

πkk2 θ
(T−1)
k2

)
. (6.14)

We are still unable to marginalize out θ
(T−1)
k because it is governed by the sum in the

Poisson rate of l
(T )
k . However, we can re-express l

(T )
k in terms of its latent sources,

l
(T )
k ≡ l

(T )
k· =

K∑

k2=1

l
(T )
kk2

(6.15)

l
(T )
kk2
∼ Pois

(
ζ(T ) τ0 πkk2 θ

(T−1)
k2

)
, (6.16)

and then define l
(T )
·k ,

∑K
k1=1 l

(T )
k1k

whose marginal distribution is l
(T )
·k ∼ Pois

(
ζ(T ) τ0 θ

(T−1)
k

)
.

Crucially, this Poisson doesn’t depend on transition weights because
∑K

k1=1 πk1k=1.
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The sources (l
(T )
1k , . . . , l

(T )
Kk) ∼ Mult

(
l
(T )
·k , (π1k, . . . , πkK)

)
are then conditionally multi-

nomial when l
(T )
·k is marginally Poisson. Next, we define m

(T−1)
k , y

(T−1)
·k + l

(T )
·k , which

summarizes all of the information about the data at time steps T −1 and T via y
(T−1)
·k

and l
(T )
·k , respectively. By Poisson additivity, m

(T−1)
k is then marginally Poisson:

m
(T−1)
k ∼ Pois

(
θ

(T−1)
k

(
ρ(T−1) + ζ(T ) τ0

))
. (6.17)

Combining this with the gamma prior in Eq. (6.2), marginalizing out θ
(T−1)
k yields

m
(T−1)
k ∼ NB

(
τ0

K∑

k2=1

πkk2 θ
(T−2)
k2

, g
(
ζ(T−1)

)
)

(6.18)

ζ(T−1) , ln

(
1 +

ρ(T−1)

τ0

+ ζ(T )

)
. (6.19)

We then augment with l
(T−1)
k ∼ CRT

(
m

(T−1)
k , τ0

∑K
k2=1 πkk2 θ

(T−2)
k2

)
and re-express the

(magic) bivarite distribution of l
(T−1)
k and m

(T−1)
k as a Poisson and sum–logarithmic,

similar to Eq. (6.13). This then allows us to marginalize over θ
(T−2)
k to obtain a nega-

tive binomial distribution. We can repeat the same process all the way back to t = 1,

where marginalizing over θ
(1)
k yields

m
(1)
k ∼ NB

(
τ0 νk, g(ζ(1))

)
. (6.20)

Note that just as m
(t)
k summarizes all the information about the data at time steps

t, . . . , T , ζ(t) =ln
(

1 + ρ(t)

τ0
+ ζ(t+1)

)
summarizes all the information about ρ(t), . . . , ρ(T ).

6.2.2 Steady state

Note that the expression ζ(t) = ln
(

1 + ρ(t)

τ0
+ ζ(t+1)

)
constitutes a backward pass,

that propagates information about ρ(t), . . . , ρ(T ) as we marginalize over Θ. In the case

of the stationary PGDS—i.e., ρ(t) = ρ—the backward pass has a fixed point.
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Proposition 6.1: Steady state fixed point

The backward pass has a fixed point equal to

ζ? = −W−1

(
−exp

(
−1− ρ

τ0

))
− 1− ρ

τ0

, (6.21)

whereW−1 is the lower real part of the Lambert W function [Corless et al., 1996].

Proof : If a fixed point exists, then it must satisfy the following equation:

ζ? = ln (1 + ρ
τ0

+ ζ?) (6.22)

exp (ζ?) = 1 + ρ
τ0

+ ζ? (6.23)

−1 = (−1− ρ
τ0
− ζ?) exp (−ζ?) (6.24)

− exp (−1− ρ
τ0

) = (−1− ρ
τ0
− ζ?) exp (−ζ?) exp (−1− ρ

τ0
) (6.25)

− exp (−1− ρ
τ0

) = (−1− ρ
τ0
− ζ?) exp (−1− ρ

τ0
− ζ?). (6.26)

By definition of the Lambert W function, y = x exp (x) entails that x = W(y):

(−1− ρ
τ0
− ζ?) = W(− exp (−1− ρ

τ0
)) (6.27)

ζ? = −W(− exp (−1− ρ
τ0

))− 1− ρ
τ0
. (6.28)

There are two branches of the Lambert W function. The lower branch decreases

from W−1 (− exp (−1)) = −1 to W−1 (0) = −∞, while the principal branch

increases from W0 (− exp (−1)) = −1 to W0 (0) = 0 and beyond. Because ζ?

must be positive, we therefore have ζ? = −W−1(− exp (−1− ρ
τ0

))− 1− ρ
τ0

. �

During inference, we perform the O(T ) backward pass repeatedly. The existence

of a fixed point means that we can assume the stationary PGDS is in its steady state

and replace the backward pass with an O(1) computation of the fixed point ζ∗. To

116



make this assumption, we must also assume that l
(T+1)
·k ∼ Pois(ζ? τ0 θ

(T )
k ) instead of

l
(T+1)
·k = 0. We note that an analogous steady-state approximation exists for the LDS

and is routinely exploited to reduce computation [Rugh, 1995].

6.2.3 Alternative model specification

As we mentioned previously, introducing auxiliary variables and marginalizing

over Θ enables us to define an alternative model specification that we can exploit

to obtain closed-form conditional posteriors for Π, ν, and ξ. We provide part of its

generative process here. Define m
(T )
k = y

(T )
·k + l

(T+1)
·k , where l

(T+1)
·k = 0, and ζ(T+1) = 0.

l
(1)
k· ∼ Pois(ζ(1) τ0 νk) (6.29)

(l
(t)
1k , . . . , l

(t)
Kk) ∼ Multinom

(
l
(t)
·k , (π1k, . . . , πKk)

)
for t > 1 (6.30)

l
(t)
k· =

K∑

k2=1

l
(t)
kk2

for t > 1 (6.31)

m
(t)
k ∼ SumLog

(
l
(t)
k· , g(ζ(t))

)
(6.32)

(y
(t)
·k , l

(t+1)
·k ) ∼ Binom

(
m

(t)
k , (

ρ(t)

ρ(t)+ζ(t+1)τ0
, ζ(t+1)τ0
ρ(t)+ζ(t+1)τ0

)
)

(6.33)

(y
(t)
1k , . . . , y

(t)
V k) ∼ Multinom

(
y

(t)
·k , (φ̃1k, . . . , φ̃V k)

)
. (6.34)

6.2.4 Gibbs sampler and backwards filtering forwards sampling

Given Y and the hyperparameters, Gibbs sampling involves resampling each aux-

iliary variable or model parameter from its conditional posterior. Our algorithm

involves a “backward filtering” pass and a “forward sampling” pass, which together

form a “backward filtering–forward sampling” algorithm. We use −\Θ(≥t) to denote

everything excluding θ(t), . . . ,θ(T ).

Sampling the auxiliary variables: This step is the “backward filtering” pass. For

the stationary PGDS in its steady state, we first compute ζ∗ and draw (l
(T+1)
·k | −) ∼
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Pois(ζ? τ0 θ
(T )
k ). For the other variants of the model, we set l

(T+1)
·k = ζ(T+1) = 0. Then,

working backward from t = T, . . . , 2, we draw

(l
(t)
k· | − \Θ(≥t)) ∼ CRT(y

(t)
·k + l

(t+1)
·k , τ0

K∑

k2=1

πkk2 θ
(t−1)
k2

) and (6.35)

(l
(t)
k1 , . . . , l

(t)
kK | − \Θ(≥t)) ∼ Multinom

(
l
(t)
k· , (

πk1 θ
(t−1)
1∑K

k2=1 πkk2
θ
(t−1)
k2

, . . . ,
πkK θ

(t−1)
K∑K

k2=1 πkk2
θ
(t−1)
k2

)

)
.

(6.36)

After using equations 6.35 and 6.36 for all k = 1, . . . , K, we then set l
(t)
·k =

∑K
k1=1 l

(t)
k1k

.

For the non-steady-state variants, we also set ζ(t) = ln (1 + ρ(t)

τ0
+ ζ(t+1)); for the

steady-state variant, we set ζ(t) = ζ∗.

Sampling Θ: We sample Θ from its conditional posterior by performing a “forward

sampling” pass, starting with θ(1). Conditioned on the values of l
(2)
·k , . . . , l

(T+1)
·k and

ζ(2), . . . , ζ(T+1) obtained via the “backward filtering” pass, we sample forward from

t = 1, . . . , T , using the following equations:

(θ
(1)
k | − \Θ) ∼ Γ(y

(1)
·k + l

(2)
·k + τ0 νk, τ0 + ρ(1) + ζ(2) τ0) and (6.37)

(θ
(t)
k | − \Θ(≥t)) ∼ Γ(y

(t)
·k + l

(t+1)
·k + τ0

K∑

k2=1

πkk2 θ
(t−1)
k2

, τ0 + ρ(t) + ζ(t+1) τ0). (6.38)

Sampling Π: The alternative model specification, with Θ marginalized out, as-

sumes that (l
(t)
1k , . . . , l

(t)
Kk) ∼ Multinom

(
l
(t)
·k , (π1k, . . . , πKk)

)
. Therefore, via Dirichlet–

multinomial conjugacy,

(πk | − \Θ) ∼ Dir(ν1νk +
T∑

t=1

l
(t)
1k , . . . , ξνk +

T∑

t=1

l
(t)
kk , . . . , νKνk +

T∑

t=1

l
(t)
Kk). (6.39)

Sampling Φ: By Dirichlet–multinomial conjugacy,

(φ̃k | −) ∼ Dir

(
η0 +

T∑

t=1

y
(t)
1k , . . . , η0 +

T∑

t=1

y
(t)
V k

)
. (6.40)
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Sampling ρ(1), . . . , ρ(T ) or ρ (stationary): By gamma–Poisson conjugacy,

(ρ(t) | −) ∼ Γ

(
ε0 +

V∑

v=1

y(t)
v , ε0 +

K∑

k=1

θ
(t)
k

)
(6.41)

(ρ | −) ∼ Γ

(
ε0 +

T∑

t=1

V∑

v=1

y(t)
v , ε0 +

T∑

t=1

K∑

k=1

θ
(t)
k

)
. (6.42)

Sampling β: Via gamma–gamma conjugacy,

(β | −) ∼ Γ

(
ε0 + γ0, ε0 +

K∑

k=1

νk

)
. (6.43)

Sampling ν and ξ: We use the alternative model specification to obtain closed-

form conditional posteriors for νk and ξ. First, we marginalize over πk to obtain a

Dirichlet–multinomial distribution. When augmented with a beta-distributed auxil-

iary variable, the Dirichlet–multinomial distribution is proportional to the negative

binomial distribution [Zhou et al., 2018]. We draw such an auxiliary variable, which

we use, along with negative binomial augmentation schemes, to derive closed-form

conditional posteriors for νk and ξ. The derivation begins with the following line:

(l
(·)
1k , . . . , l

(·)
kk , . . . , l

(·)
Kk) ∼ DirMult(l

(·)
·k , (ν1νk, . . . , ξνk, . . . , νKνk)), (6.44)

where l
(·)
k1k

=
∑T

t=1 l
(t)
k1k

and l
(·)
·k =

∑T
t=1

∑K
k1=1 l

(t)
k1k

. As noted previously by Zhou et al.

[2018], when augmented with a beta-distributed auxiliary variable, the Dirichlet–

multinomial distribution is proportional to the negative binomial distribution. We

therefore draw a beta-distributed auxiliary variable:

qk ∼ Beta

(
l
(·)
·k , νk

(
ξ +

∑

k1 6=k

νk1

))
. (6.45)

Conditioned on qk, we then have

l
(·)
kk ∼ NB(ξ νk, qk) and l

(·)
k1k
∼ NB(νk1νk, qk), (6.46)
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for k1 6= k. Next, we introduce the following auxiliary variables:

hkk ∼ CRT(l
(·)
kk , ξ νk) and hk1k ∼ CRT(l

(·)
k1k
, νk1νk), (6.47)

for k1 6= k. We can then re-express the joint distribution over the variables in equa-

tions 6.46 and 6.47 as

l
(·)
kk ∼ SumLog(hkk, qk) and l

(·)
k1k
∼ SumLog(hk1k, qk) (6.48)

hkk ∼ Pois
(
ξ νk ln

(
1

1−qk

))
and hk1k ∼ Pois

(
νk1νk ln

(
1

1−qk

))
. (6.49)

Then, via gamma–Poisson conjugacy,

(ξ | − \Θ,πk) ∼ Γ

(
γ0

K
+

K∑

k=1

hkk, β +
K∑

k=1

νk ln
(

1
1−qk

))
. (6.50)

Next, because l
(1)
k· ∼ Pois(ζ(1) τ0 νk) also depends on νk, we introduce

nk , hkk +
∑

k1 6=k

hk1k +
∑

k2 6=k

hkk2 + l
(1)
k· , (6.51)

whose marginal distribution is Poisson—i.e., nk ∼ Pois(νk ωk)—where ωk is defined:

ωk , ln
(

1
1−qk

) (
ξ +

∑

k1 6=k

νk1

)
+
∑

k2 6=k

ln
(

1
1−qk2

)
νk2 + ζ(1)τ0. (6.52)

Then, by gamma–Poisson conjugacy,

(νk | − \Θ,πk) ∼ Γ

(
γ0

β
+ nk, β + ωk

)
. (6.53)
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6.3 Predictive Analysis

In this section, we compare the out-of-sample predictive performance of the PGDS

to that of the LDS and that of gamma process dynamic Poisson factor analysis (GP-

DPFA) [Acharya et al., 2015]. GP-DPFA models a single count in Y as y
(t)
v ∼

Pois
(∑K

k=1 λk φ̃vk θ
(t)
k

)
, where each component’s time-step factors evolve as a sim-

ple gamma Markov chain, independently of those belonging to the other components:

θ
(t)
k ∼ Γ(θ

(t−1)
k , c(t)). We consider the stationary variants of all three models.1 We used

five data sets, and tested each model on two time-series prediction tasks: smooth-

ing—i.e., predicting y
(t)
v given y

(1)
v , . . . , y

(t−1)
v , y

(t+1)
v , . . . , y

(T )
v —and forecasting—i.e.,

predicting y
(T+s)
v given y

(1)
v , . . . , y

(T )
v for some s ∈ {1, 2, . . .} [Durbin and Koopman,

2012]. We provide brief descriptions of the data sets below before reporting results.

6.3.1 Data sets

Global Database of Events, Language, and Tone (GDELT): GDELT is

an international relations dyadic events data set extracted from news corpora. We

created five count matrices, one for each year from 2001 through 2005. We treated

directed pairs of countries i→j as features and counted the number of events for each

pair during each day. We discarded all pairs with fewer than twenty-five total events,

leaving T =365, around V ≈ 9, 000, and three to six million events for each matrix.

Integrated Crisis Early Warning System (ICEWS): ICEWS is another in-

ternational relations event data set extracted from news corpora. It is more highly

curated than GDELT and contains fewer events. We therefore treated undirected

pairs of countries i↔j as features. We created three count matrices, one for 2001–

2003, one for 2004–2006, and one for 2007–2009. We counted the number of events

for each pair during each three-day time step, and again discarded all pairs with fewer

1We used the pykalman Python library for the LDS and implemented GP-DPFA ourselves.
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than twenty-five total events, leaving T = 365, around V ≈ 3, 000, and 1.3 to 1.5

million events for each matrix.

State-of-the-Union transcripts (SOTU): The SOTU corpus contains the text

of the annual SOTU speech transcripts from 1790 through 2014. We created a single

count matrix with one column per year. After discarding stopwords, we were left

with T = 225, V = 7, 518, and 656,949 tokens.

DBLP conference abstracts (DBLP): DBLP is a database of computer sci-

ence research papers. We used the subset of this corpus that Acharya et al. used to

evaluate GP-DPFA [Acharya et al., 2015]. This subset corresponds to a count matrix

with T = 14 columns, V = 1, 771 unique word types, and 13,431 tokens.

NIPS corpus (NIPS): The NIPS corpus contains the text of every NIPS confer-

ence paper from 1987 to 2003. We created a single count matrix with one column per

year. We treated unique word types as features and discarded all stopwords, leaving

T = 17, V = 9, 836, and 3.1 million tokens.
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Figure 6.2: y
(t)
v over time for the top four features in the NIPS (left) and ICEWS

(right) data sets.

6.3.2 Experimental design

For each matrix, we created four masks indicating some randomly selected subset

of columns to treat as held-out data. For the event count matrices, we held out six

(non-contiguous) time steps between t=2 and t=T−3 to test the models’ smoothing

performance, as well as the last two time steps to test their forecasting performance.
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The other matrices have fewer time steps. For the SOTU matrix, we therefore held

out five time steps between t= 2 and t= T−2, as well as t= T . For the NIPS and

DBLP matrices, which contain substantially fewer time steps than the SOTU matrix,

we held out three time steps between t=2 and t=T−2, as well as t=T .

For each matrix, mask, and model combination, we ran inference four times.2 For

the PGDS and GP-DPFA, we performed 6,000 Gibbs sampling iterations, imputing

the missing counts from the “smoothing” columns at the same time as sampling the

model parameters. We then discarded the first 4,000 samples and retained every

hundredth sample thereafter. We used each of these samples to predict the missing

counts from the “forecasting” columns. We then averaged the predictions over the

samples. For the LDS, we ran EM to learn the model parameters. Then, given these

parameter values, we used the Kalman filter and smoother [Kalman, 1960] to predict

the held-out data. In practice, for all five data sets, V was too large for us to run

inference for the LDS, which is at least O(V ) [Ghahramani and Roweis, 1998], using

all V features. We therefore report results from two independent sets of experiments:

one comparing all three models using only the top V = 1, 000 features for each data

set, and one comparing the PGDS to just GP-DPFA using all the features. The first

set of experiments is generous to the LDS because the Poisson distribution is well

approximated by the Gaussian distribution when its mean is large.

6.3.3 Results

We used two error measures—mean relative error (MRE) and mean absolute error

(MAE)—to compute the models’ smoothing and forecasting scores for each matrix

and mask combination. We then averaged these scores over the masks. For the data

2For the PGDS and GP-DPFA we used K = 100. For the PGDS, we set τ0 = 1, γ0 = 50,
η0 = ε0 = 0.1. We set the hyperparameters of GP-DPFA to the values used by Acharya et al.
[2015]. For the LDS, we used the default hyperparameters for pykalman, and report results for the
best-performing value of K ∈ {5, 10, 25, 50}.
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Table 6.1: Results for the smoothing (“S”) and forecasting (“F”) tasks. For both
error measures, lower values are better. We also report the number of time steps T
and the burstiness B̂ of each data set.

Mean Relative Error (MRE) Mean Absolute Error (MAE)

T B̂ Task PGDS GP-DPFA LDS PGDS GP-DPFA LDS

GDELT 365 1.27 S 2.335 ±0.19 2.951 ±0.32 3.493 ±0.53 9.366 ±2.19 9.278 ±2.01 10.098 ±2.39

F 2.173 ±0.41 2.207 ±0.42 2.397 ±0.29 7.002 ±1.43 7.095 ±1.67 7.047 ±1.25

ICEWS 365 1.10 S 0.808 ±0.11 0.877 ±0.12 1.023 ±0.15 2.867 ±0.56 2.872 ±0.56 3.104 ±0.60

F 0.743 ±0.17 0.792 ±0.17 0.937 ±0.31 1.788 ±0.47 1.894 ±0.50 1.973 ±0.62

SOTU 225 1.45 S 0.233 ±0.01 0.238 ±0.01 0.260 ±0.01 0.408 ±0.01 0.414 ±0.01 0.448 ±0.00

F 0.171 ±0.00 0.173 ±0.00 0.225 ±0.01 0.323 ±0.00 0.314 ±0.00 0.370 ±0.00

DBLP 14 1.64 S 0.417 ±0.03 0.422 ±0.05 0.405 ±0.05 0.771 ±0.03 0.782 ±0.06 0.831 ±0.01

F 0.322 ±0.00 0.323 ±0.00 0.369 ±0.06 0.747 ±0.01 0.715 ±0.00 0.943 ±0.07

NIPS 17 0.33 S 0.415 ±0.07 0.392 ±0.07 1.609 ±0.43 29.940 ±2.95 28.138 ±3.08 108.378 ±15.44

F 0.343 ±0.01 0.312 ±0.00 0.642 ±0.14 62.839 ±0.37 52.963 ±0.52 95.495 ±10.52

sets with multiple matrices, we also averaged the scores over the matrices. The two

error measures differ as follows: MRE accommodates the scale of the data, while

MAE does not. This is because relative error—which we define as |y
(t)
v −ŷ

(t)
v |

1+y
(t)
v

, where

y
(t)
v is the true count and ŷ

(t)
v is the prediction—divides the absolute error by the

true count and thus penalizes overpredictions more harshly than underpredictions.

MRE is therefore an especially natural choice for data sets that are bursty—i.e., data

sets that exhibit short periods of activity that far exceed their mean. Models that

are robust to these kinds of overdispersed temporal patterns are less likely to make

overpredictions following a burst, and are therefore rewarded accordingly by MRE.

In Table 6.1, we report the MRE and MAE scores for the experiments using the

top V = 1, 000 features. We also report the average burstiness of each data set. We

define the burstiness of feature v in matrix Y to be B̂v = 1
T−1

∑T−1
t=1

|y(t+1)
v −y(t)

v |
µ̂v

, where

µ̂v = 1
T

∑T
t=1 y

(t)
v . For each data set, we calculated the burstiness of each feature in

each matrix, and then averaged these values to obtain an average burstiness score

B̂. The PGDS outperformed the LDS and GP-DPFA on seven of the ten prediction
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Table 6.2: Results for the smoothing (“S”) and forecasting (“F”) tasks using all the
features. Lower values are better. We also report the number of time steps T and
the burstiness B̂ of each data set.

Mean Relative Error Mean Absolute Error

T B̂ Task PGDS GP-DPFA PGDS GP-DPFA

GDELT 365 1.71 S 0.428 ±0.06 0.617 ±0.06 1.491 ±0.22 1.599 ±0.21

F 0.432 ±0.09 0.494 ±0.08 1.224 ±0.19 1.263 ±0.21

ICEWS 365 1.26 S 0.334 ±0.02 0.372 ±0.01 1.003 ±0.13 1.021 ±0.14

F 0.299 ±0.05 0.313 ±0.05 0.646 ±0.13 0.673 ±0.14

SOTU 225 1.49 S 0.216 ±0.00 0.226 ±0.00 0.365 ±0.00 0.374 ±0.00

F 0.172 ±0.00 0.169 ±0.00 0.295 ±0.00 0.289 ±0.00

DBLP 14 1.73 S 0.370 ±0.00 0.356 ±0.00 0.604 ±0.00 0.591 ±0.00

F 0.370 ±0.00 0.408 ±0.00 0.778 ±0.00 0.790 ±0.00

NIPS 17 0.89 S 2.133 ±0.00 1.199 ±0.00 9.375 ±0.00 7.893 ±0.00

F 1.173 ±0.00 0.949 ±0.00 15.065 ±0.00 12.445 ±0.00

tasks when we used MRE to measure the models’ performance; when we used MAE,

the PGDS outperformed the other models on five of the tasks.

In Table 6.2, we also report the results for the experiments comparing the PGDS

to GP-DPFA using all the features. The superiority of the PGDS over GP-DPFA is

even more pronounced in these results. We hypothesize that the difference between

these models is related to the burstiness of the data. For both error measures, the

only data set for which GP-DPFA outperformed the PGDS on both tasks was the

NIPS data set. This data set has a substantially lower average burstiness score than

the other data sets. We provide visual evidence in Fig. 6.2, where we display y
(t)
v over

time for the top four features in the NIPS and ICEWS data sets. For the former, the

features evolve smoothly; for the latter, they exhibit bursts of activity.

6.3.4 Exploratory Analysis

We also explored the latent structure inferred by the PGDS. Because its parame-

ters are positive, they are easy to interpret. In Fig. 6.1, we depict three components

inferred from the NIPS data set. By examining the time-step factors and feature fac-
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tors for these components, we see that they capture the decline of research on neural

networks between 1987 and 2003, as well as the rise of Bayesian methods in machine

learning. These patterns match our prior knowledge.

In Fig. 6.4, we depict the three components with the largest component weights

inferred by the PGDS from a matrix of 2003 GDELT data. The top component is

in blue, the second is in green, and the third is in red. For each component, we also

list the sixteen features (directed pairs of countries) with the largest feature factors.

The top component (blue) is most active in March and April, 2003. Its features

involve USA, Iraq (IRQ), Great Britain (GBR), Turkey (TUR), and Iran (IRN),

among others. This component corresponds to the 2003 invasion of Iraq. The second

component (green) exhibits a noticeable increase in activity immediately after April,

2003. Its top features involve Israel (ISR), Palestine (PSE), USA, and Afghanistan

(AFG). The third component exhibits a large burst of activity in August, 2003, but is

otherwise inactive. Its top features involve North Korea (PRK), South Korea (KOR),

Japan (JPN), China (CHN), Russia (RUS), and USA. This component corresponds

to the six-party talks—a series of negotiations between these six countries for the

purpose of dismantling North Korea’s nuclear program. The first round of talks

occurred during August 27–29, 2003.

In Fig. 6.3, we also show the component weights for the top ten components, along

with the corresponding subset of the transition matrix Π. There are two components

with weights greater than one: the components that are depicted in blue and green

in Fig. 6.4. The transition weights in the corresponding rows of Π are also large,

meaning that other components are likely to transition to them. As we mentioned

previously, the GDELT data set was extracted from news corpora. Therefore, pat-

terns in the data primarily reflect patterns in media coverage of international affairs.

We therefore interpret the latent structure inferred by the PGDS in the following way:

in 2003, the media briefly covered various major events, including the six-party talks,
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Figure 6.3: Transition structure inferred by the PGDS from the 2003 GDELT matrix.
Top: The component weights for the top ten components; only two of the weights
are greater than one. Bottom: Transition weights in the corresponding part of the
transition matrix. All components are likely to transition to the top two components.

before quickly returning to a backdrop of the ongoing Iraq war and Israeli–Palestinian

relations. By inferring the kind of transition structure depicted in Fig. 6.3, the PGDS

is able to model persistent, long-term temporal patterns while accommodating the

burstiness often inherent to real-world count data. This ability is what enables the

PGDS to achieve superior predictive performance over the LDS and GP-DPFA.
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Figure 6.4: The time-step factors for the top three components inferred by the PGDS from the 2003 GDELT matrix. The top
component is in blue, the second is in green, and the third is in red. For each component, we also list the features (directed
pairs of countries) with the largest feature factors.
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CHAPTER 7

POISSON-RANDOMIZED GAMMA DYNAMICAL
SYSTEMS

This chapter presents the Poisson-randomized gamma dynamical system (PRGDS),

a model for sequentially-observed counts. It is similar in structure to the Poisson–

gamma dynamical system (PGDS) of Chapter 6—i.e., it is another APF analogue

to linear dynamical systems. For ease of exposition and to facilitate comparison to

the PGDS, I will first define the PRGDS for the special case of sequentially-observed

count vectors y(t) ∈ NV
0 . Later, I will generalize both PRGDS and PGDS to model

sequentially-observed count tensors Y (t) ∈ NV×V×A
0 of dyadic event data and report

a suite of experiments on such tensors where a variant of PRGDS either outperforms

or equals PGDS’s performance on smoothing or forecasting heldout time slices.

The PRGDS is a fundamentally more flexible model family than the PGDS. In

Section 7.2.1.1, I detail some of the PGDS’s limitations that motivate development of

the PRGDS. In particular, the PRGDS is compatible with both gamma and Dirichlet

priors over any subset of parameters while the PGDS is not. I compare multiple

variants of the PRGDS, including ones using either gamma or Dirichlet priors, to

the PGDS in out-of-sample predictive experiments on tensors of dyadic event data

(Section 7.4); some variant of the PRGDS either equals or exceeds the smoothing

and forecasting performance of the PGDS. Section 7.5 further provides a qualitative

comparison of the latent structure inferred by different PRGDS variants and the

PGDS. The PRGDS is defined in Section 7.2 and MCMC inference for it is given in

Section 7.3. Unlike the PGDS, tractable posterior inference is available without any

augmentation of the model.
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The PRGDS is based on a novel modeling motif—i.e., the gamma–Poisson–gamma

chain. Before defining the PRGDS, I provide a simple version of such a chain and

describe the two marginal representations it yields. I then show how to perform

tractable posterior inference in a gamma–Poisson–gamma chain by appealing to the

lesser known Bessel distribution [Yuan and Kalbfleisch, 2000] and introducing a novel

univariate discrete probability distribution—i.e., the size-biased confluent hypergeo-

metric (SCH) distribution.

7.1 The gamma–Poisson–gamma chain

The PRGDS is based on a novel motif in probabilistic modeling—i.e., the gamma–

Poisson–gamma chain—that is well-suited to constructing hierarchical priors in APF

models. Consider the tth step of simple gamma–Poisson–gamma chain:

θ(t−1) ∼ Γ
(
ε0+h(t−1), β0

)
, (7.1)

h(t) ∼ Pois
(
θ(t−1)

)
, (7.2)

θ(t) ∼ Γ
(
ε0+h(t), β0

)
. (7.3)

Such a chain alternates between continuous (gamma) and discrete (Poisson) states

and features both a conjugate dependency—i.e., of h(t) on θ(t−1)—and a non-conjugate

dependency—i.e., of θ(t) on h(t). Due to the conjugate dependency, the complete

conditional of θ(t−1) is readily available as

(
θ(t−1) | −

)
∼ Γ

(
ε0+h(t−1)+h(t), β0+1

)
. (7.4)

Related to that fact is the fact that all of the continuous states can be marginalized

out jointly, yielding the following entirely discrete process:

h(t) ∼ NB
(
ε0 + h(t−1), 1

1+β0

)
. (7.5)
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Despite their non-conjugate dependency, the discrete states can also be marginalized

out jointly—when ε0 > 0, doing so yields the following entirely continuous process:

θ(t) ∼ RG1
(
θ(t−1), ε0, β0

)
. (7.6)

Definition 7.1: Randomized gamma distribution of the first type

A randomized gamma random variable of the first type θ ∼ RG1 (λ, α, β)

[Makarov and Glew, 2010] takes values in the positive reals θ > 0. Its distri-

bution is defined by shape α > 0, hypershape λ > 0, rate β > 0, and PDF:

RG1(θ;λ, α, β) = β

(√
β θ

λ

)α−1

e−λ−β θ Iα−1

(
2
√
λβ θ

)
, (7.7)

where Iv(a) is the modified Bessel function. As λ→0 the RG1 distribution be-

comes a gamma distribution with shape α and rate β. The Poisson-randomized

gamma distribution of Zhou et al. [2016] is the limiting case when α→0. The

RG1 distribution is the marginal distribution of θ∼Γ(α+y, β) when y∼Pois(λ):

RG1(θ;λ, α, β) =
∞∑

y=0

Γ(θ; α+y, β) Pois (y;λ) . (7.8)
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Figure 7.1: PDF of the first-type randomized gamma distribution for β=1 and
combinations of values for α and λ. As for the gamma distribution, the rate β
simply rescales the axes. When α<1 (left), the distribution may be bimodal.
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A consequence of the marginal distribution P (θ(t) | θ(t−1), ε0, β0) being available in

closed form is that the complete conditional for h(t) is also available in closed form:

(
h(t) | −

)
∼ Bes

(
ε0−1, 2

√
θ(t) β0 θ(t−1)

)
(7.9)

Definition 7.2: Bessel distribution

A Bessel random variable y∼Bes (ν, a) [Yuan and Kalbfleisch, 2000] is a count

y ∈ N0. Its distribution is defined by order ν, coordinate a, and PMF:

Bes (y; ν, a) =

(
a
2

)2y+ν

y! Γ(ν+y+1) Iν(a)
, (7.10)

where Iν(a) is the modified Bessel function of the first kind. The expected value

and variance are defined in terms of the Bessel ratio—i.e., R(ν, a) , Iν+1(a)
Iν(a)

:

E [y | ν, a] = µν,a = 1
2
aR(ν, a), (7.11)

V [y | ν, a] = µν,a + µ2
ν,a

(
R(ν+1, a)−R(ν, a).

)
(7.12)

The Bessel distribution is underdispersed—i.e., VMR is always less than one.
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Figure 7.2: PMF of the Bessel distribution.
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Definition 7.3: The Bessel as an inverse distribution

Consider a gamma random variable θ ∼ Γ(α+y, β) whose shape parameter is

the sum of fixed α ≥ 0 and a Poisson random variable y ∼ Pois (λ). Then the

inverse distribution of y is the Bessel distribution [Yuan and Kalbfleisch, 2000]:

P (y | θ, λ, α, β) = Bes
(
y;α−1, 2

√
θ β λ

)
. (7.13)

In the case where a subset of the discrete or continuous states are observed, sam-

pling the unobserved states from Eqs. (7.4) and (7.9) constitutes a Gibbs sampler that

is asymptotically guaranteed to generate samples of them from their exact posterior.

We may also treat the entire chain as latent and link it to an observation model. Since

the gamma distribution is conjugate to many distributions—e.g., Gaussian, gamma,

and Poisson—it is natural to consider a hidden Markov model wherein observations

are conditionally independent given the gamma latent states. The following observa-

tion model is relevant to this chapter:

y(t) ∼ Pois
(
θ(t)
)
. (7.14)

If we further assume this observation model, the complete conditional for the discrete

states is the same as in Eq. (7.9) and the one for the continuous states becomes:

(
θ(t−1) | −

)
∼ Γ

(
ε0+h(t−1)+h(t)+y(t), β0+2

)
. (7.15)

7.1.1 ε0 = 0

When the parameter ε0 is non-zero, it guarantees the shape parameter of θ(t) will

be non-zero (i.e., when h(t) =0). If we adopt the convention that the gamma distribu-

tion is a Dirac delta spike at zero when its shape parameter is zero, then setting ε=0
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allows for sparsity (i.e., exact zeros) among the continuous states. In the simple chain

above, once a continuous state is set to zero, the chain enters an absorbing condition

and dies—i.e., all discrete and continuous states thereafter will be zero, almost surely.

However, in the more complex multivariate chains (e.g., those that the PRGDS is built

on), the setting of ε=0 allows for sparsity in intermediate states without necessarily

killing the chain. This property may be desirable for interpretability and may fur-

thermore be useful for expressing burstiness. However, the absorbing condition means

that the Gibbs sampler given above may be non-ergodic when ε0 = 0—i.e., h(t) = 0

almost surely if θ(t) = 0 and vice versa; thus a Markov chain based on re-sampling

each variable conditioned on the other would never leave this configuration.

We can construct an ergodic Markov by instead block-sampling the discrete and

continuous states at each step t jointly—i.e.,

(
θ(t), h(t) |−

)
∼ P (θ(t), h(t) | θ(t−1), h(t+1), ε0, β0), (7.16)

which can be factorized as:

(
h(t) | − \θ(t)

)
∼ P (h(t) | θ(t−1), h(t+1), ε0, β0), (7.17)

(
θ(t) | −

)
∼ P (θ(t) |h(t), h(t+1), ε0, β0), (7.18)

where the −\x notation means “everything but x”. In this factorization, the second

line is identical to the complete conditional for θ(t) given previously; the only unknown

is the incomplete conditional P (h(t) | θ(t−1), h(t+1), ε0, β0). This unknown distribution is

the inverse distribution of h(t) in the marginal model where ε0 =0—i.e.:

h(t) ∼ Pois
(
θ(t−1)

)
, (7.19)

h(t+1) ∼ NB
(
h(t), p0

)
, (7.20)
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where I’ve defined p0 , 1
1+β0

and note that h(t+1) = 0, almost surely, if h(t) = 0.

When the negative binomial has a count-valued first parameter, it is referred to as

the Pascal distribution and can be represented as the sum of i.i.d. geometric random

variables [Johnson et al., 2005, Chapter 5]. The construction above thus defines a

compound Poisson distribution [Adelson, 1966]. This construction has been studied

previously—the distribution of h(t+1) with h(t) marginalized out is the Polya–Aeppli

distribution [Johnson et al., 2005, Chapter 9.7], a special case of the Poisson–Pascal

distribution [Katti and Gurland, 1961]:

P
(
h(t+1) | θ(t−1), p0

)
= Polya–Aeppli

(
h(t+1); θ(t−1), p0

)
. (7.21)

Definition 7.4: Polya–Aeppli distribution

Consider a negative binomial random variable m∼NB(h, p) with fixed prob-

ability parameter p ∈ (0, 1) and shape parameter that is Poisson-distributed

h ∼ Pois (θ). Then the marginal distribution of m is Polya–Aeppli:

P (m | θ, p) = Polya–Aeppli (m; θ, p) (7.22)

=





e−pθ if m=0

e−θ pm (1−p) θ1F1 (m+1; 2; (1−p) θ) otherwise

(7.23)

where 1F1 (a; b; z) is Kummer’s confluent hypergeometric function.

This marginal is the normalizing constant for the desired incomplete conditional:

P (h(t) |h(t+1), θ(t−1), ε0, p0) =
P (h(t+1), h(t) | θ(t−1), ε0, p0)

P (h(t+1) | θ(t−1), ε0, p0)
(7.24)

=
NB

(
h(t+1); h(t), p0

)
Pois

(
h(t); θ(t−1)

)

Polya–Aeppli (h(t+1); θ(t−1), p0)
. (7.25)

135



Plugging in terms, we first note that if h(t+1) =0, then:

P (h(t) |h(t+1) =0, θ(t−1), ε0, p0) =
(1−p0)h

(t) (θ(t−1))h
(t)

h(t)!
e− θ

(t−1)

e− p0 θ(t−1)
(7.26)

=

[
(1−p0) θ(t−1)

]h(t)

h(t)!
e− (1−p0)θ(t−1)

(7.27)

= Pois
(
h(t); (1−p0) θ(t−1)

)
. (7.28)

In words, the incomplete conditional of h(t) is a Poisson when the subsequent discrete

state in the chain is zero h(t+1) =0. When h(t+1) > 0, we first note that h(t) > 0, almost

surely. Its distribution may be obtained by plugging in to Eq. (7.25). In this case,

the resultant distribution is a two parameter discrete distribution that I define as the

size-biased confluent hypergeometric (SCH) distribution in Definition 7.5:

P (h(t) |h(t+1) > 0, θ(t−1), ε0, p0) = SCH
(
h(t); h(t+1), (1− p0) θ(t−1)

)
(7.29)

The SCH distribution’s PGF (given in Eq. (7.31)) nearly matches that of the

confluent hypergeometric distribution [Johnson et al., 2005, Chapter 4.12.4]—i.e.,

G(s) = 1F1(a;b;sz)

1F1(a;b;z)
. The s in front of the SCH’s PGF is the only difference. The

class of weighted distributions [Johnson et al., 2005, Chapter 2.4.1] are those de-

rived from re-weighting a probability mass function. Denote the PMF of a discrete

variable H to be P (H = h) and the distribution of the recorded variable H∗ to be

P (H∗ = h) = w(h)P (H=h)∑∞
h′=−∞w(h′)P (H=h′)

where w(h) ≥ 0 is the weight for value h. In the

special case where the weights are the identity function w(h)=h the recorded variable

is said to be size-biased. The PGF of a re-weighted confluent hypergeometric distri-

bution, when the weights are w(h) =h, is equal to G(s) = s 1F1(a;b;sz)

1F1(a;b;z)
which matches

the PGF of the SCH distribution for a=m+1, b= 2, and z= ζ. Thus, the name of

the SCH distribution is properly descriptive.
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Definition 7.5: Size-biased confluent hypergeometric distribution

A size-biased confluent hypergeometric random variable h ∼ SCH (m, ζ) is a

non-zero count h ∈ N. Its distribution is defined by a non-zero count-valued

population parameter m ∈ N, a positive rate parameter ζ > 0, and PMF:

SCH (h; m, ζ) =
(m+h+1)!

m!h! (h+1)!

ζh−1

1F1 (m+1; 2; ζ)
, (7.30)

where 1F1 (a; b; z) is Kummer’s confluent hypergeometric function. The distri-

bution may be equivalently defined by its probability generating function:

G(s) = E
[
sh |m, ζ

]
= s

1F1 (m+1; 2; sζ)

1F1 (m+1; 2; ζ)
. (7.31)

The expected value is obtained by evaluating the partial derivative of the

PGF—i.e., G′(s) ≡ ∂
∂s
G(s)—at one:

E [h |m, ζ] = G′(1) = 1 +
ζ(m+1)

2
1F1 (m+2; 3; ζ)

1F1 (m+1; 2; ζ)
(7.32)
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Figure 7.3: PMF of the size-biased confluent hypergeometric distribution.
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7.2 Model: Poisson-randomized gamma dynamical systems

PRGDS makes the following generative assumption about that an element y
(t)
v of

a sequentially-observed count vector y(t) ∈ NK
0 :

y(t)
v ∼ Pois

(
ρ(t)

K∑

k=1

λk φkv θ
(t)
k

)
. (7.33)

This diverges from PGDS only in the inclusion of the per-component weight λk. What

characterizes PRGDS is its assumption about how the latent states θ(t) evolve:

θ
(t)
k ∼ Γ

(
ε0 + h

(t)
k· , τ β

(θ)
)
, (7.34)

h
(t)
k· ∼ Pois

(
τ

K∑

k2=1

πkk2θ
(t−1)
k2

)
. (7.35)

PRGDS posits an intermediate layer of count-valued discrete latent states h(t) ∈ NK
0

that sit between θ(t−1) and θ(t). While θ
(t)
k only depends on h

(t)
k· , the Poisson rate of

h
(t)
k is a linear combination of all K components of the continuous latent state at the

previous time step. Note that Eq. (7.35) conforms to the canonical form of APF;

thus, h
(t)
k· has a latent source representation:

h
(t)
k· ,

K∑

k2=1

h
(t)
kk2
, (7.36)

h
(t)
kk2
∼ Pois

(
τ πkk2 θ

(t−1)
k2

)
. (7.37)

At the first time step t=1, h
(1)
k· is drawn differently:

h
(1)
k· ∼ Pois (τ λk) , (7.38)

where λk is the same as the one in Eq. (7.33).
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7.2.1 Priors over Poisson rate parameters ρ(t), φkv, and λk

As with the PGDS, we refer to the the model as stationary if ρ(t) =ρ and assume

the following gamma prior for ρ(t) (or ρ):

ρ(t) ∼ Γ(α0, α0). (7.39)

The PRGDS is compatible with the full range of priors over φkv. In this chapter,

I consider both independent gamma priors,

φkv ∼ Γ
(
α0, α0 β

(φ)
)
, (7.40)

and Dirichlet priors,

φ̃k ∼ Dir (α01V ) , (7.41)

where α01V denotes the V -length vector (α0, . . . , α0) and the tilde notation empha-

sizes that the vector is normalized—i.e.,
∑V

v=1 φ̃kv=1.

The per-component weights λk are drawn from the following prior,

λk ∼ Γ
(γ0

K
, β(λ)

)
, (7.42)

which promotes shrinkage, particularly when K is set to a large value. This shrink-

age prior is common—e.g., see the model of [Acharya et al., 2015]—and admits an

interpretation as a truncated Bayesian non-parametric prior. Note that if λk is small,

it shrinks the contribution of the kth component to the Poisson rate of the data y
(t)
v

as well as to the latent discrete state at the first time step h
(1)
k .

The rate parameters are drawn from a non-informative gamma prior:

β(φ), β(λ) ∼ Γ(α0, α0). (7.43)
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7.2.1.1 Limitations of PGDS that motivate PRGDS

The tractable posterior inference algorithm presented for PGDS, presented in the

last chapter, is only available1 when θ
(t)
k is the only component-specific variable—i.e.,

the only variable subscripted by k—in the Poisson rate of the latent source aggregation

y
(t)
k ∼ Pois

(
θ

(t)
k · · ·

)
. This implies two constraints on PGDS:

1. PGDS cannot introduce per-components weights λk into the Poisson rate of y
(t)
v ,

unlike here in Eq. (7.33).

2. PGDS can only support priors over φkv that satisfy
∑V

v=1 φkv=1 (so that they

sum out of the rate of the latent source aggregation y
(t)
k ).

These are both non-trivial constraints. Per-component weights in the Poisson rate

are frequently imposed—e.g., by Acharya et al. [2015]—to promote shrinkage among

the components. This frequently obviates the need for cross-validation to select K

and prevents overfitting when K is set to a large value. To promote shrinkage, PGDS

instead relies on a hierarchical prior over the transition matrix that necessitates a

complicated augmentation scheme for tractable inference.

Independent gamma priors over all parameter matrices allow APF models to ex-

press complex patterns of overdispersion, particularly in the tensor setting. Moreover,

as discussed in Section 3.4, it is only with independent gamma priors that conjugacy

can still be exploited when missing data is marginalized out instead of imputed.

Finally, the inference algorithm presented for the PGDS is also only compatible

with Dirichlet priors over the columns of the transitions matrix Π. It is necessary

that
∑K

k1=1 πk1k=1 in Eq. (6.16) to recurse with the marginalization of the preceding

latent state. The PRGDS, on the other hand, naturally yields posterior inference

that is compatible with any non-negative matrix for Π.

1Specifically, if Eq. (6.11) is not the same for all components k, the alternative model specification
in Section 6.2.3 no longer yields the multinomial step in Eq. (6.30) that is conjugate to the Dirichlet
priors over the columns of the transition matrix πk.
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7.2.2 Concentration parameter τ

The positive concentration parameter τ > 0 serves a similar function in PRGDS

as in PGDS—it controls the variance of the latent dynamics while only contributing

weakly to its expected value by a factor of ε0
β(θ) :

E

[
θ(t) |θ(t−1),Π, τ, β(θ), ε0

]
= E

[
E
[
θ(t) |h(t), τ, β(θ), ε0

]
|θ(t−1),Π, τ, β(θ), ε0

]
(7.44)

=
ε0 +E

[
h(t) |θ(t−1),Π, τ

]

τ β(θ)
(7.45)

=
ε0
β(θ)

τ +
Πθ(t−1)

β(θ)
. (7.46)

When ε0 =0 and β(θ) =1, this matches the canonical form of linear dynamical systems:

E

[
θ(t) |θ(t−1),Π, τ, β(θ) =1, ε0 =0

]
= Πθ(t−1). (7.47)

Unlike in PGDS, a gamma prior over τ is conjugate to the distributions it appears

in—i.e., to the gamma in Eq. (7.34) and the Poisson in Eq. (7.35). It is thus natural in

PRGDS to infer τ as a latent variable, assuming the following non-informative prior:

τ ∼ Γ(α0, α0) (7.48)

While the long-term expectation of the system—i.e., E
[
θ(∞) |θ(t),−

]
—may diverge

in the case of ε0 > 0, the parameter β(θ) can temper the additive effect of ε0 in the

short term; it is thus useful to infer jointly alongside τ :

β(θ) ∼ Γ(c0, c0). (7.49)

We may set c0 to a large value (e.g., c0 =10) to encode the prior belief that β(θ) ≈ 1.
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7.2.3 Marginalizing out h
(t)
k·

Although θ
(t)
k has a non-conjugate dependence on h

(t)
k· , we may still marginalize

out h
(t)
k· in closed form; doing so yields the following entirely continuous process:

θ
(t)
k ∼ RG1

(
τ

K∑

k2=1

πkk2θ
(t−1)
k2

, ε0, τ β
(θ)

)
. (7.50)

7.2.4 Marginalizing out θ
(t)
k

Unlike the PGDS, this model does not assume any non-conjugate dependencies

on the continuous latent states θ
(t)
k . As a result, by appealing to the gamma–Poisson

construction of the negative binomial (Definition 3.16) and Poisson–multinomial thin-

ning (Definition 3.4) we can construct a representation of the model wherein all θ
(t)
k

variables are marginalized out. Consider the latent source aggregation y
(t)
k :

y
(t)
k ∼ Pois

(
θ

(t)
k ω

(t)
k

)
, (7.51)

ω
(t)
k , ρ(t) λk

V∑

v=1

φkv. (7.52)

Consider also the latent source aggregation h
(t+1)
·k ,

∑K
k1=1 h

(t)
kk2

:

h
(t+1)
·k ∼ Pois

(
θ

(t)
k ζ

(t)
k

)
, (7.53)

ζ
(t+1)
k , τ

K∑

k1=1

πk1k. (7.54)

Defining the sum of those two aggregations m
(t)
k , y

(t)
k +h

(t+1)
·k yields a Poisson random

variable—i.e., m
(t)
k ∼ Pois

(
θ

(t)
k (ω

(t)
k +ζ

(t+1)
k )

)
—that depends exclusively on θ

(t)
k ; we

may thus marginalize out θ
(t)
k to obtain the following generative process:
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m
(t)
k ∼ NB

(
ε0 + h

(t)
k· ,

ω
(t)
k +ζ

(t)
k

ω
(t)
k +ζ

(t+1)
k + τ

)
, (7.55)

(
y

(t)
k , h

(t+1)
·k

)
∼ Multinom

(
m

(t)
k ,
(
ω

(t)
k , ζ

(t+1)
k

))
, (7.56)

(
h

(t+1)
k1k

)K
k1=1
∼ Multinom

(
h

(t+1)
·k , (πk1k)

K
k1=1

)
. (7.57)

Note that I am using the parameterization of the multinomial with unnormalized

rates (Definition 3.3) and that the first can be equivalently represented as a binomial.

7.2.5 Priors over transition matrix Π

Marginalizing out θ
(t)
k yields the multinomial draw in Eq. (7.57) which would be

conjugate to a Dirichlet prior over the kth column of the transition matrix:

πk ∼ Dir(ρ0). (7.58)

In the last chapter, the marginal representation of PGDS (Section 6.2.3) also yielded

an analogous multinomial draw; Dirichlet priors over the columns of Π were thus nat-

ural. As mentioned above, the PRGDS is compatible with a broader class of priors

over Π, including independent gamma priors—e.g.,

πk1k2 ∼ Γ(α0, α0 β
(π)), (7.59)

which would be conjugate to the Poisson distribution of h
(t)
kk2

(under the original rep-

resentation of the model) and do not constrain the sum of either the rows or columns

of the transition matrix; they are thus are capable of expressing a broader range of

dynamics. In all the experiments reported in this chapter, I impose Dirichlet priors so

as to limit the differences between PGDS and PRGDS; future investigation of PRGDS

with gamma-distributed transition elements is motivated. I note however that the

Dirichlet priors defined in PGDS involve a hierarchy intended to impose shrinkage.
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Inference in this construction requires complicated augment-and-conquer techniques.

PRGDS, on the other hand, can impose shrinkage over components more directly than

PGDS via the λk weights. Thus, the simple Dirichlet prior given above, which directly

yields a closed-form complete conditional without further augmentation, may suffice.

7.2.6 Tensor generalization

The PRGDS has thus far been described for sequentially-observed count vectors.

However, consider a sequentially-observed M -mode count tensor Y (t) ∈ ND1×···×DM
0 .

The PRGDS can be generalized to model this data via the CP decomposition by

assuming that a single entry y
(t)
δ of type δ ≡ (δ1, . . . δM) at time t is drawn:

y
(t)
δ ∼ Pois

(
ρ(t)

K∑

k=1

λk θ
(t)
k

M∏

m=1

φ
(m)
k δm

)
, (7.60)

where there are now M parameter matrices, each Φ(m) of size K × Dm. For the

PRGDS, we may consider both conjugate priors, either independent gamma priors,

φ
(m)
k dm
∼ Γ(α0, α0 β

(m)) for dm ∈ [Dm], (7.61)

or Dirichlet priors,

φ̃
(m)

k ∼ Dir (α01Dm) . (7.62)

The PGDS is more restricted in that it is incompatible with the per-component

weights λk and is restricted to Dirichlet priors that guarantee
∑Dm

dm=1 φ̃
(m)
kdm

= 1.
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Dyadic event data can be represented as a sequentially-observed 3-mode tensor

Y (t) ∈ NV×V×A
0 where V is the number of countries and A is the number of action-

types. PRGDS assumes the count y
(t)

i
a−→j

of type i
a−→j at time t is drawn:

y
(t)

i
a−→j
∼ Pois

(
ρ(t)

K∑

k=1

λk θ
(t)
k φ

(1)
ki φ

(2)
kj φ

(3)
ka

)
. (7.63)

Finally, I note that generalizing both models to the Tucker decomposition is also

possible; however, I only consider the CP version of both models in this chapter.

7.3 MCMC inference

In this section I rely on the identities presented in Section 7.1 to provide the

complete conditionals for the variables with a non-standard relationship to others.

7.3.1 Sampling the discrete states when ε0 > 0

The complete conditional for the first discrete state is:

(
h

(1)
k· | −

)
∼ Bessel

(
ε0−1, 2τ

√
β(θ) θ

(1)
k λk

)
. (7.64)

And for those thereafter is t = 2, . . . , T :

(
h

(t)
k· | −

)
∼ Bessel


ε0−1, 2τ

√√√√β(θ) θ
(t)
k

K∑

k2=1

πkk2θ
(t−1)
k2


 , (7.65)

({
h

(t)
kk2

}K
k2=1
| −

)
∼ Multinom

(
h

(t)
k· ,
(
πkk2 θ

(t−1)
k2

)K
k2=1

)
. (7.66)

Devroye [2002] provides four efficient rejection samplers for sampling from the Bessel

distribution. I have open-sourced a fast Cython implementation of these algorithms.
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7.3.2 Sampling the discrete states when ε0 = 0

The incomplete conditional for the first discrete state is:

(
h

(1)
k· | − \θ

(1)
k

)
∼ SCH

(
y

(1)
k +h

(2)
·k ,

τ 2 λk

ω
(1)
k + ζ

(1)
k + τ

)
, (7.67)

where ω
(1)
k and ζ

(1)
k are defined in equations 7.52 and 7.54, respectively. The incom-

plete conditionals for those thereafter is t = 2, . . . , T :

(
h

(t)
k· | − \θ

(t)
k

)
∼ SCH

(
y

(t)
k +h

(t+1)
·k ,

τ 2
∑K

k2=1 πkk2θ
(t−1)
k2

ω
(t)
k + ζ

(t)
k + τ

)
. (7.68)

7.3.3 Sampling the continuous states:

By gamma–Poisson conjugacy, we have:

(
θ

(t)
k | −

)
∼ Γ

(
ε0 + h

(t)
k· + y

(t)
k + h

(t+1)
·k , τ β(θ) + ω

(t)
k + ζ

(t)
k

)
(7.69)

7.3.4 Sampling the concentration parameter:

By gamma–gamma and gamma–Poisson conjugacy, we have:

(
τ | −

)
∼ Γ

(
α0+TKε0+2h(·)

·· , α0+λ·+β
(θ)θ(·)
· +

K∑

k=1

T−1∑

t=2

K∑

k2=1

πkk2θ
(t−1)
k2

)
. (7.70)

7.3.5 Sampling the transition matrix:

By Dirichlet–multinomial conjugacy:

(
πk | −

)
∼ Dir

(
ρ01+h

(·)
1k, . . . , ρ0K+h

(·)
Kk

)
. (7.71)

7.3.6 Sampling the per-component weights:

By gamma–Poisson conjugacy:

(
λk | −

)
∼ Γ

(
γ0

K
+h

(1)
k· +

T∑

t=1

y
(t)
k , β

(λ)+τ+

(
T∑

t=1

ρ(t)θ
(t)
k

)(
V∑

v=1

φkv

))
. (7.72)
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7.4 Predictive analysis

This section reports a suite of experiments that test the smoothing and forecasting

performance of PGDS and PRGDS on tensors of dyadic event counts.

7.4.1 Data sets

In these experiments, I used two tensors of dyadic event counts, one based on

events from the ICEWS data set [Boschee et al., 2015] and another based on events

from the GDELT data set [Leetaru and Schrodt, 2013]. The tensor of ICEWS data in-

cludes all events from 1995 to 2013. I define a time step to be a calendar month; thus

the number of time steps T = 228. ICEWS includes V = 249 unique country actors

and A=20 high-level action types. The full tensor is thus Y (ICEWS) ∈ N228×249×249×20
0 .

The total number of events (i.e., sum of all the entries) is 6,427,715. The empirical

variance-to-mean ratio (VMR) of the counts is VMR= 57.

The tensor of GDELT data includes all events from 2003 to 2008. I again define

a time step to be a calendar month; thus the number of time steps is T =223. There

are V =223 unique country actors in the GDELT data set. The size of GDELT tensor

is thus Y (GDELT) ∈ N72×223×223×20
0 . GDELT events are more numerous than ICEWS;

moreover GDELT data tends to be burstier due to less deduplication effort on the

collection end. The number of events in this tensor is 13,722,933—which is more than

twice the number in the ICEWS tensor that covers over three times the number of

time steps—and the VMR is 142.

7.4.2 Models

In all of these experiments, I compare the tensor generalization of PGDS to four

variants PRGDS—i.e., the four combinations of assuming gamma or Dirichlet priors

over the parameter matrices and setting either ε0 =0 or ε0 =1. Note that the PGDS is

only compatible with Dirichlet priors over the parameter matrices (and does have ε0).
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7.4.3 Experimental setup

For each tensor, I generated two masks, each of which randomly holds out six

non-contiguous time steps t ∈ [2, T−2]; all counts y
(t)

i
a−→j

within a heldout time step t

are masked. In addition, the last two time steps are always heldout. For each model,

each data tensor, and each mask, I ran two independent chains of MCMC of 3,000

iterations, saving every 50th sample after the first 1,000. For PGDS and the Dirichlet

variants of PRGDS, the missing entries are imputed as latent variables every iteration

while the gamma variants of PRGDS marginalize them out.

7.4.4 Performance metrics

MCMC inference returns a set of S samples of the latent variables from which

the Poisson rate of every missing count—e.g., y
(t)

i
a−→j

—can be computed to yield a set

of S rates—i.e.,
{
µ

(t)(s)

i
a−→j

}S
s=1

. These rates can be interpreted either as parameters to

the heldout likelihood or as predictions of the heldout count (since, under the model,

E[y
(t)

i
a−→j

] = µ
(t)

i
a−→j

). I evaluate the smoothing and forecasting performance of each

model in two ways: 1) using the samples to estimate the (rescaled) posterior predictive

probability of heldout data and 2) treating samples as predictions and evaluating their

mean absolute scaled error (MASE), a standard metric for evaluating forecast error.

7.4.4.1 Rescaled posterior predictive probability (RPPP)f

Consider a set of multi-indices ∆(miss), each of which δ corresponds to a heldout

count y
(miss)
δ . The posterior predictive probability of a single heldout count is

P
(
y

(miss)
δ |Y (obs)

)
=

∫
dµδ P

(
y

(miss)
δ |µδ

)
P
(
µδ |Y (obs)

)
. (7.73)

We can approximate this integral by averaging over samples drawn from the posterior:

≈ 1

S

S∑

s=1

P
(
y

(miss)
δ |µ(s)

δ

)
. (7.74)
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The posterior predictive of all missing data entries can be approximated as

P
(
Y (miss) |Y (obs)

)
≈

∏

δ∈∆(miss)

1

S

S∑

s=1

P
(
y

(miss)
δ |µ(s)

δ

)
. (7.75)

This quantity is a product of heldout likelihoods and is sensitive to the number

of heldout entries; it is thus difficult to compare two different posterior predictive

probabilities computed on different sized test sets. A more interpretable quantity can

be obtained by rescaling according to the number of heldout entries |∆(miss)|:

∝


 ∏

δ∈∆(miss)

1

S

S∑

s=1

P
(
y

(miss)
δ |µ(s)

δ

)



1

|∆(miss)|

. (7.76)

This quantity is proportional to the posterior predictive but directly comparable

across experiments with different numbers of missing entries. It defines the geometric

mean of the heldout likelihoods and can be equivalently written as the exponentiated

average heldout log-likelihood:

= exp


 1

|∆(miss)|
∑

δ∈∆(miss)

1

S

S∑

s=1

logP
(
y

(miss)
δ |µ(s)

δ

)

 . (7.77)

I also note that this quantity is equal to the inverse of perplexity, which is defined as:

Perp
(
Y (miss) ||

{
µ(s)

}S
s=1

)
= exp


− 1

|∆(miss)|
∑

δ∈∆(miss)

1

S

S∑

s=1

logP
(
y

(miss)
δ |µ(s)

δ

)

 .

(7.78)

7.4.4.2 Mean absolute scaled error (MASE)

A philosophically different approach is to treat each sample µ
(s)
δ as a point-estimate

prediction of y
(miss)
δ . In this case, we may average our predictions to approximate the
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expected value of y
(miss)
δ under the posterior predictive:

〈y(miss)
δ 〉 , E

[
yδ |Y (obs)

]
(7.79)

=

∫
dµδ P

(
µδ |Y (obs)

)
E [yδ |µδ] (7.80)

≈ 1

S

S∑

s=1

E [yδ |µδ] (7.81)

=
1

S

S∑

s=1

µ
(s)
δ . (7.82)

One reason to use the posterior to compute a point-estimate prediction is to be able

to compare a Bayesian approach to non-Bayesian or non-probabilistic approaches. To

do so, we define a error metric comparing the point estimate 〈y(miss)
δ 〉 to the true value

y
(miss)
δ . In the context of time series, where predictions correspond to smoothing or

forecasting, mean absolute scaled error (MASE) is standardly used to assess perfor-

mance. To ease notation, I will drop the (miss) superscript and write the data being

predicted as y
(t)
δ , where I am now being explicit about the time index t. Hyndman

and Koehler [2006] advocate for MASE and define it as

MASE
(
Y (miss) || 〈Y (miss)〉

)
=

1

|∆(miss)|
∑

(t,δ)∈∆(miss)

∣∣∣y(t)
δ − 〈y

(t)
δ 〉
∣∣∣

1
T−1

∑T
t′=2

∣∣∣y(t′)
δ − y

(t′−1)
δ

∣∣∣
, (7.83)

where the numerator is the absolute error and the denominator is the mean abso-

lute error of the lag-one näıve predictor for the time-series of type δ. The lag-one

näıve prediction of each count is simply the preceding count in the time series. Note

that average error of the näıve predictor is computed over all ground truth data en-

tries (not just those at missing time steps). MASE is thus a particular form of relative

error that re-weights the absolute error according to the burstiness of the time series.
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Figure 7.4: Smoothing and forecasting performance of PGDS and four variants of
PRGDS on ICEWS and GDELT tensors. Performance is measured using two metrics.
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7.4.5 Results

The smoothing and forecasting performance of the PGDS and four PRGDS vari-

ants on GDELT and ICEWS is displayed in Fig. 7.4. The top four plots measure

MASE (lower is better) while the bottom four measure RPPP (higher is better). In

each subplot, the leftmost blue bar corresponds to the PGDS while the rightmost four

purple bars correspond to the PRGDS, where the darker shade denotes the ε0 =1 vari-

ants and the lighter shade denotes ε=0. Each bar is textured to reflect the choice of

prior: the diagonal dashes denote models with Dirichlet priors (including the PGDS)

and circles denote gamma priors. Each MCMC chain, mask, and data set combina-

tion yields a single value for both MASE and RPPP. The barplots display each metric

averaged across both per-model MCMC chains and both random masks, with error

bars denoting the standard deviation.

As measured by both MASE and RPPP, there is no negligible difference in the four

models’ smoothing performance on ICEWS (i.e., the less bursty data set). The PGDS’

smoothing performance on GDELT, for both metrics, is significantly worse than all

four variants of the PRGDS, while the ε0 =0 variants perform slightly better than the

ε0 =1 variants. The performance ranking is similar for forecasting results on ICEWS.

For both metrics, the ε0 = 0 PRGDS variants perform the best out of all models.

The PGDS performs worse than all four PRGDS variants on MASE. On RPPP, the

PGDS is better than the PRGDS with ε0 = 1 and comparable to the PRGDS ε0 = 0

variant with Dirichlet priors, but worse than the one with gamma priors.

The forecasting results on GDELT tell a more complicated story—specifically,

the performance ranking of the five models is reversed when measuring using MASE

versus RPPP. On MASE, the ε0 = 1 PRGDS variants decisively outperform ε0 = 0

PRGDS variants and the PGDS, which all have comparable performance. However,

when measuring performance with RPPP, the opposite is true: the ε0 = 1 PRGDS

variants perform significantly worse than the other three models. Why might this be?

152



0.70

0.75

0.80

0.85

0.90

M
ea

n 
A

bs
ol

ut
e 

S
ca

le
d 

E
rr

or
 (M

A
S

E
)

GDELT

Smoothing
 on true zeros

4.20

4.21

4.21

4.21

4.22

4.22

4.23

4.24

Smoothing
 on true non-zeros

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Forecasting
 on true zeros

7.58

7.60

7.63

7.65

7.68

7.70

7.73

7.75

Forecasting
 on true non-zeros

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
ea

n 
A

bs
ol

ut
e 

S
ca

le
d 

E
rr

or
 (M

A
S

E
)

ICEWS

10.00

10.25

10.50

10.75

11.00

11.25

11.50

0.55

0.58

0.60

0.62

0.65

0.68

0.70

15.42

15.44

15.46

15.48

15.50

15.52

15.54

PGDS
PrGds with 0 = 0
PrGds with 0 = 1

Priors: ( )
Priors: Dir( )

(a) Mean Absolute Scaled Error (lower is better) of the posterior expectation of heldout data.

0.94

0.94

0.95

0.95

0.95

0.95

0.95

S
ca

le
d 

P
os

te
rio

r P
re

di
ct

iv
e 

P
ro

ba
bi

lit
y

GDELT

Smoothing
 on true zeros

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Smoothing
 on true non-zeros

0.92

0.93

0.93

0.93

0.93

0.94

0.94

0.94

Forecasting
 on true zeros

0.00

0.00

0.00

0.00

0.00

Forecasting
 on true non-zeros

0.99

0.99

0.99

0.99

0.99

0.99

0.99

S
ca

le
d 

P
os

te
rio

r P
re

di
ct

iv
e 

P
ro

ba
bi

lit
y

ICEWS

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.99

0.99

0.99

0.99

0.99

0.99

0.00

0.00

0.00

0.00

0.00

0.00

0.00

PGDS
PrGds with 0 = 0
PrGds with 0 = 1

Priors: ( )
Priors: Dir( )

(b) Scaled posterior predictive probability (higher is better) of heldout data.

Figure 7.5: Performance metrics are faceted by predicting true zeros versus non-zeros.
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Fig. 7.5 displays the same results as in Fig. 7.4 but faceted by whether the true

underlying count being predicted was zero or not; thus, the smoothing results column

in Fig. 7.4 is here split into two columns—i.e., smoothing on true zeros and smooth-

ing on true non-zeros. The same is true for the forecasting column. This faceting

reveals the source of the discrepancy in performance ranking between MASE and

RPPP. Specifically, the forecasting on GDELT subplots show that the ε0 =1 PRGDS

variants are better than all other models at forecasting non-zeros but are worse at

forecasting zeros. RPPP is based on the Poisson PMF, which penalizes underpredic-

tions—i.e., Pois (x; y) < Pois (y;x) if x > y. MASE, like many relative error metrics,

instead prioritizes accuracy on small values, and thus penalizes overpredictions. Thus,

when the aggregate performance of a model is highly faceted across performance on

forecasting zeros versus non-zeros, RPPP and MASE will tell different stories.

To summarize, by all metrics, and in all experiments, there was at least one vari-

ant of the PRGDS that equaled or exceeded the performance of the PGDS; in some

cases, the PGDS performed significantly worse than all PRGDS variants. The ε0 =0

versus ε0 = 1 seem to outperform the other in different contexts—with ε0 = 1 be-

ing better at forecasting non-zeros and ε0 = 0 being slightly better at smoothing in

the burstier time series and significantly better at forecasting zeros. Any differences

between gamma and Dirichlet-based models were washed out by the differences be-

tween the PGDS and PRGDS and between different ε0 variants. In some plots, a

small trend is evident—e.g., in the bottom row of Fig. 7.4a, the Dirichlet models are

worse at smoothing non-zeros but better at smoothing zeros in ICEWS—-however,

no consistent story emerges.

7.5 Exploratory analysis

In this section, I qualitatively compare the latent structure inferred by the different

models. To do so, I aligned the inferred components of one model to another using the
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Hungarian bipartite matching algorithm run on their inferred matrices of continuous

states Θ ∈ RK×T
+ . This algorithm finds an alignment of the per-component rows θk ≡

(θ
(1)
k , . . . , θ

(T )
k ). While this method does not account for other component-specific

information—e.g., the top sender countries—I found it worked well. The kth row pro-

vides a signature of when a component was active—due to the burstiness of the data,

these signatures are sufficiently unique to allow for alignment based on them alone.

I interpreted components in the same way as in Chapter 4 where a component

measures a multilateral relation and is described by when it is active θk who the

typical senders ψ
(1)
k and receivers ψ

(2)
k are, and what action types ψ

(3)
k are typically

used. I visualize θk in chronological order in the top panel (blue). The bottom left

stem plot (red) displays the top values of sender parameters, in descending order. If

fewer than ten senders account for more than 99% of the mass, I only display their

names; otherwise, the top ten are given. The same is true for the middle (green) and

right (purple) stem plots, corresponding to receivers and action types.

7.5.1 ICEWS 1995–2013 data

The inferred latent structure across on the ICEWS data set was remarkably aligned

across different models. This qualitative observation corroborates the result in the

predictive analysis that there were no noticeable differences between the models’

smoothing performance. Figures 7.7– 7.9 each give an example of an aligned compo-

nent that was inferred by the PGDS and two PRGDS variants for ε0 = 0 or ε0 = 1.

Figures 7.7 and 7.8 display aligned components corresponding to the Kosovo War

and the 2003 American invasion of Iraq, respectively. These were both major inter-

national events that consumed the media cycle in their respective time periods; we

should thus expect for all models to measure them. Figures 7.9 and 7.10 display

aligned components corresponding to more subtle sustained multilateral relations.

The component in Fig. 7.9 measures the six-party talks [Wikipedia contributors,
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2018f], a sustained period of negotiations about the North Korean nuclear weapons

program; the negotiations took place in a series of summits between the six parties—

i.e., North Korea, South Korea, United States, Russia, China, and Japan—from 2003

to 2011. Fig. 7.10 displays an aligned component that measures ongoing relations

between Russia, Venezuela, and Iran.

I found only a small number of clearly misaligned components. These corre-

sponded to cases in which the reference model inferred a component that no other

model inferred. In both ICEWS and GDELT data, I found a pattern in the misalign-

ments: the PRGDS variant with ε0 =0 inferred components that featured particularly

bursty dynamics—i.e., long periods of near-zero rates followed by sudden non-zero

rates. An example of such a component is given in Fig. 7.6. In this component, South

Sudan is both the top sender and top receiver. The continuous latent states are al-

most all (exactly) zero before a burst of sustained activity in the last 28 time steps,

which correspond to the months of July 2011–October 2013. South Sudan gained

its independence from the Republic of Sudan on July 9, 2011. Thus, South Sudan

first became a possible sender or receiver in the time step of July 2011. Accordingly,

94% of the continuous latent states preceding July 2011 are exactly zero. Neither

the PGDS nor the PRGDS with ε0 = 1 inferred a component in which South Sudan

was within the top ten senders or receivers. These models instead allocated events

involving South Sudan to less-specific components which featured non-zero activity

across time. I speculate that the strong inductive bias towards sparsity uniquely

allows the PRGDS with ε0 = 0 to identify components that measure substantively

specific components whose activity is highly localized in time.

156



Mar 1995 Nov 1996 Jul 1998 Mar 2000 Nov 2001 Jul 2003 Mar 2005 Nov 2006 Jul 2008 Mar 2010 Nov 2011 Aug 2013

0.00

0.02

0.04

0.06

0.08

0.10

P
ro

po
rti

on
 o

f v
ec

to
r s

um

Time steps

Sou
th 

Sud
an

Sud
an

Unit
ed

 S
tat

es
Chin

a
Ethi

op
ia

Egy
pt

Ind
ia

Isr
ae

l
Sou

th 
Kor

ea
Sou

th 
Afric

a

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on
 o

f v
ec

to
r s

um

Senders

Sou
th 

Sud
an

Sud
an

Ethi
op

ia
Chin

a
Unit

ed
 S

tat
es

Ken
ya

Isr
ae

l
Egy

pt
Ind

ia
Sou

th 
Afric

a

Receivers

Con
su

lt
Mak

e S
tat

em
en

t

Coo
pe

ra
te 

(D
ipl

om
ati

c)

Int
en

d t
o C

oo
pe

ra
te

Disa
pp

ro
ve

Fig
ht

App
ea

l
Ass

au
lt

Reje
ct

Red
uc

e R
ela

tio
ns

Action types

Figure 7.6: The PRGDS with ε0 = 0 was the only model to infer a component whose top sender and/or receiver was South
Sudan, a country which did not exist until July 2011. 94% of the time steps (months) prior to July 2011 exhibit a latent state

value of exactly zero θ
(t)
k = 0. I speculate that the sparsity-inducing inductive bias of the ε = 0 PRGDS variant allows it to

measure more qualitatively specific components than the other models.
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(a) Inferred by the PRGDS with ε0 =0.
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(b) Inferred by the PRGDS with ε0 =1.
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(c) Inferred by the PGDS.

Figure 7.7: Kosovo War. A nearly identical component was inferred by all three mod-
els corresponding to the 1998 Kosovo War. The burst in February 2008 corresponds
to Kosovo’s declaration of independence from Serbia.
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(a) Inferred by the PRGDS with ε0 =0.
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(b) Inferred by the PRGDS with ε0 =1.
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(c) Inferred by the PGDS.

Figure 7.8: Second American invasion of Iraq and precursory strikes.
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(a) Inferred by the PRGDS with ε0 =0.
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(b) Inferred by the PRGDS with ε0 =1.
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(c) Inferred by the PGDS.

Figure 7.9: Six-party talks.
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(a) Inferred by the PRGDS with ε0 =0.
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(b) Inferred by the PRGDS with ε0 =1.
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(c) Inferred by the PGDS.

Figure 7.10: Relations between Russia, Venezuela, and Iran.
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7.5.2 GDELT 2003–2008 data

The different models’ inferred latent structure was less similar to each other on

the GDELT data than on the ICEWS data. This also corroborates the results in the

predictive analysis section that showed greater variability in their smoothing perfor-

mance on GDELT. Most of the aligned components are qualitatively similar—i.e.,

about the same set of events and relations—but the specific values of the parameters

are more divergent. A representative example of a qualitatively well-aligned com-

ponent is given in Fig. 7.12. This component is about Zimbabwe, particularly the

Zimbabwean re-election of Robert Mugabe in 2008 which was criticized by the inter-

national community—notably, by the African Union, which appears as the the actor

‘Africa’—for being rigged. The inferred structure of the PRGDS with ε0 =0 is more

similar to that of the PGDS than the PRGDS with ε0 = 1. The PRGDS with ε0 = 1

infers a less pronounced burst around the time of the election and features Zimbabwe

as the second-most active participant behind the African Union.

I noticed a few instances in which the PRGDS with ε0 = 1 inferred a component

that was qualitatively similar to its aligned counterpart inferred by the ε0 =0 variant

but featured smoother and less temporally localized latent states. An example of such

a component is visualized in Fig. 7.13. Both PRGDS variants inferred a component

that measures the 2006 East Timorese crisis [Wikipedia contributors, 2018a]. This

conflict was primarily within East Timor, between elements of the military and gov-

ernment. However, an international military coalition lead by Australia, Malaysia,

New Zealand, and Portugal ultimately intervened. The correspondence between the

two PRGDS variants is not exact. The ε0 =0 component is highly specific to the crisis.

Its top sender and receiver is East Timor and the latent states are zero (or near zero)

before the crisis and exhibit pronounce bursts during the months in which the crisis

was active. The latent states inferred by the PRGDS with ε0 =1 also exhibit bursts at

the those times—however, the bursts are less pronounced and preceded by a steady
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Figure 7.11: PRGDS with ε0 =0 inferred a component specific to an attempted coup
in Equatorial Guinea. The latent states burst at exactly the times given by a Reuters
timeline (quoted in the main text) and are otherwise zero or near zero. No other
model inferred a qualitatively similar component.

period of non-zero activity. As a consequence of being less temporally-localized to the

crisis, the PRGDS with ε0 =1 also infers sender, receiver, and action type parameters

that are less specific to it, thus seeming to conflate the crisis with the surrounding

relations between the countries involved in the crisis. The PGDS did not infer any

qualitatively similar component.

As with the ICEWS results, there were a few instances in which the PRGDS with

ε0 =0 inferred a component that could not be qualitatively aligned to any inferred by

the other models. These also tended to feature bursty and temporally localized latent

states. An example of such a component is visualized in Fig. 7.11. This component

precisely measures a 2004 coup attempt in Equatorial Guinea and the subsequent legal

aftermath. The bursts in the inferred latent states exactly match the major events

outlined in a Reuters timeline2 which I quote with minimal paraphrasing below.

2https://www.reuters.com/article/us-equatorial-guinea-mann/

timeline-coup-plot-case-in-equatorial-guinea-idUSL0747539320080707
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March 7, 2004—Zimbabwe seizes U.S.-registered cargo plane carrying 64
suspected mercenaries and a cargo of military equipment.

March 8, 2004—About 15 suspected mercenaries are arrested in Equato-
rial Guinea in an investigation linked to the plane in Zimbabwe. Most of
the suspects in both groups are South African.

March 16, 2004—Zimbabwe charges 70 suspected mercenaries with con-
spiring to murder Equatorial Guinea President Mbasogo.

August 23, 2004—Fourteen foreign suspected mercenaries and five Equa-
torial Guineans go on trial in Malabo, Equatorial Guinea.

August 25, 2004—South African police arrest Mark Thatcher, son of for-
mer British Prime Minister Margaret Thatcher, on suspicion of involve-
ment in the plot. He is released from house arrest after posting 2 million
rand (about $300,000) bail on September 3.

November 26, 2004—Equatorial Guinea court convicts 11 foreigners and
two local men of charges stemming from the plot. Nick Du Toit, a South
African alleged to have led an advance group of mercenaries, receives the
stiffest sentence of 34 years’ imprisonment.

January 13, 2005—Thatcher pleads guilty to a role in the plot under a
plea bargain agreement allowing him to avoid jail by paying a 3 million
rand fine and assisting South African authorities. He receives a four-year
suspended jail sentence.

May 15, 2005—Zimbabwe frees 62 South Africans more than a year after
they were arrested but the next day South Africa says it will charge them
under its strict anti-mercenary laws.

May 9, 2007—Zimbabwe agrees to extradite Mann to Equatorial Guinea.

January 30, 2008—Mann is deported to Equatorial Guinea from Zim-
babwe to face coup plot charges after losing an appeal against extradition.
He had served four years for buying weapons without a license.

March 11, 2008—Mann says he plotted to oust Equatorial Guinea’s pres-
ident, but the scheme failed.

March 30, 2008—Guinea’s public prosecutor says that Mann has testified
that Thatcher knew all about the scheme to overthrow Obiang.

July 7, 2008—Mann sentenced to 34 years and four months in prison.
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(a) Inferred by the PRGDS with ε0 =0.
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(b) Inferred by the PRGDS with ε0 =1.
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(c) Inferred by the PGDS.

Figure 7.12: 2008 Zimbabwean election.
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(a) Inferred by the PRGDS with ε0 =0.

Mar 2003 Aug 2003 Feb 2004 Aug 2004 Feb 2005 Aug 2005 Feb 2006 Aug 2006 Feb 2007 Aug 2007 Feb 2008 Aug 2008

0.00

0.05

0.10

0.15

P
ro

po
rti

on
 o

f m
od

e 
ve

ct
or

Time steps

Ind
on

es
ia

Aus
tra

lia
Eas

t T
im

or
Unit

ed
 S

tat
es

New
 Z

ea
lan

d
Sing

ap
or

e
Chin

a
Ja

pa
n

Mala
ys

ia

Pap
ua

 N
ew

 G
uin

ea

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on
 o

f m
od

e 
ve

ct
or

Senders

Ind
on

es
ia

Aus
tra

lia
Eas

t T
im

or
Sing

ap
or

e
Unit

ed
 S

tat
es

New
 Z

ea
lan

d
Chin

a
Unit

ed
 K

ing
do

m

Pap
ua

 N
ew

 G
uin

ea
Por

tug
al

Receivers

Con
su

lt
Mak

e S
tat

em
en

t

Int
en

d t
o C

oo
pe

ra
te

Coo
pe

ra
te 

(D
ipl

om
ati

c)
Coe

rce Fig
ht

Disa
pp

ro
ve

App
ea

l

Aid

Yiel
d

Action types

(b) Inferred by the PRGDS with ε0 =1.

Figure 7.13: 2006 East Timorese crisis. Both variants of the PRGDS inferred a
component involving East Timor and the countries involved in the 2006 crisis. The
PGDS did not infer any qualitatively similar component. The version inferred by
the ε0 =0 variant is more specific to the 2006 crisis.
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CHAPTER 8

LOCALLY PRIVATE BAYESIAN INFERENCE IN
POISSON FACTORIZATION MODELS

Data from social processes often take the form of discrete observations (e.g., edges

in a social network, word tokens in an email) and these observations often contain

sensitive information about the people involved. As more aspects of social interaction

are digitally recorded, the opportunities for social scientific insights grow; however,

so too does the risk of unacceptable privacy violations. As a result, there is a growing

need to develop privacy-preserving data analysis methods.

In practice, social scientists will be more likely to adopt these methods if doing

so entails minimal change to their current methodology. Toward that end, under

the framework of differential privacy [Dwork et al., 2006], this chapter (based on the

preprint by Schein et al. [2018]) presents a method for privatizing Bayesian inference

for Poisson factorization. The proposed method is general and modular, allowing

social scientists to build on (instead of replace) their existing derivations and im-

plementations of non-private Poisson factorization. To derive the method, we rely

on a novel reinterpretation of the geometric mechanism [Ghosh et al., 2012], as well

as a previously unknown general relationship between the Skellam [Skellam, 1946],

Bessel [Yuan and Kalbfleisch, 2000], and Poisson distributions; these new results may

be of independent interest in other contexts.

The proposed method satisfies a strong variant of differential privacy—i.e., local

privacy—under which the sensitive data is privatized (or noised) via a randomized

response method before inference. This ensures that no single centralized server need
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Figure 8.1: Topic recovery: proposed vs. the näıve approach. (a) We generated
the non-privatized data synthetically so that the true topics were known. We then
privatized the data using (b) a low noise level and (c) a high noise level. The heatmap
in each subfigure visualizes the data, using red to denote positive counts and blue to
denote negative counts. With a high noise level, the näıve approach overfits the noise
and therefore fails to recover the true topics. We describe this experiment in more
detail in Section 8.6.4.

ever store the non-privatized data—a condition that is non-negotiable in many real-

world settings. The key challenge introduced by local privacy is how to infer the

latent variables (including model parameters) given the privatized data. One option

is a näıve approach, wherein inference proceeds as usual, treating the privatized data

as if it were not privatized. In the context of maximum likelihood estimation, the

näıve approach has been shown to exhibit pathologies when observations are discrete

or count-valued; researchers have therefore advocated for treating the non-privatized

observations as latent variables to be inferred [Yang et al., 2012, Karwa et al., 2014,

Bernstein et al., 2017]. We embrace this approach and extend it to Bayesian inference,

where the aim is to form the posterior distribution over the latent variables condi-

tioned on the privatized data and the randomized response method; the proposed

method is asymptotically guaranteed to draw samples from this posterior.

Section 8.6 reports two case studies applying the proposed method to 1) over-

lapping community detection in social networks and 2) topic modeling for text cor-

pora. In order to formulate our local-privacy guarantees, we introduce and focus on
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limited-precision local privacy—the local privacy analog of limited-precision differen-

tial privacy, originally proposed by Flood et al. [2013]. For each case study, a suite

of experiments test the method’s ability to form the posterior distribution over la-

tent variables under different levels of noise. These experiments also demonstrate the

utility of the method over the näıve approach for both case studies; an illustrative

example is given in Fig. 8.1.

8.1 Differential privacy definitions

Differential privacy [Dwork et al., 2006] is a rigorous privacy criterion that guar-

antees that no single observation in a data set will have a significant influence on the

information obtained by analyzing that data set.

Definition 8.1: Differential privacy

A randomized algorithm A(·) satisfies ε-differential privacy if for all pairs of

neighboring data sets Y and Y ′ that differ in only a single observation

P (A(Y ) ∈ S) ≤ eεP (A(Y ′) ∈ S) , (8.1)

for all subsets S in the range of A(·).

This work focuses on local differential privacy, hereby “local privacy”. Under

this criterion, the observations remain private from even the data analysis algorithm.

The algorithm only sees privatized observations, often constructed by adding noise

from specific distributions. The process of adding noise is known as randomized

response—a reference to survey-sampling methods originally developed in the social

sciences prior to the development of differential privacy [Warner, 1965]. Satisfying

this criterion means one never needs to aggregate the true data in a single location.
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Definition 8.2: Local differential privacy

A randomized response method R(·) is ε-private if for any pair y, y′ ∈ Y

P (R(y) ∈ S) ≤ eεP (R(y′) ∈ S) , (8.2)

for all subsets S in the range of R(·). If a data analysis algorithm sees only the

observations’ ε-private responses, then the data analysis satisfies ε-local privacy.

The meaning of “observation” in Definitions 8.1 and 8.2 varies across applications.

In the context of topic modeling, an observation is an individual document y ∈ NV
0

such that each single entry yv ∈ N0 is the count of word tokens of type v in the doc-

ument. To guarantee local privacy, the randomized response method has to satisfy

the condition in Eq. (8.2) for any pair of observations. This typically involves adding

noise that scales with the maximum difference between any pair of observations de-

fined as N (max) = maxy,y′ ‖y−y′‖1. When the observations are documents, N (max) can

be prohibitively large and the amount of noise will overwhelm the signal in the data.

This motivates the following alternative formulation of privacy.

While standard local privacy requires that arbitrarily different observations be-

come indistinguishable under the randomized response method, this guarantee may

be unnecessarily strong in some settings. For instance, suppose a user would like to

hide only the fact that their email contains a handful of vulgar curse words. Then

it is sufficient to have a randomized response method which guarantees that any

two similar emails—one containing the vulgar curse words and the same email with-

out them—will be rendered indistinguishable after randomization. In other words,

this only requires the randomized response method to render small neighborhoods of

possible observations indistinguishable. To operationalize this kind of guarantee, we

generalize Definition 8.2 and define limited-precision local privacy (LPLP).
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Definition 8.3: Limited-precision local privacy (LPLP)

For any positive integer N , we say that a randomized response method R(·) is

(N, ε)-private if for all pairs of observations y, y′ ∈ Y such that ‖y − y′‖1 ≤ N

P (R(y) ∈ S) ≤ eεP (R(y′) ∈ S) , (8.3)

for all subsets S in the range of R(·). If a data analysis algorithm sees only

the observations’ (N, ε)-private responses, then the data analysis itself satisfies

(N, ε)-limited-precision local privacy. If ‖y‖1 ≤ N for all y ∈ Y , then (N, ε)-

limited-precision local privacy implies ε-local privacy.

LPLP is the local privacy analog to limited-precision differential privacy, originally

proposed by Flood et al. [2013] and subsequently used to privatize analyses of geo-

graphic location data [Andrés et al., 2013] and financial network data [Papadimitriou

et al., 2017]. Note that this is a strict generalization of local privacy. A random-

ized response method that satisfies LPLP adds noise which scales as a function of N

and ε—thus the same method may be interpreted as being ε-private for a given set-

ting of N or ε′-private for a different setting N ′. Section 8.3 describes the geometric

mechanism [Ghosh et al., 2012] and shows that it satisfies LPLP.

8.2 Private Bayesian inference

In Bayesian statistics, we begin with a probabilistic modelM that relates observ-

able variables Y to latent variables Z via a joint distribution PM(Y, Z). The goal

of inference is then to compute the posterior distribution PM(Z |Y ) over the latent

variables conditioned on observed values of Y . The posterior is almost always analyti-

cally intractable and thus inference involves approximating it. The two most common

methods of approximate Bayesian inference are variational inference, wherein we fit
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the parameters of an approximating distribution Q(Z |Y ), and Markov chain Monte

Carlo (MCMC), wherein we approximate the posterior with a set of samples {Z(s)}Ss=1

generated via a Markov chain whose stationary distribution is the exact posterior.

We can conceptualize Bayesian inference as a randomized algorithm A(·) that

returns an approximation to the posterior distribution PM(Z |Y ). In general A(·)

does not satisfy ε-differential privacy. However, if A(·) is an MCMC algorithm that

returns a single sample from the posterior, it guarantees privacy [Dimitrakakis et al.,

2014, Wang et al., 2015, Foulds et al., 2016, Dimitrakakis et al., 2017]. Adding noise

to posterior samples can also guarantee privacy [Zhang et al., 2016], though this set of

noised samples {Z̃(s)}Ss=1 approximates some distribution P̃M(Z |Y ) that depends on

ε and is different than the exact posterior (but close, in some sense, and equal when

ε → 0). For specific models, we can also noise the transition kernel of the MCMC

algorithm to construct a Markov chain whose stationary distribution is again not the

exact posterior, but something close that guarantees privacy [Foulds et al., 2016]. We

can also take an analogous approach to privatize variational inference, wherein we

add noise to the sufficient statistics computed in each iteration [Park et al., 2016].

All of the aforementioned work on private Bayesian inference focuses on non-local

privacy wherein the true data is conditioned on. Under local privacy, we must take a

different approach. Let’s formalize the general objective of Bayesian inference under

local privacy. Given a generative modelM for non-privatized data Y and latent vari-

ables Z with joint distribution PM(Y, Z), we further assume a randomized response

method R(·) that generates privatized data sets: Ỹ ∼ PR(Ỹ |Y ). The goal is then

to approximate the locally private posterior :

PM,R(Z | Ỹ ) = EPM,R(Y | Ỹ ) [PM(Z |Y )]

=

∫
PM(Z |Y )PM,R(Y | Ỹ ) dY. (8.4)
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This distribution correctly characterizes our uncertainty about the latent variables Z,

conditioned on all of our observations and assumptions—i.e., the privatized data Ỹ ,

the model M, and the randomized response method R. The expansion in Eq. (8.4)

shows that this posterior implicitly treats the non-privatized data set Y as a latent

variable and marginalizes over it using the mixing distribution PM,R(Y | Ỹ ) which

is itself a posterior that characterizes our uncertainty about Y given all we observe.

The central point here is that if we can generate samples from PM,R(Y | Ỹ ), we can

use them to approximate the expectation in Eq. (8.4), assuming that we already have

a method for approximating the non-private posterior PM(Z |Y ). In the context of

MCMC, iteratively re-sampling values of the non-privatized data from their com-

plete conditional—i.e., Y (s) ∼ PM,R(Y |Z(s−1), Ỹ )—and then re-sampling values of

the latent variables—i.e., Z(s) ∼ PM(Z |Y (s))—constitutes a Markov chain whose sta-

tionary distribution is PM,R(Z, Y | Ỹ ). In scenarios where we already have derivations

and implementations for sampling from PM(Z |Y ), we need only be able to sample

efficiently from PM,R(Y |Z, Ỹ ) in order to obtain a locally private Bayesian inference

algorithm; whether we can do this efficiently depends on our choice of M and R.

Note that the objective of Bayesian inference under local privacy, as defined in

Eq. (8.4), is similar to that of Williams and McSherry [2010], who identify their key

barrier to inference as being unable to analytically form the marginal likelihood that

links the privatized data to Z:

PM,R(Ỹ |Z) =

∫
PR(Ỹ |Y )PM(Y |Z) dY. (8.5)

In the next sections, we see that if M is a Poisson factorization model and R is

the geometric mechanism, then we can form an augmented version of this marginal

likelihood analytically and derive an MCMC algorithm that samples efficiently from

the posterior in Eq. (8.4).
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8.3 Locally private Poisson factorization

In this section, we will consider an existing randomized response method R that

is natural for discrete data—i.e., the geometric mechanism [Ghosh et al., 2012]—and

show how it combines naturally with M—i.e., Poisson factorization—in an analyt-

ically tractable way. To do so we prove two theorems about R: 1) that it is a

mechanism for LPLP and 2) that it can be understood in terms of the Skellam dis-

tribution [Skellam, 1946]. We rely on the second theorem to show that our choices

of M and R combine to yield a novel generative process for privatized count data

which we exploit to derive efficient Bayesian inference.

8.3.1 Reinterpreting the geometric mechanism R

The two most commonly used randomized response mechanisms in the privacy

toolbox—the Gaussian and Laplace mechanisms—privatize observations by adding

noise drawn from continuous real-valued distributions; they are thus unnatural choices

for count data. Ghosh et al. [2012] introduced the geometric mechanism, which can be

viewed as the discrete analog to the Laplace mechanism, and involves adding integer-

valued noise τ ∈ Z drawn from the two-sided geometric distribution τ ∼ 2Geo(α).

Definition 8.4: Two-sided geometric as the difference of geometrics

Define the difference τ , g1 − g2 of two i.i.d geometric random variables

g1 ∼ NB(1, α) and g2 ∼ NB(1, α) where α ∈ (0, 1) is the probability parameter

and the geometric distribution is defined as a special case of the negative

binomial distribution [Johnson et al., 2005]. Then τ is marginally a two-sided

geometric random variable:

P (τ |α) = 2Geo (τ ;α) (8.6)
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Definition 8.5: Two-sided geometric distribution

A two-sided geometric random variable τ ∼ 2Geo (α) is an integer τ ∈ Z. Its

distribution is defined by probability parameter α ∈ (0, 1) and PMF:

2Geo(τ ;α) =
1− α
1 + α

α|τ |. (8.7)
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Figure 8.2: PMF of the two-sided geometric distribution for three values of α.

Theorem 8.1: Geometric mechanism as an LPLP mechanism

(Proof in Section 8.8.1) Let randomized response methodR(·) be the geometric

mechanism with parameter α ∈ (0, 1). Then for any positive integer N , and

any pair of observations y, y′ ∈ Y such that ‖y − y′‖1 ≤ N , R(·) satisfies the

limited-precision local privacy criterion in Eq. (8.3) with privacy level ε:

ε = N ln
(

1
α

)
. (8.8)

Therefore, for any N , the geometric mechanism with parameter α is an (N, ε)-

private randomized response method; if a data analysis algorithm sees only the

(N, ε)-privatized observations, then the data analysis satisfies (N, ε)-LPLP.
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Theorem 8.2: Geometric mechanism as a Skellam mechanism

(Proof in Section 8.8.2) A random variable τ ∼ 2Geo(α) can be generated as:

λ(+), λ(−) iid∼ Exp
(

α
1−α

)
(8.9)

τ ∼ Skel (λ(+), λ(−)) (8.10)

where the exponential distribution is a special case of the gamma distribution—

i.e., Exp (β)≡Γ (1, β)—and the Skellam distribution is defined below.

Definition 8.6: Skellam distribution

A Skellam random variable τ ∼ Skel (µ1, µ2) is an integer τ ∈ Z. Its distribution

is defined by two positive rate parameters parameters µ1, µ2 > 0 and PMF:

Skel (τ ;µ1, µ2) = e−(µ1+µ2)

(
µ1

µ2

) τ
2

Iτ (2
√
µ1µ2) , (8.11)

where Iv(a) is the modified Bessel function of the first kind.
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Figure 8.3: PMF of the Skellam distribution for different combinations of µ1 and µ2.

Definition 8.7: Skellam as the difference of independent Poissons

Define the difference τ , y1 − y2 of two independent Poisson random variables

y1 ∼ Pois (µ1) and y2 ∼ Pois (µ2). Then τ is marginally Skellam distributed:

P (τ |µ1, µ2) = Skel (τ ; µ1, µ2) (8.12)
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8.4 Combining M and R
Assume each observation is generated byM and then then privatized by R—i.e.:

yδ ∼ Pois(µδ), (8.13)

τδ ∼ 2Geo(α), (8.14)

ỹ(±)

δ := yδ + τδ, (8.15)

where ỹ(±)

δ is the privatized observation which we superscript with (±) to denote that

it may be non-negative or negative since the additive noise τδ ∈ Z may be negative.

Via Theorem 8.2, we can express the generative process for ỹ(±)

δ in four equiva-

lent ways, shown in Fig. 8.4, each of which provides a unique and necessary insight.

Process 1 is a graphical representation of the generative process as defined thus far.

Process 2 represents the two-sided geometric noise in terms of a pair of Poisson

random variables with exponentially distributed rates; in so doing, it reveals the aux-

iliary variables that facilitate inference. Process 3 represents the sum of the true

count and the positive component of the noise as a single Poisson random variable

ỹ(+)

δ = yδ + g(+)

δ . Process 4 marginalizes out the remaining Poisson random vari-

ables to obtain a marginal representation ỹ(±)

δ as a Skellam random variable with

exponentially-randomized rates:

λ(+)

δ , λ(−)

δ

iid∼ Exp( α
1−α), (8.16)

ỹ(±)

δ ∼ Skel
(
λ(+)

δ +µδ, λ
(−)

δ

)
. (8.17)

The derivation of these four processes follows from the two-sided geometric random

variable being the difference of negative binomials (Definition 8.4), the representation

of the negative binomial as a gamma–Poisson mixture (Definition 3.16), Poisson addi-

tivity (Definition 3.2), and the Skellam as the difference of Poissons (Definition 8.7).
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<latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit><latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit><latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit><latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit>

⌧
<latexit sha1_base64="rx/s5aCvXUP35GpplwAkBrTmD4o=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLPaRpv1rz6/4cZJUEBalBgWa/+tUbxCxVXCOT1Npu4CcYZtSgYJLPKr3U8oSyCR3xrqOaKm7DbH7rjJw5ZUCGsXGlkczV3xMZVdZOVeQ6FcWxXfZy8T+vm+LwOsyETlLkmi0WDVNJMCb542QgDGcop45QZoS7lbAxNZShi6fiQgiWX14l7Yt64NeD+8ta46aIowwncArnEMAVNOAOmtACBmN4hld485T34r17H4vWklfMHMMfeJ8/IS2OSA==</latexit><latexit sha1_base64="rx/s5aCvXUP35GpplwAkBrTmD4o=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLPaRpv1rz6/4cZJUEBalBgWa/+tUbxCxVXCOT1Npu4CcYZtSgYJLPKr3U8oSyCR3xrqOaKm7DbH7rjJw5ZUCGsXGlkczV3xMZVdZOVeQ6FcWxXfZy8T+vm+LwOsyETlLkmi0WDVNJMCb542QgDGcop45QZoS7lbAxNZShi6fiQgiWX14l7Yt64NeD+8ta46aIowwncArnEMAVNOAOmtACBmN4hld485T34r17H4vWklfMHMMfeJ8/IS2OSA==</latexit><latexit sha1_base64="rx/s5aCvXUP35GpplwAkBrTmD4o=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLPaRpv1rz6/4cZJUEBalBgWa/+tUbxCxVXCOT1Npu4CcYZtSgYJLPKr3U8oSyCR3xrqOaKm7DbH7rjJw5ZUCGsXGlkczV3xMZVdZOVeQ6FcWxXfZy8T+vm+LwOsyETlLkmi0WDVNJMCb542QgDGcop45QZoS7lbAxNZShi6fiQgiWX14l7Yt64NeD+8ta46aIowwncArnEMAVNOAOmtACBmN4hld485T34r17H4vWklfMHMMfeJ8/IS2OSA==</latexit><latexit sha1_base64="rx/s5aCvXUP35GpplwAkBrTmD4o=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLPaRpv1rz6/4cZJUEBalBgWa/+tUbxCxVXCOT1Npu4CcYZtSgYJLPKr3U8oSyCR3xrqOaKm7DbH7rjJw5ZUCGsXGlkczV3xMZVdZOVeQ6FcWxXfZy8T+vm+LwOsyETlLkmi0WDVNJMCb542QgDGcop45QZoS7lbAxNZShi6fiQgiWX14l7Yt64NeD+8ta46aIowwncArnEMAVNOAOmtACBmN4hld485T34r17H4vWklfMHMMfeJ8/IS2OSA==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

↵
<latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit>

µ
<latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit>

ỹ(±)

<latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit><latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit><latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit><latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit>

⌧
<latexit sha1_base64="rx/s5aCvXUP35GpplwAkBrTmD4o=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLPaRpv1rz6/4cZJUEBalBgWa/+tUbxCxVXCOT1Npu4CcYZtSgYJLPKr3U8oSyCR3xrqOaKm7DbH7rjJw5ZUCGsXGlkczV3xMZVdZOVeQ6FcWxXfZy8T+vm+LwOsyETlLkmi0WDVNJMCb542QgDGcop45QZoS7lbAxNZShi6fiQgiWX14l7Yt64NeD+8ta46aIowwncArnEMAVNOAOmtACBmN4hld485T34r17H4vWklfMHMMfeJ8/IS2OSA==</latexit><latexit sha1_base64="rx/s5aCvXUP35GpplwAkBrTmD4o=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLPaRpv1rz6/4cZJUEBalBgWa/+tUbxCxVXCOT1Npu4CcYZtSgYJLPKr3U8oSyCR3xrqOaKm7DbH7rjJw5ZUCGsXGlkczV3xMZVdZOVeQ6FcWxXfZy8T+vm+LwOsyETlLkmi0WDVNJMCb542QgDGcop45QZoS7lbAxNZShi6fiQgiWX14l7Yt64NeD+8ta46aIowwncArnEMAVNOAOmtACBmN4hld485T34r17H4vWklfMHMMfeJ8/IS2OSA==</latexit><latexit sha1_base64="rx/s5aCvXUP35GpplwAkBrTmD4o=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLPaRpv1rz6/4cZJUEBalBgWa/+tUbxCxVXCOT1Npu4CcYZtSgYJLPKr3U8oSyCR3xrqOaKm7DbH7rjJw5ZUCGsXGlkczV3xMZVdZOVeQ6FcWxXfZy8T+vm+LwOsyETlLkmi0WDVNJMCb542QgDGcop45QZoS7lbAxNZShi6fiQgiWX14l7Yt64NeD+8ta46aIowwncArnEMAVNOAOmtACBmN4hld485T34r17H4vWklfMHMMfeJ8/IS2OSA==</latexit><latexit sha1_base64="rx/s5aCvXUP35GpplwAkBrTmD4o=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLPaRpv1rz6/4cZJUEBalBgWa/+tUbxCxVXCOT1Npu4CcYZtSgYJLPKr3U8oSyCR3xrqOaKm7DbH7rjJw5ZUCGsXGlkczV3xMZVdZOVeQ6FcWxXfZy8T+vm+LwOsyETlLkmi0WDVNJMCb542QgDGcop45QZoS7lbAxNZShi6fiQgiWX14l7Yt64NeD+8ta46aIowwncArnEMAVNOAOmtACBmN4hld485T34r17H4vWklfMHMMfeJ8/IS2OSA==</latexit>

g(�)

<latexit sha1_base64="jVLRleK787/Z2+P+899rA32Gnew=">AAACGnicbVDLSsNAFJ3UV62vqLhyEyxCXVgSEXQlBTcuK9gHtLFMprft0JlJmJkINeRP3LjVv3Anbt34E36D0zQLrT1w4XDOvXDuCSJGlXbdL6uwtLyyulZcL21sbm3v2Lt7TRXGkkCDhCyU7QArYFRAQ1PNoB1JwDxg0ArG11O/9QBS0VDc6UkEPsdDQQeUYG2knn0wvE+6HOuR4pgxkEnl9CRNe3bZrboZnP/Ey0kZ5aj37O9uPyQxB6EJw0p1PDfSfoKlpoRBWurGCiJMxngIHUMF5qD8JIufOsdG6TuDUJoR2snU3xcJ5kpNeGA2s6Tz3lRc6Elgij7CIq8T68Gln1ARxRoEmYUYxMzRoTPtyelTCUSziSGYSGr+cMgIS0y0abNkCvLm6/hPmmdVz616t+fl2lVeVREdoiNUQR66QDV0g+qogQhK0DN6Qa/Wk/VmvVsfs9WCld/soz+wPn8A5wmhIQ==</latexit><latexit sha1_base64="jVLRleK787/Z2+P+899rA32Gnew=">AAACGnicbVDLSsNAFJ3UV62vqLhyEyxCXVgSEXQlBTcuK9gHtLFMprft0JlJmJkINeRP3LjVv3Anbt34E36D0zQLrT1w4XDOvXDuCSJGlXbdL6uwtLyyulZcL21sbm3v2Lt7TRXGkkCDhCyU7QArYFRAQ1PNoB1JwDxg0ArG11O/9QBS0VDc6UkEPsdDQQeUYG2knn0wvE+6HOuR4pgxkEnl9CRNe3bZrboZnP/Ey0kZ5aj37O9uPyQxB6EJw0p1PDfSfoKlpoRBWurGCiJMxngIHUMF5qD8JIufOsdG6TuDUJoR2snU3xcJ5kpNeGA2s6Tz3lRc6Elgij7CIq8T68Gln1ARxRoEmYUYxMzRoTPtyelTCUSziSGYSGr+cMgIS0y0abNkCvLm6/hPmmdVz616t+fl2lVeVREdoiNUQR66QDV0g+qogQhK0DN6Qa/Wk/VmvVsfs9WCld/soz+wPn8A5wmhIQ==</latexit><latexit sha1_base64="jVLRleK787/Z2+P+899rA32Gnew=">AAACGnicbVDLSsNAFJ3UV62vqLhyEyxCXVgSEXQlBTcuK9gHtLFMprft0JlJmJkINeRP3LjVv3Anbt34E36D0zQLrT1w4XDOvXDuCSJGlXbdL6uwtLyyulZcL21sbm3v2Lt7TRXGkkCDhCyU7QArYFRAQ1PNoB1JwDxg0ArG11O/9QBS0VDc6UkEPsdDQQeUYG2knn0wvE+6HOuR4pgxkEnl9CRNe3bZrboZnP/Ey0kZ5aj37O9uPyQxB6EJw0p1PDfSfoKlpoRBWurGCiJMxngIHUMF5qD8JIufOsdG6TuDUJoR2snU3xcJ5kpNeGA2s6Tz3lRc6Elgij7CIq8T68Gln1ARxRoEmYUYxMzRoTPtyelTCUSziSGYSGr+cMgIS0y0abNkCvLm6/hPmmdVz616t+fl2lVeVREdoiNUQR66QDV0g+qogQhK0DN6Qa/Wk/VmvVsfs9WCld/soz+wPn8A5wmhIQ==</latexit><latexit sha1_base64="jVLRleK787/Z2+P+899rA32Gnew=">AAACGnicbVDLSsNAFJ3UV62vqLhyEyxCXVgSEXQlBTcuK9gHtLFMprft0JlJmJkINeRP3LjVv3Anbt34E36D0zQLrT1w4XDOvXDuCSJGlXbdL6uwtLyyulZcL21sbm3v2Lt7TRXGkkCDhCyU7QArYFRAQ1PNoB1JwDxg0ArG11O/9QBS0VDc6UkEPsdDQQeUYG2knn0wvE+6HOuR4pgxkEnl9CRNe3bZrboZnP/Ey0kZ5aj37O9uPyQxB6EJw0p1PDfSfoKlpoRBWurGCiJMxngIHUMF5qD8JIufOsdG6TuDUJoR2snU3xcJ5kpNeGA2s6Tz3lRc6Elgij7CIq8T68Gln1ARxRoEmYUYxMzRoTPtyelTCUSziSGYSGr+cMgIS0y0abNkCvLm6/hPmmdVz616t+fl2lVeVREdoiNUQR66QDV0g+qogQhK0DN6Qa/Wk/VmvVsfs9WCld/soz+wPn8A5wmhIQ==</latexit>

�(+)
<latexit sha1_base64="K/hyhHL94xYxP88/ls/AtH52iBc=">AAACGXicbVDLSsNAFJ34rPUVddlNsAgVoSQi6EoKblxWsA9oYplMbtqhk0mYmQg1dOF3+AFu9RPciVtXfoG/4TTNQlsPDBzOOZc79/gJo1LZ9pextLyyurZe2ihvbm3v7Jp7+20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj66mfucehKQxv1XjBLwIDzgNKcFKS32z4jIdDvBd5kZYDWWEGQOR1U6OJ5O+WbXrdg5rkTgFqaICzb757QYxSSPgijAsZc+xE+VlWChKGEzKbiohwWSEB9DTlOMIpJflR0ysI60EVhgL/biycvX3RIYjKceRr5P5T+e9qfivJ4BJ+jC/XoUXXkZ5kirgZLY9TJmlYmtakxVQAUSxsSaYCKoPsMgQC0yULrOsm3Hme1gk7dO6Y9edm7Nq47LoqIQq6BDVkIPOUQNdoyZqIYIe0TN6Qa/Gk/FmvBsfs+iSUcwcoD8wPn8AsK2hJQ==</latexit><latexit sha1_base64="K/hyhHL94xYxP88/ls/AtH52iBc=">AAACGXicbVDLSsNAFJ34rPUVddlNsAgVoSQi6EoKblxWsA9oYplMbtqhk0mYmQg1dOF3+AFu9RPciVtXfoG/4TTNQlsPDBzOOZc79/gJo1LZ9pextLyyurZe2ihvbm3v7Jp7+20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj66mfucehKQxv1XjBLwIDzgNKcFKS32z4jIdDvBd5kZYDWWEGQOR1U6OJ5O+WbXrdg5rkTgFqaICzb757QYxSSPgijAsZc+xE+VlWChKGEzKbiohwWSEB9DTlOMIpJflR0ysI60EVhgL/biycvX3RIYjKceRr5P5T+e9qfivJ4BJ+jC/XoUXXkZ5kirgZLY9TJmlYmtakxVQAUSxsSaYCKoPsMgQC0yULrOsm3Hme1gk7dO6Y9edm7Nq47LoqIQq6BDVkIPOUQNdoyZqIYIe0TN6Qa/Gk/FmvBsfs+iSUcwcoD8wPn8AsK2hJQ==</latexit><latexit sha1_base64="K/hyhHL94xYxP88/ls/AtH52iBc=">AAACGXicbVDLSsNAFJ34rPUVddlNsAgVoSQi6EoKblxWsA9oYplMbtqhk0mYmQg1dOF3+AFu9RPciVtXfoG/4TTNQlsPDBzOOZc79/gJo1LZ9pextLyyurZe2ihvbm3v7Jp7+20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj66mfucehKQxv1XjBLwIDzgNKcFKS32z4jIdDvBd5kZYDWWEGQOR1U6OJ5O+WbXrdg5rkTgFqaICzb757QYxSSPgijAsZc+xE+VlWChKGEzKbiohwWSEB9DTlOMIpJflR0ysI60EVhgL/biycvX3RIYjKceRr5P5T+e9qfivJ4BJ+jC/XoUXXkZ5kirgZLY9TJmlYmtakxVQAUSxsSaYCKoPsMgQC0yULrOsm3Hme1gk7dO6Y9edm7Nq47LoqIQq6BDVkIPOUQNdoyZqIYIe0TN6Qa/Gk/FmvBsfs+iSUcwcoD8wPn8AsK2hJQ==</latexit><latexit sha1_base64="K/hyhHL94xYxP88/ls/AtH52iBc=">AAACGXicbVDLSsNAFJ34rPUVddlNsAgVoSQi6EoKblxWsA9oYplMbtqhk0mYmQg1dOF3+AFu9RPciVtXfoG/4TTNQlsPDBzOOZc79/gJo1LZ9pextLyyurZe2ihvbm3v7Jp7+20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj66mfucehKQxv1XjBLwIDzgNKcFKS32z4jIdDvBd5kZYDWWEGQOR1U6OJ5O+WbXrdg5rkTgFqaICzb757QYxSSPgijAsZc+xE+VlWChKGEzKbiohwWSEB9DTlOMIpJflR0ysI60EVhgL/biycvX3RIYjKceRr5P5T+e9qfivJ4BJ+jC/XoUXXkZ5kirgZLY9TJmlYmtakxVQAUSxsSaYCKoPsMgQC0yULrOsm3Hme1gk7dO6Y9edm7Nq47LoqIQq6BDVkIPOUQNdoyZqIYIe0TN6Qa/Gk/FmvBsfs+iSUcwcoD8wPn8AsK2hJQ==</latexit>

�(�)
<latexit sha1_base64="SY3GN5bhA+yFjkNa/mwA5q2eC80=">AAACGXicbVDLSsNAFJ34rPUVddlNsAh1YUlE0JUU3LisYB/QxDKZ3LRDJ5MwMxFq6MLv8APc6ie4E7eu/AJ/w2mahbYeGDiccy537vETRqWy7S9jaXlldW29tFHe3Nre2TX39tsyTgWBFolZLLo+lsAoh5aiikE3EYAjn0HHH11N/c49CEljfqvGCXgRHnAaUoKVlvpmxWU6HOC7zI2wGsoIMwYiq50cTyZ9s2rX7RzWInEKUkUFmn3z2w1ikkbAFWFYyp5jJ8rLsFCUMJiU3VRCgskID6CnKccRSC/Lj5hYR1oJrDAW+nFl5erviQxHUo4jXyfzn857U/FfTwCT9GF+vQovvIzyJFXAyWx7mDJLxda0JiugAohiY00wEVQfYJEhFpgoXWZZN+PM97BI2qd1x647N2fVxmXRUQlV0CGqIQedowa6Rk3UQgQ9omf0gl6NJ+PNeDc+ZtElo5g5QH9gfP4As+WhJw==</latexit><latexit sha1_base64="SY3GN5bhA+yFjkNa/mwA5q2eC80=">AAACGXicbVDLSsNAFJ34rPUVddlNsAh1YUlE0JUU3LisYB/QxDKZ3LRDJ5MwMxFq6MLv8APc6ie4E7eu/AJ/w2mahbYeGDiccy537vETRqWy7S9jaXlldW29tFHe3Nre2TX39tsyTgWBFolZLLo+lsAoh5aiikE3EYAjn0HHH11N/c49CEljfqvGCXgRHnAaUoKVlvpmxWU6HOC7zI2wGsoIMwYiq50cTyZ9s2rX7RzWInEKUkUFmn3z2w1ikkbAFWFYyp5jJ8rLsFCUMJiU3VRCgskID6CnKccRSC/Lj5hYR1oJrDAW+nFl5erviQxHUo4jXyfzn857U/FfTwCT9GF+vQovvIzyJFXAyWx7mDJLxda0JiugAohiY00wEVQfYJEhFpgoXWZZN+PM97BI2qd1x647N2fVxmXRUQlV0CGqIQedowa6Rk3UQgQ9omf0gl6NJ+PNeDc+ZtElo5g5QH9gfP4As+WhJw==</latexit><latexit sha1_base64="SY3GN5bhA+yFjkNa/mwA5q2eC80=">AAACGXicbVDLSsNAFJ34rPUVddlNsAh1YUlE0JUU3LisYB/QxDKZ3LRDJ5MwMxFq6MLv8APc6ie4E7eu/AJ/w2mahbYeGDiccy537vETRqWy7S9jaXlldW29tFHe3Nre2TX39tsyTgWBFolZLLo+lsAoh5aiikE3EYAjn0HHH11N/c49CEljfqvGCXgRHnAaUoKVlvpmxWU6HOC7zI2wGsoIMwYiq50cTyZ9s2rX7RzWInEKUkUFmn3z2w1ikkbAFWFYyp5jJ8rLsFCUMJiU3VRCgskID6CnKccRSC/Lj5hYR1oJrDAW+nFl5erviQxHUo4jXyfzn857U/FfTwCT9GF+vQovvIzyJFXAyWx7mDJLxda0JiugAohiY00wEVQfYJEhFpgoXWZZN+PM97BI2qd1x647N2fVxmXRUQlV0CGqIQedowa6Rk3UQgQ9omf0gl6NJ+PNeDc+ZtElo5g5QH9gfP4As+WhJw==</latexit><latexit sha1_base64="SY3GN5bhA+yFjkNa/mwA5q2eC80=">AAACGXicbVDLSsNAFJ34rPUVddlNsAh1YUlE0JUU3LisYB/QxDKZ3LRDJ5MwMxFq6MLv8APc6ie4E7eu/AJ/w2mahbYeGDiccy537vETRqWy7S9jaXlldW29tFHe3Nre2TX39tsyTgWBFolZLLo+lsAoh5aiikE3EYAjn0HHH11N/c49CEljfqvGCXgRHnAaUoKVlvpmxWU6HOC7zI2wGsoIMwYiq50cTyZ9s2rX7RzWInEKUkUFmn3z2w1ikkbAFWFYyp5jJ8rLsFCUMJiU3VRCgskID6CnKccRSC/Lj5hYR1oJrDAW+nFl5erviQxHUo4jXyfzn857U/FfTwCT9GF+vQovvIzyJFXAyWx7mDJLxda0JiugAohiY00wEVQfYJEhFpgoXWZZN+PM97BI2qd1x647N2fVxmXRUQlV0CGqIQedowa6Rk3UQgQ9omf0gl6NJ+PNeDc+ZtElo5g5QH9gfP4As+WhJw==</latexit>

g(+)

<latexit sha1_base64="77Lhl0RQm4avfvpdvLFgG7l0224=">AAACGnicbVDLSsNAFJ3UV62vqLhyEyxCRSiJCLqSghuXFewD2lgm09t26MwkzEyEGvInbtzqX7gTt278Cb/BaZqF1h64cDjnXjj3BBGjSrvul1VYWl5ZXSuulzY2t7Z37N29pgpjSaBBQhbKdoAVMCqgoalm0I4kYB4waAXj66nfegCpaCju9CQCn+OhoANKsDZSzz4Y3iddjvVIccwYyKRyepKmPbvsVt0Mzn/i5aSMctR79ne3H5KYg9CEYaU6nhtpP8FSU8IgLXVjBREmYzyEjqECc1B+ksVPnWOj9J1BKM0I7WTq74sEc6UmPDCbWdJ5byou9CQwRR9hkdeJ9eDST6iIYg2CzEIMYubo0Jn25PSpBKLZxBBMJDV/OGSEJSbatFkyBXnzdfwnzbOq51a92/Ny7SqvqogO0RGqIA9doBq6QXXUQAQl6Bm9oFfryXqz3q2P2WrBym/20R9Ynz/jw6Ef</latexit><latexit sha1_base64="77Lhl0RQm4avfvpdvLFgG7l0224=">AAACGnicbVDLSsNAFJ3UV62vqLhyEyxCRSiJCLqSghuXFewD2lgm09t26MwkzEyEGvInbtzqX7gTt278Cb/BaZqF1h64cDjnXjj3BBGjSrvul1VYWl5ZXSuulzY2t7Z37N29pgpjSaBBQhbKdoAVMCqgoalm0I4kYB4waAXj66nfegCpaCju9CQCn+OhoANKsDZSzz4Y3iddjvVIccwYyKRyepKmPbvsVt0Mzn/i5aSMctR79ne3H5KYg9CEYaU6nhtpP8FSU8IgLXVjBREmYzyEjqECc1B+ksVPnWOj9J1BKM0I7WTq74sEc6UmPDCbWdJ5byou9CQwRR9hkdeJ9eDST6iIYg2CzEIMYubo0Jn25PSpBKLZxBBMJDV/OGSEJSbatFkyBXnzdfwnzbOq51a92/Ny7SqvqogO0RGqIA9doBq6QXXUQAQl6Bm9oFfryXqz3q2P2WrBym/20R9Ynz/jw6Ef</latexit><latexit sha1_base64="77Lhl0RQm4avfvpdvLFgG7l0224=">AAACGnicbVDLSsNAFJ3UV62vqLhyEyxCRSiJCLqSghuXFewD2lgm09t26MwkzEyEGvInbtzqX7gTt278Cb/BaZqF1h64cDjnXjj3BBGjSrvul1VYWl5ZXSuulzY2t7Z37N29pgpjSaBBQhbKdoAVMCqgoalm0I4kYB4waAXj66nfegCpaCju9CQCn+OhoANKsDZSzz4Y3iddjvVIccwYyKRyepKmPbvsVt0Mzn/i5aSMctR79ne3H5KYg9CEYaU6nhtpP8FSU8IgLXVjBREmYzyEjqECc1B+ksVPnWOj9J1BKM0I7WTq74sEc6UmPDCbWdJ5byou9CQwRR9hkdeJ9eDST6iIYg2CzEIMYubo0Jn25PSpBKLZxBBMJDV/OGSEJSbatFkyBXnzdfwnzbOq51a92/Ny7SqvqogO0RGqIA9doBq6QXXUQAQl6Bm9oFfryXqz3q2P2WrBym/20R9Ynz/jw6Ef</latexit><latexit sha1_base64="77Lhl0RQm4avfvpdvLFgG7l0224=">AAACGnicbVDLSsNAFJ3UV62vqLhyEyxCRSiJCLqSghuXFewD2lgm09t26MwkzEyEGvInbtzqX7gTt278Cb/BaZqF1h64cDjnXjj3BBGjSrvul1VYWl5ZXSuulzY2t7Z37N29pgpjSaBBQhbKdoAVMCqgoalm0I4kYB4waAXj66nfegCpaCju9CQCn+OhoANKsDZSzz4Y3iddjvVIccwYyKRyepKmPbvsVt0Mzn/i5aSMctR79ne3H5KYg9CEYaU6nhtpP8FSU8IgLXVjBREmYzyEjqECc1B+ksVPnWOj9J1BKM0I7WTq74sEc6UmPDCbWdJ5byou9CQwRR9hkdeJ9eDST6iIYg2CzEIMYubo0Jn25PSpBKLZxBBMJDV/OGSEJSbatFkyBXnzdfwnzbOq51a92/Ny7SqvqogO0RGqIA9doBq6QXXUQAQl6Bm9oFfryXqz3q2P2WrBym/20R9Ynz/jw6Ef</latexit>

ỹ(±)

<latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit><latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit><latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit><latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit>

↵
<latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit>

µ
<latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit>

�(+)
<latexit sha1_base64="K/hyhHL94xYxP88/ls/AtH52iBc=">AAACGXicbVDLSsNAFJ34rPUVddlNsAgVoSQi6EoKblxWsA9oYplMbtqhk0mYmQg1dOF3+AFu9RPciVtXfoG/4TTNQlsPDBzOOZc79/gJo1LZ9pextLyyurZe2ihvbm3v7Jp7+20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj66mfucehKQxv1XjBLwIDzgNKcFKS32z4jIdDvBd5kZYDWWEGQOR1U6OJ5O+WbXrdg5rkTgFqaICzb757QYxSSPgijAsZc+xE+VlWChKGEzKbiohwWSEB9DTlOMIpJflR0ysI60EVhgL/biycvX3RIYjKceRr5P5T+e9qfivJ4BJ+jC/XoUXXkZ5kirgZLY9TJmlYmtakxVQAUSxsSaYCKoPsMgQC0yULrOsm3Hme1gk7dO6Y9edm7Nq47LoqIQq6BDVkIPOUQNdoyZqIYIe0TN6Qa/Gk/FmvBsfs+iSUcwcoD8wPn8AsK2hJQ==</latexit><latexit sha1_base64="K/hyhHL94xYxP88/ls/AtH52iBc=">AAACGXicbVDLSsNAFJ34rPUVddlNsAgVoSQi6EoKblxWsA9oYplMbtqhk0mYmQg1dOF3+AFu9RPciVtXfoG/4TTNQlsPDBzOOZc79/gJo1LZ9pextLyyurZe2ihvbm3v7Jp7+20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj66mfucehKQxv1XjBLwIDzgNKcFKS32z4jIdDvBd5kZYDWWEGQOR1U6OJ5O+WbXrdg5rkTgFqaICzb757QYxSSPgijAsZc+xE+VlWChKGEzKbiohwWSEB9DTlOMIpJflR0ysI60EVhgL/biycvX3RIYjKceRr5P5T+e9qfivJ4BJ+jC/XoUXXkZ5kirgZLY9TJmlYmtakxVQAUSxsSaYCKoPsMgQC0yULrOsm3Hme1gk7dO6Y9edm7Nq47LoqIQq6BDVkIPOUQNdoyZqIYIe0TN6Qa/Gk/FmvBsfs+iSUcwcoD8wPn8AsK2hJQ==</latexit><latexit sha1_base64="K/hyhHL94xYxP88/ls/AtH52iBc=">AAACGXicbVDLSsNAFJ34rPUVddlNsAgVoSQi6EoKblxWsA9oYplMbtqhk0mYmQg1dOF3+AFu9RPciVtXfoG/4TTNQlsPDBzOOZc79/gJo1LZ9pextLyyurZe2ihvbm3v7Jp7+20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj66mfucehKQxv1XjBLwIDzgNKcFKS32z4jIdDvBd5kZYDWWEGQOR1U6OJ5O+WbXrdg5rkTgFqaICzb757QYxSSPgijAsZc+xE+VlWChKGEzKbiohwWSEB9DTlOMIpJflR0ysI60EVhgL/biycvX3RIYjKceRr5P5T+e9qfivJ4BJ+jC/XoUXXkZ5kirgZLY9TJmlYmtakxVQAUSxsSaYCKoPsMgQC0yULrOsm3Hme1gk7dO6Y9edm7Nq47LoqIQq6BDVkIPOUQNdoyZqIYIe0TN6Qa/Gk/FmvBsfs+iSUcwcoD8wPn8AsK2hJQ==</latexit><latexit sha1_base64="K/hyhHL94xYxP88/ls/AtH52iBc=">AAACGXicbVDLSsNAFJ34rPUVddlNsAgVoSQi6EoKblxWsA9oYplMbtqhk0mYmQg1dOF3+AFu9RPciVtXfoG/4TTNQlsPDBzOOZc79/gJo1LZ9pextLyyurZe2ihvbm3v7Jp7+20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj66mfucehKQxv1XjBLwIDzgNKcFKS32z4jIdDvBd5kZYDWWEGQOR1U6OJ5O+WbXrdg5rkTgFqaICzb757QYxSSPgijAsZc+xE+VlWChKGEzKbiohwWSEB9DTlOMIpJflR0ysI60EVhgL/biycvX3RIYjKceRr5P5T+e9qfivJ4BJ+jC/XoUXXkZ5kirgZLY9TJmlYmtakxVQAUSxsSaYCKoPsMgQC0yULrOsm3Hme1gk7dO6Y9edm7Nq47LoqIQq6BDVkIPOUQNdoyZqIYIe0TN6Qa/Gk/FmvBsfs+iSUcwcoD8wPn8AsK2hJQ==</latexit>

�(�)
<latexit sha1_base64="SY3GN5bhA+yFjkNa/mwA5q2eC80=">AAACGXicbVDLSsNAFJ34rPUVddlNsAh1YUlE0JUU3LisYB/QxDKZ3LRDJ5MwMxFq6MLv8APc6ie4E7eu/AJ/w2mahbYeGDiccy537vETRqWy7S9jaXlldW29tFHe3Nre2TX39tsyTgWBFolZLLo+lsAoh5aiikE3EYAjn0HHH11N/c49CEljfqvGCXgRHnAaUoKVlvpmxWU6HOC7zI2wGsoIMwYiq50cTyZ9s2rX7RzWInEKUkUFmn3z2w1ikkbAFWFYyp5jJ8rLsFCUMJiU3VRCgskID6CnKccRSC/Lj5hYR1oJrDAW+nFl5erviQxHUo4jXyfzn857U/FfTwCT9GF+vQovvIzyJFXAyWx7mDJLxda0JiugAohiY00wEVQfYJEhFpgoXWZZN+PM97BI2qd1x647N2fVxmXRUQlV0CGqIQedowa6Rk3UQgQ9omf0gl6NJ+PNeDc+ZtElo5g5QH9gfP4As+WhJw==</latexit><latexit sha1_base64="SY3GN5bhA+yFjkNa/mwA5q2eC80=">AAACGXicbVDLSsNAFJ34rPUVddlNsAh1YUlE0JUU3LisYB/QxDKZ3LRDJ5MwMxFq6MLv8APc6ie4E7eu/AJ/w2mahbYeGDiccy537vETRqWy7S9jaXlldW29tFHe3Nre2TX39tsyTgWBFolZLLo+lsAoh5aiikE3EYAjn0HHH11N/c49CEljfqvGCXgRHnAaUoKVlvpmxWU6HOC7zI2wGsoIMwYiq50cTyZ9s2rX7RzWInEKUkUFmn3z2w1ikkbAFWFYyp5jJ8rLsFCUMJiU3VRCgskID6CnKccRSC/Lj5hYR1oJrDAW+nFl5erviQxHUo4jXyfzn857U/FfTwCT9GF+vQovvIzyJFXAyWx7mDJLxda0JiugAohiY00wEVQfYJEhFpgoXWZZN+PM97BI2qd1x647N2fVxmXRUQlV0CGqIQedowa6Rk3UQgQ9omf0gl6NJ+PNeDc+ZtElo5g5QH9gfP4As+WhJw==</latexit><latexit sha1_base64="SY3GN5bhA+yFjkNa/mwA5q2eC80=">AAACGXicbVDLSsNAFJ34rPUVddlNsAh1YUlE0JUU3LisYB/QxDKZ3LRDJ5MwMxFq6MLv8APc6ie4E7eu/AJ/w2mahbYeGDiccy537vETRqWy7S9jaXlldW29tFHe3Nre2TX39tsyTgWBFolZLLo+lsAoh5aiikE3EYAjn0HHH11N/c49CEljfqvGCXgRHnAaUoKVlvpmxWU6HOC7zI2wGsoIMwYiq50cTyZ9s2rX7RzWInEKUkUFmn3z2w1ikkbAFWFYyp5jJ8rLsFCUMJiU3VRCgskID6CnKccRSC/Lj5hYR1oJrDAW+nFl5erviQxHUo4jXyfzn857U/FfTwCT9GF+vQovvIzyJFXAyWx7mDJLxda0JiugAohiY00wEVQfYJEhFpgoXWZZN+PM97BI2qd1x647N2fVxmXRUQlV0CGqIQedowa6Rk3UQgQ9omf0gl6NJ+PNeDc+ZtElo5g5QH9gfP4As+WhJw==</latexit><latexit sha1_base64="SY3GN5bhA+yFjkNa/mwA5q2eC80=">AAACGXicbVDLSsNAFJ34rPUVddlNsAh1YUlE0JUU3LisYB/QxDKZ3LRDJ5MwMxFq6MLv8APc6ie4E7eu/AJ/w2mahbYeGDiccy537vETRqWy7S9jaXlldW29tFHe3Nre2TX39tsyTgWBFolZLLo+lsAoh5aiikE3EYAjn0HHH11N/c49CEljfqvGCXgRHnAaUoKVlvpmxWU6HOC7zI2wGsoIMwYiq50cTyZ9s2rX7RzWInEKUkUFmn3z2w1ikkbAFWFYyp5jJ8rLsFCUMJiU3VRCgskID6CnKccRSC/Lj5hYR1oJrDAW+nFl5erviQxHUo4jXyfzn857U/FfTwCT9GF+vQovvIzyJFXAyWx7mDJLxda0JiugAohiY00wEVQfYJEhFpgoXWZZN+PM97BI2qd1x647N2fVxmXRUQlV0CGqIQedowa6Rk3UQgQ9omf0gl6NJ+PNeDc+ZtElo5g5QH9gfP4As+WhJw==</latexit>

ỹ(+)

<latexit sha1_base64="Ag1remozIJoESEiHGl3iJPUVltQ=">AAACInicbVDLSsNAFJ3UV62vqEsRgkWoCCURQVdScOOygn1AE8tkctMOnTyYmQgxZOWvuHGrf+FOXAl+g9/gtM1C2x64cDjnXjj3uDGjQprml1ZaWl5ZXSuvVzY2t7Z39N29togSTqBFIhbxrosFMBpCS1LJoBtzwIHLoOOOrsd+5wG4oFF4J9MYnAAPQupTgqWS+vqhLSnzIEvz+8wOsByKADMGPKudnuR5X6+adXMCY55YBamiAs2+/mN7EUkCCCVhWIieZcbSyTCXlDDIK3YiIMZkhAfQUzTEAQgnm7yRG8dK8Qw/4mpCaUzUvxcZDoRIA1dtTpLOemNxoceBCfoIi7xeIv1LJ6NhnEgIyTSEnzBDRsa4L8OjHIhkqSKYcKr+MMgQc0ykarWiCrJm65gn7bO6Zdat2/Nq46qoqowO0BGqIQtdoAa6QU3UQgQ9oRf0it60Z+1d+9A+p6slrbjZR/+gff8CBdek5w==</latexit><latexit sha1_base64="Ag1remozIJoESEiHGl3iJPUVltQ=">AAACInicbVDLSsNAFJ3UV62vqEsRgkWoCCURQVdScOOygn1AE8tkctMOnTyYmQgxZOWvuHGrf+FOXAl+g9/gtM1C2x64cDjnXjj3uDGjQprml1ZaWl5ZXSuvVzY2t7Z39N29togSTqBFIhbxrosFMBpCS1LJoBtzwIHLoOOOrsd+5wG4oFF4J9MYnAAPQupTgqWS+vqhLSnzIEvz+8wOsByKADMGPKudnuR5X6+adXMCY55YBamiAs2+/mN7EUkCCCVhWIieZcbSyTCXlDDIK3YiIMZkhAfQUzTEAQgnm7yRG8dK8Qw/4mpCaUzUvxcZDoRIA1dtTpLOemNxoceBCfoIi7xeIv1LJ6NhnEgIyTSEnzBDRsa4L8OjHIhkqSKYcKr+MMgQc0ykarWiCrJm65gn7bO6Zdat2/Nq46qoqowO0BGqIQtdoAa6QU3UQgQ9oRf0it60Z+1d+9A+p6slrbjZR/+gff8CBdek5w==</latexit><latexit sha1_base64="Ag1remozIJoESEiHGl3iJPUVltQ=">AAACInicbVDLSsNAFJ3UV62vqEsRgkWoCCURQVdScOOygn1AE8tkctMOnTyYmQgxZOWvuHGrf+FOXAl+g9/gtM1C2x64cDjnXjj3uDGjQprml1ZaWl5ZXSuvVzY2t7Z39N29togSTqBFIhbxrosFMBpCS1LJoBtzwIHLoOOOrsd+5wG4oFF4J9MYnAAPQupTgqWS+vqhLSnzIEvz+8wOsByKADMGPKudnuR5X6+adXMCY55YBamiAs2+/mN7EUkCCCVhWIieZcbSyTCXlDDIK3YiIMZkhAfQUzTEAQgnm7yRG8dK8Qw/4mpCaUzUvxcZDoRIA1dtTpLOemNxoceBCfoIi7xeIv1LJ6NhnEgIyTSEnzBDRsa4L8OjHIhkqSKYcKr+MMgQc0ykarWiCrJm65gn7bO6Zdat2/Nq46qoqowO0BGqIQtdoAa6QU3UQgQ9oRf0it60Z+1d+9A+p6slrbjZR/+gff8CBdek5w==</latexit><latexit sha1_base64="Ag1remozIJoESEiHGl3iJPUVltQ=">AAACInicbVDLSsNAFJ3UV62vqEsRgkWoCCURQVdScOOygn1AE8tkctMOnTyYmQgxZOWvuHGrf+FOXAl+g9/gtM1C2x64cDjnXjj3uDGjQprml1ZaWl5ZXSuvVzY2t7Z39N29togSTqBFIhbxrosFMBpCS1LJoBtzwIHLoOOOrsd+5wG4oFF4J9MYnAAPQupTgqWS+vqhLSnzIEvz+8wOsByKADMGPKudnuR5X6+adXMCY55YBamiAs2+/mN7EUkCCCVhWIieZcbSyTCXlDDIK3YiIMZkhAfQUzTEAQgnm7yRG8dK8Qw/4mpCaUzUvxcZDoRIA1dtTpLOemNxoceBCfoIi7xeIv1LJ6NhnEgIyTSEnzBDRsa4L8OjHIhkqSKYcKr+MMgQc0ykarWiCrJm65gn7bO6Zdat2/Nq46qoqowO0BGqIQtdoAa6QU3UQgQ9oRf0it60Z+1d+9A+p6slrbjZR/+gff8CBdek5w==</latexit>

↵
<latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit>

µ
<latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit><latexit sha1_base64="UFOX4zita877+Ikq+M6IENXmVh0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ300FVZr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AV1ejdY=</latexit>

ỹ(±)

<latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit><latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit><latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit><latexit sha1_base64="PReL3nbb5Njp3rP+7Xilw1f/zP0=">AAACJHicbVDLSsNAFJ34rPVVdenCYBHqpiQi6EoKblxWsA9oaplMb9qhM5MwMxFiyNJfceNW/8KduHDjJ/gNTtMutO2BC4dz7oVzjx8xqrTjfFlLyyura+uFjeLm1vbObmlvv6nCWBJokJCFsu1jBYwKaGiqGbQjCZj7DFr+6Hrstx5AKhqKO51E0OV4IGhACdZG6pWOPE1ZH9Iku089jvVQccwYyLTiRfw0y3qlslN1ctjzxJ2SMpqi3iv9eP2QxByEJgwr1XGdSHdTLDUlDLKiFyuIMBnhAXQMFZiD6qb5I5l9YpS+HYTSjNB2rv69SDFXKuG+2cyzznpjcaEngSn6CIu8TqyDy25KRRRrEGQSIoiZrUN73JjdpxKIZokhmEhq/rDJEEtMtOm1aApyZ+uYJ82zqutU3dvzcu1qWlUBHaJjVEEuukA1dIPqqIEIekIv6BW9Wc/Wu/VhfU5Wl6zpzQH6B+v7FyBZpgk=</latexit>

g(�)

<latexit sha1_base64="jVLRleK787/Z2+P+899rA32Gnew=">AAACGnicbVDLSsNAFJ3UV62vqLhyEyxCXVgSEXQlBTcuK9gHtLFMprft0JlJmJkINeRP3LjVv3Anbt34E36D0zQLrT1w4XDOvXDuCSJGlXbdL6uwtLyyulZcL21sbm3v2Lt7TRXGkkCDhCyU7QArYFRAQ1PNoB1JwDxg0ArG11O/9QBS0VDc6UkEPsdDQQeUYG2knn0wvE+6HOuR4pgxkEnl9CRNe3bZrboZnP/Ey0kZ5aj37O9uPyQxB6EJw0p1PDfSfoKlpoRBWurGCiJMxngIHUMF5qD8JIufOsdG6TuDUJoR2snU3xcJ5kpNeGA2s6Tz3lRc6Elgij7CIq8T68Gln1ARxRoEmYUYxMzRoTPtyelTCUSziSGYSGr+cMgIS0y0abNkCvLm6/hPmmdVz616t+fl2lVeVREdoiNUQR66QDV0g+qogQhK0DN6Qa/Wk/VmvVsfs9WCld/soz+wPn8A5wmhIQ==</latexit><latexit sha1_base64="jVLRleK787/Z2+P+899rA32Gnew=">AAACGnicbVDLSsNAFJ3UV62vqLhyEyxCXVgSEXQlBTcuK9gHtLFMprft0JlJmJkINeRP3LjVv3Anbt34E36D0zQLrT1w4XDOvXDuCSJGlXbdL6uwtLyyulZcL21sbm3v2Lt7TRXGkkCDhCyU7QArYFRAQ1PNoB1JwDxg0ArG11O/9QBS0VDc6UkEPsdDQQeUYG2knn0wvE+6HOuR4pgxkEnl9CRNe3bZrboZnP/Ey0kZ5aj37O9uPyQxB6EJw0p1PDfSfoKlpoRBWurGCiJMxngIHUMF5qD8JIufOsdG6TuDUJoR2snU3xcJ5kpNeGA2s6Tz3lRc6Elgij7CIq8T68Gln1ARxRoEmYUYxMzRoTPtyelTCUSziSGYSGr+cMgIS0y0abNkCvLm6/hPmmdVz616t+fl2lVeVREdoiNUQR66QDV0g+qogQhK0DN6Qa/Wk/VmvVsfs9WCld/soz+wPn8A5wmhIQ==</latexit><latexit sha1_base64="jVLRleK787/Z2+P+899rA32Gnew=">AAACGnicbVDLSsNAFJ3UV62vqLhyEyxCXVgSEXQlBTcuK9gHtLFMprft0JlJmJkINeRP3LjVv3Anbt34E36D0zQLrT1w4XDOvXDuCSJGlXbdL6uwtLyyulZcL21sbm3v2Lt7TRXGkkCDhCyU7QArYFRAQ1PNoB1JwDxg0ArG11O/9QBS0VDc6UkEPsdDQQeUYG2knn0wvE+6HOuR4pgxkEnl9CRNe3bZrboZnP/Ey0kZ5aj37O9uPyQxB6EJw0p1PDfSfoKlpoRBWurGCiJMxngIHUMF5qD8JIufOsdG6TuDUJoR2snU3xcJ5kpNeGA2s6Tz3lRc6Elgij7CIq8T68Gln1ARxRoEmYUYxMzRoTPtyelTCUSziSGYSGr+cMgIS0y0abNkCvLm6/hPmmdVz616t+fl2lVeVREdoiNUQR66QDV0g+qogQhK0DN6Qa/Wk/VmvVsfs9WCld/soz+wPn8A5wmhIQ==</latexit><latexit sha1_base64="jVLRleK787/Z2+P+899rA32Gnew=">AAACGnicbVDLSsNAFJ3UV62vqLhyEyxCXVgSEXQlBTcuK9gHtLFMprft0JlJmJkINeRP3LjVv3Anbt34E36D0zQLrT1w4XDOvXDuCSJGlXbdL6uwtLyyulZcL21sbm3v2Lt7TRXGkkCDhCyU7QArYFRAQ1PNoB1JwDxg0ArG11O/9QBS0VDc6UkEPsdDQQeUYG2knn0wvE+6HOuR4pgxkEnl9CRNe3bZrboZnP/Ey0kZ5aj37O9uPyQxB6EJw0p1PDfSfoKlpoRBWurGCiJMxngIHUMF5qD8JIufOsdG6TuDUJoR2snU3xcJ5kpNeGA2s6Tz3lRc6Elgij7CIq8T68Gln1ARxRoEmYUYxMzRoTPtyelTCUSziSGYSGr+cMgIS0y0abNkCvLm6/hPmmdVz616t+fl2lVeVREdoiNUQR66QDV0g+qogQhK0DN6Qa/Wk/VmvVsfs9WCld/soz+wPn8A5wmhIQ==</latexit>

�(+)
<latexit sha1_base64="K/hyhHL94xYxP88/ls/AtH52iBc=">AAACGXicbVDLSsNAFJ34rPUVddlNsAgVoSQi6EoKblxWsA9oYplMbtqhk0mYmQg1dOF3+AFu9RPciVtXfoG/4TTNQlsPDBzOOZc79/gJo1LZ9pextLyyurZe2ihvbm3v7Jp7+20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj66mfucehKQxv1XjBLwIDzgNKcFKS32z4jIdDvBd5kZYDWWEGQOR1U6OJ5O+WbXrdg5rkTgFqaICzb757QYxSSPgijAsZc+xE+VlWChKGEzKbiohwWSEB9DTlOMIpJflR0ysI60EVhgL/biycvX3RIYjKceRr5P5T+e9qfivJ4BJ+jC/XoUXXkZ5kirgZLY9TJmlYmtakxVQAUSxsSaYCKoPsMgQC0yULrOsm3Hme1gk7dO6Y9edm7Nq47LoqIQq6BDVkIPOUQNdoyZqIYIe0TN6Qa/Gk/FmvBsfs+iSUcwcoD8wPn8AsK2hJQ==</latexit><latexit sha1_base64="K/hyhHL94xYxP88/ls/AtH52iBc=">AAACGXicbVDLSsNAFJ34rPUVddlNsAgVoSQi6EoKblxWsA9oYplMbtqhk0mYmQg1dOF3+AFu9RPciVtXfoG/4TTNQlsPDBzOOZc79/gJo1LZ9pextLyyurZe2ihvbm3v7Jp7+20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj66mfucehKQxv1XjBLwIDzgNKcFKS32z4jIdDvBd5kZYDWWEGQOR1U6OJ5O+WbXrdg5rkTgFqaICzb757QYxSSPgijAsZc+xE+VlWChKGEzKbiohwWSEB9DTlOMIpJflR0ysI60EVhgL/biycvX3RIYjKceRr5P5T+e9qfivJ4BJ+jC/XoUXXkZ5kirgZLY9TJmlYmtakxVQAUSxsSaYCKoPsMgQC0yULrOsm3Hme1gk7dO6Y9edm7Nq47LoqIQq6BDVkIPOUQNdoyZqIYIe0TN6Qa/Gk/FmvBsfs+iSUcwcoD8wPn8AsK2hJQ==</latexit><latexit sha1_base64="K/hyhHL94xYxP88/ls/AtH52iBc=">AAACGXicbVDLSsNAFJ34rPUVddlNsAgVoSQi6EoKblxWsA9oYplMbtqhk0mYmQg1dOF3+AFu9RPciVtXfoG/4TTNQlsPDBzOOZc79/gJo1LZ9pextLyyurZe2ihvbm3v7Jp7+20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj66mfucehKQxv1XjBLwIDzgNKcFKS32z4jIdDvBd5kZYDWWEGQOR1U6OJ5O+WbXrdg5rkTgFqaICzb757QYxSSPgijAsZc+xE+VlWChKGEzKbiohwWSEB9DTlOMIpJflR0ysI60EVhgL/biycvX3RIYjKceRr5P5T+e9qfivJ4BJ+jC/XoUXXkZ5kirgZLY9TJmlYmtakxVQAUSxsSaYCKoPsMgQC0yULrOsm3Hme1gk7dO6Y9edm7Nq47LoqIQq6BDVkIPOUQNdoyZqIYIe0TN6Qa/Gk/FmvBsfs+iSUcwcoD8wPn8AsK2hJQ==</latexit><latexit sha1_base64="K/hyhHL94xYxP88/ls/AtH52iBc=">AAACGXicbVDLSsNAFJ34rPUVddlNsAgVoSQi6EoKblxWsA9oYplMbtqhk0mYmQg1dOF3+AFu9RPciVtXfoG/4TTNQlsPDBzOOZc79/gJo1LZ9pextLyyurZe2ihvbm3v7Jp7+20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj66mfucehKQxv1XjBLwIDzgNKcFKS32z4jIdDvBd5kZYDWWEGQOR1U6OJ5O+WbXrdg5rkTgFqaICzb757QYxSSPgijAsZc+xE+VlWChKGEzKbiohwWSEB9DTlOMIpJflR0ysI60EVhgL/biycvX3RIYjKceRr5P5T+e9qfivJ4BJ+jC/XoUXXkZ5kirgZLY9TJmlYmtakxVQAUSxsSaYCKoPsMgQC0yULrOsm3Hme1gk7dO6Y9edm7Nq47LoqIQq6BDVkIPOUQNdoyZqIYIe0TN6Qa/Gk/FmvBsfs+iSUcwcoD8wPn8AsK2hJQ==</latexit>

�(�)
<latexit sha1_base64="SY3GN5bhA+yFjkNa/mwA5q2eC80=">AAACGXicbVDLSsNAFJ34rPUVddlNsAh1YUlE0JUU3LisYB/QxDKZ3LRDJ5MwMxFq6MLv8APc6ie4E7eu/AJ/w2mahbYeGDiccy537vETRqWy7S9jaXlldW29tFHe3Nre2TX39tsyTgWBFolZLLo+lsAoh5aiikE3EYAjn0HHH11N/c49CEljfqvGCXgRHnAaUoKVlvpmxWU6HOC7zI2wGsoIMwYiq50cTyZ9s2rX7RzWInEKUkUFmn3z2w1ikkbAFWFYyp5jJ8rLsFCUMJiU3VRCgskID6CnKccRSC/Lj5hYR1oJrDAW+nFl5erviQxHUo4jXyfzn857U/FfTwCT9GF+vQovvIzyJFXAyWx7mDJLxda0JiugAohiY00wEVQfYJEhFpgoXWZZN+PM97BI2qd1x647N2fVxmXRUQlV0CGqIQedowa6Rk3UQgQ9omf0gl6NJ+PNeDc+ZtElo5g5QH9gfP4As+WhJw==</latexit><latexit sha1_base64="SY3GN5bhA+yFjkNa/mwA5q2eC80=">AAACGXicbVDLSsNAFJ34rPUVddlNsAh1YUlE0JUU3LisYB/QxDKZ3LRDJ5MwMxFq6MLv8APc6ie4E7eu/AJ/w2mahbYeGDiccy537vETRqWy7S9jaXlldW29tFHe3Nre2TX39tsyTgWBFolZLLo+lsAoh5aiikE3EYAjn0HHH11N/c49CEljfqvGCXgRHnAaUoKVlvpmxWU6HOC7zI2wGsoIMwYiq50cTyZ9s2rX7RzWInEKUkUFmn3z2w1ikkbAFWFYyp5jJ8rLsFCUMJiU3VRCgskID6CnKccRSC/Lj5hYR1oJrDAW+nFl5erviQxHUo4jXyfzn857U/FfTwCT9GF+vQovvIzyJFXAyWx7mDJLxda0JiugAohiY00wEVQfYJEhFpgoXWZZN+PM97BI2qd1x647N2fVxmXRUQlV0CGqIQedowa6Rk3UQgQ9omf0gl6NJ+PNeDc+ZtElo5g5QH9gfP4As+WhJw==</latexit><latexit sha1_base64="SY3GN5bhA+yFjkNa/mwA5q2eC80=">AAACGXicbVDLSsNAFJ34rPUVddlNsAh1YUlE0JUU3LisYB/QxDKZ3LRDJ5MwMxFq6MLv8APc6ie4E7eu/AJ/w2mahbYeGDiccy537vETRqWy7S9jaXlldW29tFHe3Nre2TX39tsyTgWBFolZLLo+lsAoh5aiikE3EYAjn0HHH11N/c49CEljfqvGCXgRHnAaUoKVlvpmxWU6HOC7zI2wGsoIMwYiq50cTyZ9s2rX7RzWInEKUkUFmn3z2w1ikkbAFWFYyp5jJ8rLsFCUMJiU3VRCgskID6CnKccRSC/Lj5hYR1oJrDAW+nFl5erviQxHUo4jXyfzn857U/FfTwCT9GF+vQovvIzyJFXAyWx7mDJLxda0JiugAohiY00wEVQfYJEhFpgoXWZZN+PM97BI2qd1x647N2fVxmXRUQlV0CGqIQedowa6Rk3UQgQ9omf0gl6NJ+PNeDc+ZtElo5g5QH9gfP4As+WhJw==</latexit><latexit sha1_base64="SY3GN5bhA+yFjkNa/mwA5q2eC80=">AAACGXicbVDLSsNAFJ34rPUVddlNsAh1YUlE0JUU3LisYB/QxDKZ3LRDJ5MwMxFq6MLv8APc6ie4E7eu/AJ/w2mahbYeGDiccy537vETRqWy7S9jaXlldW29tFHe3Nre2TX39tsyTgWBFolZLLo+lsAoh5aiikE3EYAjn0HHH11N/c49CEljfqvGCXgRHnAaUoKVlvpmxWU6HOC7zI2wGsoIMwYiq50cTyZ9s2rX7RzWInEKUkUFmn3z2w1ikkbAFWFYyp5jJ8rLsFCUMJiU3VRCgskID6CnKccRSC/Lj5hYR1oJrDAW+nFl5erviQxHUo4jXyfzn857U/FfTwCT9GF+vQovvIzyJFXAyWx7mDJLxda0JiugAohiY00wEVQfYJEhFpgoXWZZN+PM97BI2qd1x647N2fVxmXRUQlV0CGqIQedowa6Rk3UQgQ9omf0gl6NJ+PNeDc+ZtElo5g5QH9gfP4As+WhJw==</latexit>

observed
<latexit sha1_base64="UheCCfyZS1wyN8nNAp+mhrKcVGo=">AAACC3icbZDNSgMxFIXv+FvrX9Wlm2ARXJWZbtRdwY3LCvYH2qFkMnfa0MxkSDKFWvoIbtzqW7gTtz6EL+EzmLaz0LYHAodz7oWbL0gF18Z1v52Nza3tnd3CXnH/4PDouHRy2tQyUwwbTAqp2gHVKHiCDcONwHaqkMaBwFYwvJv1rREqzWXyaMYp+jHtJzzijBobtWWgUY0w7JXKbsWdi6waLzdlyFXvlX66oWRZjIlhgmrd8dzU+BOqDGcCp8VupjGlbEj72LE2oTFqfzK/d0oubRKSSCr7EkPm6d+NCY21HseBnYypGejlbhau7RQKzZ9wXdfJTHTjT3iSZgYTtjgiygQxkszAkJArZEaMraFMcfsPwgZUUWYsvqIF5C3jWDXNasVzK95DtVy7zVEV4Bwu4Ao8uIYa3EMdGsBAwAu8wpvz7Lw7H87nYnTDyXfO4J+cr19s4JuY</latexit><latexit sha1_base64="UheCCfyZS1wyN8nNAp+mhrKcVGo=">AAACC3icbZDNSgMxFIXv+FvrX9Wlm2ARXJWZbtRdwY3LCvYH2qFkMnfa0MxkSDKFWvoIbtzqW7gTtz6EL+EzmLaz0LYHAodz7oWbL0gF18Z1v52Nza3tnd3CXnH/4PDouHRy2tQyUwwbTAqp2gHVKHiCDcONwHaqkMaBwFYwvJv1rREqzWXyaMYp+jHtJzzijBobtWWgUY0w7JXKbsWdi6waLzdlyFXvlX66oWRZjIlhgmrd8dzU+BOqDGcCp8VupjGlbEj72LE2oTFqfzK/d0oubRKSSCr7EkPm6d+NCY21HseBnYypGejlbhau7RQKzZ9wXdfJTHTjT3iSZgYTtjgiygQxkszAkJArZEaMraFMcfsPwgZUUWYsvqIF5C3jWDXNasVzK95DtVy7zVEV4Bwu4Ao8uIYa3EMdGsBAwAu8wpvz7Lw7H87nYnTDyXfO4J+cr19s4JuY</latexit><latexit sha1_base64="UheCCfyZS1wyN8nNAp+mhrKcVGo=">AAACC3icbZDNSgMxFIXv+FvrX9Wlm2ARXJWZbtRdwY3LCvYH2qFkMnfa0MxkSDKFWvoIbtzqW7gTtz6EL+EzmLaz0LYHAodz7oWbL0gF18Z1v52Nza3tnd3CXnH/4PDouHRy2tQyUwwbTAqp2gHVKHiCDcONwHaqkMaBwFYwvJv1rREqzWXyaMYp+jHtJzzijBobtWWgUY0w7JXKbsWdi6waLzdlyFXvlX66oWRZjIlhgmrd8dzU+BOqDGcCp8VupjGlbEj72LE2oTFqfzK/d0oubRKSSCr7EkPm6d+NCY21HseBnYypGejlbhau7RQKzZ9wXdfJTHTjT3iSZgYTtjgiygQxkszAkJArZEaMraFMcfsPwgZUUWYsvqIF5C3jWDXNasVzK95DtVy7zVEV4Bwu4Ao8uIYa3EMdGsBAwAu8wpvz7Lw7H87nYnTDyXfO4J+cr19s4JuY</latexit><latexit sha1_base64="UheCCfyZS1wyN8nNAp+mhrKcVGo=">AAACC3icbZDNSgMxFIXv+FvrX9Wlm2ARXJWZbtRdwY3LCvYH2qFkMnfa0MxkSDKFWvoIbtzqW7gTtz6EL+EzmLaz0LYHAodz7oWbL0gF18Z1v52Nza3tnd3CXnH/4PDouHRy2tQyUwwbTAqp2gHVKHiCDcONwHaqkMaBwFYwvJv1rREqzWXyaMYp+jHtJzzijBobtWWgUY0w7JXKbsWdi6waLzdlyFXvlX66oWRZjIlhgmrd8dzU+BOqDGcCp8VupjGlbEj72LE2oTFqfzK/d0oubRKSSCr7EkPm6d+NCY21HseBnYypGejlbhau7RQKzZ9wXdfJTHTjT3iSZgYTtjgiygQxkszAkJArZEaMraFMcfsPwgZUUWYsvqIF5C3jWDXNasVzK95DtVy7zVEV4Bwu4Ao8uIYa3EMdGsBAwAu8wpvz7Lw7H87nYnTDyXfO4J+cr19s4JuY</latexit>

deterministic
<latexit sha1_base64="QcCpJIszCaaQ0MwUZ2XhzLsUrRU=">AAACEHicbVC7TsNAEFyHVwivACWNRYREFdlpgC4SDWWQyENKrOh83iSn3J3N3RkpWPkJGlr4CzpEyx/wE3wDl8QFhIy00mhm9253woQzbTzvyymsrW9sbhW3Szu7e/sH5cOjlo5TRbFJYx6rTkg0ciaxaZjh2EkUEhFybIfj65nffkClWSzvzCTBQJChZANGibFSEKFBJZi0HzHaL1e8qjeH+5/4OalAjka//N2LYpoKlIZyonXX9xITZETZxzhOS71UY0LomAyxa6kkAnWQzZeeumdWidxBrGxJ487V3xMZEVpPRGg7BTEjvezNxJWeQq7ZI67yuqkZXAYZk0lqUNLFEoOUuyZ2Z+m4EVNIDZ9YQqhi9g6Xjogi1MakSzYgfzmO/6RVq/pe1b+tVepXeVRFOIFTOAcfLqAON9CAJlC4h2d4gVfnyXlz3p2PRWvByWeO4Q+czx+leJ3k</latexit><latexit sha1_base64="QcCpJIszCaaQ0MwUZ2XhzLsUrRU=">AAACEHicbVC7TsNAEFyHVwivACWNRYREFdlpgC4SDWWQyENKrOh83iSn3J3N3RkpWPkJGlr4CzpEyx/wE3wDl8QFhIy00mhm9253woQzbTzvyymsrW9sbhW3Szu7e/sH5cOjlo5TRbFJYx6rTkg0ciaxaZjh2EkUEhFybIfj65nffkClWSzvzCTBQJChZANGibFSEKFBJZi0HzHaL1e8qjeH+5/4OalAjka//N2LYpoKlIZyonXX9xITZETZxzhOS71UY0LomAyxa6kkAnWQzZeeumdWidxBrGxJ487V3xMZEVpPRGg7BTEjvezNxJWeQq7ZI67yuqkZXAYZk0lqUNLFEoOUuyZ2Z+m4EVNIDZ9YQqhi9g6Xjogi1MakSzYgfzmO/6RVq/pe1b+tVepXeVRFOIFTOAcfLqAON9CAJlC4h2d4gVfnyXlz3p2PRWvByWeO4Q+czx+leJ3k</latexit><latexit sha1_base64="QcCpJIszCaaQ0MwUZ2XhzLsUrRU=">AAACEHicbVC7TsNAEFyHVwivACWNRYREFdlpgC4SDWWQyENKrOh83iSn3J3N3RkpWPkJGlr4CzpEyx/wE3wDl8QFhIy00mhm9253woQzbTzvyymsrW9sbhW3Szu7e/sH5cOjlo5TRbFJYx6rTkg0ciaxaZjh2EkUEhFybIfj65nffkClWSzvzCTBQJChZANGibFSEKFBJZi0HzHaL1e8qjeH+5/4OalAjka//N2LYpoKlIZyonXX9xITZETZxzhOS71UY0LomAyxa6kkAnWQzZeeumdWidxBrGxJ487V3xMZEVpPRGg7BTEjvezNxJWeQq7ZI67yuqkZXAYZk0lqUNLFEoOUuyZ2Z+m4EVNIDZ9YQqhi9g6Xjogi1MakSzYgfzmO/6RVq/pe1b+tVepXeVRFOIFTOAcfLqAON9CAJlC4h2d4gVfnyXlz3p2PRWvByWeO4Q+czx+leJ3k</latexit><latexit sha1_base64="QcCpJIszCaaQ0MwUZ2XhzLsUrRU=">AAACEHicbVC7TsNAEFyHVwivACWNRYREFdlpgC4SDWWQyENKrOh83iSn3J3N3RkpWPkJGlr4CzpEyx/wE3wDl8QFhIy00mhm9253woQzbTzvyymsrW9sbhW3Szu7e/sH5cOjlo5TRbFJYx6rTkg0ciaxaZjh2EkUEhFybIfj65nffkClWSzvzCTBQJChZANGibFSEKFBJZi0HzHaL1e8qjeH+5/4OalAjka//N2LYpoKlIZyonXX9xITZETZxzhOS71UY0LomAyxa6kkAnWQzZeeumdWidxBrGxJ487V3xMZEVpPRGg7BTEjvezNxJWeQq7ZI67yuqkZXAYZk0lqUNLFEoOUuyZ2Z+m4EVNIDZ9YQqhi9g6Xjogi1MakSzYgfzmO/6RVq/pe1b+tVepXeVRFOIFTOAcfLqAON9CAJlC4h2d4gVfnyXlz3p2PRWvByWeO4Q+czx+leJ3k</latexit>

random
<latexit sha1_base64="JMYIWor/B4JN83rBOajvBPPlkdM=">AAACCXicbZC7SgNBFIZn4y3GW9TSZjAIVmE3jdoFbCwjmAskIczOnk3GzGWZmRXikiewsdW3sBNbn8KX8BmcJFtozA8DP/9/Dpz5woQzY33/yyusrW9sbhW3Szu7e/sH5cOjllGpptCkiivdCYkBziQ0LbMcOokGIkIO7XB8PevbD6ANU/LOThLoCzKULGaUWBe1NJGREoNyxa/6c+H/JshNBeVqDMrfvUjRVIC0lBNjuoGf2H5GtGWUw7TUSw0khI7JELrOSiLA9LP5tVN85pIIx0q7Jy2ep783MiKMmYjQTQpiR2a5m4UrOw3csEdY1XVTG1/2MyaT1IKkiyPilGOr8AwLjpgGavnEGUI1c//AdEQ0odbBKzlAwTKO/6ZVqwZ+NbitVepXOaoiOkGn6BwF6ALV0Q1qoCai6B49oxf06j15b96797EYLXj5zjH6I+/zB7x8mqs=</latexit><latexit sha1_base64="JMYIWor/B4JN83rBOajvBPPlkdM=">AAACCXicbZC7SgNBFIZn4y3GW9TSZjAIVmE3jdoFbCwjmAskIczOnk3GzGWZmRXikiewsdW3sBNbn8KX8BmcJFtozA8DP/9/Dpz5woQzY33/yyusrW9sbhW3Szu7e/sH5cOjllGpptCkiivdCYkBziQ0LbMcOokGIkIO7XB8PevbD6ANU/LOThLoCzKULGaUWBe1NJGREoNyxa/6c+H/JshNBeVqDMrfvUjRVIC0lBNjuoGf2H5GtGWUw7TUSw0khI7JELrOSiLA9LP5tVN85pIIx0q7Jy2ep783MiKMmYjQTQpiR2a5m4UrOw3csEdY1XVTG1/2MyaT1IKkiyPilGOr8AwLjpgGavnEGUI1c//AdEQ0odbBKzlAwTKO/6ZVqwZ+NbitVepXOaoiOkGn6BwF6ALV0Q1qoCai6B49oxf06j15b96797EYLXj5zjH6I+/zB7x8mqs=</latexit><latexit sha1_base64="JMYIWor/B4JN83rBOajvBPPlkdM=">AAACCXicbZC7SgNBFIZn4y3GW9TSZjAIVmE3jdoFbCwjmAskIczOnk3GzGWZmRXikiewsdW3sBNbn8KX8BmcJFtozA8DP/9/Dpz5woQzY33/yyusrW9sbhW3Szu7e/sH5cOjllGpptCkiivdCYkBziQ0LbMcOokGIkIO7XB8PevbD6ANU/LOThLoCzKULGaUWBe1NJGREoNyxa/6c+H/JshNBeVqDMrfvUjRVIC0lBNjuoGf2H5GtGWUw7TUSw0khI7JELrOSiLA9LP5tVN85pIIx0q7Jy2ep783MiKMmYjQTQpiR2a5m4UrOw3csEdY1XVTG1/2MyaT1IKkiyPilGOr8AwLjpgGavnEGUI1c//AdEQ0odbBKzlAwTKO/6ZVqwZ+NbitVepXOaoiOkGn6BwF6ALV0Q1qoCai6B49oxf06j15b96797EYLXj5zjH6I+/zB7x8mqs=</latexit><latexit sha1_base64="JMYIWor/B4JN83rBOajvBPPlkdM=">AAACCXicbZC7SgNBFIZn4y3GW9TSZjAIVmE3jdoFbCwjmAskIczOnk3GzGWZmRXikiewsdW3sBNbn8KX8BmcJFtozA8DP/9/Dpz5woQzY33/yyusrW9sbhW3Szu7e/sH5cOjllGpptCkiivdCYkBziQ0LbMcOokGIkIO7XB8PevbD6ANU/LOThLoCzKULGaUWBe1NJGREoNyxa/6c+H/JshNBeVqDMrfvUjRVIC0lBNjuoGf2H5GtGWUw7TUSw0khI7JELrOSiLA9LP5tVN85pIIx0q7Jy2ep783MiKMmYjQTQpiR2a5m4UrOw3csEdY1XVTG1/2MyaT1IKkiyPilGOr8AwLjpgGavnEGUI1c//AdEQ0odbBKzlAwTKO/6ZVqwZ+NbitVepXOaoiOkGn6BwF6ALV0Q1qoCai6B49oxf06j15b96797EYLXj5zjH6I+/zB7x8mqs=</latexit>fixed
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⌧ ⇠ 2Geo(↵)

y ⇠ Pois(µ)

ỹ(±) := y + ⌧
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�(⇤) ⇠ Exp( ↵
1�↵ )

g(⇤) ⇠ Pois(�(⇤))

⌧ := g(+) � g(�)

y ⇠ Pois(µ)

ỹ(±) := y + ⌧
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ỹ(±) := ỹ(+) � g(�)
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Figure 8.4: Four generative processes that yield the same marginal distributions P (ỹ(±) |µ, α). Process 1 generates y(±) as the
sum of an independent Poisson and two-sided geometric random variable. Process 2 augments the two-sided geometric random
variable as the difference of two Poisson random variables with exponentially-randomized rates. Process 3 represents the sum of y
and the additive geometric random variable g(+) as a single Poisson random variable ỹ(+). Process 4 marginalizes out the Poisson
random variables to yield a generative process for ỹ(±) as a Skellam random variable with exponentially-randomized rates.
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8.5 MCMC inference

Upon observing a privatized data set Ỹ (±), the goal of a Bayesian agent is to

approximate the locally private posterior. As explained in Section 8.2, to do so with

MCMC, we need only be able to sample the true data yδ as a latent variable from its

complete conditional PM,R(yδ | ỹ(±)

δ , µδ,−). By assuming that the privatized observa-

tions ỹ(±)

δ are conditionally independent Skellam random variables, as in Eq. (8.17),

and we may exploit the following general theorem that relates the Skellam distribution

to the Bessel distribution which also arose in the previous chapter (see Definition 7.2).

Theorem 8.3: The Skellam–Bessel relationship

(Proof in Section 8.8.3) Define the minimum m , min{y1, y2} and difference

τ , y1− y2 of two Poisson random variables y1∼Pois(λ(+)) and y2∼Pois(λ(−)).

Then m and τ are marginally (i.e., not conditioned on y1, y2) distributed as:

τ ∼ Skel(λ(+), λ(−)), (8.18)

m ∼ Bes
(
|τ |, 2

√
λ(+)λ(−)

)
. (8.19)

Theorem 8.3 means that we can generate two independent Poisson random vari-

ables by first generating their difference τ and then their minimum m. Since τ , y1−

y2, if τ is greater than 0, then y2 = m must be the minimum and y1 = τ−m. In prac-

tice, this means that if we only get to observe the difference of two Poisson-distributed

counts, we can still “recover” the counts by sampling a Bessel auxiliary variable.

Assuming that ỹ(±)

δ ∼ Skel(λ(+)

δ +µδ, λ
(−)

δ ) via Theorem 8.2, we first sample an

auxiliary Bessel random variable mδ:

(
mδ | −

)
∼ Bes

(
|ỹ(±)

δ |, 2
√

(λ(+)

δ +µδ)λ
(−)

δ

)
. (8.20)

The Bessel distribution can be sampled from efficiently. I have open-sourced my

Cython implementation of the rejection algorithms described by Devroye [2002].
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By Theorem 8.3, mδ represents the minimum of two latent Poisson random vari-

ables whose difference equals the observed ỹ(±)

δ ; these two latent counts are given ex-

plictly in process 3 of Fig. 8.4—i.e., ỹ(±)

δ := ỹ(+)

δ − g(−)

δ and thus mδ = min{ỹ(+)

δ , g(−)

δ }.

Given a sample of mδ and the observed value of ỹ(±)

δ , we can then compute ỹ(+)

δ , g(−)

δ :

ỹ(+)

δ := mδ, g
(−)

δ := ỹ(+)

δ − ỹ(±)

δ if ỹ(±)

δ ≤ 0 (8.21)

g(−)

δ := mδ, ỹ
(+)

δ := g(−)

δ + ỹ(±)

δ otherwise.

Because ỹ(+)

δ =yδ+g(+)

δ is itself the sum of two independent Poisson random variables,

we can then sample yδ from its conditional posterior, which is a binomial distribution:

(
yδ | −

)
∼ Binom

(
ỹ(+)

δ ,
µδ

µδ + λ(+)

δ

)
. (8.22)

Equations 8.20 through 8.22 sample the true underlying data yδ from PM,R(yδ | ỹ(±)

δ , µδ,λδ).

We may also re-sample the auxiliary variables λ(+)

δ , λ(−)

δ from their complete condi-

tional, which is a gamma distribution, by conjugacy:

(
λ(∗)
δ | −

)
∼ Γ

(
1 + g(∗)

δ ,
α

1−α + 1
)
. (8.23)

Iteratively re-sampling yδ and λδ constitutes a chain whose stationary distribution

over yδ is PM,R(yδ | ỹ(±)

δ , µδ), as desired. Conditioned on a sample of the underly-

ing data set Y , we then re-sample the latent variables Z (that define the rates µδ)

from their complete conditionals, which match those in standard non-private Poisson

factorization. Eqs. (8.20) to (8.23) along with non-private complete conditionals for

Z thus define a privacy-preserving MCMC algorithm that is asymptotically guar-

anteed to sample from the locally private posterior PM,R(Z | Ỹ (±)) for any Poisson

factorization model.
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8.6 Case studies

This section reports two case studies applying the proposed method to 1) overlap-

ping community detection in social networks and 2) topic modeling for text corpora.

In each, we formulate natural local-privacy guarantees, ground them in examples,

and demonstrate the proposed method on real and synthetic data.

8.6.1 Enron corpus data

For the real data experiments, we obtained count matrices derived from the Enron

email corpus [Klimt and Yang, 2004]. For the community detection case study, we

obtained a V ×V adjacency matrix Y where yij is the number of emails sent from

actor i to actor j. We included an actor if they sent at least one email and sent or re-

ceived at least one hundred emails, yielding V =161 actors. When an email included

multiple recipients, we incremented the corresponding counts by one. For the topic

modeling case study, we randomly selected D= 10, 000 emails with at least 50 word

tokens. We limit the vocabulary to V = 10, 000 word types, selecting only the most

frequent word types with document frequency less than 0.3. In both case studies, we

privatize the data using the geometric mechanism under varying degrees of privacy

and examine each method’s ability to reconstruct the true underlying data.

8.6.2 Reference methods

We compare the performance of the proposed method to two references methods:

1) the non-private approach—i.e., standard Poisson factorization fit to the true un-

derlying data, and 2) the näıve approach—i.e., standard Poisson factorization fit to

the privatized data, as if it were the true data. The näıve approach must first truncate

any negative counts ỹ(±)

δ <0 to zero and thus implicitly uses the truncated geometric

mechanism [Ghosh et al., 2012].
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8.6.3 Performance measures

All methods generate a set of S samples of the latent variables using MCMC. We

use these samples to approximate the posterior expectation of yδ:

µ̂δ =
1

S

S∑

s=1

µ
(s)
δ ≈ EPM,R(Z | Ỹ (±)) [µδ] . (8.24)

We then calculate the mean absolute error (MAE) of µ̂δ with respect to the true data

yδ. In the topic modeling case study, we also consider the interpretability of each

method’s inferred topics using coherence [Mimno et al., 2011] and NPMI [Bouma,

2009, Lau et al., 2014] which are standard within the topic modeling community.

8.6.4 Case study 1: Topic modeling

Topic models [Blei et al., 2003] are widely used in the social sciences [Ramage et al.,

2009, Grimmer and Stewart, 2013, Mohr and Bogdanov, 2013, Roberts et al., 2013] for

characterizing the high-level thematic structure of text corpora via latent “topics”—

i.e., probability distributions over vocabulary items. In many settings, documents

contain sensitive information (e.g., emails, survey responses) and individuals may

be unwilling to share their data without formal privacy guarantees, such as those

provided by differential privacy.

8.6.4.1 Limited-precision local privacy guarantees

In this scenario, a data set Y is a D× V count matrix, each element of which ydv

represents the count of type v ∈ [V ] in document d ∈ [D]. It’s natural to consider each

document yd ≡ (yd1, . . . , ydV ) to be a single “observation” we seek to privatize. Un-

der LPLP, N determines the neighborhood of documents within ε-level local privacy

applies. For instance, if N = 4, then two emails—one that contained four instances

of a vulgar curse word and the same one that did not ‖yd − y′d‖1 = 4—would be

rendered indistinguishable after privatization, assuming small ε.
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8.6.4.2 Poisson factorization model

Gamma–Poisson matrix factorization is commonly used for topic modeling. As-

sume each element is drawn ydv∼Pois (µdv) where µdv =
∑K

k=1 θdk φkv. The factor θdk

represents how much topic k is used in document d, while the factor φkv represents how

much word type v is used in topic k. The set of latent variables is thus Z = {Θ,Φ},

where Θ and Φ are D×K and K ×V non-negative matrices, respectively. It is stan-

dard to assume independent gamma priors over the factors—i.e., θdk, φkv∼Γ (a0, b0),

where we set the shape and rate hyperparameters to a0 =0.1 and b0 =1.

8.6.4.3 Synthetic data experiments

The proposed approach is more effective than the näıve approach at recovering the

ground-truth topics Φ∗ from synthetically-generated data. We generated a synthetic

data set of D = 90 documents, with K=3 topics and V = 15 word types. We set Φ∗

so that the topics were well separated, with each putting the majority of its mass on

five different word types. We also ensured that the documents were well separated into

three equal groups of thirty, with each putting the majority of its mass on a different

topic. We then sampled a data set y∗dv ∼ Pois(µ∗dv) where µ∗dv =
∑K

k=1 θ
∗
dkφ
∗
kv. We

then generated a heterogeneously-noised data set by sampling the dth document’s

noise level αd ∼ Beta
(
c α0, c (1−α0)

)
from a beta distribution with mean α0 and

concentration parameter c = 10 and then sampling τdv ∼ 2Geo(αd) for each word

type v. We repeated this for a small and large value of α0. For each model, we ran

6,000 sampling iterations, saving every 25th sample after the first 1,000. We selected

Φ̂ to be from the posterior sample with the highest joint probability. Note that, due to

label-switching, we cannot average the samples of Φ. Following Newman et al. [2009],

we then aligned the topic indices of Φ̂ to Φ∗ using the Hungarian bipartite matching

algorithm. We visualize the results in Fig. 8.1 where we see that the näıve approach

performs poorly at recovering the topics in the high noise case.
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8.6.4.4 Enron corpus experiments

In these experiments, we use the document-by-term count matrix Y derived from

the Enron email corpus. We consider three privacy levels ε/N ∈ {3, 2, 1} specified by

the ratio of the privacy budget ε to the precision N . For each privacy level, we obtain

five different privatized matrices, each by adding two-sided geometric noise with α=

− exp(ε/N) independently to each element. We fit both privacy-preserving models—

i.e., the proposed and the näıve approach—to all five privatized matrices for each

privacy level. We also fit the non-private approach five independent times to the true

matrix. We set K=50 for all models. For every model and matrix, we perform 7,500

MCMC iterations, saving every 100th sample of the latent variables Φ(s),Θ(s) after the

first 2,500. We use the fifty saved samples to compute µ̂dv = 1
S

∑S
s=1

∑K
k=1 θ

(s)
dk φ

(s)
kv .

We find that the proposed approach obtains both lower reconstruction error and

higher quality topics than the näıve approach. For each model and matrix, we com-

pute the mean absolute error (MAE) of the reconstruction rates µ̂dv with respect to

the true underlying data ydv. These results are visualized in the left subplot of Fig. 8.5

where we see that the proposed approach reconstructs the true data with nearly as

low error as non-private inference (that fits to the true data) while the näıve approach

has high error which increases dramatically as the noise increases.

To evaluate topic quality, we use two standard metrics—i.e., normalized pointwise

mutual information (NPMI) [Lau et al., 2014] and topic coherence [Mimno et al.,

2011]— applied to the 10 words with maximum weight for each sampled topic vector

φ
(s)
k , using the true data as the reference corpus. For each method and privacy level,

we average these values across samples. The center and right subplots of Fig. 8.5

visualize the NPMI and coherence results, respectively. The proposed approach ob-

tains higher quality topics than the näıve approach, as measured by both metrics.

As measured by coherence, the proposed approach even obtains higher quality topics

than the non-private approach.
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Figure 8.5: The proposed approach obtains higher quality topics and lower reconstruction error than the näıve approach. When
topic quality is measured using coherence (right), the proposed approach obtains higher quality topics than even the non-private
method. Each plot compares the proposed, näıve, and non-private approaches for three increasing levels of noise (privacy) on
the Enron corpus data; the non-private values are constant across privacy levels.
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8.6.5 Case study 2: Overlapping community detection

Organizations often ask: are there missing connections between employees that,

if present, would significantly reduce duplication of effort? Though social scientists

may be able to draw insights based on employees’ interactions, sharing such data risks

privacy violations. Moreover, standard anonymization procedures can be reverse-

engineered adversarially and thus do not provide privacy guarantees [Narayanan and

Shmatikov, 2009]. In contrast, the formal privacy guarantees provided by differential

privacy may be sufficient for employees to consent to sharing their data.

8.6.5.1 Limited-precision local privacy guarantees

In this setting, a data set Y is a V ×V count matrix, where each element yij∈Z+

represents the number of interactions from actor i∈ [V ] to actor j∈ [V ]. It is natural

to consider each count yij to be a single “observation”. Using the geometric mecha-

nism with α = − exp(ε/N), if i interacted with j three times yij =3 and N=3, then

an adversary would be unable to tell from ỹ(±)

ij whether i had interacted with j at all,

provided ε is sufficiently small. Note that if yij � N , then an adversary would be

able to tell that i had interacted with j, though not the exact number of times.

8.6.5.2 Poisson factorization model

The mixed-membership stochastic block model for learning latent overlapping

community structure in social networks [Ball et al., 2011, Gopalan and Blei, 2013,

Zhou, 2015] is a special case of Poisson factorization where Y is a V×V count matrix,

each element of which is drawn yij∼Pois (µij) where µij =
∑C

c=1

∑C
d=1 θic θjd πcd. The

factors θic and θjd represent how much actors i and j participate in communities c and

d, respectively, while the factor πcd represents how much actors in community c inter-

act with actors in community d. The set of latent variables is thus Z={Θ,Π} where

Θ and Π are V×C and C×C non-negative matrices, respectively. We assume indepen-

dent gamma priors over the factors—i.e., θic, πcd
iid∼ Γ(a0, b0) with a0 =0.1 and b0 =1.
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Figure 8.6: Block structure recovery: our method vs. the näıve approach. We
generated the non-privatized data synthetically. We then privatized the data using
three different levels of noise. The top row depicts the data, using red to denote
positive observations and blue to denote negative observations. As privacy increases,
the näıve approach overfits the noise and fails to recover the true µ?ij values, predicting
high values even for sparse parts of the matrix. In contrast, our method recovers the
latent structure, even at high noise levels.

8.6.5.3 Synthetic data experiments

We generated social networks of V = 20 actors with C= 5 communities. We ran-

domly generated the true parameters θ∗ic, π
∗
cd∼Γ(a0, b0) with a0 =0.01 and b0 =0.5 to

encourage sparsity; doing so exaggerates the block structure in the network. We then

sampled a data set yij ∼ Pois(µ∗ij) and added noise τij ∼ 2Geo(α) for three increasing

values of α. In each trial, we set N to the empirical mean of the data N := Ê[yij] and

then set α := exp(−ε/N) for ε ∈ {2.5, 1, 0.75}. For each model, we ran 8,500 MCMC

iterations, saving every 25th sample after the first 1,000 and using these samples to

compute µ̂ij. In Fig. 8.6, we visually compare the estimates of µ̂ij by our proposed

method to those of the näıve and non-private approaches. The näıve approach over-

fits the noise, predicting high rates in sparse parts of the matrix. In contrast, the

proposed approach reproduces the sparse block structure even under high noise.
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8.6.5.4 Enron corpus experiments

For the Enron data experiments, we follow the same experimental design outlined

in the topic modeling case study; we repeat this experiment using three different num-

bers of communities C ∈ {5, 10, 20}. Each method is applied to five privatized matri-

ces for three different privacy levels. We compute µ̂ij = 1
S

∑S
s=1

∑C
c=1

∑C
d=1 θ

(s)
ic θ

(s)
jd π

(s)
cd

from each run and measure reconstruction MAE with respect to the true underlying

data yij. In these experiments, each method observes the entire matrix (Ỹ (±) for the

privacy-preerving methods and Y for the non-private method). Since missing link

prediction is a common task in the networks community, we additionally run the

same experiments but where a portion of the matrix is masked—specifically, we hold

out all entries ỹ(±)

ij (or yij for non-private) that involve any of the top 50 senders i

or recipients j. We then compute µ̂ij, as before, but only for the missing entries and

compare heldout MAE across methods.

The results for C ∈{5, 20} are visualized in Fig. 8.7 (the results for C = 10 were

similar). When reconstructing yij from observed ỹ(±)

ij , the proposed approach achieves

lower error than the näıve approach and lower error than the non-private approach

(which directly observes yij). Similarly, when predicting missing yij, the proposed

approach achieves the lowest error in most settings.

8.7 Discussion

The proposed privacy-preserving MCMC method for Poisson factorization im-

proves substantially over the commonly-used näıve approach. A suprising finding

is that the proposed method was also often better at predicting the true yij from

privatized ỹ(±)

ij than even the non-private approach. Similarly, the the proposed ap-

proach inferred more coherent topics. These empirical findings are in fact consis-

tent with known connections between privacy-preserving mechanisms and regular-

ization [Chaudhuri and Monteleoni, 2009]. The proposed approach is able to ex-
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(a) Reconstruction error: µ̂ij is estimated from a noised matrix Ỹ (±) that is fully observed.
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(b) Heldout link prediction: µ̂ij is estimated from a partially observed Ỹ (±). MAE is calcu-

lated with respect to only the data yij for which the corresponding entries ỹ
(±)
ij were missing.

Figure 8.7: The proposed approach obtains lower error on both reconstruction (top)
and heldout link prediction (bottom) than the näıve and even non-private approach.

plain natural dispersion in the true data as coming from the randomized response

mechanism; it may thus be more robust—i.e., less susceptible to inferring spurious

structure—than non-private Poisson factorization. Future application of the model

yδ ∼ Skel(λ(+)

δ +µδ, λ
(−)

δ ) as a robust alternative to Poisson factorization is thus mo-

tivated, as is a theoretical characterization of its regularizing properties.
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8.8 Proofs

8.8.1 Proof of Theorem 8.1

It suffices to show that for any integer-valued vector o ∈ ZD, the following in-

equality holds for any pair of observations y, y′ ∈ Y ⊆ ZD such that ‖y − y′‖1 ≤ N :

exp(−ε) ≤ P (R(y) = o)

P (R(y′) = o)
≤ exp(ε), (8.25)

where ε = N ln
(

1
α

)
.

Let ν denote a D-dimensional noise vector with elements drawn i.i.d from νd ∼

2Geo(α). Then,

P (R(y) = o)

P (R(y′) = o)
=
P (ν = o− y)

P (ν = o− y′) (8.26)

=

∏D
d=1

1−α
1+α

α|od−yd|
∏D

d=1
1−α
1+α

α|od−y
′
d|

(8.27)

= α(
∑D
d=1 |od−yd|−|od−y′d|). (8.28)

By the triangle inequality, we also know that for each d,

− |yd − y′d| ≤ |od − yd| − |od − y′d| ≤ |yd − y′d|. (8.29)

Therefore,

− ‖y − y′‖1 ≤
D∑

d=1

(|od − yd| − |od − y′d|) ≤ ‖y − y′‖1. (8.30)

It follows that

α−N ≤ P (R(y) = o)

P (R(y′) = o)
≤ αN . (8.31)

If ε = N ln
(

1
α

)
, then we recover the bound in Eq. (8.25).
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8.8.2 Proof of Theorem 8.2

By Definition 8.4, a two-sided geometric random variable τ ∼ 2Geo(α) can be

generated as the difference of two i.i.d. geometric random variables:

g(+), g(−) iid∼ NB(1, α), (8.32)

τ := g(+) − g(−). (8.33)

where the geometric distribution is a special case of the negative binomial distribu-

tion, with shape parameter equal to one [Johnson et al., 2005]. By Definition 3.16,

the negative binomial distribution can be represented as a gamma–Poisson mixture

distribution. We can therefore re-express equations 8.32– 8.33 as:

λ(+), λ(−) iid∼ Gam(1, α
1−α), (8.34)

g(+) ∼ Pois(λ(+)), (8.35)

g(−) ∼ Pois(λ(−)), (8.36)

τ := g(+) − g(−). (8.37)

Finally, the gamma distribution with shape parameter equal to one is equivalent to

the exponential distribution, while the difference of two independent Poisson random

variables is marginally Skellam distributed (Definition 8.7). We me thus rewrite

equations 8.34– 8.37 as:

λ(+), λ(−) iid∼ Exp( α
1−α), (8.38)

τ ∼ Skel (λ(+), λ(−)) (8.39)
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8.8.3 Proof of Theorem 8.3

Consider the joint distribution of y1 and y2:

P (y1, y2) = Pois(y1;λ(+)) Pois(y2;λ(−)) (8.40)

=
(λ(+))y1

y1!
e−λ

(+) (λ(−))y2

y2!
e−λ

(−)

(8.41)

=
(
√
λ(+)λ(−))y1+y2

y1! y2!
e−(λ(+)+λ(−))

(
λ(+)

λ(−)

)(y1−y2) / 2

. (8.42)

If y1 ≥ y2, then

P (y1, y2) =
(
√
λ(+)λ(−))y1+y2

Iy1−y2(2
√
λ(+)λ(−)) y1! y2!

e−(λ(+)+λ(−))

(
λ(+)

λ(−)

)(y1−y2) / 2

Iy1−y2(2
√
λ(+)λ(−))

(8.43)

= Bes
(
y2; y1 − y2, 2

√
λ(+)λ(−)

)
Skel(y1 − y2;λ(+), λ(−)); (8.44)

otherwise

P (y1, y2) =
(
√
λ(+)λ(−))y1+y2

Iy2−y1(2
√
λ(+)λ(−)) y1! y2!

e−(λ(+)+λ(−))

(
λ(−)

λ(+)

)(y2−y1) / 2

Iy2−y1(2
√
λ(+)λ(−))

(8.45)

= Bes
(
y1; y2 − y1, 2

√
λ(+)λ(−)

)
Skel(y2 − y1;λ(−), λ(+))

= Bes
(
y1;−(y1 − y2), 2

√
λ(+)λ(−)

)
Skel(y1 − y2;λ(+), λ(−)). (8.46)

If

m := min{y1, y2}, τ := y1 − y2, (8.47)

then

y2 = m, y1 = m+ τ if τ ≥ 0 (8.48)

y1 = m, y2 = m− τ otherwise (8.49)
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and ∣∣∣∣∣∣∣

∂y1

∂m
∂y1

∂τ

∂y2

∂m
∂y2

∂τ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

1 1

1 0

∣∣∣∣∣∣∣

τ≥0 ∣∣∣∣∣∣∣

1 0

1 −1

∣∣∣∣∣∣∣

τ<0

= 1, (8.50)

so

P (m, τ) = P (y1, y2)

∣∣∣∣∣∣∣

∂y1

∂m
∂y1

∂τ

∂y2

∂m
∂y2

∂τ

∣∣∣∣∣∣∣

= Bes
(
m; |τ |, 2

√
λ(+)λ(−)

)
Skel(τ ;λ(+), λ(−)). (8.51)
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CHAPTER 9

CONCLUSIONS AND FUTURE DIRECTIONS

This thesis formalizes the framework of allocative Poisson Factorization. APF is a

subset of Poisson factorization models within which posterior inference scales linearly

with only the number of non-zero event counts (or, equivalently, the total number

of event tokens) in the data. APF unifies and generalizes widely-used models in the

statistics literature on contingency table analysis, non-negative tensor decomposition,

and probabilistic models for discrete data in machine learning, among others. Many

of the connections between these models have long been understood and unifying

frameworks have been proposed [Buntine, 2002, Buntine and Jakulin, 2006, Dunson

and Xing, 2009]. Connections and unifications have continued to be written about

even in recent years [Johndrow et al., 2017, Cemgil et al., 2019].

A fair question to ask is: why APF? Why now? APF is defined by a single

condition—i.e., that the latent Poisson rate µδ be a multilinear function of shared

model parameters. This simple definition is both descriptive—i.e., it describes all

the models for which there exists a latent source representation (Section 3.2) that

allows the model to be written in terms of event counts or event tokens—as well as

prescriptive—i.e., a researcher building a model need only obey that one condition to

ensure that posterior inference scales well in the high-dimensional but sparse setting.

This condition also highlights the main challenge in building and fitting APF models.

The multilinear condition on the non-negative Poisson rate parameter means we can

only impose non-negative prior distributions—e.g., gamma and Dirichlet—over the

model parameters. This notably prevents the use of the Gaussian distribution, whose
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analytic convenience researchers have traditionally relied on to construct complex hi-

erarchical priors e.g., for time-series or networks models. Recent advances in auxiliary

variable augmentation schemes—e.g., augment-and-conquer [Zhou and Carin, 2012]

or Pólya–gamma augmentation [Polson et al., 2013]—have permitted efficient and

analytically closed-form posterior inference in a wide array of non-conjugate models

that were previously considered intractable. An example of such a model is given in

Chapter 6, where the augment-and-conquer scheme is applied recursively in a dynam-

ical system of gamma random variables tied through their shape parameter. Beyond

augmentation schemes and conjugacy, there also exists a web of relationships among

non-negative distributions that have thus far been under-exploited. An example of

a useful but overlooked relationship is Definition 7.3—i.e., a Poisson prior over the

shape parameter of a gamma distribution yields a Bessel distribution as its poste-

rior [Yuan and Kalbfleisch, 2000]. Chapters 7 and 8 both exploit this fact to the

construct non-conjugate yet analytically closed-form APF models. The relationship

between the Skellam and Bessel distributions introduced by Theorem 8.3 is another

example; this relationship is general and widely applicable beyond the model and

application described in that chapter.

The work in this thesis prompts several promising future directions of research.

Foremost among them, is the application of the APF framework to model non-Poisson

distributed observations. The Poisson distribution can be linked to a wide range of

other distributions—both discrete and continuous—via the compound Poisson con-

struction [Adelson, 1966]. Basbug and Engelhardt [2016] draw on this fact to proba-

bilistically link a latent count matrix to an observed (potentially non-count) one and

then factorize it using Poisson matrix factorization. This idea can be generalized to

all APF models and expressed as
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yδ ∼ Pois (µδ) , (9.1)

xδ =

yδ∑

i=1

xδi, where xδi ∼ f(· · · ). (9.2)

where yδ is now latent, xδ is the observation, and f(· · · ) is the emission distribution.

One example of an emission distribution might be gamma—e.g., f(· · · ) = Γ (α0, β0)—

which would be appropriate to model positive real-valued data, as Zhou et al. [2016]

does. For MCMC inference in compound Poisson models, we need only be able to

efficiently sample yδ from its complete conditional—
(
yδ | −

)
∼ P (yδ |xδ, µδ,−). With

a sample of yδ in hand, we may treat it as observed and update the other parameters

exactly as in standard APF. This idea is morally similar to that in Chapter 8, where

the true count yδ must be re-sampled as a latent variable, conditioned on the noised

(i.e., privatized) count ỹ(±)

δ .

A surprising result of Chapter 8 was that the private version of APF, which con-

ditions on noised data and assumes a Skellam likelihood, sometimes outperforms

non-private APF. One hypothesis is that this stems from the Poisson assumption

being too restrictive for real-world count data: the private method outperforms stan-

dard APF due to its assumption of a more dispersed likelihood (Skellam) and does so

despite conditioning on noised data. If this hypothesis is true, APF could be easily

modified to assume an overdispersed negative binomial likelihood. The negative bi-

nomial can be constructed as a compound Poisson (Definition 3.17). Moreover, under

this construction the complete conditional of yδ is available in closed form as the CRT

(Definition 3.20). Thus, all that is needed to modify APF is to add a CRT sampling

step. This approach is taken for count matrices by Zhou et al. [2018].

APF can be extended to model data sets consisting of multiple tensors that overlap

on different modes. This is sometimes referred to as “multi-view factorization” [Khan

and Kaski, 2014]. Gopalan et al. [2014b] introduce “collaborative Poisson factoriza-

tion” which factorizes two matrices that overlap on one mode. Yılmaz et al. [2011]
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presents a general framework called “generalized coupled factorization” for multiple

tensors. Beyond multiple tensors, we may also consider a data set of event tokens

of arbitrary dimensionality that overlap on modes. Such a data set may not be

able to be represented in terms of count tensors but would still be amenable to the

token-based representation of APF. A future direction is an implementation of the

APF framework that takes, as input a list of tokens of arbitrary dimensionality and

automatically infers the size and cardinality of the latent parameters matrices.

This thesis has focused on batch inference—both MCMC and variational—that

assumes the entire data set can be fit into memory. All of the algorithms presented

here are based on closed-form complete conditionals. Many of them can be converted

into stochastic variational algorithms [Hoffman et al., 2013] that stream over larger

data sets. We may also use streaming MCMC techniques to scale some of the al-

gorithms presented here—for instance, Guo et al. [2018] construct a deep version of

the dynamical system in Chapter 6 and give a streaming MCMC algorithm. This

thesis has also focused on uncollapsed Gibbs sampling, wherein the latent sources are

re-sampled from a multinomial conditioned on samples of the parameters. There are

many papers on fast CGS algorithms for LDA [Yao et al., 2009, Li et al., 2014, Yuan

et al., 2015, Chen et al., 2016]; these ideas can be generalized to APF.

Finally, the gamma–Poisson–gamma motif introduced in Chapter 7 can be applied

recursively to construct many new models—e.g., a belief network that alternates be-

tween Poisson and gamma layers. This motif can be thought of as an alternative

to gamma hierarchies that require the augment-and-conquer scheme for inference.

Moreover, when ε = 0, the gamma–Poisson–gamma allows for true sparsity in both

the discrete and continuous states. One promising application of this is as a prior

over the core tensor in the Tucker decomposition model (BPTD) of Chapter 5. The

allocation step in standard BPTD scales linearly with the number of latent classes—

i.e., the number of cells in the core tensor. However, if the core tensor contained true
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zeros, the allocation step would scale only with the number of non-zero cells (for the

same reason it scales linearly with the non-zeros in the data). In general, promoting

true sparsity among the parameters of APF models, and then exploiting that sparsity

for more efficient computation is a promising future direction.
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