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ABSTRACT 

A TOP-DOWN APPROACH FOR OPTIMALLY DESIGNING MULTISTAGE-

ADAPTIVE TESTS 

MAY 2019 

 

HWANGGYU LIM, B.A., YONSEI UNIVERSITY 

 

M.A., YONSEI UNIVERSITY 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Craig S. Wells 

 

In multistage-adaptive testing (MST), there are many interrelated design variables 

that impact the nature and quality of ability estimation. Previous research has identified 

general principles for the effective design of MSTs in terms of measurement 

performance. However, those principles are unlikely to apply uniformly to every testing 

context.  

The purpose of this dissertation is to propose a process of finding an MST design 

that has optimal measurement properties, given a specific set of test circumstances. To 

achieve this goal, an efficient strategy was introduced at each of three phases to discover 

the optimal design of the MST; constructing MSTs, systematically searching a design 

space of the MST, and evaluating the MST performance. For the first phase, a top-down 

approach was applied in this study. For the second phase, a way to systematically search 

the parameterized design space of an MST was used. For the third phase, a new analytical 

evaluation method for MST was proposed. 

In the dissertation, Study 1 proposed a new analytical evaluation method for 

MST. Using this new approach, measurement precision of ability estimation and 
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classification accuracy could be derived analytically. The simulation results indicated that 

the new analytical method produced more exact measurement properties of an MST than 

the Monte Carlo simulation method. Therefore, the new analytical method would be the 

most efficient and competitive tool to asses measurement performance of an MST among 

other evaluation methods. 

Study 2 proposed a process to find a design of an MST that shows optimal 

measurement properties applying the three efficient strategies, given a specific set of 

testing context. The process consists of four important features: (1) setting a testing 

circumstance and MST design space, (2) systematically searching the MST design space 

using the top-down approach, (3) analytically evaluating measurement performance of an 

MST, and (4) computing objective functions. The suggested process was applied to a real 

item pool from a large-scale assessment. The results of the application study provided 

evidence that the process could be generalized to more complex and realistic test 

circumstances to create optimal designs of MST. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

A multistage-adaptive test (MST) uses a specific adaptive test design that tailors 

test difficulty to the performance level of an individual examinee. In recent years, MSTs 

have become increasingly popular as an alternative to conventional linear tests and item-

level computerized adaptive tests (CATs). For example, many operational testing 

programs have replaced the paper-and-pencil linear test or the CAT with MST (e.g., 

American Institute of Certified Public Accountants (AICPA) Examination, National 

Council Licensure Examination (NCLEX), and Graduate Record Examination (GRE)). 

The primary reason for the popularity of MSTs is that they provide a balanced 

compromise between the linear test and the CAT (Hendrickson, 2007). Because the MST 

is an adaptive test, it is more efficient and precise in estimating an examinee proficiency 

compared to a linear test in which all examinees respond to test forms that are not tailored 

to each examinee’s proficiency (Jodoin, Zenisky, & Hambleton, 2006; Kim & Plake, 

1993). Although MSTs are less efficient than CATs, it is known that measurement 

precision of MST is still quite comparable to the CAT when the test is carefully designed 

(Luecht & Nungester, 1998; Xing & Hambleton, 2004). 

An MST possesses several practical advantages that make the MST a favorable 

choice over CAT in an operational testing program (Melican, Breithaupt, & Zhang, 2010; 

Stark & Chernyshenko, 2006). First, because the tests are pre-assembled, the MST allows 

for subject matter experts and other stakeholders to review the psychometric and content 

properties of tests prior to publication. This property of MST is not only desirable for 
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quality-control, but also it enables test developers to satisfy more complex and 

sophisticated content specifications in an MST since sometimes certain content 

requirements are difficult to quantify in the automated test assembly (ATA) process 

(Stark & Chernyshenko, 2006). Second, examinees are able to skip test items, revise their 

responses, and return to previous items for reviewing them within a stage, while CAT 

prohibits examinees from reviewing and skipping items. Therefore, MST could provide 

more comfortable testing circumstances to test-takers. Third, MST requires less 

computing power than CAT for ability estimation and item selection because MST only 

needs to compute interim proficiency estimates after each set of items instead of after 

each item as in CAT (Han & Guo, 2014).  

An MST has special terminologies in terms of its design. In an MST, a test 

administration unit is called a panel, which is a group of pre-assembled item sets called 

modules. The MST panel is divided into several stages and each stage in the panel 

consists of multiple modules. Modules within the same stage usually have different 

difficulty levels targeted to particular levels of proficiency. During the process of testing, 

the combination of modules across stages that an examinee is administered to finish the 

test is called a route or pathway. In this study, both the route and pathway are used 

interchangeably.  

Figure 1 illustrates two configurations of MST panels: 1-3 (left panel) and 1-3-3 

(right panel). In Figure 1, E, M, and H stand for easy, moderate (or medium), and hard 

difficulty levels, respectively. Note that there are seven routes in the 1-3-3 MST of Figure 

1 because two routes of 1M-2E-3H and 1M-2H-3E are removed from the panel. 
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Removing certain routes is a possible strategy in operational testing to prevent capricious 

proficiency changes due to cheating of items or brain dump (Luo & Kim, 2018).   

In an MST panel, there is usually only one module at the first stage and it is called 

a routing module or router. Among all possible routes in a panel, there are special 

pathways called primary routes where subsequent modules after the first stage have the 

same difficulty level. For example, there are three primary routes in the 1-3-3 MST in 

Figure 1. In that MST panel, low proficiency examinees are likely to take the 1M-2E-3E, 

moderate proficiency examinees would tend to take the 1M-2M-3M, and high proficiency 

examinees are likely to be administered the 1M-2H-3H. Previous studies have shown that 

a large proportion of examinees (i.e., approximately more than 70%) are given the 

primary routes while taking the exam (Kim, Chung, Park, & Dodd, 2013; Luo & Kim, 

2018; Zenisky, 2004). Other than primary routes, the rest of pathways such as the 1M-

2E-3M and 1M-2H-3M in the 1-3-3 MST are called secondary or ancillary routes.  

1.2 Statement of Problem and Its Significance 

When implementing an MST, there are many interrelated design variables that 

impact the nature and quality of ability estimation (e.g., number of stages, number of 

distinct difficulty levels at each stage, module and test length, cut scores for routing 

examinees to next the modules, scoring methods, a population of examinees, item bank, 

and content requirements). Therefore, the process of test development involves a series of 

critical decisions to design an MST for the intended purpose of the test (Zenisky, 

Hambleton, & Luecht, 2010). 

Constructing an MST is very flexible because test developers can customize the 

design of an MST as they want due to the existence of many design factors, which is one 
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of the advantages in MST. However, this also implies that it does not seem feasible to 

discover a truly optimal design that shows the best measurement properties fitted to every 

testing circumstance. Although previous studies have documented the quality of 

measurement varying design variables in MST and identified general principles for the 

effective design of MSTs in terms of measurement performance (e.g., Hambleton & 

Xing, 2006; Luecht & Burgin, 2003; Luo & Kim, 2018; Park, Kim, Chung, & Dodd,  

2014; Wang, Fluegge, & Luecht, 2012), those principles are unlikely to apply uniformly 

to every testing context. Rather, an MST design that is optimal in some sense for one 

testing program may work poorly for another. The number and nature of the items 

available, the rigor of the content requirements, and the location and scale of the 

examinee proficiency distribution are all factors that dictate whether a given MST design 

will work well or poorly under a specific testing situation. Therefore, it is necessary to 

develop an algorithm and process for finding, given a concrete set of test circumstances, a 

specific MST design that is optimal in some sense. 

Because a theoretical space of design variables of MST is enormous, it is not easy 

to evaluate measurement properties of all possible combinations of MST design 

variables. One practical solution is to restrict a scope of design factors so that the 

combination of design variables has a reasonably limited range, depending on a testing 

context. Even with the restricted range, however, there may be still too many 

combinations to assess their measurement properties. To deal with this problem, more 

efficient strategies are necessary at three phases when finding an optimal MST design: 

(1) assembling MST given a certain set of design variables, (2) searching many 

combinations of design variables, and (3) evaluating the measurement performance of 
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MSTs. With more efficient strategies at each of those phases, a more broad range of MST 

design variables could be searched effectively and the performance of the MST would be 

assessed more quickly.  

1.3 Purpose of Study 

The purpose of this dissertation is to propose a process of finding an MST design 

that has optimal measurement properties in some sense, given a specific set of test 

circumstances. To achieve this goal, an efficient strategy is introduced at each of three 

phases, which are constructing MSTs, searching design variables of MST, and evaluating 

the MST performance, to discover the optimal design of an MST.  

For the assembly of an MST, a top-down approach is applied in this study. In 

MST, a test is built using either a top-down assembly method or a bottom-up assembly 

method. The bottom up approach is a “divide-and-conquer” method because a test level 

specification for the statistical targets, content, and other features is divided into the 

module level and the modues are mixed-and-matched whereas the top-down strategy 

requires only test level specifications for the statistical targets and other non-statistical 

constraints to build a test (Luecht & Nungester, 1998). The reason of using the top-down 

approach in this study is that the computer algorithm of automated test assembly (ATA) 

identifies an optimal partition of test-level design variables into modules as well as 

achieves the optimal measurement precision (Luo & Kim, 2018). Thus, the top-down 

approach simplifies the design process compared to the bottom-up approach.  

For the second phase, a way to systematically search the parameterized design 

space of an MST is used. Especially, this strategy involves systematically varying 

targeted subpopulations of routes and iteratively applying the ATA process based on the 
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top-down approach. For the third phase, a new analytical evaluation method for MST is 

proposed in the study, which is based on the equated number-correct (NC) scoring 

method (Stocking, 1996). In most MST studies, Monte Carlo (MC) based simulation 

methods have been used to evaluate the performance of an MST (e.g., Armstrong, Jones, 

Koppel, & Pashley, 2004; Hambleton & Xing, 2006; Jodoin et al., 2006; Luecht, 2003; 

Luo & Kim, 2018; Wang, 2017; Wang et al., 2012; Weissman, Belov, & Armstrong, 

2007; Zenisky, 2004). These simulation studies usually require a lot of time and effort to 

set up and conduct a simulation. Since measurement precision (e.g., the conditional 

standard error of ability estimates) of an MST is computed analytically with the new 

method, however, the evaluation is more exact and faster than those based on a 

simulation, which is important advantage when assessing a large number of design 

factors. 

This dissertation consists of two studies. Because the analytical evaluation of 

MST performance is a new approach, it is necessary to provide evidence that the method 

works well. Accordingly, Study 1 introduces the new analytic method and demonstrates 

that the proposed method predicts measurement properties of an MST accurately. Then, 

Study 2 proposes a procedure to find a design of an MST, given a specific set of testing 

circumstances, that shows optimal measurement properties by means of the three efficient 

strategies. 



 

7 

 

Figure 1. Examples of a 1-3 MST panel (left) and 1-3-3 MST panel (right) 
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CHAPTER 2 

 

LITERATURE REVIEW 

This study introduces a new analytical evaluation method of MST performance 

and proposes a process to discover an MST design that has optimal measurement 

properties using the analytical evaluation method given a specific testing context. 

Therefore, it is necessary to overview theories behind MST to give strong background to 

this study. The overview especially focuses on the basic design variables of MST, test 

assembly methods, evaluation methods of MST, and scoring and routing methods. Thus, 

this chapter consists of four sections and highlights research and practice related to an 

optimal design of MST. The first section reviews important design considerations in the 

development of MST. The second section discusses two evaluation methods of MST 

which are simulation-based and analytical methods. The third section provides some 

practical issues related to the test assembly of MST. The fourth section deals with some 

background of scoring and routing methods in MST.    

2.1 MST Design Considerations 

Implementing an MST is a complex process due to the large number of highly 

interdependent design variables that significantly affect the nature and quality of 

proficiency estimates. Test developers need to make a series of critical decisions based on 

various requirements of the intended purpose and expected consequences of a testing 

program in test development and administration (Zenisky et al., 2010). In fact, the 

existence of many design variables is one of the advantages in MST in that test 

developers can customize the design of an MST in numerous ways according to the 
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testing program’s goal and purposes (Zenisky, 2004). Although it is not feasible to find 

one best MST design that fits every testing context in terms of optimal measurement 

performance, many studies have investigated the impact of varying design variables on 

the testing results and tried to find a reasonable combination of design variables that 

produce acceptable measurement precision under a particular testing context (Hambleton 

& Xing, 2006; Luecht & Burgin, 2003; Luo & Kim, 2018; Park et al.,  2014; Wang et al., 

2012). 

Lord (1980, p. 129) provided an outline of several important design factors to 

consider when building a two-stage testing design in terms of measurement precision. 

Zenisky et al. (2010, p. 357) genealized Lord’s ideas to an n-stage MST with additional 

considerations that have been examined in previous MST research studies. Among the 

MST decision variables described in Zenisky et al. (2010), the frequently investigated 

variables in MST research are as follows: 

(1) number of stages; 

(2) number of difficulty-level modules per each stage; 

(3) total number of items in the test; 

(4) number of items per each module; 

(5) statistical characteristic of modules (i.e., shape of module information function); 

(6) cut-points or methods for routing examinees to modules; and 

(7) method for scoring stages and each nth-stage test. 

In addition, Luecht and Burgin (2003) and Luecht (2014) decribed several MST 

panel design consderations which correspond to the 1-5 among the list above. Also, 

Wang et al. (2012) conducted an exhaustive comparative study to examine the accracy 
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and efficiency of MST under various panel design conditions. Wang et al. (2012) not 

only addressed design variables such as the number of stages, the number of difficulty-

level modules within each stage, and the number of items per module, but they also 

explored the interaction between MST panel design variables and the item bank size 

and/or item quality in the bank. 

Since theoretical and practical concept of design variables of MST have an 

enormous range, addressing all of MST design variables is beyond the scope of this 

study. To find an optimal MST design with optimal measurement properties in some 

sense given a specific testing context, this study manipulates the characteristics of MST 

related to the design of panel configuration. Therefore, this section discusses the design 

considerations of MST, paying special attention to variables pertaining to MST panel 

design. To facilitate discussion of the MST panel design issues, each of these 

considerations are loosely clustered as related to either (1) shape of panel structure (e.g., 

1-2-2 and 1-3-5 designs), (2) test length, (3) characteristics of module, or (4) item bank 

and examinee population. 

2.1.1 Shape of Panel Structure 

The shape of a panel structure for MST consists of a combination of the modules 

and stages and when considered together indicate the possible routes that an examinee 

could take while being administered the MST. In particular, the number of stages and the 

number of difficulty-level modules per each stage are primary concerns in designing an 

MST panel structure. Theoretically, the range of possible forms of the panel structure for 

an MST is innumerable and a large number of panel structures have been studied and/or 
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used in practice. Several representative examples of panel structures in the majority of 

MST literature follow a 1-3 MST (e.g., Kim & Plake, 1993; Luecht & Nungester, 1998; 

Luo & Kim, 2018; Schnipke & Reese, 1997; Xing & Hambleton, 2004), 1-2-2 MST (e.g., 

Breithaupt & Hare, 2007; Park, Kim, Chung, & Dodd, 2017; Zenisky, 2004), 1-3-3 MST 

(e.g., Hambleton & Xing, 2006; Jodoin et al, 2006; Luo & Kim, 2018; Park et al.,  2014), 

and 1-2-3-4 MST (e.g., Wang et al., 2012; Zheng, Nozawa, Gao, & Chang, 2012). For the 

number of stages, many MST research and applications have used two, three, and four 

stages. For the number of modules per stage, one module is frequently used at the first 

stage and the number of different-level modules increases across subsequent stages 

assuming one panel is built.  

Since an MST is an adaptive test, the use of more stages in a panel, and more 

difficulty-levels of modules within the stages, allows for greater adaptation and more 

flexibility (Hendrickson, 2007). In the context of achievement tests, adding more stages 

and more modules per stage usually aims for more measurement precision in the tail 

areas of the ability scale. However, designing panels with more stages and modules also 

complicates the test assembly without necessarily adding more measurement precision 

and may result in the decrease of the overall quality of the MST (Hendrickson, 2007; 

Luecht, 2014; Yan, Lewis, & von Davier, 2014). For example, as more stages are used in 

a panel of MST, more potential pathways should satisfy the same statistical and 

nonstatistical constraints. As more different difficulty levels of modules are added within 

a stage, it might require extremely easy or difficult items for the modules that represent 

the extreme levels of ability, resulting in not meeting the target specification in the test 

assembly.  
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In fact, if test length is long-enough to obtain a high level of test information, not 

much difference is found between different panel structure designs when it comes to 

measurement efficiency and precision (Jodoin et al., 2006; Kim & Plake, 1993; Luo & 

Kim, 2018; Schnipke & Reese, 1997; Wang et al., 2012; Zenisky, 2004; Zheng et al., 

2012). Under the two stage testing context, Kim and Plake (1993) indicated that the 

increase in the number of modules at the second-stage did not make any significant 

improvement of measurement accuary.  

Jodoin et al. (2006) investigated the measurement properties of two panel designs 

of MST for a large-volume credentialing exam – a 40 item two-stage test and a 60 item 

three-stage test. In the study, the 60 item three-stage tests consistently produced strong 

psychometric properies such as more accurate abiltiy estimates, decision consistency, and 

decision accuracy than the 40 item two-stage tests. But, they observed that the 40 item 

two-stage tests performed nealy as well as the 60 item three-stage tests, claiming that 

including more stages does not significantly increase measurement precision.  

Zheng et al. (2012) compared different panel designs of MST given a large-scale 

classification testing context. Their study used a three-stage design (1-2-4 MST) and a 

four-stage design (1-2-3-4 MST) with total length of 21 items and compared correct 

classification rates (CCR) for both panel designs. The results showed that the four-stage 

panel resulted in slightly higher CCR than the three-stage panel when the item pool was 

optimized and the overap of items within a stage was allowed. However, no consistent 

advantages of CCR in the four-stage panel were found.  

Recently, Wang et al. (2012) found that with the regular item bank, MST panel 

designs with fewer modules within a stage (e.g., 1-2, 1-2-2 MSTs) were more effective in 
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terms of achieving appropriate adaptation of the module difficulties than panel designs 

with more modules within a stage (e.g., 1-3, 1-3-3 MSTs). However, no substantial 

differences were observed between different MST panel designs in Luo and Kim (2018). 

In their study, the more compex panel designs (e.g., 1-2-2 and 1-3-3 MSTs) did not 

produce significantly increased measurement precision than the simpler panel design 

(e.g., 1-3 MST). 

As Luecht (2014) noted, most previous literature indicates that designing an MST 

with more than three stages may be sufficient to produce an acceptable level of 

measurement precision as long as the designed MST provides adequate test lengths, 

degree of adaptation, and accumulation of measurement information to match the score 

precision and/or decision accuracy are provided. Also, researchers have shown that a 

maximum of four modules is desirable at any stage in general (Armstrong et al., 2004; 

Hendrickson, 2007). 

2.1.2 Test Length 

Since an MST is adaptive, it is more efficient than a conventional linear test with 

respect to test length, meaning that a shortened length of MST often performs as well as a 

longer linear test while the coverage of test specification is still balanced (Zenisky, 2004). 

More specifically, previous research findings have shown that even with a reduced test 

length, MSTs provide equal or increased measurement efficiency and precision compared 

to linear tests by adapting modules to examinee provisional ability estimates (Hambleton 

& Xing, 2006; Jodoin et al., 2006; Schnipke & Reese, 1997). 
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Schnipke and Reese (1997) investigated the use of MST for the Law School 

Admission Council  (LSAC). They compared the precision of ability estimates obtained 

from MSTs with a standard CAT design and a linear test (i.e., paper-and-pencil test). The 

results incidated that all module-based MST designs led to improved precision over the 

same length linear test and provided almost as much precision as the linear test of double 

length. Under the context of credentialing exams, Hambleton and Xing (2006) and Jodoin 

et al. (2006) showed that the performance of an MST design can be effective as much as 

the linear test. More specifically, Hambleton and Xing (2006) claimed that when a test 

infomration function (TIF) matches the passing score, the MSTs produced slightly better 

classification results than the linear test for tests of the same length. Jodoin et al. (2006) 

observed that a 40-item two-stage test still showed decision accuracy simliar to a 60 item 

linear test. 

In a recent study, Luo and Kim (2018) assembled a test for MST using a top-

down and a bottom-up assembly approach with three test lengths (24, 48 and 60) and 

three panel designs (1-3, 1-2-2, and 1-3-3 MSTs). They found consistent effects of test 

length on the measurement precision in the simulation study, where longer tests resulted 

in lower root mean squared errors (RMSEs) regardless of assembly approach and panel 

designs. 

With respect to test length of MST, another consideration for designing an MST is 

whether content specification should be covered at the module or total test levels 

(Zenisky, 2004). For example, when content specifications of a test are to be satisfied at 

the module level, it may require more items at stages and thus, test length increases. 

Accordingly, test length of an MST should be long enough to produce accurate 
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measurement precision as well as to provide a balanced domain coverage at the module 

or test levels (Zenisky & Hambleton, 2014). 

2.1.3 Characteristics of Modules 

MST design issues related to characteristics of the modules have been 

expansively studied because they are closely related to the measurement efficiency and 

precision of an MST. Generally, two important factors are involved regarding the 

characteristics of modules: statistical characteristics of modules and the number of items 

per module. 

When a test is assembled using an IRT model, statistical properties of modules is 

usually characterized by the target module information functions (MIF) to which each 

module is assembled. The target MIF controls the exact measurement properties of the 

items selected for module. Therefore, the choice of the statistical target MIF is one of the 

most important decisions for designing an MST panel, especially when the panel is built 

using a bottom-up assembly approach (Luecht & Nungester, 1998). To assemble the 

module-based MST panel, the statistical level of differentiation among the modules 

within each stage such as the average item difficulty, variance of the item difficulties, and 

average item discrimination, should be specified (Luecht, 2014). Among all statistical 

factors, the average item discrimination has a direct effect on the amount of information 

provided by each module. The average and variance of the item difficulties of each 

module determine the location and region in the ability scale where each module will 

cover. Accordingly, a general goal of designing MST is to select the items that 
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approximate the desired level of statistical properties of MIFs, subject to other non-

statistical constraints (Hendrickson, 2007). 

Each of various studies regarding the statistical characteristics of modules 

provides informative psychometric results (Jodoin et al, 2006; Kim, Chung, Dodd, & 

Park, 2012; Kim & Plake, 1993; Zenisky, 2004), but broader conclusions are found in the 

results. Kim and Plake (1993) argued that the statistical characteristics of the first module 

for two-stage tests significantly affected the measurement precision. They found that a 

routing module test with a wide range of item difficulties was superior to the peak routing 

module test by showing smaller measurement errors, depending on the characteristics of 

second-stage modules in the test.   

Zenisky (2004) also indicated that distributing more information to the first-stage 

module rather than later-stage modules was recommended for more accurate routing 

decisions when there was a limited amount of overall test information in the test. This 

argument was confirmed by Kim et al. (2012). They compared various panel designs of 

the MST using mixed-format tests in the context of classification testing. In the 

simulation, the first-stage module was constructed according to three levels of MIFs and 

three different centers of TIFs. The higher levels of MIFs at the first-stage achieved better 

accuracy of the classification decision. However, Jodoin et al. (2006) discovered that 

there were no significant differences of measurement properties between the 1-3-3 MST 

with the same amount of MIFs across three stages and the 1-3-3 MST with the reduced 

information for the first-stage and the increased information for the subsequent stages. 

To find optimal target MIFs for an MST design, Luecht and Burgin (2003) 

proposed a way of generating feasible target MIFs, called conditional information 
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targeting (CIT) strategy. This method was used with two purposes: (1) to explicitly 

control the proportion of the population routed along various pathways and (2) to make 

the targets as informative as possible, considering the quality of the items in the item 

bank, content, and other test specifications. Though they illustrated this strategy with a 

simple 1-2 MST, the simulation results were promising for the CIT strategy to be used for 

more complicated MST panel designs.  

Various number of items per module have been used in MST research and 

operational testing programs. The module length may vary across the stages, depending 

on the targeted statistical properties of modules and test specifications of a test (Yan et 

al., 2014). In fact, the targeted statistical characteristics of modules (i.e., the desired 

MIFs) and module length are closely, but not directly, related to each other. If the number 

of items per module is reduced, then it is highly likely to decrease the amount of MIF in 

the assembled MST unless high-quality items (i.e., items with high values of 

discrimination) are provided in the item bank.     

Both strategies of longer modules at the first-stage and of extended modules at the 

later stages have their own rationale (Patsula, 1999). The former design is intended to 

more accurately route examinees to subsequent stages and the later design is needed to 

provide tailored items to examinees after the test are more closely aligned with the 

estimates of examinees’ abilities. Both strategies may gain some accuracy from one side 

and lose some accuracy from the other side (Zheng et al., 2012). 

Although Kim and Plake (1993) found that increasing the number of items at the 

first-stage module increased precision, a first-stage module that has too many items may 

result in a less efficient adaptive test. However, Luo and Kim (2018) found that assigning 
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more items to the final stage resulted in better precision of abiltiy estimation than 

assigning more items to the first stage when the bottom-up assembly method was used. 

Even when the panel was assembled with the top-down assembly approach and the 

controlled routing error, the final stage had many more items and the test produced the 

best performance of ability estimation among any other MST panel designs.   

Interestingly, Zheng et al. (2012) examined allocating a different number of items 

to module across the stages in three different ways so that the simulated panel designs 

had equal-length stages with longer earlier stages, longer middle stages, and longer later 

stages. In the results, it was not clear which allocation strategies had better measurement 

properties such as classification accuracy and measurement precision. 

2.1.4 Item Bank and Examinee Population  

The design variables described in the previous section play an important role in 

developing MST panels. But, the extent to which the quality of measurement properties is 

optimal for any MST design given a specific testing context depends on how well the 

item bank supports the chosen design of MST and the nature of the examinee population 

(Zenisky & Hambleton, 2014).  

To satisfy the given design variables when building an MST test, the item bank 

must contain sufficient depth and breadth to facilitate the automated test assembly 

process. For example, if credentialing test programs expect to move from a conventional 

linear test format to MST, the item bank that is well suited for a linear test may not be 

ideal for building the MSTs and, therefore, the theoretical advantages of an MST design 

would not be realized. This is particularly challenging in MST because the item bank 
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required for the construction of MSTs needs to satisfy the more detailed content and 

statistical specifications (Hambleton & Xing, 2006; Xing & Hambleton, 2004).  

Xing and Hambleton (2004) explored how the size and quality of the item bank 

affect the psychometric properties of credentialing exams through the comparison of 

different CAT designs, including a linear test, CAT, and MST. They created two item 

bank sizes (240 and 480) and manipulated item quality of the bank with three levels 

(poor, original, and improved levels) by increasing or decreasing the average of item 

discrimination values. The simulation results showed that the bigger size and better 

quality of item bank led to significantly better decision consistency and accuracy 

regardless of test designs.  

In a recent study, Wang et al. (2012) further considered two levels of item bank 

quality which are an operational item bank and an optimal item bank by improving item 

discriminations and targeting item difficulties in the original bank. The results indicated 

that the quality of the item bank may be the primary factor that impacts the measurement 

properties of any MST design. Specifically, They observed that most of MST designs 

under the optimal items bank were highly effective in terms of achieving appropriate 

adaption of the module difficulties. Also, the results suggested that although the number 

of modules per stage increased in the MST panel, the item bank was not able to provide 

enough items of desired quality and thus, led to less measurement information in specific 

regions of the scale if the quality of item bank was not optimal. 

The examinee population is an important consideration for the measurement 

properties in MST as well. Though cut-scores for the credentialing or licensure programs 

can be set independent of the examinee population, it has been found that the 
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characteristics of the population have a clear impact on the process of test assembly and 

testing results (Zenisky et al., 2010).  

As explained in Jodoin et al. (2006), the consistency of correct classification in 

the pass-fail decision could be affected by the location where more examinees’ true 

abilities are centered. For instance, classification error rates may increase when the 

passing score is moved from 0.5 to 0.0 in the IRT ability scale if the population follows a 

standard normal distribution because more examinees are centered near the passing score 

of 0.0. Also, Hambleton and Xing (2006) investigated whether the TIFs in an MST 

should be centered to the mean of the candidate ability distribution or to the passing score 

to maximize the effectiveness of test. When the TIF matched to the passing score, the 

MST designs resulted in slightly better classification results than the linear test designs. 

2.2 Evaluation of Test Performance in MST 

When assessing test performance, a primary interest of researchers is usually how 

precisely a test measures the construct of interest. In IRT, the amount of test information, 

which is simply the sum of the item information for individual items, is directly related to 

measurement precision of a test (Hambleton, Swaminathan, & Rogers, 1991) because the 

inverse of square root of the test information given at a value of 𝜃 is the conditional 

standard error of ability estimate (CSEE) at the 𝜃. In the context of conventional linear 

test, researchers used the TIF obtained from the test to predict the test performance. 

Under the adaptive testing context, however, it is challenging to obtain test-level 

information since the concept of a conventional test form does not apply to CAT and 

MST (Park et al., 2017). For example, in an MST there exists several different routes that 
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examinees are likely to travel using the testing process. Therefore, simulation methods 

have been employed in the adaptive testing context to evaluate the performance of a test, 

which is an appropriate choice of methodology when there is no reasonable analytical 

way of solving a problem (Harwell, Stone, Hsu, & Kirisci, 1996; Psychometric Society, 

1979).   

For MST, Monte Carlo (MC) based simulation methods have been a typical 

methodology used to evaluate the performance of a test for various purposes (e.g., 

Armstrong et al., 2004; Dallas, 2014; Hambleton & Xing, 2006; Jodoin et al., 2006; 

Luecht, 2003; Luecht & Burgin, 2003; Luo & Kim, 2018; Park et al., 2014; Park et al., 

2017; Wang, 2017; Wang et al., 2012; Weissman et al., 2007; Xing & Hambleton, 2004; 

Zenisky, 2004; Zheng et al., 2012). For example, some simulation studies have focused 

on comparing psychometric properties of an MST with other testing designs such as a 

linear test and a CAT based on the operational test setting (e.g., Hambleton & Xing, 

2006; Jodoin et al., 2006; Wang, 2017). Some studies have investigated impacts of 

varying design variables described in the previous section on the measurement precision 

of MST (e.g., Wang et al., 2012; Zheng et al., 2012). Other studies have conducted a 

simulation study to examine the performance of new method related to the 

implementation of MST (e.g., Luo & Kim, 2018; Park et al., 2014; Park et al., 2017; 

Weissman et al., 2007). Generally, the MC based simulation methods use the following 

procedures to assess measurement precision under an MST context. First, item 

parameters are drawn either from a real item bank or from underlying item parameter 

distributions. Second, ability values are generated from a specific population distribution 

(e.g., a standard normal distribution). Third, simulate examinees’ responses for each route 
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in a specific MST design following an underlying IRT model. Fourth, examinee abilities 

are estimated using a predetermined scoring method (e.g., MLE). Fifth, the whole process 

is replicated R times, and the ability estimates obtained from R replications are used to 

calculate, for instance, the CSEEs along the 𝜃scale. 

Recently, Park et al. (2017) proposed an analytical approach to assess 

performance of an MST. Not only did they derive a method to compute the CSEEs but 

they also suggested a way of predicting classification accuracy for MST using the 

CSEEs. To compute the standard error given a specific 𝜃, test-level information for MST 

(i.e., MST test information) is derived using two steps: (1) construction of test 

information for primary routes and (2) averaging of the test information to take secondary 

routes into consideration. In the first step, a single TIF is formed only using the peak of 

each other primary pathway information functions along the 𝜃 scale. In the second step, 

the single TIF is averaged across the 𝜃 scale using a simple moving average method to 

incorporate the secondary pathways into the calculation of the MST test information. 

Then, the averaged MST TIF is used to obtain the CSEEs. Park et al. showed that the 

analytically computed CSEEs and the predicted classification accuracy were close to 

those obtained from a simulation. 

In the study, Park et al. (2017) compared the performance of the proposed 

analytical and the simulation-based evaluation methods in the MST context. They used a 

real item pool from the science subset of the 1996 National Assessment of Educational 

Progress (NAEP). Examinee abilities were estimated using the expected a priori (EAP) 

scoring method with a standard normal prior. To compare the measurement precision of 

both analytical and simulation-based approaches, four design variables were manipulated: 
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two levels of test length (40 and 60 items), two MST configurations (1-2-2- and 1-3-3 

MSTs), two routing module designs, and four proportions between dichotomous and 

polytomous items. To predict the classification accuracy, three cutoff scores were 

applied. In the results, both the suggested analytical and simulation evaluation methods 

produced similar standard errors along with ability scale and classification accuracy to 

each other, leading to conclusion that the analytical evaluation method based on the MST 

test information effectively predicted the performance of MST. 

Park et al. (2017)’s study is meaningful for two reasons. First, the analytical 

approach can help researchers assess the performance of MST more efficiently. It usually 

takes significantly more time and effort to set up and conduct a simulation study, 

especially as the number of conditions and replications become large. However, since the 

analytical evaluation method does not require multiple replications, the computing 

process is relatively fast. Second, the evaluation results of analytical method may be 

more exact than those of the simulation method. For example, since the Park et al. (2017) 

study sampled ability parameters from a normal distribution for the simulation-based 

approach, they observed large standard errors for extreme ability parameters that was 

mainly due to the small number of simulees. However, the analytical method is able to 

calculate the measurement precision without relying on the number of examinees at the 

extreme ability level. 

Although the proposed method by Park et al. (2017) can be analytically derived, a 

part of its derivation is open to question. First, the averaged MST test information may 

not be accurate because the simple moving average method does not use the exact test 

information values from secondary routes. As the MST panel contains more secondary 
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routes (e.g., 1-3-5 MST), the performance of the analytical method in Park et al. (2017) 

would be more doubtful. Second, they computed the simple moving average of 5 points 

around each 𝜃 value without a specific reason for using the 5 points. From a small 

simulation study, however, it was found that the MST test information varied depending 

on the number of the points being used to calculate the simple moving average. Third, it 

is questionable whether applying the simple moving average method is appropriate for 

two-stage MSTs such as 1-2 and 1-3 MSTs because no secondary route exists in the two-

stage MSTs. Obtaining the MST test information only from the primary routes does not 

make sense as well because a routing is not perfectly accurate due to measurement error 

of ability estimation in practice.  

In this study, a new analytical evaluation approach, which is based on the equated 

NC scoring method (Stocking, 1996), is proposed to calculate the CSEEs. This method 

can overcome the drawback of Park et al. (2017)’s approach because measurement 

precision is more exactly derived. The proposed method is fully discussed in Chapter 3. 

2.3 Test Assembly 

In MST, a test is built using either a top-down assembly method or a bottom-up 

assembly method (Luecht & Nungester, 1998). Once the assembly strategy is decided, 

the test is usually automatically assembled using either a linear programming approach or 

a heuristic approach. In this section, the top-down and bottom-up assembly strategies are 

introduced first. Then, the automated test assembly (ATA) methods are discussed.    
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2.3.1 Top-Down and Bottom-Up Approaches 

In MST, there are two general test assembly strategies to build panels: the bottom-

up and the top-down approaches (Luecht & Nungester, 1998).  The bottom-up approach 

is considered a “divide-and-conquer” method because a test level specification for an 

MST design is decomposed into the module level specification (Luo & Kim, 2018). Thus, 

it is necessary to prepare comprehensive module level specifications for the statistical and 

non-statistical targets so that each module can be assembled independently across stages. 

To develop multiple parallel panels, multiple parallel modules are assembled first and 

then they are mixed and matched because modules representing the same difficulty level 

are exchangeable across panels.   

In contrast, the top-down strategy is a holistic test assembly approach in that test 

level specifications for the statistical and non-statistical targets are constrained on routes 

(Luo & Kim, 2018). Therefore, test developers do not need to make specific 

specifications for modules. Instead, the top-down approach lets the computer algorithm 

determine the best partition of the test level constraints across stages. Accordingly, 

modules can be built in prescribed ways at each route to satisfy the desired test level 

properties (Luecht & Nungester, 1998). Note that, since the test level specifications are 

imposed, modules representing the same difficulty level may not be completely parallel 

and exchangeable across panels when the top-down strategy is used. Luecht and 

Nungester (1998) stated that employing the primary routes in the panel of MST to 

develop target TIFs is enough because the secondary routes would not likely to be used 

for most examinees, whereas Zheng et al. (2012) and Luo and Kim (2018) used the target 

TIFs of all routes in the ATA process.  
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Until now, most MST studies have employed the bottom-up strategy (e.g., 

Hambleton & Xing, 2006; Jodoin et al., 2006; Luecht & Burgin, 2003; Luecht, 

Brumfield, & Breithaupt, 2006; Park et al., 2017; Wang, 2017; Weissman et al., 2007; 

Zenisky, 2004; Zenisky et al., 2018) because the process of the multiple module assembly 

is similar to that of building multiple linear test forms which might be a more familiar test 

design concept to test developers (Luo & Kim, 2018) and it is more straightforward to 

implement compared to the top-down strategy (Dallas, 2014; Zheng, Wang, Culbertson, 

& Chang, 2014).  However, when test developers try to find an optimal MST design 

given a specific testing context, the task is very difficult under the bottom-up approach 

because there are too many design variables to be considered at the module level. For 

example, we need to decide the number of items within each module at each stage and 

how to distribute test information across stages to maximize test score precision. As the 

number of modules and stages increase in the MST configuration, the number of design 

variables that should be taken into account to decompose the test level specification into 

the module level increases exponentially. Because there is no analytical method to find 

the optimal partition of test level design variables that guarantees the best measurement 

precision under the bottom-up strategy, the distribution of design variables into the 

module level usually depends on experiment or the test developer’s experience (Luo & 

Kim, 2018). Therefore, the design space, where test developers can search to find the 

optimal design of MST, is limited in practice.  

However, the top-down approach does not require artificial decisions to find an 

optimal decomposition of test level design variables into the module level because the 

ATA algorithm can find the best solution for the partition by meeting all constraints as 
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well as ensuring the best measurement precision. Due to the simplification of the 

designing process and the flexibility to set constraints across stages under the top-down 

assembly, the test specification of the conventional linear test form can be easily moved 

into an MST and better psychometric characteristics (e.g., measurement precision) can be 

obtained compared to the bottom-up approach (Luo & Kim, 2018).    

Compared to the bottom-up approach, there has been only few studies on the top-

down assembly strategy in MST (Luo & Kim, 2018; Zheng et al., 2012).  Zheng et al. 

(2012) investigated the feasibility of the top-down assembly in MST for a larage-scale 

classification test. They assembled each panel by using a real item bank with 600 items 

and a revised version of the normalirzed weighted absolute deviation heuristic (NWADH; 

Luecht, 1998) method. In the ATA process, they used two steps: (1) assembled multiple 

modules from the item bank without a full constraint on content category and then (2) 

built MST panels from the obtained modules. Because the content specifications were 

constrained at the test level, they applied the top-down strategy at the second step to 

monitor the quality of the assembled panels. However, the assembly approach used in 

Zheng et al. (2012) should be considered a hybrid assembly method rather than a full top-

down approach. This is because only content constraints were set at the test level 

wheresas other statistical and nonstatistical specifications (e.g., the number of items in 

each module and target MIFs) were imposed at the module level. In a simulation study, 

they compared the performance of an MST under the top-down approach with that of a 

linear test and a CAT. The results showed that the MST had better classification accuracy 

than the linear test and provided classification accuracy as good as that from CAT.  
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Recently, Luo and Kim (2018) proposed a route -based top-down assembly 

strategy using mixed integer linear programming (MILP; van der Linden & Adema, 

1998). In this approach, the design variables on all allowed routes were constrained at the 

test level. To control routing errors, they divided the population into subpopulations 

based on the routing decision points (RDPs) and then set two types of constraints at the 

module level: (1) to anchor the RDP between two adjacent modules and (2) to set the 

minimum information at the RDP for modules. In an ATA process under the bottom-up 

approach, the objective is usually to make the observed MIF as close as possible to a 

given target MIF.  Under the top-down approach of Luo and Kim, the objective was to 

maximize all possible routing information functions (RIF) over the 𝜃 interval of targeted 

subpopulation. Through the simulation study, they compared the top-down and the 

bottom-up MST designs in terms of measurement precision and the route usage rate using 

three panel configurations (1-3, 1-2-2, and 1-3-3 MSTs). The results indicated the top-

down approach had higher measurement precision and better controlled routing error than 

the bottom-up approach.  

2.3.2 Automated Test Assembly (ATA) 

Generally, two ATA approaches are widely used in MST: heuristic and mixed-

integer programming (MIP). A heuristic-based ATA approach builds a test by solving a 

series of local optimization problems to select a best-fitting item or set of items in the 

process of test assembly (Zenisky, 2004; Zheng et al., 2014). At each sequence of the 

optimization problem, a composite objective function is used to meet the statistical 

targets (e.g. TIF) and non-statistical constraints (e.g., test specification for content). 
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Various heuristic test assembly methods have been developed such as the weighted 

deviation method (WDM; Swanson & Stocking, 1993), the maximum priority index 

(MPI; Cheng & Chang, 2009), and the normalized weighted absolute deviation heuristic 

(NWADH; Luecht, 1998) in the adaptive testing context. Among them, only the 

NWADH has been adapted in many MST studies (e.g., Hambleton & Xing, 2006; Jodoin 

et al., 2006; Luecht & Burgin, 2003; Luecht & Nungester, 1998; Patsula, 1999; Zheng & 

Chang, 2015; Zheng et al, 2012). This heuristic method normalizes the weighted 

deviations for constraints to put them on a common scale. The item with the smallest 

normalized absolute deviation is selected for a test (Zheng et al., 2014). The heuristic-

based ATA methods provide a reasonable solution for the test assembly in relatively 

short period of time, but do not guarantee that the assembled test forms exactly satisfy all 

of the constraints in the test specification and the obtained solution may not be the best 

possible solution (Luecht, 1998; Breithaupt & Hare, 2007). 

A second popular ATA approach is to use the MIP algorithm (van der Linden, 

2000, 2005) in MST. In the MIP approach, all the ATA problems (e.g., constraints and 

objective functions) are translated into a set of mathematical linear formulae and a 

solution for assembling test forms/panels can be found which optimizes the objective 

functions. The solution in the MIP is the best possible solution among a large number of 

feasible solutions. However, as the complexity and the number of constraints increase 

(e.g., increase of the number of parallel test forms), the ATA procedure can be time-

consuming. In addition, when the current item pool does not suffice to meet all of the 

constraints, then the algorithm may return no solution because the ATA problem is 

infeasible in that case (van der Linden, 2005).    
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The ATA problem using MIP for any assembly of a test can be solved by taking 

four steps introduced by van der Linden (2005): (1) identify the decision variables; (2) 

model the constraints; (3) model the objective; and (4) solve the model for an optimal 

solution. In the first step, the decision variables consist of a 0 or1 (0/1) and a few real-

valued (continuous) variables are defined for the MIP. The 0/1 variables are used to 

identify whether each item is selected in the assembled test form. The real-valued 

variables are necessary for technical reasons such as defining an objective function using 

test information. A set of constraints and objectives on the selection of a test form is 

formulated based on the defined decision variables (Breithaupt & Hare, 2007).  

In the second step, all of the constraints are expressed as a form of 

inequality/equality that imposes a real-valued bound on a (un)weighted sum of decision 

variables. There are three types of constraints that depend on their attributes: quantitative, 

categorical, and logical constraints (van der Linden, 2005). The quantitative constraints 

set a real-valued bound on a weighted sum of the decision variable and are related to the 

quantitative attributes of item/test such as item/test information, test length, and expected 

response times. The categorical constraints impose an integer bound on an unweighted 

sum of decision variables and usually deal with content category, item format, and 

cognitive level of item. To formulate the categorical constraints, the item pool is 

partitioned into subsets of items with the same attributes. The logical constraints are to 

control the logical relation between pairs, triples, and so on, of items. For example, this 

constraint prevents the selection of one item if the other is selected from a set of “enemy” 

items.   
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In the third step, an objective function can be defined using any attribute of 

constraints formulated as a mathematical expression in step 2 (van der Linden, 2005). If 

the IRT model is used in the ATA process, a general form of the objection function is to 

maximize the TIF or minimize the deviation of the test information of the assembled test 

from the target information (Zheng et al., 2014). Note that a test assembly problem can 

have more than one objective function if a set of fixed ability values are used. Once all of 

the ATA problems are set up through step 1-3, the MIP formulation is transferred into 

software programs, known as solvers, to find an optimal solution. Currently, many 

different solvers are available, including open source solvers (e.g., lp_solve; Diao & van 

der Linden, 2011) and commercial solvers (e.g., IBM ILOG OPL; Luecht et al., 2006). 

The decision variables recorded as 1 in the solution indicate the chosen items for the 

assembled test form.  

The following is a standard model formulation to assemble a single test form with 

a quantitative objective from a discrete item pool. The model involves maximizing test 

information at several fixed ability values subject to a test length, content constraints, and 

enemy item specifications. The items in the pool are denoted as 𝑖 = 1, . . . , 𝐼.  Let 𝑉𝑐 be a 

subset of items in the pool that belong to content category c and 𝑛𝑐 is the lower bound on 

the number of items from this subset. 𝑉𝑒 is a subset of items that belong to an enemy item 

set e. Also, 𝐼𝑖(θ𝑘) indicates the information function value for item i at kth 𝜃. Now 

decision variables for items in the pool are defined as 

 
1 if item is selected for a test form,

0 otherwise
i

i
x


= 


   (2.3.1) 
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The model has an objective function based on the maximum principle, which 

maximizes a minimum value of the TIFs among the fixed K values of 𝜃, such that:  

 max (objective function)y   (2.3.2) 

subject to possible constraints as followings: 
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  0,1 , for all ,ix i   (2.3.7) 

 

where y is a real-valued decision variable in Equation (2.3.2). A symbol of ⋛ indicates 

the choice of an equality or an inequality sign. Equation (2.3.5) is a constraint for the 

content category requirement in a test form. Equation (2.3.6) guarantees no item overlap 

among a set of enemy items. A fixed test length is imposed by Equation (2.3.4). This 

standard ATA model formulae can be flexibly reformulated depending on testing 

purposes, test designs, assembly strategies, specific constraints, and other factors.  

Since Adema (1990) proposed MIP models for constructing two-stage MST, the 

MIP method has become one of the popular strategies for test assembly in MST. van der 

Linden (2005) dealt with comprehensive details about linear modeling of ATA process 

for various test designs, including the MST and Diao and van der Linden (2011) 

described how to use the free solver of lp_Solve with R interface to conduct the ATA for 

MST. Some studies discussed the assembly of MST using MIP technique in an 
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operational context such as the Law school Admission Test (LSAT) (Armstrong et al., 

2004; Armstrong & Roussos, 2005; Weissman et al., 2007) and the Uniform Certified 

Public Accountant (CPA) examination (Breithaupt, Ariel, & Hare, 2010; Breithaupt, 

Ariel, & Veldkamp, 2005; Breithaupt & Hare, 2007; Luecht et al., 2006; Melican et al., 

2010). Recently, Park et al. (2014) adoped the MIP method for constructing an MST 

using the mixed-format test to enhance item pool utilization and Luo and Kim (2018) 

applied the MIP model to suggest a top-down assembly in MST.  

Under MSTs, MIP algorithm can provide an optimal assembly of parallel panels 

that strictly satisfy all constraints at the module level or test level. Because it is required 

to assemble multiple panels and modules for practical reasons (e.g., test security) in 

MST, however, this makes the ATA problem in MIP more complicated. Thus, one may 

need to use a high-performing solver in the ATA process or tune MIP parameters to 

increase efficiency of problem solving (Luo & Kim, 2018). 

2.4 Scoring and Routing Methods 

Among many critical considerations in the development of an MST, the choice of 

strategies for scoring and routing has enormous implications for testing results. In this 

section, IRT pattern-based scoring and IRT summed score-based scoring methods are 

discussed. Following the scoring methods, two routing methods of the approximate 

maximum information (AMI) and the defined population interval (DPI) are reviewed 

next.  
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2.4.1 IRT Pattern-Based and IRT Summed Score-Based Scoring Methods 

In CAT, IRT pattern-based scoring methods such as the maximum likelihood 

(ML) estimation and Bayesian expected a posteriori (EAP) estimation are typically used 

to estimate examinee ability 𝜃. The IRT pattern-based scoring methods use all 

information available in an examinee’s response pattern under IRT models and therefore, 

each response pattern is often associated with a unique ability estimate  𝜃 (Thissen, 

Pommerich, Billeaud, & Willams, 1995). Despite this advantage, the pattern-based 

scoring requires a complicated process when estimating examinee ability. For example, 

the ML estimate of  𝜃 is obtained by finding a 𝜃 value which maximizes the likelihood of 

a probability function that an examinee’s response pattern for a set of items would be 

observed. Due to this property of the ML estimation, examinees who respond to the same 

set of items and have the same summed score, but had a different responses pattern will 

receive differeent ability estimates. This process of scoring is not intuitive to test takers 

who are familiar with a scoring method where a test score is a sum of the number of 

items answered correctly. The scoring feature of ML estimation makes it even more 

challenging to explain test takers a system of deriving the test scores in the adaptive 

testing (Stocking, 1996). 

Those responsible for testing programs should provide score interpretations 

appropriate to the audience in simple language when releasing test score information 

(American Educational Research Association, American Psychological Association, and 

National Council for Measurement in Education, 2014, p. 119). For this purpose, the use 

of a scoring method based on the summed score (or NC score) of a test is more desirable 

than the response patterns-based scoring methods in terms of score interpretation. In 
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practice, some conventional standardized testing where linear test forms are administered 

have been implemented with the IRT scaled summed-score methods (Stocking, 1996; 

Thissen et al., 1995). Two popular IRT scaled summed scoring methods under the 

conventional linear testing design are: the equated NC (ENC) scoring, which is based on 

the inverse of test characteristic curve (TCC) (Kolen & Brennan, 2004; Stocking, 1996), 

and the EAP summed scoring, which is based on the compound binomial distribution of 

item response probabilities for each summed score (Thissen & Orlando, 2001; Yen, 

1984). Under MST, the ENC scoring method has been frequently used to determine 

ability estimates when routing examinees to the next module (e.g., Luecht et al., 2006) 

but, only few studies have employed the IRT scaled summed-scoring method for the final 

estimation of examinee abilities (e.g., Kim & Moses, 2014). In practice, some of the 

current comprehensive testing programs apply the ENC scoring as a final scoring method 

in the large-scale statewide assessments under the MST context (e.g., Wendler & 

Bridgeman, 2014). 

To use the IRT scaled summed score methods in adaptive testing, including MST, 

the following three conditions must be met (Stocking, 1996):  

(1) Whether the interpretability of the scoring is enhanced? 

(2) Whether the scoring is sensitive to test difficulty of different test forms?  

(3) Whether the scoring can accomplish both (1) and (2) with accurate measurement 

precision.  

As already discussed above, the first condition is easily satisfied because a sum of 

number correct answers in a test corresponds to each IRT scaled summed-score and all 

items count the same amount towards this score. Accordingly, this scoring system is 
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more understandable to test takers. The second condtion is related to placing test scores 

from different parallel test forms onto the same score scale, called equating, as in the 

conventional linear tests (Kolen & Brennan, 2004). Because MST is adaptive, which 

tailors the difficulty of next module to examinee’s current ability estimate, test takers 

with different proficiencies may have different routes at the end of testing. Therefore, raw 

summed scores from different routes would not be comparable since the different 

pathways could differ by difficulty. However, the IRT scaled summed-scores are 

estimated by using item parameter estimates from the item pool where all item 

parameters are already calibrated on the same scale. Thus, the produced score is 

eventually a result of a scaling that adjusts for form-to-form variation in test difficulty 

(Stocking, 1996). 

To satisfy the last condition, the IRT scaled summed-score should be comparable 

to the IRT pattern-based estimates in the sense of measurement accuracy and efficiency. 

Fortunately, several studies have shown that the summed score based IRT scaled 

estimates can be used to obtain a good estimate of examinee’s proficiency (Chen & 

Thissen, 1999; Kolen & Tong, 2010; Thissen et al., 1995; Thissen & Orlando, 2001; 

Stocking, 1996; Yen, 1984). 

Yen (1984), Thissen et al. (1995), and Thissen and Orlando (2001) proposed a 

way of estimating the latent ability corresponding to each summed score by 

demonstrating the relationship between the summed score and response pattern score. 

Yen (1984) used an approximation method to calculate the compound binomial 

distribution of item response probabilities given a summed score (Lord & Novick, 1968) 

and found the NC maximum likelihood ability estimate corresponding to that summed 
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score. In her study, the ability estimates provided accurate estimated true scores for a 

group associated with each summed score. Instead of the approximate ML estimation, 

Thissen et al. (1995) and Thissen and Orlando (2001) used the EAP summed score 

estimation method which is the mean of a posterior density for a summed score, given the 

item parameter estimates. Both studies noted that effectively computed IRT scaled scores 

for each summed score is useful for score reporting, though a small loss of information is 

inevitable due to the simplification of scoring from response patterns to summed scores. 

Therefore, the IRT scaled score associated with the summed score can provide a 

reasonable latent ability estimate (Thissen & Orlando, 2001). 

Stocking (1996) and Kolen and Tong (2010) also demonstrated that the IRT 

scaled summed score methods are comparable with the IRT pattern scoring methods in 

terms of measurement accuracy. Stocking (1996) explored whether the ENC scoring 

method could be employed without undue sacrifices to the other efficiencies gained from 

the IRT pattern-based scoring method (e.g., MLE) under the adaptive testing context. In 

this scoring method, the IRT scaled ability estimate is obtained by finding an inverse 

value of the NC score on the IRT ability scale through the TCC. Stocking showed from a 

simulation study that the ENC scoring could be a feasible alternative to the ML 

estimation although it has some reduced information compared to the full information 

scoring approach in CAT. Specifically, measurement precision of the ENC scores in CAT 

was judged acceptable since both the ENC scoring and ML estimation methods produced 

very similar reliability and CSEE curves along the𝜃scale.  

Kolen and Tong (2010) compared four IRT pattern-based scoring methods, MLE 

and EAP, and two IRT scaled summed scoring methods, the ENC scoring, and EAP 
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summed scoring methods. The study showed that the score distributions between the IRT 

scaled summed score (the ENC scoring and EAP summed scoring) versus pattern-based 

score (MLE and EAP) estimators were very similar. This indicates that it is difficult to 

argue whether pattern-based estimators (e.g., MLE) are superior to summed scoring 

methods (e.g., the ENC scoring) in a particular application (Kolen & Tong, 2010). 

Therefore, they argued that the use of ability estimation methods based on summed 

scores might be appropriate for those testing programs where it is important to have a 

simple explanation for scoring. 

In addition, Chen and Thissen (1999) estimated item parameters of the 3PL model 

by modifying the maximum marginal likelihood (MML) EM algorithm with the 

computations based on summed scores instead of response patterns. Although Chen and 

Thissen’s scoring requires a complicated procedure compared to other IRT scaled 

summed score methods, the result showed that the estimated scaled scores were 

approximately as accurate as those obtained using the pattern-based ML estimates.  

As all previous research noted, it seems that IRT scaled summed score-based 

method can be an effective alternative scoring in MST context and provides (1) ease of 

score interpretation, (2) comparability of scores from different routes, (3) acceptable 

measurement efficiency and precision. As other studies indicated, a loss of information is 

inevitable due to the simplification of scoring for the IRT scaled summed score-based 

scoring (Stocking, 1996; Thissen et al., 1995; Thissen & Orlando, 2001). But, the amount 

of loss is small, and more importantly, the loss may be counterbalanced by a practical 

advantage of the summed score-based scoring strategies, obviously easiness of 

interpretability of scores when the scoring report is released to public (Thissen et al., 
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1995). Despite of some loss of information, the summed score-based scorings also 

produce measurement estimation that are more robust to suboptimal test adaptation under 

the adaptive testing context or misleading responses due to other factors, such as 

misunderstanding the directions, anxiety, and poor time management (Meijer & Nering, 

1997; Stoking, 1996; Stocking, Steffen, & Eignor, 2002).  

2.4.2 AMI and DPI Routing Methods 

In addition to the scoring method, another important decision that must be made 

in MST is what method to use for routing. The routing is a process that assigns an 

examinee to a well-matched module at the next stage based on the examinee’s 

performance on the previously selected module(s). A choice of routing rule usually 

depends on the testing purpose and design of MST (Yan et al., 2014) and it affects the 

usefulness of the results from the MST (Zenisky & Hambleton, 2014).  

Two routing rules are commonly used for MST: the approximate maximum 

information (AMI; e.g., Luecht et al., 2006) method and the defined population interval 

(DPI; e.g., Jodoin et al., 2006) method. The AMI method uses a point where two 

empirical adjacent MIFs at the next stage intersect as the routing decision point (RDP). 

Once the RDP is found, examinees are assigned to the module which has maximum 

information at their current ability estimate. This method is similar to using a maximum 

information criterion to select an item in CAT, given a current provisional estimate. The 

intersection point can be found using a numerical root-finding method such as the 

bisection method. Since the AMI is the IRT information-based method, the module with 

maximum information could be found using either the IRT pattern-based or IRT scaled 
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summed score-based scoring methods. For IRT scaled summed score-based scorings, 

typically the ENC scoring method has been used and this method has performed as well 

as the IRT pattern-based scoring method (Dallas, 2014; Luecht et al., 2006; Zheng et al., 

2012).  

The DPI rule uses the prespecified proportion of examinees in the population 

distribution to find the RDP. For example, if we want the approximately equal module 

usage at the second stage in a 1-3 MST panel, the two RDPs can be found at two ability 

points associated with 33rd and 67th percentiles in the cumulative population distribution. 

This method is usually used to manage the module usage rate (Hambleton & Xing, 2006; 

Luo & Kim, 2018). Although those two routing methods have different purposes, Dallas 

(2014) found that the AMI approach performed better than the DPI approach in terms of 

measurement precision. 
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CHAPTER 3 

STUDY 1 

The dissertation consists of two studies. Study 1 introduces a new method to 

analytically evaluate MST performance without conducting a simulation and 

demonstrates that the proposed method provides accurate estimates of measurement 

precision and classification accuracy in an MST. In Chapter 4, Study 2 proposes a 

process of finding an MST design that has optimal measurement properties measured by 

the analytical evaluation method, given a specific set of test circumstances. 

3.1 Analytical Evaluation of MSTs 

A concise and effective index of a test’s measurement properties in estimation of 

examinee ability is the CSEE. The CSEEs provide evidence of how accurately a test 

measures the examinees’ proficiencies across the ability scale (Hambleton et al, 1991). In 

IRT, the CSEE is obtained by transforming the test information given an ability 𝜃 using a 

formula as such, 

 ,
1

(
( )

)CSEE
I




=   (3.1.1) 

where 𝐼(𝜃) is the test information at 𝜃. As stated in the previous chapter, it is challenging 

to analytically compute the test information under the adaptive testing because the 

adaptive tests usually have non-parallel multiple test forms and examinees administer 

different forms of the test depending on their proficiencies.  

Park et al. (2017) developed an analytical method to compute the MST test 

information using the IRT pattern-based scoring method (e.g., MLE). Based on the MST 

test information, they showed that the computed CSEEs and the predicted classification 
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accuracy were close to those obtained from a simulation. However, the derived MST test 

information by Park et al. (2017) may not be exactly accurate for several reasons as 

mentioned in Chapter 2. First, the exact test information values of the secondary routes 

are not used in the calculation process of the MST TIF. Second, it is uncertain why the 

five points around each 𝜃 are used when computing the simple moving average. Third, 

when there is no secondary route for the two-stage MSTs, applying the simple moving 

average method is questionable.  

In this study, a new analytical evaluation approach, which is based on the ENC 

scoring method (Kolen & Tong, 2010; Stocking, 1996), is proposed to derive 

measurement precision (i.e., conditional bias and CSEE). This method can overcome the 

drawback of Park et al.’s (2017) approach because measurement precision is more 

exactly derived, implying that when an infinite number of examinees with the same 

proficiency is used in a simulation study, the estimated CSEE from the simulation will 

converge to the analytically obtained CSEE. Accordingly, the evaluation results of MST 

from the proposed analytical method may be more exact than those from the MC-based 

simulation method since the analytical method is able to compute measurement precision 

without relying on the number of examinees at each 𝜃.  

In addition to measurement precision, many licensure or certification testing 

programs are interested in how to accurately classify examinees into categories according 

to their performance levels. Therefore, classification accuracy is an important element of 

measurement properties when MST is applied to credential testing programs. As 

indicated in Park et al. (2017), the classification accuracy of an MST can be predicted 

analytically by employing the method developed by Rudner (2001, 2005) using the 
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CSEEs at a grid of discrete 𝜃s. Therefore, this study analytically derives the classification 

accuracy of an MST using the CSEEs obtained from the new analytical method as well. 

This study conducts two simulation studies to demonstrate that the new analytical 

evaluation method is able to predict MST performance more accurately than the MC-

based simulation method. Specifically, the measurement precision and the classification 

accuracy from the simulation method with the ENC scoring were compared with those 

from the proposed analytical method. In addition, the CSEEs and the classification 

accuracy obtained from Park et al.’s (2017) analytical approach were also compared with 

those from the simulation method with the MLE in the two simulation studies to show 

that the new analytical method is more exact. Therefore, the MST performance is 

assessed using four different methods in this study: the new analytical method, Park et 

al.’s (2017) method based on the MST TIF, two MC-based simulation methods which are 

based on the ENC and MLE scorings, respectively. 

Study 1 is organized as follows. First, Park et al.’s (2017) MST test information 

approach to computing the CSEE is reviewed. Second, the new analytical evaluation 

method for MSTs is explained in detail. Specifically, the ENC scoring method is 

introduced first and then, the analytical approach to computing measurement precision of 

an MST is described. Third, the analytically derived CSEEs are then applied to predict 

the classification accuracy for an MST. Fourth, two simulation studies were carried out to 

demonstrate that the proposed evaluation method based on the ENC scoring performs 

well in assessing measurement properties of an MST. Last, the advantages and 

implications of the proposed method are discussed.  
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3.1.1 Park et al.’s (2017) Analytical Approach 

Park et al. (2017) suggested an analytical method to derive an MST test 

information function based on the IRT pattern-based scoring methods. Two steps are 

necessary to compute the MST test information. Suppose that the MST test information 

for the 1-3-3 MST (see the right panel in Figure 1) is derived. In the first step, a single 

TIF ( )primeI   is obtained from the top of three primary route information functions (RIFs) 

on the    scale as follows:  

 1 1 2 2( 1( ) ( 1( ) ( 1() ) ) ),) (prim mes d haea ry dI IC C CI IC       + =   +   (3.1.2) 

where 1( )x  is an indicator function equal to 1 when the condition x is satisfied and 0 

otherwise; ( )easyI x , ( )medI x , and ( )hardI x  are the three primary RIFs; and C1 and C2 are 

the points where two adjacent primary RIFs intersect. 

In the second step, a simple moving average method is applied at each ability 

point on a grid of the   scale to take the secondary routes into consideration in the 

derivation of the MST test information ( )MSTI  . Park et al. (2017) used the simple 

moving average of 5 points expressed as: 
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Then, the inverse of square root of the ( )MSTI   is the CSEE at a specific   value. 

3.1.2 New Analytical Approach 

A key to the new analytical evaluation method is the use of ENC scoring (Kolen 

& Brennan, 2004; Lord, 1980; Stocking, 1996) for ability estimation. Based on the ENC 
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scoring method, measurement precision of MST can be analytically derived using a 

recursive algorithm (Lord & Wingersky, 1984). This section describes how to compute 

the conditional bias and CSEE at a specific   value in detail.  

3.1.2.1 Equated Number-Correct (ENC) Scoring Method 

The ENC scoring method provides similar results of ability estimation to more 

common IRT pattern-based scoring of MLE (Kolen & Tong, 2010; Stocking, 1996) and 

allows performance of an MST to be evaluated without recourse to data simulation. The 

ENC scoring method estimates an examinee’s ability 𝜃 by mapping a NC score (or 

observed score) “backward” through the TCC using Equation (3.1.4) defined as, 
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where 𝜉(𝜃) is referred to the NC score in a test for an examinee with the 𝜃, 𝛾 is a vector 

of item parameters, and n is test length (𝑖 = 1, 2, . . . , 𝑛). 𝑃𝑖(𝐾 = 𝑘|𝜃; 𝛾) represents the 

IRT category characteristic function which indicates the probability of earning a category 

score k on item i with the 𝜃. To find a value of 𝜃 in the IRT ability scale corresponding to 

𝜉(𝜃), a numerical iterative process such Newton-Raphson or bisection methods is usually 

employed. Note that to avoid the ability estimates of 𝜃s for a zero and perfect NC scores 

have infinite values, a small value (e.g., 0.5) is added and subtracted from the zero and 

perfect NC scores. Also, the range of IRT ability scale is restricted in [ 0.5, 0.5]−  so that 

the ability estimates do not have very extreme values. 

In addition, when employing the IRT three-parameter logistic (3PL) model in a 

test, ability estimates of 𝜃s for NC scores less than the sum of item guessing parameters c 

are not attainable. This is because the probability of correct answer on an item of the 3PL 
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model asymptotically approaches the value of c as 𝜃 approaches −∞. In this case, a range 

of NC scores (𝜉s) where the corresponding 𝜃 can be estimated is given by: 

 .
n

i

ic n    (3.1.5) 

To find the ability estimates for the NC scores outside the range in Equation (3.1.5) when 

the IRT 3PL model is used, an ad hoc procedure is needed. In this study, a linear 

interpolation method is used with the restricted range of possible 𝜃 values. The ad hoc 

procedure is as follows: 

(1) Restrict a range of the IRT 𝜃 scale. In this study, −5.0 and 5.0 are used for the 

minimum and maximum 𝜃s in the range, respectively. Let those two 𝜃s be 𝜃𝑚𝑖𝑛 

and 𝜃𝑚𝑎𝑥. Any estimated 𝜃s for the NC scores less than 𝜃𝑚𝑖𝑛 are forced to 𝜃𝑚𝑖𝑛. 

Similarly, any estimated 𝜃s beyond 𝜃𝑚𝑎𝑥 are constrained to 𝜃𝑚𝑎𝑥. 

(2) If the IRT 3PL model is used, find a NC score greater than the sum of the item 

guessing parameters c in the test form. For example, if the sum of the guessing 

parameters is 2.3, the NC score 3 is a possible minimum NC score whose 

corresponding 𝜃 can be found through the inverse of the TCC. Let the NC score 

be X and the corresponding 𝜃 be 𝜃𝑋.   

(3) Use linear interpolation to find a value of 𝜃 for NC scores between  𝜃𝑚𝑖𝑛 and 𝜃𝑋.  

To formulize this procedure, define 𝜃∗ as an ability estimate corresponding to a 

NC score Y between a zero and X. The value of 𝜃∗ then are defined by the following 

equations: 
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  (3.1.6) 

Note that step 2 and 3 are necessary only when the IRT 3PL model is employed, 

otherwise only step 1 is implemented. 

3.1.2.2 Derivation of Measurement Precision of MSTs 

In IRT, a common measure of precision for ability estimation is the CSEE, which 

is the standard deviation of the distribution of estimated ability around a true ability. The 

CSEE is therefore computed uniquely at each true ability value. Under an adaptive 

testing, a popular way of obtaining the CSEE is to simulate thousands of tests, all based 

on the same true ability value. This produces a distribution of thousands of ability 

estimates, roughly centered on the true ability value. The CSEE for the true ability is then 

the standard deviation of the distribution of estimates.  

Although MST performance could be evaluated by estimating the CSEEs through 

the simulation, many performance characteristics of the MST can be assessed by what is 

essentially an analytic method. The key to this method is the recursive algorithm 

suggested by Lord and Wingersky (1984). They developed this algorithm to generate the 

distribution of observed NC scores for examinees of a given ability 𝜃 using IRT models. 

Suppose that a test consists of n dichotomous items and the assumption of local 

independence of IRT is satisfied. Denote the probabilities of answering correctly on the n 

items in the test as 21( ), ( ), , ( )t t n tP P P   , where 𝜃𝑡 is a particular ability value. The 

probabilities of two possible NC scores (0 and 1) for the first item are given by 
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1 1( ) 1 ( )t tQ P = −  and 1( )tP  . Adding the second item to the first item now allows three 

possible NC scores (0, 1, and 2) and the probabilities of obtaining those scores are 

21( ) ( )t tQ Q  , 21( ) ( )t tP Q  , and 21( ) ( )t tP P  , respectively. Then each item is added in 

turn, adjusting the accumulating probabilities under the conditions that the added item is 

answered correctly or incorrectly. Once the final nth item is added, the probabilities 

become the distribution of NC scores for the test at the 𝜃𝑡. This recursive algorithm 

generalizes readily to items scored in more than two categories (Thissen et al., 1995). 

If ability estimates in an MST are computed by the ENC scoring method rather 

than by MLE, measurement precision of the MST can be projected from recursion-based 

score distributions rather than by a simulation. This is because the recursive algorithm 

allows the conditional NC score distributions of modules in the MST at a given ability 

level to be computed directly. The process of obtaining measurement precision of an 

MST is briefly described below for a two-stage test followed by a more detailed example 

with formulas. This generalizes readily to the MST of three stages or more.  

(1) Given a specific true ability of 𝜃, compute the observed NC score distribution for 

a routing module at the first stage using the recursive algorithm.  

(2) Divide the NC scores of the routing module to several groups according to RDPs 

for allocating the next modules at the second stage. For example, if there are three 

difficulty-level modules at the second stage, the NC scores of the routing module 

will be classified into three groups based on the RDPs.   

(3) Implement a second recursion to compute the NC score distribution for each 

module at the second stage. 
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(4) Compute the joint conditional distributions of NC scores of the first and second 

modules across all allowed routes. These are the distributions of total test NC 

scores (i.e., summed scores of two modules at the first and the second stage) for 

the routes. 

(5) Map each total test NC score for each route onto the corresponding ability 

estimate on the IRT scale with the ENC scoring, producing the distribution of 

ability estimates for each route. 

(6) A sum of the distributions of ability estimates across all routes is the distribution 

of ability estimates of a test given the true ability, 𝜃. 

(7) The CSEE at the 𝜃 is then the standard deviation of the distribution of ability 

estimate for the test. The conditional bias is computed as the difference between 

the true ability of 𝜃 and the mean of the distribution of ability estimates.  

(8) Implement steps 1-7 across a grid of true ability values.    

To formulize this procedure with an example of a two-stage MST configuration in 

the left panel of Figure 1, where the MST has a routing module at the first stage and three 

difficulty-level modules at the second stage, define X as the NC score and 𝜃𝑡 as a fixed 

true ability value. The conditional distribution of NC score X given the 𝜃𝑡 is obtained 

using Lord-Wingersky recursion and is defined as: 

 1 ( | ).M tf X  =   (3.1.7) 

where 1𝑀 indicates a routing module at the first stage. In a similar way, the conditional 

distributions of NC score X for the three modules at the second stage given the 𝜃𝑡 are 

defined as: 
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  (3.1.8) 

where 2E, 2M, and 2H denote “easy”, “medium”, and “hard” difficulty level modules at 

the second stage, respectively.  

Now, the conditional distributions of NC scores for three routes (i.e., 1M-2E, 1M-

2M, and 1M-2H) are the joint conditional distributions of NC score X for the routes. To 

produce those joint conditional distributions, it should be noted that each module at the 

second stage can take only certain NC score points from the routing module at the first 

stage depending on the RDPs. Suppose that a routing module consists of 15 items and 

each of the three modules at the second stage has 20 items. Also, suppose that two RDPs 

of NC scores are set to 5 and 11. According to the defined pathways in the left panel of 

Figure 1, examinees with the NC scores from 0 to 4 will be given the easy module at the 

second stage, leading to the possible total test NC scores ranging from 0 to 14. Similarly, 

examinees with the NC scores from 5 to 10 will be allocated the medium module at the 

second stage, leading to the possible total test NC scores ranging from 5 to 20. Lastly, 

examinees with the NC scores from 11 to 15 are assigned the hard module at the second 

stage, leading to the possible total test NC scores ranging from 11 to 25. Note that the 

probabilities of having total test NC scores outside the possible score range for each route 

are zero. Following this rule, three joint conditional distributions of total test NC scores 

for the three routes are given by: 
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  (3.1.9) 

where 1𝑀2𝐸 , 1𝑀2𝑀, and 1𝑀2𝐻 represent the subsets of NC scores of the routing module 

to which the easy, medium, and hard modules at the second stage are assigned, 

respectively. Now, 𝑔1𝑀−2𝐸(𝑋|𝜃 = 𝜃𝑡), 𝑔1𝑀−2𝑀(𝑋|𝜃 = 𝜃𝑡)𝑑, and 𝑔1𝑀−2𝐻(𝑋|𝜃 = 𝜃𝑡) in 

Equation (3.1.9) are the joint conditional distributions of NC scores for the 1M-2E, 1M-

2M, and 1M-2H routes. Figure 2 displays the process described through Equations (3.1.7) 

to Equation (3.1.9) graphically. 

Next step is then to map the NC scores for each route to the corresponding IRT 

ability estimates using the ENC scoring method. The three joint conditional distributions 

of estimated ability given the 𝜃𝑡 are defined as: 
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where 𝜃𝑋 denotes the IRT ability estimate corresponding to the NC score of each route. 

Finally, a conditional distribution of ability estimates of the MST given the 𝜃𝑡 consists of 

the three joint conditional distributions and is defined as follows: 
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  (3.1.11) 

Therefore, the sum of the area under the conditional distribution of ℎ(𝜃𝑋|𝜃 = 𝜃𝑡) is a 

unit value.  
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A conditional expected value and a variance of the ability estimates under the 

distribution of ℎ(𝜃𝑋|𝜃 = 𝜃𝑡) can be computed as: 

 ( | ) ( | ),k k

p k

t

P K

X tE h      = ==   (3.1.12) 

 
2

2 ,|( | ) ( ) ( | )X X Xt t tVar E E        = = == −   (3.1.13) 

where 𝐾 represents the total number of ability estimates in each route and P indicates the 

number of total routes in an MST. The CSEE is then the square root of the conditional 

variance and is defined as: 

 )ˆ ˆ ,( | ( | )X t X tCSEE Var     = ==   (3.1.14) 

In addition, a conditional bias of ability estimate given the 𝜃𝑡 is computed as: 

 ( | ) .X t tBias E    == −   (3.1.15) 

The analytical process above can be readily generalized to three- or more stage 

MSTs by recursively applying the steps used for the two stage MST to each of the joint 

conditional distributions of NC scores after a subsequent module is added. More 

specifically, each of the joint conditional distributions in Equations (3.1.9) is assumed as 

the conditional distribution of a routing module and the procedure described above is 

recursively applied to the joint conditional distributions with subsequent modules at the 

next stage. For example, suppose that the CSEE of 1-3-3 MST panel (see the right panel 

of Figure 1) at a true ability of 𝜃𝑡 needs to be computed. From the first- and the second 

stages, three joint conditional distributions of NC scores for three routes (i.e., 1M-2E, 

1M-2M, and 1M-2H) are produced through Equations from (3.1.7) to (3.1.9).  
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Now assume that the second stage is the first stage with three routing modules and 

that each of three joint conditional distributions is the conditional distribution of NC 

score for each routing module. For the conditional distribution of the 1M-2E route, two 

possible joint conditional distributions are computed (i.e., 1M-2E-3E and 1M-2E-3M). 

For the conditional distribution of the 1M-2M route, three possible joint conditional 

distributions are computed (i.e., 1M-2M-3E, 1M-2M-3M, and 1M-2M-3H). For the 

conditional distribution of the 1M-2H route, two possible joint conditional distributions 

are computed (i.e., 1M-2H-3M and 1M-2H-3H). The NC scores of seven routes are 

mapped to the corresponding IRT ability estimates, resulting in the conditional 

distribution of ability estimate of the 1-3-3 MST given the 𝜃𝑡. The standard deviation of 

conditional distribution is then the CSEE at the 𝜃𝑡. 

Not only analytically computing the conditional distribution of ability estimates is 

both computationally simpler and more precise than simulating large numbers of test 

responses, but also many of the performance characteristics of MSTs can be projected 

directly from the conditional distribution. In the following section, predicting 

classification accuracy of an MST, which is one of the important measurement properties 

of credentialing tests, will be introduced by applying the CSEEs obtained from the 

conditional distribution of ability estimates.   

3.1.3 Prediction of MST Classification Accuracy 

In a license or certification test, one of the primary interests is classification 

accuracy. Classification accuracy is the proportion of examinees whose classification 

results from a test are in agreement with the true classification status of examinees. 
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Unless a test is perfectly reliable, however, misclassifications are inevitable whenever a 

classification is made based on a test score due to measurement error. If examinees are 

classified as mastery or non-mastery, there are two types of classification error: false 

negative and false positive errors. The false negative error rate is defined as the 

proportion of examinees whose true abilities belong to the mastery status are incorrectly 

classified as non-mastery status and the false positive error rate is referred to as the 

proportion of examinees whose true status are the non-mastery level are incorrectly 

classified as the mastery status.  

When an MST is applied in credentialing tests, it is necessary to compute the 

expected classification accuracy and the classification error rates in order to keep the 

efficiency of a test or to examine the impact of varying cut score in the credentialing 

tests. Rudner (2001, 2005) developed a procedure to estimate the classification accuracy 

in discrete categories under IRT without a simulation. However, this procedure requires 

the CSEE at a given ability 𝜃. Recently, Park et al. (2017) predicted the classification 

accuracy using the analytically computed MST information function by applying Rudner 

(2001, 2005)’s approach. As indicated in Park et al. (2017), it is possible to simply 

compute the predicted classification accuracy without a simulation if the CSEEs can be 

analytically obtained.  

The procedure to calculate the classification accuracy consists of two steps. To 

explain the procedure, let 𝜃 be a true ability value and 𝜃 be its estimate. Also, let 𝜃𝑐 

represent the cut score for a test. First, calculate the classification error (false positive 

error or false negative error) for the 𝜃 depending on the location of the 𝜃. If 𝜃 > 𝜃𝑐 when 

𝜃 < 𝜃𝑐, the error is a false positive and if 𝜃 < 𝜃𝑐 when 𝜃 > 𝜃𝑐, the error is a false 
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negative. Asymptotically, the ability estimate 𝜃 is assumed to follow a normal 

distribution of 𝑁(𝜃, 𝑠𝑒(𝜃)), where 𝑠𝑒(𝜃) is a CSEE given the 𝜃. The classification error 

is given by: 
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where 𝑃(𝜃 > 𝜃𝑐|𝜃) and 𝑃(𝜃 < 𝜃𝑐|𝜃) are the expected false positive and false negative 

error rates given the 𝜃, respectively. Ф(𝑧) represents a cumulative density function of the 

standardized distance z between 𝜃𝑐 and 𝜃, which is calculated as: 
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Note that the obtained classification error in Equation (3.1.16) is the conditional error 

given the true ability of 𝜃.  

To compute the marginal classification error rates, the population distribution of 

examinees needs to be taken into account in the second step. Now, let ℎ(𝜃) be the 

probability density function of the population distribution (a standard normal distribution 

is assumed in this study). Then, the marginal classification error rates can be expressed 

as: 
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  (3.1.18) 

where FP and FN denote the false positive and the false negative, respectively. The 

actual calculation of integrating the conditional classification error functions over the 

population distribution is approximated by replacing the integration with a summation 

based on a discrete population distribution and a finite number of equally spaced points. 
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where 𝜃𝑖 and 𝐴(𝜃𝑖) denote the node and normalized weight of 𝜃 at a quadrature point i. 

Finally, the classification accuracy is simply defined as 1 − (𝐹𝑃 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 +

 𝐹𝑁 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒). 

3.2 Simulation 

To show that the new analytical evaluation method is able to well predict MST 

performance with respect to measurement precision and classification accuracy, two 

simulation studies were conducted. In each simulation study, the analytical measurement 

properties of an MST computed by the new and Park et al.’s (2017) analytical methods 

and the empirical measurement properties obtained from two MC-based simulation 

methods using the ENC and MLE scorings, respectively, were compared. For the first 

simulation, two criteria of measurement precision, which are a conditional bias and 

CSEE, resulted from the four different methods were examined. Note that the conditional 

bias cannot be derived from Park et al.’s analytical method because only the CSEEs can 

be obtained from the MST TIF. For the second simulation, the classification accuracies of 

an MST through the CSEEs obtained from the four methods were investigated. 

3.2.1 Design of Simulation 

To construct an MST, a bottom-up assembly approach was used because the focus 

of Study 1 was to examine the performance of the proposed evaluation method. Two 

fully crossed factors were included for the MST assembly: MST panel configurations (1-
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3 and 1-3-3 MSTs) and test lengths (24 and 48 items). The two panel configurations are 

commonly used in previous research and testing programs (e.g., Jodoin et al., 2006; 

Luecht et al, 2006; Luecht & Nungester, 1998; Wendler & Bridgeman, 2014). Two levels 

of length were chosen to represent the short and moderate test length conditions in MST.   

For all MST panels items were evenly distributed to each module across stages. 

For example, twelve items were assigned to the first- and the second-stage modules, 

respectively, for the 1-3 MST with a test length of 24. In addition, all test forms were 

built with a content constraint that every module had to consist of four categorical content 

of items with the same proportions of [.25, .25, .25, .25]. In any assembled MST panels, 

no overlapped items were allowed between stages, but overlapped items were allowed 

within a same stage.  

3.2.2 Item Pool 

A simulated item pool with 300 items was used for the two simulation studies. 

The IRT 3PL model was employed to generate the items based on the item parameter 

statistics of a large-scale license examination used in Luo and Kim (2018). The a-, b-, 

and c-parameters were generated from 𝑙𝑜𝑔𝑁(0.0, 0.3), 𝑁(0.0, 1.0), and 𝐵𝑒𝑡𝑎(5, 42), 

respectively. Table 1 provides a summary of descriptive statistics of the generated item 

parameters in the item pool. Each of the items in the pool was randomly given one of four 

content categories and each of four content categories had the same proportion of items in 

the bank, which were [.25, .25, .25, .25].  
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3.2.3 Module Information Function Target 

The procedure used in Luo and Kim (2018) was adapted to develop the MIF 

targets for the bottom-up assembly approach. Let n be the length of each module in an 

MST and 𝐼𝑎𝑣𝑔(𝜃) be the average of the l largest information of items at 𝜃𝑖 among the 

item pool, where l denotes the test length. The MIF target of each module was then 

developed as such 𝑛 × 𝐼𝑎𝑣𝑔(𝜃) with five points of 𝜃s, depending on the location of ability 

level where each module measures examinee proficiency precisely. Assuming the 

population of examinees follows a standard normal distribution, the ability scale was 

divided into three intervals with two 𝜃 cutoff points of −0.44 and 0.44, which roughly 

grouped the population into three equal-size subpopulations. Therefore, with a restricted 

boundary of [−2.00, 2.00] on the ability scale, the three ability intervals were [−2.00, 

−0.44], [−0.44, 0.44], and [0.44, 2.00]. The MIF targets at each stage were then 

developed to represent each of those ability intervals except the routing module at the 

first stage. The easy difficulty module should accurately measure examinees’ 

proficiencies in the range of [−2.00, −0.44], the medium difficulty module needs to 

cover the proficiency range of [−0.44, 0.44], and the hard difficulty module should have 

optimized test information values in the proficiency range of [0.44, 2.00]. The five 𝜃s for 

the routing MIF target were set to −2.00,  −1.22, 0.00, 1.22, and 2.00. The three middle 

points are median values of the three intervals. For the modules at the subsequent stages, 

the five points were fixed by equally spacing four areas at each of the three intervals. For 

example, the five 𝜃𝑖s are −2.00,  −1.61, −1.22, 0.83, and −0.44 for the interval of 

[−2.00, −0.44]. Note that other test constraints (e.g., content specification and exclusion 
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of enemy items) were not considered during the development of the MIF targets because 

the goal of these targets was to assemble MIFs with high TIFs (Luo & Kim, 2018).   

3.2.4 MST Assembly 

The MIP approach was used to assemble the MST. Given the developed MIF 

targets, the goal of the assembly was minimizing the distances between the MIF targets 

and the observed MIFs from the assembled MST over the specified 𝜃s as well as 

satisfying all test constraints. The mathematical formulas for the ATA model using a 

bottom-up approach are explained as follows. 

In the ATA model items in the pool are denoted as 𝑖 = 1, . . . , 𝐼 and modules 

assembled in the entire MST panel are represented as 𝑓 = 1, . . . , 𝐹. Now let 𝑉𝑅 be a route 

(i.e., the combinations of modules across all stages) that each examinee will take during 

the whole process of testing and 𝑛𝑚 be the number of items at each module. Also, let 𝑉𝑐 

denote a subset of items which belong to content category c in the pool and 𝑛𝑐 be the 

number of items that must be included in each module from this subset. 𝐼𝑖(θ𝑘) and 𝑇𝜃𝑘
 

are used to represent the information of item i and the MIF at 𝜃𝑘, respectively. The 

objective function of the ATA model is then expressed as: 
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where 𝑥𝑓𝑖 is a binary decision variable indicating whether an item is selected for each 

module. The constraint in Equation (3.2.4) guarantees that no item overlap between the 

three stages and a fixed length of each module is imposed by Equation (3.2.5). The 

content category requirements for each module are modeled by the constraint in Equation 

(3.2.6). For each module and 𝜃𝑘 value, the distance between the target value 𝑇𝜃𝑘
and the 

MIF of the assembled form is constrained to be no greater than y by Equation (3.2.2) and 

(3.2.3).  

3.2.5 Analysis 

Two different simulations were conducted in Study 1. For the first simulation, 

where measurement precision was computed by the two analytical methods and two MC-

based simulation methods, true abilities were generated from −4.0 to 4.0 by increments 

of 0.1. A total of 81 true ability points, therefore, were used. To examine whether the 

measurement precision resulted from the two MC-based simulation methods become 

closer to that obtained from the two analytical method as the sample size increases, the 

MST were replicated 100, 1,000 and 5,000 times at each ability point.  

For the second simulation, where the predicted classification accuracies derived 

through the CSEEs obtained from the four methods were compared, true abilities of 
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1,000 and 5,000 examinees were randomly drawn 𝑁(0, 1) truncated between −4.0 and 

4.0. The truncated distribution was used to avoid any negative effects due to outliers. 

Two cutoff scores of 0.0 and 0.524 were used to predict correct classification accuracy of 

a pass/fail exam. They correspond to 50%, and 70% passing rates, respectively, assuming 

the standard normal distribution of the population. For the two MC-based simulated 

methods based on the ENC and MLE scorings, the classification accuracy was simply 

predicted by calculating the observed proportion of correctly/incorrectly classified 

examinees relative to their true pass/fail status. In the simulation, 100 replications were 

performed for each sample size and the average of predicted classification accuracy of 

the two simulation methods were used in the comparison.  

For both simulation studies, the AMI rule was employed for routing examinees to 

the modules. For the MC-based simulation method based on the ENC scoring, the ENC 

scoring was used for both interim and final ability estimation. For the simulation method 

based on the MLE scoring, the MLE was used for the final ability estimation with a 

restriction of [ 5.0, 5.0]− , the EAP scoring with a standardized normal prior was applied 

for the interim ability estimation. 

To assemble MSTs using the MIP method, the package “lpSolveAPI” (Diao & 

van der Linden, 2011; Konis, 2009) of R software (R Core Team, 2016) was used, which 

provides a convenient application programming interface to a free software of lp_solve 

version 5.5. Each of the MST panels are assembled with a time limit of 60 seconds. The 

sub-optimal assembly result, which refers to satisfying the objective of the ATA model, 

that was achieved within the time limit is considered the final assembled MST. All other 

procedures are conducted with written R code. 
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3.3 Results 

A total of four MSTs (i.e., the 1-3-3 MSTs with 24 and 48 items and the 1-3 

MSTs with 24 and 48 items) were successfully assembled with full satisfaction of 

statistical and non-statistical test specifications. For each of the four MSTs, the analytical 

and empirical measurement properties of MSTs were obtained and compared below.  

3.3.1 Measurement Precision 

3.3.1.1 Conditional Standard Error of Ability Estimates 

Figures 3 through 5 present the CSEEs along the 𝜃 scales obtained from four 

methods – two analytical methods and two MC-based simulation methods – with 100, 

1,000, and 5,000 replications at each 𝜃 point, respectively. The simulation results showed 

that, when the ENC scoring was used, the empirical CSEEs were very close to the CSEEs 

computed by the new analytical method regardless of MST panel configurations and test 

lengths. Given other conditions were the same, the empirical CSEEs tended to converge 

to the analytical CSEEs when the number of replications at each 𝜃 point increased. For 

example, the analytical and empirical CSEEs based on the ENC scoring were 

indistinguishable along the 𝜃 scale under the 5,000 replications (see Figure 5). These 

results imply that the new analytical method assesses measurement precision of the test 

more exactly than the simulation method because the simulation always included the 

uncertainty due to the random error.  

When the MLE was employed for the final scoring, however, there were 

relatively large discrepancies in the CSEEs between Park et al.’s (2017) analytical 

approach and the MC-based simulation method across all simulation conditions. More 
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specifically, Park et al.’s analytical approach resulted in slightly higher CSEEs than the 

empirical CSEEs at around 51.5 1. − for most of conditions. Outside of this range, 

the empirical CSEEs were fairly higher than the analytical CSEEs. Unlike the empirical 

CSEEs based on the ENC scoring, the empirical CSEEs based on the MLE did not 

approach the analytical CSEEs even though the number of replications increased for all 

simulation conditions. These results conflict with the findings of Park et al. (2017) 

because they argued that the analytical CSEEs, which are the inverse of the MST TIF, 

were very similar to the empirical CSEEs across a wide range of 𝜃 scale. Several reasons 

that might produce the different results are discussed in detail later. 

Interestingly, the MC-based simulation method with the MLE yielded the CSEEs 

very close to those from the new analytical and simulation methods with the ENC scoring 

at around 51.5 1. −  where the tests provide the most information regardless of 

simulation conditions. At low and high 𝜃 levels, however, the empirical CSEEs based on 

the MLE were significantly higher than the analytical and empirical CSEEs based on the 

ENC scoring, implying that the ability estimates from the MLE were more variable than 

those from the ENC scoring at the extreme 𝜃 levels. Looking at the high 𝜃 levels (e.g., 

2.0  ), both the analytical and empirical CSEEs based on the ENC scoring were much 

smaller than those at the low 𝜃 levels (e.g., 2.0  − ). To find the reason for this 

observation, the ability estimates obtained from the ENC scoring were closely examined. 

In all simulation conditions, it was found that most of the perfect NC scores were mapped 

onto the ability estimates at around 3.0 while all zero NC scores were mapped onto the 

ability estimate of 5.0− . This indicates that the ranges of ability estimates for the 

examinees with the high 𝜃 levels were much shorter than those for the examinees with 
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the low 𝜃 levels. Due to this fact, the conditional distributions of ability estimates at the 

high 𝜃 levels had relatively smaller variances than those at the low 𝜃 levels, leading to 

lower CSEEs at the high 𝜃 levels. 

In addition, as test length increased from 24 to 48 items when other conditions 

were controlled, the range of ability where the CSEEs were similar among the four 

methods increased.  

3.3.1.2 Conditional Bias of Ability Estimates 

Figures 6 through 8 show the conditional biases obtained from the three methods 

– the new analytical method and two MC-based simulation methods – with 100, 1,000, 

and 5,000 replications at each 𝜃 point, respectively. As noted earlier, Park et al.’s (2017) 

analytical approach is not able to derive the conditional bias of ability estimates. The 

patterns of results for the conditional bias were similar to those for the CSEE. When it 

comes to the ENC scoring, the empirical conditional biases were quite close to the 

analytical conditional biases along the 𝜃 scale under the 100 replications at each θ point 

regardless of MST panel configurations and test lengths (see Figure 6). When the number 

of the replications was large (e.g., 5,000 replications), the conditional biases from the 

analytical and the MC-based simulation methods were almost the same. Again, these 

results indicate that the new analytical method evaluates the measurement precision of 

MSTs more exactly than the simulation method. 

Regarding the comparison of two scoring methods, the analytic and empirical 

conditional biases based on the ENC scoring and the empirical conditional biases based 

on the MLE were close to zero at around 02.0 2. −  for all simulation conditions. 
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The more items the tests contained, the larger the range of 𝜃 where the conditional biases 

obtained from the two scoring methods overlapped. At the high 𝜃 levels, however, the 

empirical conditional biases based on the MLE had positive values whereas the analytical 

and empirical conditional biases based on the ENC scoring presented negative values, 

meaning that the MLE overestimated examinees’ abilities while the ENC scoring 

underestimated the abilities at that area of 𝜃s. Contrary to this result, the MLE 

consistently underestimated the abilities at the low 𝜃 levels. In the meantime, the ENC 

scoring underestimated the ability at the low 𝜃 levels but overestimated the abilities at the 

extremely low θ levels.  

3.3.2 Classification Accuracy 

Tables 2 and 3 display the correct classification rates and total error rates (i.e., the 

sum of false positive and false negative rates) predicted from the four methods – two 

analytical methods and two MC-based simulation methods – for the 1-3-3 MSTs and 1-3 

MSTs, respectively. Note that the analytical method with the MLE represents Park et al.’s 

(2017) analytical approach.  

In terms of the ENC scoring, the analytical and MC-based simulation methods 

produced the classification accuracies that were comparable across MST panel 

configurations, passing rates, and test lengths. Thus, it can be concluded that the 

analytical and empirical classification accuracies based on the ENC scoring resulted in 

similar classification accuracies. With respect to the MLE scoring, however, the 

analytical and empirical results of classification accuracies had relatively large 

differences. For example, for the 1-3-3 MSTs, the absolute differences in the correct 
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classification rates between the analytical and simulation methods with the ENC scoring 

ranged from 0.07 to 0.41 while those between the analytical and simulation methods with 

the MLE ranged from 1.50 to 2.24 (see Table 2). Similar results regarding the absolute 

differences were observed for the 1-3 MSTs (see Table 3). No clear pattern was observed 

regarding the effects of sample size, test length, and the passing rate on the results of 

classification accuracy regardless of scoring methods. 

3.4 Discussion and Conclusions 

Study 1 proposed a new analytical method to evaluate the performance of an 

MST, which is based on the ENC scoring for ability estimation. The new analytical 

method computes the measurement precision of an MST (i.e., the conditional bias and 

CSEE) from the conditional distribution of ability estimates using the recursive algorithm 

(Lord & Wingersky, 1984). Once the analytical CSEEs are derived, the classification 

accuracy of the MST can be estimated without a simulation by applying Rudner’s 

approach (2001, 2005). 

When evaluating the performance of an MST, conducting MC-based simulations 

usually may cost a significant amount of time, effort, and computing resources depending 

on the number of simulation conditions (e.g., MST panel designs and test length) and 

other factors. For example, as more simulation conditions are investigated, the amount of 

computer storage required to save the simulation data and the time to simulate the tests 

rapidly increase. On the contrary, analytically deriving the conditional distribution of the 

ability estimates is computationally simpler and faster than conducting thousands of 

replications at a grid of the 𝜃 scale. The new analytical method just requires the item 



 

67 

parameters, the conversion table where the NC scores of all routes in the MST are 

mapped onto the IRT scaled ability estimates, and the RDPs. Using the information, it 

takes only few seconds to calculate the performance characteristics of the MST. Even for 

the multiple MST designs, the computation will not take more than a minute. In addition, 

the simulation results in the study showed that the new analytical method produced more 

exact measurement precision of an MST than the MC-based simulation method. It was 

shown that, when the ENC scoring was used, the empirical conditional biases and CSEEs 

along the 𝜃 scale converged to the analytical conditional biases and CSEEs as the number 

of replications at each 𝜃 point increased. This is because the analytical method is able to 

compute the measurement precision without relying on the number of examinees at each 

𝜃 value. Accordingly, the new analytical method provides researchers a more efficient 

way of evaluating the measurement properties of an MST. 

Although Park el al. (2017) argued that the analytical method based on the MST 

test information predicted the MST performances as closely as the MC-based simulation 

method did, the simulation results in this study disclosed that their analytical approach 

may not be generalized to other situations. Regarding the reasons that might cause the 

large discrepancies in the CSEEs between Park et al.’s analytical and the simulation 

method with the MLE, there are external and internal possible factors. First, the external 

factor is related to the difference of simulation designs between the two studies. In Park 

et al. (2017), they replicated 100 times of simulation tests using 1,000 examinees 

generated from (0,1)N . In each replication, they analytically computed the standard 

errors of ability estimates for examinees and then the standard errors were averaged over 

the replications. Then, CSEEs were calculated on thirteen 𝜃 points, ranging from −3.5 to 
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3.5 in increments of 0.5. For example, the standard errors between −3.25 to −2.75 were 

averaged to obtain the CSEE at 3.0 = − . In this study, however, a large number (i.e., 

100, 1,000, and 5,000) of tests were replicated at each of 𝜃 points, ranging from −4.0 to 

4.0 with increments of 0.1, to produce the empirical conditional distribution of ability 

estimates. Then, the standard deviation of the distribution was the CSEE at each 𝜃 point. 

In addition, Park et al. used the mixed-format tests with the dichotomous and polytomous 

items and the EAP estimation for the final scoring whereas the simulations in this study 

was carried out with the single-format tests with dichotomous items and MLE scoring.  

Second, the internal factors have to do with Park et al.’s (2017) analytical 

approach itself. Their analytical method does not take the exact TIFs of the secondary 

routes into consideration and calculates the simple moving average using 5 points around 

each 𝜃 without a specific reason when deriving the MST TIF. Thus, it is likely that the 

MST TIF differs depending on the shapes of TIFs for the secondary routes and the 

location and/or number of the points being used to compute the simple moving average. 

In fact, as noted in Chapter 2, a preliminary simulation showed that the MST TIF varied 

by the location and/or number 𝜃 points. Consequently, both the external and internal 

possible factors indirectly support that the new analytical method would be a better 

alternative for evaluating the MST performance than Park et al.’s analytical method since 

the proposed method produced more stable and credible measurement precision and 

accuracies of MST regardless of the simulation conditions.   

One may be concerned about the use of the ENC scoring for ability estimation 

because it is known that the IRT scaled summed score-based scorings might not be 

precise as the IRT pattern-based scoring methods such as MLE. It was found from the 
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simulation results in the study, however, that the ENC scoring yielded measurement 

properties very close to those of the MLE scoring at around 51.5 1. − , where the 

tests showed the most information and the majority of examinees (i.e., about 87%) exists 

if the population distribution follows (0,1)N . This result is consistent with findings of 

previous studies (e.g., Kolen & Tong, 2010; Stocking, 1996) that the IRT scaled summed 

score-based scorings had comparable measurement accuracy and efficiency with the IRT 

pattern-based scorings. For example, Stocking (1996) showed that the ENC scoring 

method could be a feasible alternative to the MLE under the adaptive testing context 

despite a small loss of information. Besides the acceptable measurement precision, the 

ENC scoring methods has other practical advantages. For example, this scoring method is 

more understandable for test takers than the MLE when the scoring report is released to 

public (Thissen et al., 1995). Also, the ability estimation with the ENC scoring method is 

more robust to suboptimal test adaptation in CAT or misleading responses due to 

nuisance factors, such as misunderstanding the directions, anxiety, and poor time 

management (Meijer & Nering, 1997; Stoking, 1996; Stocking, Steffen, & Eignor, 2002). 

There were a few limitations in this study. First, the new analytical method was 

applied to only few MST designs and single-format tests in the simulation studies. 

However, the proposed method can be easily generalized to more complicated MST 

designs and mixed-format tests. Even with more stages and modules per a stage, the 

conditional distribution of ability estimates can be simply computed using the recursive 

algorithm. The recursion formula also can be readily generalized to the polytomous 

response data (Thissen et al., 1995). Second, although the ENC scoring has acceptable 

measurement precision and several practical benefits in ability estimation, it still has 
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some disadvantages. One of them is that for a test with small number of items, the ability 

estimation of the ENC scoring might not be as accurate as that of the IRT pattern-based 

scorings. But, the short tests with 24 items in this study resulted in quite similar 

measurement precision of ability estimation between the ENC and MLE scoring methods. 

Because many testing programs often use more than 20 items in a test, the ENC scoring 

would not have severe negative effects on the ability estimation as long as a reasonable 

number of items are administered to examinees in an MST. Another disadvantage is that 

a small value of 0.5 was added and subtracted from the zero and perfect NC scores and 

the possible ability estimates were restricted within 05.0 5. −  when the ENC scoring 

was employed. Thus, low and high levels of ability estimates will differ by a small 

amount and the range of possible ability estimates, which, consequently, affects the 

measurement accuracy of low and high levels of abilities. Furthermore, when a test 

contains items following the IRT 3PL model, ability estimates of the NC scores less than 

the sum of c-parameters were obtained by applying linear interpolation. This might 

produce inaccurate ability estimates for low ability level examinees. In future studies, the 

effects of these factors on the accuracy of ability estimation need to be investigated. The 

good news is, however, that these factors have nothing to do with the performance of the 

new analytical method itself, meaning that if these factors cause less precise ability 

estimates at the low and high ability levels, the proposed method will return the 

measurement precision by exactly reflecting the amount of inaccuracy at those levels. 

To conclude, the new analytical method would provide an efficient tool to 

evaluate the measurement performance of an MST. It is expected that this method 

especially will show its competence in case that many MST designs need to be compared 
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to find a design that has the best measurement performance. Even if the MLE should be 

used for the final scoring, the proposed method could be a useful alternative of MC-based 

simulation method because it approximates the CSEEs of the MLE scoring at a wide 

range of 𝜃 scale. 
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Table 1. Descriptive Statistics of Item Parameters of the Item Pool in Study 1 

Parameter  Mean  SD  Min  Max 

a  1.02  0.29  0.51  2.08 

b  0.04  0.99  -2.39  2.55 

c  0.10  0.05  0.02  0.28 

 

 

 

Table 2. Classification Accuracies of the Two Analytical Methods and Two MC-based 

Simulation Methods for the 1-3-3 MST 

      Analytical  

method 
 Simulation  

( 1,000N = ) 
 Simulation  

( 5,000N = ) 

Test 

length 
 Scoring  Passing 

 rate (%) 
 CCR  TER  CCR  TER  CCR  TER 

24  ENC  50  91.70  8.30  91.63  8.38  92.05  7.95 
    70  92.67  7.33  93.08  6.92  92.81  7.19 
  MLE  50  89.97  10.03  91.72  8.29  92.21  7.79 
    70  91.15  8.85  93.12  6.88  92.99  7.01 

48  ENC  50  93.79  6.21  93.64  6.36  94.14  5.86 
    70  94.87  5.13  94.98  5.02  94.75  5.25 
  MLE  50  92.44  7.56  93.93  6.07  94.35  5.65 
    70  93.37  6.63  95.27  4.73  94.97  5.03 

Note. ENC = equated number-correct scoring; MLE = maximum likelihood estimation; 

CCR = correct classification rate; TER = total error rate; N = sample size. 
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Table 3. Classification Accuracies of the Two Analytical Methods and Two MC-based 

Simulation Methods for the 1-3 MST 

      Analytical  

method 
 Simulation  

( 1,000N = ) 
 Simulation  

( 5,000N = ) 

Test 

length 
 Scoring  Passing 

 rate (%) 
 CCR  TER  CCR  TER  CCR  TER 

24  ENC  50  91.37  8.63  90.95  9.05  91.44  8.56 
    70  92.65  7.35  93.02  6.98  92.76  7.24 
  MLE  50  90.67  9.33  91.62  8.38  92.11  7.89 
    70  91.83  8.17  93.20  6.81  92.91  7.09 

48  ENC  50  93.80  6.20  93.67  6.33  94.13  5.87 
    70  94.59  5.41  94.74  5.26  94.48  5.52 
  MLE  50  92.93  7.07  94.04  5.96  94.37  5.63 
    70  93.91  6.09  95.06  4.94  94.74  5.26 

Note. ENC = equated number-correct scoring; MLE = maximum likelihood estimation; 

CCR = correct classification rate; TER = total error rate; N = sample size. 
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Figure 2. A process of computing joint conditions distributions of number-correct scores 

for the 1-3 MST 
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Figure 3. Conditional standard errors of ability estimates for the two analytical methods 

and two MC-based simulation methods with 100 replications 

 

 

Figure 4. Conditional standard errors of ability estimates for the two analytical methods 

and two MC-based simulation methods with 1,000 replications 
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Figure 5. Conditional standard errors of ability estimates for the two analytical methods 

and two MC-based simulation methods with 5,000 replications 

 

 

 

 
Figure 6. Conditional biases of ability estimates for the new analytical method and two 

MC-based simulation methods with 100 replications 

 

 



 

77 

 
Figure 7. Conditional biases of ability estimates for the new analytical method and two 

MC-based simulation methods with 1,000 replications 

 

 

 

 

Figure 8. Conditional biases of ability estimates for the new analytical method and two 

MC-based simulation methods with 5,000 replications 
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CHAPTER 4 

STUDY 2 

The purpose of Study 2 is to propose a process for creating a specific MST design 

that shows optimal measurement properties. As introdued in Chapter 2, there are many 

interrelated design factors, hereafter referred to as the design space, that affect 

measurement properties of an MST. Even if the scope of the design space is limited to 

four design considerations of the MST panel described in Chapter 2 (i.e., shape of panel 

structure, test length, characteristics of module, and item bank and examinee population), 

it is not feasible to evaluate measurement properties of all possible combinations of those 

design variables.  

One practical approach to finding the optimal MST design that provides the best 

measurement properties is to restrict the design space being examined. In other words, 

values which MST panel design variables would take are limited to a reasonable range, 

depending on a testing context. For example, it might be test length, especially when we 

know that a certain range in test length is sufficient to produce reasonable precision. In 

this case, it seems reasonable to evaluate the measurement performance of an MST 

varying test length within a restricted range. 

Even with a restricted range of design space for some variables, however, the 

number of possible combinations of the MST panel design variables would be still too 

large to evaluate their measurement properties. Suppose that an optimal MST design 

needs to be created to develop a credentialing test by considering three MST panel 

configurations, two test lengths, three module lengths per stage, three different RPDs, and 

two cutoff scores. In this case, the number of possible combinations for those design 
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variables is 108, which will require an immense amount of time and effort to examine all 

possible conditions. In other testing situations, we may need to examine a wider range of 

the MST design space. Therefore, more efficient strategies are required to take a broad 

range of design space into consideration when discovering the optimal design of an MST. 

In most research comparing different MST designs (e.g., Jodoin et al., 2006; Luo 

& Kim, 2018; Wang et al., 2012; Zheng et al., 2012), the studies are composed of three 

phases: (1) assembling a test given statistical and non-statistical constraints, (2) repeating 

the test assembly varying conditions of MST design variables, and (3) evaluating the 

mesurement properties for each of assembled tests using MC-based simulations. If more 

efficient strategies are used for each of these three phases, it would be possible to assess 

the performance of MSTs more efficiently and quickly and, therefore, lead to the 

examination of a broader range of design space of an MST. In addition, the more design 

conditions that are evaluated, the more possibly optimal the discovered MST design is.  

At the first phase, a top-down assembly approach is applied in the study. As 

described in Chapter 2, the top-down approach enables a designing process of an MST to 

be simplified compared to a bottom-up approach because it automatically identifies an 

optimal partition of test-level variables and other specifications into modules as well as 

satisfies optimal measurement precision (Luo & Kim, 2018). Accordingly, the use of the 

top-down approach would be more advantageous than the bottom-up approach as the 

number of modules and stages become large in the MST panel in that it rapidly increases 

the number of design parameters that should be considered at the module level.   

At the second phase, the design space of an MST is systematically searched, 

seeking the combination of design variables that produce optimal measurement 
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performance in some sense. This search involves iteratively using an ATA process based 

on the top-down approach varying the design variables. Among other design variables, 

varying targeted subpopulations of routes is an essential part in the proposed process. For 

the third phase, it is necessary to evaluate the performance of an MST quickly and 

precisely. As demonstrated in Study 1, the new analytical method to compute the CSEEs 

of an MST is more exact and faster than MC-based simulation methods, both are 

important advantages given a number of design variants being evaluated. The new 

analytical method, therefore, is employed in this study.  

In fact, the first phase, which is assembling MSTs using a top-down approach, can 

be considered a part of systematical search for the optimal design of an MST because the 

iterative process of test assembly at the second phase is based on the top-down approach. 

Therefore, this study proposes a process of finding an optimally designed MST, given a 

specific set of testing circumstances, by systematically searching the design space of an 

MST with the top-down approach and assessing the MST performance with the new 

analytical evaluation method. In the study, the suggested process consists of four features 

and each of the features is explained in detail in the following section. A study on the 

application of the suggested procedure with a real item pool from a large-scale 

assessment was then conducted to show that the process of finding an optimal MST 

design is practical and works well.  

4.1 Process to Find an Optimal MST Design 

The process for discovering an optimal MST design has four important features: 

(1) setting a testing circumstance and MST design space, (2) systematically searching the 
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MST design space using a top-down approach, (3) analytically evaluating measurement 

performance of an MST, and (4) computing objective functions. Each of those features is 

described in detail in the following sub-sections.   

4.1.1 Setting a Testing Circumstance and MST Design Space 

As with any test development, a process for finding an optimal MST design 

begins with a specific set of test circumstances, most notably a calibrated item pool, 

content requirements for a test assembly, and an examinee proficiency distribution. 

Because the circumstances under which MSTs are applied vary case by case, the number 

and nature of the items available in the pool, the rigor of the content requirements and the 

location and scale of the examinee proficiency distribution are all factors that dictate 

whether a given MST design will work well. The purpose of a test is also an important 

factor that affects the MST design and its performance since test information targets for 

modules (e.g., when a bottom-up approach is applied) or routes (e.g., when a top-down 

approach is applied) and the form of the MST panel configuration will be set in response 

to the testing purpose. 

Given a particular testing circumstance, the next step is to determine a scope of 

design space of the MST panel being searched. Understanding a specific testing context 

will help restrict the range of design space. For example, a size of the item pool could 

regulate an appropriate range of test length and the number of parallel MST panels. The 

statistical characteristics of items (e.g., the distribution of item difficulties) in the pool 

could constrain the statistical level of differentiation among the modules at each stage as 

well as the statistical characteristics of the pathways. Also, if the goal of a test is to 
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classify examinees into one of two categories (e.g., pass/fail), then the target module or 

route containing a cut score should be adapted so that the MST design can result in 

maximized measurement precision at the cut score.   

4.1.2 Systematically Searching MST Design Space using a Top-Down approach 

4.1.2.1 Assembly of MSTs using a Top-Down Approach 

A top-down approach simplifies the designing process of an MST since it is not 

necessary to set precise specifications at the module level (e.g., module length at each 

stage and statistical characteristics of MIFs). In the ATA process using the top-down 

approach, the computer algorithm attempts to find the best decomposition of the test level 

constraints into the module levels, which, therefore, results in the optimal measurement 

precision (Luo & Kim, 2018). Though a bottom-up approach can be used to construct the 

MST, the problem is that there exist too many design parameters at the module level 

being considered at the ATA process. Searching every single combination of the design 

variables with the bottom-up approach, therefore, could result in a more time-consuming 

and laborious effort than the use of the top-down approach. Accordingly, the top-down 

approach would provide a more efficient way of searching the optimal design of an MST.  

In this study, a top-down approach suggested by Luo and Kim (2018) was adapted 

to assemble the MST. Luo and Kim’s approach features the RIF to constrain statistical 

specifications at the test level. The following two sub-sections discuss how the RIF 

objectives are set in this study and the ATA algorithm under the top-down approach.    
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4.1.2.1.1 Route Information Function (RIF) Objective  

The top-down approach for an MST assembly suggested by Luo and Kim (2018) 

is based on the RIF. A route is referred to as the combination of modules across all stages 

that an examinee will take to finish a test. Luo and Kim (2018) identified all allowed 

routes in an MST panel and mapped them with targeted subpopulations. Suppose that a 1-

3-3 MST configuration has been selected, and therefore, an examinee will take one of 

seven possible routes (see the right panel of Figure 1). Since there are three primary 

routes (i.e., 1M-2E-3E, 1M-2M-3M, and 1M-2H-3H), the examinee population can be 

divided into three subpopulations according to proficiency levels: low-, middle-, and 

high-proficiency levels. If the population is assumed to follow a standard normal 

distribution, the population can be grouped into three equal-size subpopulations of 

[ , 0.44]− − , [ 0.44, 0.44]− , and [ 0.44, ]−   given two RDPs of −0.44 and 0.44. Luo and 

Kim assumed that all allowed routes were mapped onto one of the three targeted 

subpopulations depending on the selected module at the last stage. For instance, the 

routes of 1M-2E-3E and 1M-2M-3E should be representative of low-proficiency 

subpopulation regardless of the selected modules at the second stage. In the ATA 

process, the objectives are set so that each route has the maximized test information over 

the ability 𝜃 region of the corresponding targeted subpopulation. Figure 9 illustrates the 

route mapping to the three targeted subpopulations with the 1-3-3 MST based on Luo and 

Kim’ (2018) strategy. 

It seems reasonable that the primary routes should represent the 𝜃 intervals of the 

targeted subpopulations as in Luo and Kim (2018). It would be more appropriate, 

however, to assume that the secondary routes (i.e., 1M-2M-3E, 1M-2E-3M, 1M-2M-3E, 
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and 1M-2H-3M) should have the best measurement accuracy at the 𝜃 interval somewhere 

around the RDPs rather than that they should mapped with only one of the three targeted 

subpopulations defined by the primary routes. This is because examinees who took the 

secondary routes are highly likely to have proficiencies around the RDPs (Park et al., 

2017). Following this logic, Luo and Kim (2018)’s strategy for the route mapping was 

modified in this study so that the secondary routes could have the maximized RIFs 

around the RPDs. A specific method to obtain the 𝜃 intervals of targeted subpopulations 

for the routes and set the objectives of RIFs is explained below with an example of the 1-

3-3 MST (see the right panel of Figure 1). 

Recall that the 1-3-3 MST has four secondary routes and Luo and Kim (2018) 

divided a population into three targeted subpopulations of [ , 0.44]− − , [ 0.44, 0.44]− , 

and [ 0.44, ]−   by the RDPs of −0.44 and 0.44. First, substitute 𝜃 = ±∞ in the 𝜃 

intervals of the right and left end subpopulations with finite values (e.g., 𝜃 = ±2). Then, 

the three primary routes (i.e., 1M-2E-3E, 1M-2M-3M, and 1M-2H-3H) have their 

targeted subpopulations at [ 2.00, 0.44]− − , [ 0.44, 0.44]− , and [ 0.44, 2.00]− , respectively. 

Second, it is then expected that the area around the RDPs would be the targeted 

subpopulations for the secondary routes. Unlike the primary routes, however, no specific 

interval of the subpopulation is defined for the secondary route. For example, the 

secondary routes of 1M-2M-3E and 1M-2E-3M are given the subpopulation around the 

RDP of −0.44 and the secondary routes of 1M-2M-3H and 1M-2H-3M are assigned the 

subpopulation around the RDP of 0.44. Figure 10 displays an illustration of the modified 

route mapping strategy based on the 1-3-3 MST. Note that since no secondary route 

exists in the two-stage MST, the modified procedure is not necessary.  
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Once the targeted subpopulations for all allowed routes are determined, the next 

step is to set objectives of RIFs for the ATA model. How to set the objectives is aligned 

with the purpose of a test. In this study, it was assumed that MSTs are intended to 

measure achievement or growth of students. To attain this purpose, the MSTs should be 

assembled to have accurate measurement precision over a wide range of the proficiency 

scale.  

When constructing the MST using the bottom-up approach, the target TIFs of the 

modules are usually developed so that the objectives in the ATA process is to minimize 

the discrepancies between the target MIFs and the assembled MIFs. Instead of deriving 

the target RIFs, however, Luo and Kim (2018) used the relative target method where the 

objectives of each route were to maximize the route information over the 𝜃 interval of the 

targeted subpopulation. This target strategy is useful when the objective of a test is to 

have better information along the 𝜃 scale such as broad-range diagnostic testing (van der 

Linden, 2005). Therefore, the relative target method was applied in this study. 

For the relative target in the ATA process, the objective of each route in the MST 

was set at only one 𝜃 point in this study. Specifically, each of the primary routes had the 

objective at the mid-point of the 𝜃 interval of the targeted subpopulation and each of the 

secondary routes had the objective at the corresponding RDP. For example, if three 

primary routes 1M-2E-3E, 1M-2M-3M, and 1M-2H-3H in the 1-3-3 MST have the 

targeted subpopulations at [ 2.00, 0.44]− − , [ 0.44, 0.44]− , and [ 0.44, 2.00]− , the objective 

of their RIFs are set at −1.22, 0.0, and 1.22. Then, the objective of the secondary RIFs of 

1M-2M-3E and 1M-2E-3M are set at the RDP of −0.44 and the objective of the 

secondary RIFs of 1M-2M-3H and 1M-2H-3M are set at the RDP of 0.44. In fact, in Luo 
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and Kim (2018), three 𝜃 points within the 𝜃 interval were used to represent the 

corresponding targeted supopulation of each route. However, a preliminarly simulation 

study showed that generally the assembled routes with the objective set at one 𝜃 point 

had higher TIFs over the 𝜃 intervals of the targeted subpopulations than those with the 

objective set at the three 𝜃 points.  

4.1.2.1.2 Top-Down Approach in ATA 

Under the top-down approach, an ATA algorithm with the MIP was used to build 

MSTs. Given the targeted subpopulations for all allowed routes, the goal of the ATA 

model was to maximize the TIFs of the assembled routes over the specified 𝜃s, 

considering other test constraints. The mathematical formulas of the MIP for the top-

down assembly of MSTs are explained below. 

Suppose that the items in the item pool are denoted as 𝑖 = 1, . . . , 𝐼 and the 

assembled modules in the MST are indexed as 𝑓 = 1, . . . , 𝐹. Now let 𝑉𝑅 be a route (i.e., 

the combinations of modules across all stages) that an examinee will have during the 

testing and 𝑛 represents test length. Also, let 𝑉𝑐 be a subset of items in the item pool that 

are classified into category c, 𝑛𝑐 represent the number of items from this subset, and 

𝐼𝑖(θ𝑘) represent the information of item i at 𝜃𝑘. To maximize the test information over a 

𝜃 interval, the object function of the ATA problem is expressed as follows.  

 max y   (4.2.1) 
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where 𝑥𝑓𝑖 denotes a binary decision variable of item i for module f. If an item is selected 

in the assembled module, the value of the binary decision variable is 1 otherwise 0. The 

categorical test specification for each route is constrained by Equation (4.2.3) and the test 

length of the route is imposed by Equation (4.2.4). No overlap of the items across stages 

in the MST are modeled in Equation (4.2.5). There are two more important constraints in 

the ATA model. Equation (4.2.6) guarantees that two adjacent modules 𝑓𝑢 and 𝑓𝑡 within 

the same stage intersect at the RPD. Equation (4.2.7) is used to avoid an empty module at 

any stage, and thus leads to each module having a minimum number of items 𝑛𝑚𝑖𝑛.  

4.1.2.2 Systematical Search of Design Space 

To find the combination of design variables that results in measurement 

performance that is optimal in some sense, the parameterized design space of an MST 

was systematically searched. In fact, the systematic search consists of two parts: (1) 

iteratively assembling MSTs based on a top-down ATA process varying the design 
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parameters and (2) assessing the measurement performance of the series of the assembled 

MSTs. This subsection focuses on the iterative assembly of MSTs and the evaluation of 

MST performance is explained next. 

Once some MST design variables are restricted or fixed (e.g., test length and the 

shape of MST panel configuration), the key of searching the design space is iteratively 

varying the RDPs. This is because the location of the RDPs under the top-down approach 

is an important factor that affects the measurement performance of an MST. Varying the 

RPDs determines the targeted subpopuluations of all allowed routes of an MST. Then, 

the range and location of the targeted subpopulations impact the characteristics of the 

modules (e.g., length and statistical properties of modules) in the assembled MST 

through the ATA process. The characteristics of modules will affect the shapes of the 

MIFs and/or RIFs, which regulate the measurement precision and other critical 

psychometric properties of the assembled MST. 

In this study, all possible combinations of RDPs were searched, given that other 

design variables were fixed, by systematically varying the locations of RPDs. For 

example, when the 1-3-3 MST is used, the RDP between low- and mid-proficiency levels 

is allowed to shift from −0.8 to 0.1 by an increment of 0.02 and the RDP between mid- 

and high-proficiency levels is allowed to vary from 0.1 to 0.8 by an increment of 0.02. In 

this case, a total 1,296 combinations should be searched. When the 1-2-2 MST is 

selected, however, only one RDP is required in that configuration. In this case, the RDP 

may move from −0.7 to 0.7 by an increment of 0.02. Then, a total of 71 MSTs can be 

designed given that other design variables are controlled. Recall that once the targeted 
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subpopulations of the primary routes are determined by the RDPs, the subpopulations of 

the secondary routes are automatically set under the top-down ATA approach.  

The wider the range of the proficiency and the smaller incremental value used in 

the iterative search, the more thoroughly an optimal MST design can be sought. But, it 

costs more time to assemble the series of MSTs. In fact, it is unnecessary to use too broad 

a range for the RDPs, meaning that the RDPs should vary within a reasonable 𝜃 interval. 

For example, for the 1-3-3 MST it may not be appropriate to have an RDP between low- 

and mid-proficiency levels that is located above 0 = . Thus, a reasonable range of RDPs 

and size of increment value should be determined in advance.   

4.1.3 Analytically Evaluating Measurement Performance of an MST 

To find an optimally designed MST, measurement performance of the series of 

assembled MSTs should be evaluated. In the evaluation process, the CSEEs were 

computed using the proposed analytical method in Study 1. Recall that examinees’ 

abilities should be estimated using the ENC scoring method to use this method. Based on 

this scoring method, score distributions and conditional standard errors of ability 

estimates can be calculated exactly across a grid of ability values using a recursive 

algorithm (Lord & Wingersky, 1984). As shown in Study 1, the analytical method 

produces more exact CSEEs and the computation is much faster than performing a 

simulation. 

4.1.4 Computing Objective Functions 

To find an MST design that provides optimal measurement performance, we need 

to define the objective function that will serve as the measure of optimality. The objective 
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functions measuring design optimality are computed based on the CSEEs. Several 

objective functions were suggested in this study, each defining measurement optimality 

in a different way.  

First, marginal test reliability is one possible objective function, which prioritizes 

the measurement precision across proficiency regions where the examinee population is 

dense. Let 𝜃𝑋 be the ability estimate corresponding to the observed NC score X obtained 

by the ENC scoring method and 𝑉𝑎𝑟(𝜃𝑋|𝜃) be the squared conditional standard error of 

the 𝜃𝑋 given a true ability of 𝜃. The marginal test reliability �̅� is computed as: 
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where 𝜑(𝜃𝑖) denotes a normalized density of population distribution at 𝜃𝑖 and 𝜎𝜃
2 is the 

variance of population distribution. When a population is assumed to have a standard 

normal distribution, �̅� = 1 − 𝜎�̂�|𝜃
2 . With this objective function, an optimal MST design 

should have the maximized marginal test reliability. 

A second objective function is the average of CSEEs (across some proficiency 

region) which prioritizes precise measurement across a broader range of the ability scale. 

This function tends to promote more precise measurement in the tails of the distribution 

in comparison to the marginal test reliability objective function. The average of CSEEs 

across N number of 𝜃 points is expressed as: 
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where 𝜃𝐿 and 𝜃𝑈 indicate the lower and the upper bounds of the 𝜃𝑖 given a fixed range. 

As marginal test reliability, an optimal MST design is found when the average of CSEEs 

is minimized. 

Finally, a maximum CSEE objective function prioritizes designs that avoid 

imprecisely measuring proficiency value within a given proficiency range. This objective 

function is given by: 

  max ( | ) ,
L i U

X iCSEE
  

 
 

  (4.2.12) 

where 𝐶𝑆𝐸𝐸(𝜃𝑋|𝜃𝑖) is the conditional standard error of  𝜃𝑋 given 𝜃𝑖. With this objective 

function, an optimal MST design should have the minimized maximum CSEE. 

Since each objective function serves for a different definition of measurement 

optimality, it is expected that the design characteristic of optimally designed MSTs will 

vary according to the objective function. 

4.2 Application to a Real Item Pool 

To show that the proposed process is practical and works well, the process 

described above was applied to a real item pool of a large-scale assessment to find 

optimal MST designs. Once the optimal designs were found according to each of the 

three objective functions, the characteristics of the MSTs (e.g., partition of items and 

other constraints, RIFs, and MIFs) were examined to make a final decision. In the 

application, it was expected that the optimal design would vary according to the objective 

function, which is promising because practitioners could flexibly choose the objective 

function depending on the testing purpose. 
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4.2.1 Design of Application  

For the application, two item pools – 200 and 400 items – were used to assume a 

small and moderate number of items in the MST assembly pools. Also, a fixed number of 

shapes of MST configurations and test length have been selected to restrict a scope of 

design space being searched. Among various MST configurations, three widely-used 

configurations were chosen to represent common practice: the 1-3, 1-2-2, and 1-3-3 

MSTs. Two test levels of lengths (32 and 60 items) were used for the short and long test 

length conditions in MST. Within the restricted design space, the optimal MST design 

with good overall psychometric outcomes were driven using the three objective 

functions: (1) maximizing marginal test reliability, (2) minimizing the average of CSEEs 

given a fixed range of 𝜃, and (3) minimizing the maximum CSEE within a given range of 

𝜃. 

4.2.2 Item Pool 

For the two items pools, two hundred and four hundred items calibrated with the 

IRT 3PL model were randomly selected from an item pool of Massachusetts Adult 

Proficiency Test – College and Career Readiness (MAPT-CCR) for Mathematics. The 

MAPT-CCR is a specially designed 5-5-5-5-5-5 MST to measure knowledge and skills in 

mathematics and reading of adult basic learners in Massachusetts so that their progress in 

meeting educational goals can be evaluated (Zenisky et al., 2018). Since the test covers a 

wide range of proficiency levels (i.e., five different difficulty levels in each stage), the 

item pool contains relatively many items which measures low and high levels of 

examinee proficiencies compared to other credentialing tests. Table 4 summarizes the 
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descriptive statistics of the item parameters for the two item pools used in the application. 

The MAPT-CCR for Mathematics measures two dimensions: content strand and 

cognitive skill dimensions. Instead of using the real item properties, however, four 

categories of content strand and three categories of cognitive skill were randomly 

allocated to the items in the pools with the proportion of [.25, .25, .25, .25] and [.25, .25, 

.50], respectively.  

For a test assembly, all MSTs were required to have the same proportions of 

contend strand and cognitive skill categories as the item pools. In addition, no item 

overlap across stages and the same test information between two adjacent modules at the 

RDP were constrained. To prevent an empty module during the ATA, a minimum length 

of modules was imposed so that each module could have at least 20% of items in the total 

test.  

4.2.3 Analysis 

All assembled MSTs were scored using the ENC scoring method where the 

minimum and maximum 𝜃s were set to −5.0 and 5.0, respectively. For routing, the DPI 

rule was employed with the ENC scoring. The CSEEs were computed at the ability points 

from −4.0 to 4.0 in increments of 0.1 using the analytic method. Thus, marginal test 

reliability for each MST design was calculated from those CSEE values. The average of 

CSEEs and the maximum of CSEE were obtained from the 𝜃 range of [−2.0, 2.0].  

To systematically search for an optimal MST design, the RDPs were varied 

differently depending on the MST panel configuration. For the 1-3 and 1-3-3 MSTs, the 

RDP between low- and mid-proficiency levels was intentionally varied within the 𝜃 
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interval of [−0.8, −0.1] with increments of 0.02 and the RDP between mid- and high-

proficiency levels was varied within the 𝜃 interval of [0.1, 0.8] with increments of 0.02. 

For the 1-2-2 MST, the RDP was allowed to shift within the 𝜃 interval of [−0.7, 0.7] in 

increments of 0.02. 

To use MIP method in the ATA process, a package “lpSolveAPI” (Diao & van 

der Linden, 2011; Konis, 2009) of R software (R Core Team, 2016) was used. Given 

each combination of design variables, an MST panel was assembled with a time limit of 3 

minutes. The sub-optimal assembly result, which refers to satisfying the objective of the 

ATA model, that was achieved within the time limit was considered the final assembled 

MST. All other procedures were conducted with written R code.  

4.2.4 Results of Application 

In each condition of test lengths and item pools, 71 different panels were 

constructed for the 1-2-2 MST and 1,296 different panels were built for each of the 1-3 

and 1-3-3 MST by varying the RDPs. Note that for the 32-item 1-3-3 MSTs, the solver 

failed to find the solutions of ATA models for few cases of RDPs. Since the number of 

the failed cases were relatively small (i.e., 9 (0.7%) and 53 (4.1%) cases for the 200- and 

400-item pools, respectively), further analyses were carried out without those cases.  

4.2.4.1 Examination of Three Objective Functions  

4.2.4.1.1 Summary Statistics of Three Objective Functions   

Tables 5 through 7 display summary statistics of three objective functions – 

marginal test reliability, average of CSEEs, and maximum CSEE, respectively – 
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according to each condition of design variables (i.e., the pool size, test length, and panel 

configuration). In each condition, the total number of successfully assembled MSTs were 

presented as well. 

Table 5 shows the summary statistics for the first objective function of marginal 

test reliability. Given the same condition of design variables, three MST panel 

configurations produced similar summary statistics though the means, maximums, and 

minimums of the reliabilities were relatively large for the 1-3 and the 1-3-3 MSTs and 

relatively small for the 1-2-2 MST. Not surprisingly, the tests with more items generally 

tended to have better reliabilities because the mean, maximum, and minimum statistics 

for the 60-item test were consistently higher than those for the 32-item test in the two 

item pools. For example, in the case of the 200-item pool, the means of the reliabilities of 

the three panel configurations with 60 items ranged from 0.888 to 0.889 while those with 

32 items ranged from 0.843 to 0.845. In addition to test length, generally the item pool 

size affected the marginal test reliability; the larger item pool, the better marginal 

reliability was, provided that other conditions were the same. 

Recall that the definition of measurement optimality will differ by the objective 

function. When the objective function of marginal test reliability is applied, examining 

the maximum value among the summary statistics is important to decide the optimal 

design of an MST. For the 200-item pool, the maximum reliabilities of the three panel 

configurations were about 0.86 and 0.90 for the 32-item tests and the 60-item tests, 

respectively and for 400-item pool, those were about 0.88 and 0.92 for the 32-item test 

and the 60-item test, respectively. 
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Table 6 presents the summary statistics for the second objective function of 

average of CSEEs. The means, maximums, and minimums of the average of CSEEs were 

close to each of the three MST panel configurations when the other design conditions 

were controlled but, nonetheless, those statistics were relatively small for the 1-3 and the 

1-3-3 MSTs and relatively large for the 1-2-2 MST. It can be seen that generally the more 

items in a test and item pool, the smaller the three summary statistics of the average of 

CSEEs. For instance, in the case of the 400-item pool, the mean values of the three panel 

configurations with 60 items were clearly smaller (0.298 to 0.313) than those with 32 

items (0.387 to 0.407). When the objective function of the average of CSEEs is used, the 

optimal design of MST should have the minimized average. Under the 200-item pool, the 

minimum averages of the three panel configurations were about 0.39 and 0.32 for the 32-

item and 60-item tests, respectively and under the 400-item pool, those were about 0.37 

and 0.28 for the 32-item and 60-item tests, respectively. 

Table 7 shows the summary statistics for the last objective function of maximum 

CSEE. Unlike the results from the previous two objective functions, it is apparent that the 

1-3 and the 1-3-3 MSTs had much lower means and maximums for the maximum CSEE 

than the 1-2-2 MST, given the same conditions of other design variables. Particularly, 

when the tests had 32 items under the 400-item pool, the maximum statistics of the 

maximum CSEE of the 1-3 and 1-3-3 MSTs were about 0.60 whereas those of the 1-2-2 

was about 1.13. The three MST panel configurations, however resulted in the minimum 

statistics of the maximum CSEE close to each other though they were relatively small for 

the 1-3 and the 1-3-3 MSTs and relatively large for the 1-2-2 MST. Again, as a test and 

an item pool had more items, it seemed that generally the maximum CSEEs decreased 
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because the means, maximums, and minimums of the 60-item test were consistently 

smaller than those of the 32-item test in both item pool sizes. Regarding the measurement 

optimality of MST designs based on the maximum CSEE, it is necessary to select an 

MST design which has the minimized maximum CSEE. Under the 200-item pool, the 

minimum of the maximum CSEE of the three panel configurations were about 0.67 and 

0.62 for the 32-item and 60-item tests, respectively and under the 400-item pool, those 

were about 0.60 and 0.47 for the 32-item and 60-item tests, respectively. 

4.2.4.1.2 Association Between RDPs and Three Objective Functions   

In each condition of the design variables, the MSTs were systematically 

assembled by varying the RDPs within a specific range of the 𝜃 scale. Accordingly, one 

may wonder whether there exist any notable relations between the RDPs and the three 

objective functions. For this reason, the association between the RDPs and each of the 

three objective functions was examined by means of a scatter plot before selecting an 

optimal MST design. Figures 11 through 14 display scatter plots between the RDPs and 

each of the three objective functions according to the three panel configurations in 

different design conditions of test length and item pool size. In the four figures, each 

column represents the MST panel configuration and each row indicates the objective 

function. Recall that one RDP was used for the 1-2-2 MST and two RDPs were used for 

the 1-3 and 1-3-3 MSTs. 

For the 1-3 and 1-3-3 MSTs, weak linear relations were observed between the 

RDPs and two objective functions of the marginal test reliability and average of CSEEs 

across all design conditions. More specifically, the marginal test reliability tended to 
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increase slightly and the average of CSEEs was likely to decrease slightly as the two 

RDPs of both the 1-3 and 1-3-3 MSTs moved from low to high levels in the 𝜃 scale. 

When it comes to the comparison of two test lengths, the 60-item test showed relatively 

stronger linear association compared to the 32-item test given the same pool size. No 

remarkable feature was observed in the relation between the RDPs of the two panel 

configurations and the maximum CSEE.  

For the 1-2-2 MST, it seems that the RDP had nonlinear associations with the 

three objective functions for all design conditions of test length and item pool size. First, 

greater values of the marginal test reliability and smaller values of the average of CSEEs 

were shown as the RDPs were located at around the middle of the 𝜃 scale. This pattern 

became more noticeable when a test length was 32 (see Table 11 and 13). Second, the 

nonlinear association was much clearer between the RDPs and maximum CSEE. As the 

RDP shifted from low to high levels in the 𝜃 scale, the maximum CSEE increased 

rapidly. As a result, the optimized values were always shown at low levels of the 𝜃 scale 

regardless of the deign conditions. 

However, it should be noted that the results of the association between the RDPs 

and the three objective functions in this study may not be generalized to other testing 

circumstances.   

4.2.4.2 Decision of Optimal MST Designs   

As noted, an optimal MST design would vary depending on which objective 

function is used to define a measurement optimality. The simplest way of deciding the 

optimal MST design is to select the one that has the best measurement optimality for each 
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of the objective functions. In other words, the optimal design could be the one that has 

the highest value when the marginal test reliability was chosen as the objective function 

and the smallest value when the average of CSEEs or the maximum CSEE was used as 

the objective function. 

However, deciding the best optimal MST design solely based on the objective 

function value is not recommended because the selected MST design might have 

inappropriate characteristics of the MIFs or RIFs and unacceptable decomposition results 

of test-level constraints into modules. For example, an RIF may not provide superior 

psychometric properties (e.g., test information) for its targeted subpopulations compared 

to other RIFs which represent other targeted subpopulations. In addition, one may not 

want modules at a certain stage to have extremely large or small proportions of items at 

some content categories even though the selected MST design has the optimized value of 

the objective function. Therefore, further examination is necessary to review several 

characteristics (e.g., MIFs, RIFs, and the partition of items and other constraints) of 

assembled MSTs to decide the optimal design of an MST. It is highly recommended to 

conduct the further examination on a few of the best assembled MSTs for each of the 

objective functions instead of only one best assembled MST. From this strategy, test 

developers have more alternatives so that they can choose an MST design by taking into 

account other characteristics of an MST as well as optimal measurement properties. 

Tables 8 through 11 present the MSTs with the top eight optimality values for 

each of the three objective functions and corresponding RDPs to those MSTs among all 

assembled MSTs across the three panel configurations. Each table includes the results 

under different conditions of the design variables (i.e., test length and item pool size). Of 
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course, the number of selected MSTs based on the objective function values could vary 

by test circumstances and the test developers’ intentions. Regardless of the conditions, 

the top eight MSTs had almost the same measurement optimality values for each 

objective function. For instance, for the 32-item 1-3-3 MST under the 200-item pool, the 

differences in the marginal test reliability, average of CSEEs, and maximum CSEEs 

between the first and the eighth MSTs were only 0.003, 0.003, and 0.005, respectively 

(see Table 8). Similar results were found in other conditions of panel configurations, test 

length, and item pool. Hence, it seems to be reasonable to decide an optimal MST design 

as the one that shows better characteristics of an MST among the top eight MSTs for each 

objective function through further examination.  

Not surprisingly, when the top eight MSTs were selected according to each of the 

two objective functions of the marginal test reliability and the average of CSEEs, the 

eight selected MSTs under each of the two objective functions always shared several of 

the same MSTs which had the same RDPs in each condition of the design variables. Note 

that since the top-down assembly finds the one best MST design given an RDP (e.g., in 

the case of the 1-2-2 MST) or a pair of RDPs (e.g., in the cases of the 1-3 and 1-3-3 

MSTs), if the assembled MSTs share the same RPDs, this indicates they have exactly the 

same design (e.g., test and module length, RIFs, and MIFs). For example, in the case of 

the 32-item test under the 400-item pool, the two objective functions had five of the same 

tests for the 1-2-2 MST, three of the same tests for the 1-3 MST, and four of the same 

tests for the 1-3-3 MST (see Table 10). Similar results can be seen in other conditions 

with respect to test length and item pool. This can be explained by the fact that the nature 

of the two objective functions are close to each other. Essentially, both the marginal test 
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reliability and the average of CSEEs were associated with the average of the conditional 

variance of abilities. The difference between them is that the former one involves the 

computation of the weighted conditional variance of abilities using the population 

distribution while the latter one requires the unweighted conditional variance of abilities. 

Now, the next step is reviewing several characteristics for the selected MSTs to 

decide the final optimal design of an MST. In this study, the partition of items and 

content constraints, MIFs, and RIFs were examined for the top four selected MSTs 

according to each of the three objective functions instead of the top eight selected MSTs 

for illustrative purposes. As already seen in the previous section, the 60-item test had 

better objective values for each of the three objective functions under the 400-item pool 

regardless of MST panel configurations (see Tables 5 through 7). Therefore, the review 

process was illustrated only for the 60-item test under the 400-item pool. Since the 

marginal test reliability and average of CSEEs served for similar definitions of 

measurement optimality, if not identical, the optimal designs were selected based on the 

objective functions of the marginal test reliability and maximum CSEE.  

4.2.4.2.1 Optimal MST Design based on Marginal Test Reliability  

Tables 12 through 14 display the partition of items and content constraints for the 

top four selected 60-item MSTs under the 400-item pool based on the objective function 

of marginal test reliability. The three tables show the results for the 1-2-2, 1-3, and 1-3-3 

MSTs, respectively. Looking at any single MST, each of the test-level specifications (i.e., 

test length, content strand, and cognitive skill) was uniquely partitioned into modules 

across stages, satisfying the constraint requirements at the test level when the partitions 
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were summed up. Also, modules in the same stage had identical distributions of items for 

each test-level constraint, which is consistent with the results in Luo and Kim (2018). 

Note that the constraint that modules at each stage must contain a number of items equal 

to at least 20% of total test length was well satisfied for every assembled MSTs. 

Concerning the module length of the three panel configurations, the interesting 

results were found. In the 1-2-2 MST, it seems that items were relatively evenly 

distributed across three stages for the four selected tests, though three tests contain the 

largest number of items at the last stage (i.e., the third stage) except the test with the RDP 

of 0.40 (see Table 12). In the 1-3 and 1-3-3 MSTs, meanwhile, it is prominent that all 

selected tests showed that the module at the first stage had the longest module length (see 

Table 13 and 14).  

Among all selected designs across the three panel configurations, only the ATA 

solution of the 1-2-2 MST with the RDP of 0.40 yielded zero item for the fourth category 

of the content strand in the routing module (see Table 12). If test developers desire that 

all modules in an MST contains at least a few numbers of items in each content category, 

any MST with zero items in a certain content category would not be used in operational 

testing programs. Other than this test, no special problem was observed for all other 

selected MSTs in terms of the partition of item and content constraints.   

Figures 15 through 17 show the RIFs for the top four selected 60-item MSTs 

under the 400-item pool based on the objective function of marginal test reliability. The 

three figures present the results for the 1-2-2, 1-3, and 1-3-3 MSTs, respectively. Several 

interesting features were found from the RIFs of the selected MSTs.  
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First, all selected MSTs exhibited a clear separation of RIFs of the primary routes. 

More specifically, two primary RIFs of the four 1-2-2 MSTs and two adjacent primary 

RIFs of the 1-3 and 1-3-3 MSTs intersected at around their corresponding RDPs and the 

primary RIFs of each MST which represent different regions of the targeted 

subpopulations were well distinguished. For example, in the top left panel of Figure 15, 

the two primary RIFs (i.e., 1M-2E-3E and 1M-2M-3M) of the 1-2-2 MST crossed at 

around 0.46 = −  and each of them showed better information than the other primary RIF 

at its defined region of the targeted subpopulation.  

Second, when it comes to the three-stage MSTs (i.e., 1-2-2 and 1-3-3 MSTs), the 

RIFs of the secondary routes were well differentiated from those of the primary routes 

and the secondary routes which were intended to represent the same region of the 

targeted subpopulation had similar shapes of the RIFs. In the top left panel of Figure 17, 

for instance, two secondary RIFs of 1M-2E-3M and 1M-2M-3E were similar to each 

other and the other two secondary RIFs of 1M-2M-3H and 1M-2H-3M were similar to 

each other. In addition, the left two secondary RIFs and the right two secondary RIFs 

were distinctly separated from the three primary RIFs (i.e., 1M-2E-3E, 1M-2M-3M, and 

1M-2H -3H). This feature of the clear separation between RIFs is the benefit of the top-

down assembly approach because all routes would provide superior measurement 

precision for their targeted subpopulations in different areas of the 𝜃 scale (Luo & Kim, 

2018). 

For the 1-2-2 MST, it seems that the secondary RIFs were not as high as the 

primary RIFs. Due to this fact, one may be concerned about that the precision of ability 

estimation would be less accurate for examines who take the secondary routes than for 
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those who take the primary routes. As can be seen in all panels of Figure 15, however, the 

secondary RIFs exhibited the peak information values greater than 15 at around the 

RDPs, meaning that the CSEEs at those regions are less than 0.26, which is a reasonably 

good precision of ability estimate because under CAT with the variable length, the 

standard errors of ability estimates between 0.2 and 0.3 have been commonly used as the 

prespecified criteria of the stopping rule in many previous research (e.g., Choi, Grady, & 

Dodd, 2011; Diao & Ren, 2018; Dodd, Kock, & De Ayala, 1993). For the 1-3-3 MST, the 

RIFs of the secondary routes showed very similar levels of information as those of the 

first (1M-2E-3E) and third primary (1M-2H-3H) routes at the regions of their targeted 

subpopulations, implying that measurement precision of the secondary routes are as close 

as those of the two primary routes at those areas. 

Third, an imbalance of information between the primary RIFs was observed for 

all three MST panel configurations. This feature is best illustrated in the four 1-3 MSTs 

(see Figure 16) where the primary RIFs (1M-3M) of medium-difficulty level was the 

highest and the primary RIFs (1M-3E) of hard-difficulty level was the lowest. This could 

mean that the 400-item pool has abundant information for the medium ability levels of 

examinees whereas it contains relatively insufficient information for the low and high 

ability levels of examinees.  

With respect to the RIFs in Figures 15 through 17, it seems that all of the selected 

MSTs have the routes which have the acceptable characteristics of RIFs and well 

represent their targeted subpopulations in the different regions of the θ scale. 

Figures 18 through 20 show the MIFs for the top four selected 60-item MSTs 

under the 400-item pool based on the objective function of marginal test reliability. The 
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three figures present the results for the 1-2-2, 1-3, and 1-3-3 MSTs, respectively. By 

reviewing the characteristics of MIFs across stages, the optimized psychometric 

properties of modules assembled by the top-down approach can be observed.  

Similar to the results of the examination on the RIFs, all of the selected MSTs 

showed that the two adjacent MIFs at each stage were clearly separated, intersecting at 

the corresponding RDP. This feature allows different difficulty modules at the same stage 

to provide better measurement precision of ability estimation in their corresponding areas 

of the targeted subpopulations. In Figure 20, for example, the easy-difficulty modules at 

the second stage (2E) and third stage (3E) in the 1-3-3 MST had superior information at 

the left side of the first RDP (e.g., 0.46  −  for MST 1), the medium-difficulty module 

at the both stages showed higher information than the easy- and high-difficulty level 

modules between two RDPs (e.g., 0.46 0.74−    for MST 1), and the high-difficulty 

modules at the both stages exhibited the highest information at the right side of the 

second RDP (e.g., 0.74   for MST 1). All other selected MSTs across three panel 

configurations produced similar results. However, the clear separation of the MIFs 

obtained from the top-down approach was not observed at the second stage of the 1-2-2 

and 1-3-3 MSTs in Luo and Kim (2018); that is, the MIFs of different difficulty modules 

at the second stage were hardly distinguished. The different results might be attributed to 

the use of different route mapping strategies as explained in the previous section. Further 

explanation about the difference is discussed in a later section.  

In addition, as shown in Luo and Kim (2018), it was found that MIFs at a certain 

stage compensated for MIFs at different stages. The four 1-3 MSTs in Figure 19 best 

illustrated this pattern. In all four MSTs, the MIF at the first stage had relatively low 
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information at higher levels of the 𝜃 scale and relatively high information at the middle 

and lower levels of the 𝜃 scale. Those features of the MIF at the first stage were 

compensated for by an opposite trend of the MIFs at the second stage. The compensation 

of MIFs across stages happened because modules at different stages were considered 

collectively in the top-down assembly approach (Luo & Kim, 2018).  

No specific problem was found for the MIFs in Figures 18 through 20. It seems 

that all of the selected MSTs consisted of well assembled modules in terms of 

psychometric properties of MIFs as expected.  

In this section, three characteristics of MSTs, which are the partition of items and 

content constraints, the RIFs, and MIFs, were reviewed for the top four selected MSTs 

across the three panel configurations under the condition of the 60-item test and the 400-

item pool to decide the final optimal design of MSTs based on the objective function of 

the marginal test reliability. Regarding the partition of content constraints, only one MST 

(i.e., the 1-2-2 MST with RDP of 0.40) had no item at a certain category of content 

strand. Other than this case, all other selected MSTs showed that items were well 

distributed to modules and each content category. In addition, the RIFs and MIFs 

exhibited superior psychometric properties in their corresponding regions of the targeted 

subpopulations. According to the examination results, therefore, it is expected that most 

of the selected MSTs would perform well, regardless of the panel configurations, for the 

intended testing purpose in this study, which is accurately measuring examinees’ 

proficiencies over a wide range of the 𝜃 scale. If it is necessary to decide the one best 

MST design in each panel configuration, it would be reasonable to choose the MST that 

has the highest marginal test reliability.  
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4.2.4.2.2 Optimal MST Design based on Maximum CSEE  

Tables 15 through 17 display the partition of items and content constraints for the 

top four selected 60-item MSTs under the 400-item pool based on the objective function 

of maximum CSEE. The three tables show the results for the 1-2-2, 1-3, and 1-3-3 MSTs, 

respectively. As the partition results of marginal test reliability, each of the selected 

MSTs satisfied the test-level constraints in the ATA model, having a unique 

decomposition of items into module and content categories across stages and satisfying a 

minimum module length of 20% items per each stage. 

With respect to module length, however, the selected MSTs based on the 

maximum CSEE exhibited different patterns of the results from those based on the 

marginal test reliability. Specifically, the longest module length occurred at the earlier 

stages (i.e., the first and second stages for the 1-2-2 and 1-3-3 MSTs and the first stage 

for the 1-3 MSTs) for all selected MST whereas the 1-2-2 MSTs resulted in opposite 

trend when the top MSTs were selected based on the marginal test reliability.  

Among the top four selected MSTs across the three panel configurations, only 

two 1-2-2 MSTs with RDPs of −0.56 and -0.68, respectively, had no item at certain 

content categories (see Table 12). For example, for the 1-2-2 MST with the RDP of -0.56, 

the ATA solution did not allocate any item to the third category of the content strand. 

Except for the two selected MSTs, no specific problem was found for other selected 

MSTs in terms of the partition of item and content constraints.  

Figures 21 through 23 show the RIFs for the top four selected 60-item MSTs 

under the 400-item pool based on the objective function of maximum CSEE. The three 

figures present the results for the 1-2-2, 1-3, and 1-3-3 MSTs, respectively. Although the 
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four selected MSTs in each of the three panel configurations had the smallest maximum 

CSEEs among all assembled MSTs, it seems that their RIFs which were mapped onto the 

different regions of the targeted subpopulations were not clearly separated for most of the 

selected MSTs. Especially, the unclear separations between the RIFs were severe at low 

levels of the 𝜃 scale regardless of the panel configurations.  

For example, for the first 1-2-2 MST with the RDP of −0.64 and the fourth 1-2-2 

MST with the RDP of −0.68, two primary RIFs (i.e., 1M-2E-3E and 1M-2H-3H) were 

hardly differentiated from the two secondary RIFs (i.e., 1M-2E-3H and 1M-2H-3E) at the 

𝜃 scale below the RDPs (see Figure 21). In the case of the 1-3 MST, the first three 

selected MSTs showed that two primary RIFs (i.e., 1M-2E and 1M-2M) of the easy- and 

medium-difficulty routes were almost indistinguishable at low levels of the 𝜃 scale (see 

Figure 22). The problem becomes more serious in the case of the 1-3-3 MST. For all four 

selected MSTs, it was very hard to distinguish the secondary RIFs of the 1M-2E-3M and 

1M-2M-3E from the two primary RIFs of the 1M-2E-3E and 1M-2M-3M at the 𝜃 scale 

below the first RDPs (see Figure 23). Especially, for the first MST with the RDPs of 

−0.76 and 0.78, the primary route of 1M-2E-3E and the secondary route of 1M-2E-3M 

had the same RIFs and the primary RIF of 1M-2M-3M and the secondary RIF of 1M-

2M-3E also had identical RIFs (see the top left panel of Figure 23).  

Figures 24 through 26 show the MIFs for the top four selected 60-item MSTs 

under the 400-item pool based on the objective function of maximum CSEE. The three 

figures present the results for the 1-2-2, 1-3, and 1-3-3 MSTs, respectively. Similar to the 

MIF results of the selected MSTs based on the marginal test reliability, the compensation 

of the MIFs across stages was observed for all selected MSTs based on the maximum 
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CSEE. Although most of the selected MSTs exhibited that the different difficulty MIFs 

could be separated by the RDPs, however, the separation was not so distinct as much as 

the MIFs of the selected MSTs based on the marginal test reliability. In addition, several 

MSTs resulted in two adjacent MIFs very close to each other at low levels of the 𝜃 scale, 

implying that those two modules provide similar levels of information at that region. This 

could explain the reason that the different RIFs of the selected MSTs based on the 

maximum CSEE were hardly differentiated at low levels of the 𝜃 scale. For example, the 

first 1-3-3 MST with the RPDs of −0.76 and 0.78 had the identical MIFs of the easy- and 

medium-difficulty modules (i.e., 3E and 3M) at the third stage (see the first column of 

Figure 26). From a close examination of the assembled MST, it was found that the two 

modules at the third stage had exactly the same items. This is the reason that the first 1-3-

3 MST resulted in the primary RIF of 1M-2E-3E which was the same with the secondary 

RIF of 1M-2E-3M and the primary RIF of 1M-2M-3M which was the same with the 

secondary RIF of 1M-2M-3E (see the top left panel of Figure 23). 

In this section, three characteristics of MSTs, which are the partition of items and 

content constraints, the RIFs, and MIFs, were reviewed for the top four selected MSTs 

across the three panel configurations under the condition of the 60-item test and the 400-

item pool to decide the final optimal design of MSTs based on the objective function of 

maximum CSEE. When it comes to the partition of items and content constraints, the two 

selected 1-2-2 MSTs (i.e., the tests with RDPs −0.56 and −0.68, respectively) contained 

no item at certain content categories. But, the ATA solutions for all the selected MSTs 

successfully met the test-level constraints. However, the assembly results in terms of the 

RIFs were unsatisfactory because most of the selected MSTs had a problem that their 
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RIFs, which were mapped onto different regions of the targeted subpopulations, were not 

clearly separated at low levels of the 𝜃 scale. This problem was mainly attributed to the 

fact that the MIFs of different difficulty modules subsequent to the first stage were not 

well differentiated at that region.  

In this study, it was expected that each route of the optimal MST design should 

have superior psychometric properties in its corresponding ability region of the targeted 

subpopulation so that the test is able to precisely estimate examinees’ proficiencies over a 

wide range of the 𝜃 scale. Considering the review of the three characteristics for the top 

four selected MSTs across the three panel configurations, the use of the maximum CSEE 

as the objective function might not be appropriate in light of the expectation and testing 

purpose assumed in this study. Even the best selected MST with the minimized maximum 

CSEE value in each of the three panel configurations did not seem to work properly for 

the testing purpose. Therefore, it would be better to find the optimal design of an MST 

based on other objective functions such as the marginal test reliability and average of 

CSEEs rather than to decide the optimal design based on the maximum CSEE in this 

study. 

4.3 Discussion 

Study 2 proposed a process of finding an MST design that has optimal 

measurement properties given a specific set of testing circumstances. The process 

consists of four important features: (1) setting a testing circumstance and MST design 

space, (2) systematically searching the MST design space using a top-down approach, (3) 
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analytically evaluating measurement performance of the MST, and (4) computing 

objective functions. 

The process of discovering an optimally designed MST was applied to a real item 

pool from a large-scale assessment to show that it would perform well in practice. Given 

the context of the item pool and the conditions of the design variables under which the 

application study was conducted, the study revealed the following major findings. First, 

generally the longer test length and the larger item pool size, the better measurement 

values for the three objective functions. This trend was more clearly observed for the 

summary statistic being examined to find the optimal MST design under each objective 

function. For example, when the marginal test reliability was used as the objective 

function, examining the maximum statistic of the marginal test reliabilities among all of 

the assembled MSTs is important to select the optimal MST design. Also, when the 

average of CSEEs and maximum CSEE were employed as the objective functions, 

examining the minimum statistics of the two objective function values is important to 

decide the optimal design. Regarding the maximum statistic of the marginal test 

reliability, the results of the application study showed that as test length and pool size 

increased, the maximum of the marginal test reliability increased given the same 

condition of the design variables. When it comes to the minimum statistics of the average 

of CSEEs and maximum CSEE, as test length and pool size increased, the minimum of 

the two objective function values decreased given the other design variables were 

controlled. This finding replicates the results of the previous research in which a test 

showed better psychometric properties when it had more items and/or item pool size was 
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larger (e.g., Hambleton & Xing, 2006; Luo & Kim, 2018; Wang et al., 2012; Xing & 

Hambleton, 2004; Zenisky, 2004).  

In addition to the effects of test length and item pool size, another interesting 

result is that no general pattern was observed with respect to module length across stages. 

When the objective function of the marginal test reliability was used, more items were 

allocated to the modules at the later stages (i.e., the second or third stages) than to the 

routing module for the top four 1-2-2 MSTs while the routing module had the most items 

for the 1-3 and 1-3-3 MSTs. On the other hand, different trends of module length were 

shown when the objective function of maximum CSEE was employed. The issue 

regarding how to distribute items to modules across stages has been studied in many 

previous MST research (e.g., Kim & Plake, 1993; Patsula, 1999; Zheng et al., 2012). For 

example, Zheng et al. (2012) argued that it was not clear which allocation strategies 

produced better measurement properties and the results in this study confirms their claim. 

Therefore, it might be that the testing context (e.g., item pool, testing purpose, and panel 

configuration) and other factors (e.g., constraints in the ATA model and the type of 

objective function) play a large role in the ideal condition of module length across stages.  

Second, the three objective functions resulted in different optimal MST designs 

given the same condition of MST panel configuration, test length, and item pool size. 

Specifically, when the top eight optimal MSTs were selected according to the three 

objective functions, the designs of the top eight MSTs differed by the objective function 

(see Tables 8 through 11). Of course, the marginal test reliability and average of CSEEs 

tended to share several of the same MSTs among their top eight MSTs due to the similar 

nature in the definitions of measurement optimality. However, even the same MSTs were 
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rank ordered differently with respect of measurement optimality values between the two 

objective functions. Moreover, the top eight MSTs based on the maximum CSEE were 

clearly distinguished from those based on the other two objective functions. This stressed 

again that the optimal design of an MST would vary depending on which objective 

function is used.  

Third, when focusing on the top eight MSTs under each of the objective 

functions, they had almost the same measurement optimality values of each objective 

function. For example, for any conditions of the panel configuration, test length, and item 

pool, the difference in the objective values between the first and eighth MSTs were less 

than 0.01 regardless of the objective functions (see Tables 8 through 11). These results 

may not generalize to other testing contexts. Yet, if it is possible to select at least a few 

best designs among all of the assembled MSTs that have similar measurement optimality 

values of an objective function, it would provide us more alternatives for the optimal 

MST designs. Among the alternatives, one may choose the best design through further 

review of other characteristics of the tests such as the partition of items and content as 

well as the RIFs and MIFs. In fact, as stressed earlier, an in-depth review of other 

characteristics of a few of the best assembled MSTs as well as the optimal measurement 

properties is an essential part of finding an optimally designed MST. This is because even 

though an MST design has the best optimality value of an objective function, it could 

have unacceptable characteristics of the MIFs, RIFs, or the decomposition of test-level 

constraints into modules. 

Fourth, it seems that the objective function of marginal test reliability will 

perform better in finding an optimally designed MST than the maximum CSEE, provided 
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that the testing purpose is to measure examinees’ abilities precisely across a wide range 

of the 𝜃 scale. In the review process of the top four MSTs selected based on the marginal 

test reliability, most of the selected MSTs showed satisfactory characteristics of the 

partition of items and content constraints, and a clear separation between the RIFs and the 

MIFs which were intended to represent different areas of the targeted subpopulations. 

Accordingly, it was reasonable to decide an optimal MST design as the one that yielded 

the highest marginal test reliability among the top four MSTs. Since the objective 

function of average of the CSEE would function similarly as the marginal test reliability, 

it is expected that it will show good performance in terms of finding an optimal MST 

design given the same testing purpose assumed in this study. Under the testing context in 

this study, however, the maximum CSEE did not seem to work well because, in most 

conditions of the design variables, the top four MSTs based on the maximum CSEE 

exhibited the RIFs that mapped onto different regions of the targeted subpopulations were 

not distinctly separated at low levels of the 𝜃 scale. Therefore, each route would not have 

superior psychometric properties in its corresponding ability region of the targeted 

subpopulation compared to other routes representing the different targeted 

subpopulations, leading to make it difficult to achieve the testing purpose of this study. 

However, the objective function of the maximum CSEE could be valuable in 

other testing context. Suppose that an optimal MST needs to be designed in a 

credentialing exam to ensure classification accuracy and consistency of pass-fail 

decision. For this purpose, it is important that the test achieves higher precision for 

examinees in the region of the passing score. In this context, the use of the maximum 

CSEE as the objective function would be a good choice since a test that has the 
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minimized maximum CSEE at the passing score would ensure the high quality of 

psychometric properties of the credentialing exam. In many credentialing testing 

programs, test developers desire to provide examinees categorized to the failed group 

with detailed diagnostic feedback as well as make reliable and valid pass-fail decision 

(Hambleton & Xing, 2006). In this case, the overall objective function could be based on 

a weighted sum of multiple objective functions. For example, a weighted sum of the 

maximum CSEE and marginal test reliability could be an objective function to satisfy 

higher classification accuracy at the pass-fail score as well as good quality of 

measurement precision at a wide range of ability levels. Of course, how to weight each 

objective function needs to be further examined. 

Instead of the three objective functions used in this study, other types of the 

objective functions could be introduced depending on a specific context and testing 

purpose. For example, under a licensure or credentialing testing situation, test developers 

might prioritize the classification accuracy at cut-scores. In this case, the predicted 

classification accuracy explained in Chapter 3 could be a good candidate for the objective 

function because it can be readily derived once the CSEEs on the discrete 𝜃 scale are 

computed. In fact, it would be interesting to investigate if the objective function of 

predicted classification accuracy works similarly as the maximum CSEE objective 

function in the licensure setting. Therefore, it is important to use the objective function in 

the process of finding an optimally designed MST in accordance with the testing purpose. 

A proper selection of the objective function that fits testing program’s philosophy will 

increase the generalizability of the suggested process.  
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Fifth, the top four MSTs selected based on the marginal test reliability revealed 

that the different difficulty modules at the same stages had clearly distinguished MIFs 

which is inconsistent with the results in Luo and Kim (2018). Specifically, their 

simulation results showed that the different difficulty modules at the second stage in the 

1-2-2 and 1-3-3 MSTs assembled through the top-down approach exhibited similar 

shapes of the MIFs. This inconsistency can be explained by the difference of the route 

mapping strategies between the two studies. In Luo and Kim (2018), homogenous routes 

of the three-stage MSTs which have the same difficulty level module at the third stage 

were mapped onto the same targeted subpopulation. Consequently, this strategy allowed 

the homogenous routes to have similar shapes of the RIFs. To have similar RIFs, given 

that the homogenous routes share the same module at the third stage, it is inevitable that 

the different difficulty modules at the second stage will not have distinguished MIF 

shapes. If the modules at the second stage were clearly separated, the homogenous route 

would not have similar RIFs. This did not occur in this study because Luo and Kim’s 

route mapping strategy was modified so that the primary and secondary routes could 

represent the different areas of the targeted subpopulations. It should be noted, however, 

that the different characteristics of the observed MIFs between two studies do not mean 

that one of the strategies is superior to the other. Rather, each of them can be alternatively 

used depending on how to assign the routes the targeted subpopulations.   
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CHAPTER 5 

CONCLUSIONS 

The purpose of this dissertation was to propose a process of finding an MST 

design that has optimal measurement properties, given a specific testing context. To 

discover the optimal MST designs more efficiently and quickly, an efficient strategy was 

introduced at each of three phases: constructing MSTs, searching design space of an 

MST, and evaluating the MST performance. For the first phase, a top-down assembly 

approach was applied in this study. For the second phase, the parameterized design space 

of an MST was systematically searched. For the third phase, a new analytical evaluation 

method of MST was proposed. 

This dissertation consisted of two studies. Study 1 introduced the new analytical 

method to evaluate measurement performance of an MST based on the ENC scoring. 

Using this new approach, measurement precision (i.e., conditional bias and standard 

errors) of ability estimates and classification accuracy could be derived analytically. The 

simulation results in Study 1 indicated that the new analytical method produced more 

exact measurement properties of an MST than the MC-based simulation method as well 

as more stable and credible measurement precision and classification accuracies than 

Park et al.’s (2017) analytical approach. Therefore, it was demonstrated that the new 

analytical method would be an efficient tool, especially in situation where multiple MST 

designs need to be compared to find a design that has better measurement performance. 

Study 2 proposed a process to find an MST design that has optimal measurement 

properties applying the three efficient strategies including the new analytical method, 

given a specific set of testing circumstances. The process consists of four important 
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features: (1) setting a testing circumstance and MST design space, (2) systematically 

searching the MST design space using a top-down approach, (3) analytically evaluating 

measurement performance of an MST, and (4) computing objective functions. The 

process based on the four important features was applied to a real item pool from a large-

scale assessment.  

The results of the application study in Study 2 serve as evidence of the practical 

feasibility of the proposed process for finding an optimal MST design for operational 

testing programs. This is mainly due to the use of the three strategies employed in this 

study. First, the top-down assembly approach made it relatively easy to optimally 

partition the test-level design parameters, ensuring the best psychometric properties of an 

MST given a specific set of test-level design variables. Thus, it could minimize the test 

developers’ subjective decisions for the decomposition of test-level design parameters 

and prevent the ATA model from returning the suboptimal solution of an MST assembly, 

which could easily occur if the bottom-up approach was used (Luo & Kim, 2018). 

Second, by systematically shifting the location of the RDPs in the ATA process using the 

top-down approach, the parametrized design space of an MST was more efficiently 

searched. This is because the location of the RPDs determines the targeted 

subpopulations of the routes in an MST, which, in turn, influences the critical 

psychometric and nonstatistical characteristics of the optimally designed modules 

through the top-down assembly. Thus, iteratively varying the RPDs allows the ATA 

algorithm to automatically consider many combinations of design variables without 

unnecessary burden of test developers. Third, the new analytical evaluation method made 

the process of discovering an optimally designed MST feasible. Without the analytical 
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method, the implementation of the process would have not been realized mainly because 

it would take considerably more time and effort to compute the CSEEs for all of the 

assembled MSTs if the MC-based simulation method was applied, even with a super 

powerful computing performance. Due to the new analytical evaluation method, it was 

possible to assess measurement performance of the thousands of assembled MSTs just in 

a few minutes.   

There are several limitations in this study. First, the procedure of finding an 

optimal design of an MST and its application were aligned with the purpose of a test to 

measure achievement or growth for the entire testing population, which means that the 

assembled MST should have good psychometric properties over a wide range of the 

proficiency scale. Therefore, the ATA model of the top-down approach was structured so 

that each route in the assembled MST can produce better measurement precision than the 

others mapped on the different targeted subpopulations. Also, this is the reason why the 

objective function of the marginal test reliability behaved well in this study compared to 

the maximum CSEE. Under a different testing context (e.g., credentialing testing 

programs), however, the definition of an optimal MST design might differ, which leads to 

different requirements and implementations of the design process. For example, the 

objectives of RIFs in the ATA model might be set to allow the test to prioritize the 

classification accuracies at the cut-scores, and the objective function in the process 

should be carefully chosen to fit the testing purpose.  

Second, the suggested process in this study is able to find only one optimal MST 

panel design. In real testing programs, it is often required to prepare multiple panels of 

MSTs for practical reasons (e.g., test security and item pool utilization). Although it is 
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feasible to assemble multiple parallel MST panels theoretically using the top-down 

approach, this dramatically increases the complexity of the ATA optimization problem. 

Thus, it may take a significant amount of time to build multiple MST panels for only one 

combination of the design variables or fail to find an optimal solution of the ATA model 

even with a high-performing solver. Another practical solution might be using an 

optimally designed MST, once it is found through the proposed process, as a reference 

panel (Luo & Kim, 2018). Then, multiple optimal panels can be assembled by replicating 

the reference panel using a bottom-up assembly approach. More specifically, the MIFs 

and other statistical and nonstatistical constrains of the reference panel can be used as the 

targets for the bottom-up assembly. Even though the bottom-up assembly is used, 

however, the item pool may not support the multiple parallel panels of the optimal MST 

design depending on the size and quality of the pool. Accordingly, whether the replicated 

parallel MST panels have similar measurement properties with the optimally designed 

MST panel under various conditions of the item pool would be an interesting topic for 

future research.  

Third, though the top-down approach is more flexible in the designing process of 

an MST than the bottom-up approach, it imposes a computer more computational burden 

to solve the sophisticated MIP problem in the ATA process (Luo & Kim, 2018). If more 

complicated MIP problem under the top-down approach needs to be addressed in 

practice, it may require the use of powerful commercial solvers (e.g., CPLES, LINGO, 

and Gurobi) or the control parameters in the solver should be tuned appropriately to 

handle the convergence problem. In fact, the control parameters in lpSolve were adjusted 

more loosely in this study than the specific settings that Diao and van der Linden (2011) 
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provided so that more MSTs could be successfully assembled. Therefore, it is necessary 

to examine the effects of the control parameters to find an optimal MST design in future 

research.  

Fourth, the application study was conducted with only limited conditions of the 

MST panel design variables and a few sets of constraints in the ATA model, assuming 

just few examples of potential application to testing programs. In a different testing 

context, different sets of the design variables need to be considered as well as more 

requirements for the test specification might be constrained in the ATA model (e.g., 

including more content areas, specifying more enemy items, and using testlets). 

Therefore, it is recommended for future studies to consider other factors that might affect 

the results of optimally designed MSTs. For example, a future study may consider using 

different characteristics of modules, different structure of MST panels (e.g., 1-2-3 and 1-

2-3-4 MSTs), different examinee populations (e.g., negatively skewed populations), or 

item pools with different features from those used in this study. If a new testing program 

is about to be established, these contextual findings will be helpful. Notwithstanding that 

these factors can have significant impact on the results of the optimal design of MSTs, it 

is expected that the proposed process will perform well in various testing contexts. 

Fifth, further examinations for several of the best MSTs, which were selected 

according to each of the three objective functions, were illustrated based on a few criteria, 

(i.e., the partition of items and content constraints, RIFs, and MIFs). In addition to the 

three test characteristics, test developers may want to review other important features of 

the assembled MSTs. For instance, they may desire an MST to have a better overall 

module and/or route usage by avoiding an excessive usage rate of certain module and/or 



 

122 

routes. Also, reducing the routing error, which occurs when an examinee is not navigated 

to the intended next module due to measurement error, is an important issue in the 

implementation of the MST. Therefore, more criteria might need to be considered in 

further studies to find the optimal MST design in practice.  

In conclusion, the results of this study provide evidence that the proposed process 

with the four features can be generalized to more complex and realistic test circumstances 

to create optimal designs of MST. Perhaps the most important consideration in 

generalizing the proposed process is the context of the particular testing program. 

Context will help test developers to envision ideal statistical and nonstatistical 

characteristics that an optimal design of an MST should possess and guide specific 

strategies to be used in the proposed process such as setting objectives and constraints in 

an ATA model using the top-down approach. Therefore, in future research, some of 

strategies used in the proposed process need to be modified depending on a specific 

testing purpose as well as other competing strategies should be developed under various 

testing context. 
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Table 4. Descriptive Statistics of Item Parameters of Two Item Pools in Study 2 

Parameter  Mean  SD  Min  Max 

Pool Size = 200 

a  1.26  0.39  0.35  2.70 

b  0.41  0.92  -2.02  2.38 

c  0.21  0.07  0.07  0.50 

Pool Size = 400 

a  1.25  0.40  0.21  2.83 

b  0.44  1.00  -2.32  3.57 

c  0.21  0.07  0.05  0.50 

 

 

 

Table 5. Descriptive Statistics of Marginal Test Reliabilities for the Assembled MSTs 

itemn  MST N Mean SD Max Min 

Pool Size = 200 

32 1-2-2 71 0.843 0.014 0.862 0.808 
 1-3 1,296 0.849 0.007 0.864 0.811 
 1-3-3 1,287 0.845 0.010 0.864 0.801 

60 1-2-2 71 0.888 0.008 0.899 0.864 
 1-3 1,296 0.889 0.006 0.902 0.868 
 1-3-3 1,296 0.888 0.005 0.902 0.870 

Pool Size = 400 

32 1-2-2 71 0.849 0.030 0.875 0.719 
 1-3 1,296 0.859 0.007 0.875 0.827 
 1-3-3 1,243 0.857 0.010 0.875 0.793 

60 1-2-2 71 0.904 0.009 0.918 0.863 
 1-3 1,296 0.912 0.003 0.919 0.898 
 1-3-3 1,296 0.910 0.004 0.920 0.891 

Note. itemn  = test length; N = total number of successfully assembled MSTs. 
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Table 6. Descriptive Statistics of Average of CSEEs for the Assembled MSTs 

itemn  MST N Mean SD Max Min 

Pool Size = 200 

32 1-2-2 71 0.424 0.019 0.467 0.395 
 1-3 1,296 0.411 0.010 0.462 0.392 
 1-3-3 1,287 0.417 0.013 0.475 0.391 

60 1-2-2 71 0.346 0.014 0.386 0.327 
 1-3 1,296 0.343 0.010 0.377 0.320 
 1-3-3 1,296 0.343 0.009 0.374 0.319 

Pool Size = 400 

32 1-2-2 71 0.407 0.032 0.543 0.375 
 1-3 1,296 0.387 0.009 0.442 0.369 
 1-3-3 1,243 0.392 0.014 0.479 0.365 

60 1-2-2 71 0.313 0.014 0.360 0.292 
 1-3 1,296 0.298 0.007 0.321 0.283 
 1-3-3 1,296 0.300 0.008 0.332 0.284 

Note. itemn  = test length; N = total number of successfully assembled MSTs. 

 

Table 7. Descriptive Statistics of Maximum CSEE for the Assembled MSTs 

itemn  MST N Mean SD Max Min 

Pool Size = 200 

32 1-2-2 71 0.748 0.088 0.995 0.671 
 1-3 1,296 0.683 0.010 0.752 0.669 
 1-3-3 1,287 0.686 0.015 0.868 0.662 

60 1-2-2 71 0.676 0.060 0.936 0.633 
 1-3 1,296 0.638 0.002 0.664 0.624 
 1-3-3 1,296 0.638 0.004 0.696 0.613 

Pool Size = 400 

32 1-2-2 71 0.786 0.218 1.477 0.622 
 1-3 1,296 0.649 0.019 0.791 0.597 
 1-3-3 1,243 0.657 0.036 1.059 0.593 

60 1-2-2 71 0.642 0.140 1.126 0.473 
 1-3 1,296 0.505 0.029 0.602 0.473 
 1-3-3 1,296 0.510 0.033 0.665 0.462 

Note. itemn  = test length; N = total number of successfully assembled MSTs. 
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Table 8. Top Eight MSTs According to Three Objective Functions: 32-Item Test under 

200-Item Pool 

 

 

Marginal Test  

Reliability  

Average  

of CSEEs  

Maximum  

CSEE 

MST  Value RDP  Value RDP  Value RDP 

1-2-2  0.862 -0.08  0.395 -0.08  0.671 -0.42 
  0.860 0.16  0.398 0.16  0.671 -0.34 
  0.860 -0.24  0.400 -0.24  0.671 -0.44 
  0.860 0.14  0.402 -0.12  0.671 -0.38 
  0.859 -0.12  0.402 0.14  0.672 -0.40 
  0.858 0.20  0.403 -0.28  0.678 -0.60 
  0.857 -0.26  0.403 -0.26  0.678 -0.52 
  0.857 0.26  0.404 -0.30  0.679 -0.58 

1-3  0.864 -0.30, 0.64  0.392 -0.30, 0.64  0.669 -0.72, 0.26 
  0.862 -0.16, 0.62  0.393 -0.34, 0.76  0.671 -0.36, 0.18 
  0.862 -0.12, 0.70  0.393 -0.40, 0.70  0.671 -0.44, 0.12 
  0.861 -0.10, 0.66  0.393 -0.16, 0.62  0.671 -0.34, 0.44 
  0.861 -0.14, 0.66  0.393 -0.26, 0.36  0.671 -0.34, 0.26 
  0.861 -0.18, 0.76  0.394 -0.10, 0.66  0.671 -0.38, 0.16 
  0.861 -0.40, 0.70  0.394 -0.40, 0.64  0.671 -0.34, 0.14 
  0.861 -0.32, 0.76  0.394 -0.12, 0.78  0.671 -0.44, 0.10 

1-3-3  0.864 -0.28, 0.72  0.391 -0.28, 0.72  0.662 -0.58, 0.58 
  0.862 -0.10, 0.38  0.392 -0.34, 0.78  0.666 -0.44, 0.36 
  0.862 -0.34, 0.78  0.392 -0.14, 0.80  0.666 -0.34, 0.58 
  0.861 -0.10, 0.12  0.393 -0.30, 0.80  0.666 -0.44, 0.12 
  0.861 -0.28, 0.18  0.393 -0.26, 0.76  0.666 -0.34, 0.48 
  0.861 -0.14, 0.80  0.394 -0.46, 0.70  0.666 -0.72, 0.26 
  0.861 -0.26, 0.30  0.394 -0.14, 0.76  0.667 -0.34, 0.16 
  0.861 -0.26, 0.76  0.394 -0.10, 0.38  0.667 -0.68, 0.78 

Note. RPD = routing decision point. 
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Table 9. Top Eight MSTs According to Three Objective Functions: 60-Item Test under 

200-Item Pool 

 

 

Marginal Test  

Reliability  

Average  

of CSEEs  

Maximum  

CSEE 

MST  Value RDP  Value RDP  Value RDP 

1-2-2  0.899 0.36  0.327 0.42  0.633 -0.14 
  0.898 0.42  0.327 0.36  0.633 -0.08 
  0.898 0.46  0.328 0.40  0.633 -0.10 
  0.898 0.44  0.329 0.44  0.633 -0.04 
  0.898 0.40  0.329 0.48  0.633 -0.12 
  0.898 0.38  0.330 0.46  0.633 -0.06 
  0.897 0.28  0.330 0.38  0.633 -0.16 
  0.897 0.48  0.330 0.28  0.633 -0.02 

1-3  0.902 -0.14, 0.76  0.320 -0.14, 0.76  0.624 -0.76, 0.76 
  0.901 -0.16, 0.72  0.321 -0.10, 0.78  0.632 -0.78, 0.34 
  0.901 -0.10, 0.78  0.322 -0.12, 0.76  0.633 -0.16, 0.16 
  0.901 -0.12, 0.80  0.322 -0.14, 0.80  0.633 -0.10, 0.60 
  0.901 -0.14, 0.74  0.322 -0.14, 0.74  0.633 -0.16, 0.24 
  0.901 -0.12, 0.76  0.322 -0.14, 0.78  0.633 -0.12, 0.10 
  0.900 -0.14, 0.80  0.322 -0.16, 0.72  0.633 -0.10, 0.38 
  0.900 -0.14, 0.78  0.322 -0.12, 0.80  0.633 -0.10, 0.34 

1-3-3  0.902 -0.14, 0.68  0.319 -0.14, 0.68  0.613 -0.74, 0.64 
  0.900 -0.12, 0.66  0.321 -0.12, 0.66  0.613 -0.70, 0.20 
  0.900 -0.12, 0.78  0.322 -0.12, 0.78  0.617 -0.56, 0.50 
  0.900 -0.16, 0.68  0.323 -0.16, 0.68  0.620 -0.80, 0.42 
  0.899 -0.10, 0.18  0.324 -0.34, 0.74  0.622 -0.76, 0.32 
  0.899 -0.16, 0.72  0.324 -0.16, 0.72  0.622 -0.18, 0.48 
  0.898 -0.14, 0.66  0.324 -0.18, 0.72  0.622 -0.78, 0.72 
  0.898 -0.14, 0.76  0.325 -0.28, 0.76  0.624 -0.78, 0.36 

Note. RPD = routing decision point. 
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Table 10. Top Eight MSTs According to Three Objective Functions: 32-Item Test under 

400-Item Pool 

 

 

Marginal Test  

Reliability  

Average  

of CSEEs  

Maximum  

CSEE 

MST  Value RDP  Value RDP  Value RDP 

1-2-2  0.875 0.12  0.375 0.12  0.622 -0.68 
  0.874 0.32  0.376 0.32  0.622 -0.70 
  0.871 -0.12  0.376 -0.06  0.633 -0.60 
  0.871 -0.10  0.378 -0.12  0.645 -0.06 
  0.871 -0.06  0.379 0.04  0.647 -0.62 
  0.870 0.40  0.38 -0.26  0.647 -0.58 
  0.870 0.02  0.38 -0.10  0.648 -0.52 
  0.869 -0.04  0.38 -0.36  0.648 -0.54 

1-3  0.875 -0.14, 0.12  0.369 -0.14, 0.12  0.597 -0.80, 0.70 
  0.872 -0.10, 0.38  0.371 -0.18, 0.70  0.612 -0.80, 0.14 
  0.872 -0.44, 0.80  0.371 -0.44, 0.80  0.612 -0.72, 0.20 
  0.872 -0.12, 0.28  0.372 -0.24, 0.70  0.612 -0.74, 0.38 
  0.872 -0.42, 0.62  0.372 -0.12, 0.78  0.612 -0.76, 0.22 
  0.872 -0.12, 0.46  0.372 -0.10, 0.80  0.612 -0.74, 0.12 
  0.871 -0.16, 0.52  0.372 -0.14, 0.34  0.612 -0.76, 0.24 
  0.871 -0.40, 0.62  0.373 -0.10, 0.38  0.612 -0.72, 0.12 

1-3-3  0.875 -0.14, 0.72  0.365 -0.46, 0.60  0.593 -0.76, 0.66 
  0.875 -0.40, 0.78  0.367 -0.14, 0.72  0.595 -0.74, 0.26 
  0.875 -0.56, 0.70  0.369 -0.58, 0.74  0.599 -0.76, 0.44 
  0.874 -0.58, 0.74  0.369 -0.50, 0.78  0.601 -0.78, 0.44 
  0.874 -0.16, 0.56  0.369 -0.40, 0.78  0.601 -0.80, 0.10 
  0.874 -0.76, 0.54  0.369 -0.56, 0.70  0.601 -0.78, 0.70 
  0.874 -0.46, 0.60  0.369 -0.42, 0.50  0.602 -0.70, 0.70 
  0.873 -0.10, 0.50  0.37 -0.60, 0.66  0.603 -0.78, 0.78 

Note. RPD = routing decision point. 
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Table 11. Top Eight MSTs According to Three Objective Functions: 60-Item Test under 

400-Item Pool 

 

 

Marginal Test  

Reliability  

Average  

of CSEEs  

Maximum  

CSEE 

MST  Value RDP  Value RDP  Value RDP 

1-2-2  0.918 0.38  0.292 0.00  0.473 -0.64 
  0.917 0.40  0.294 0.38  0.477 -0.56 
  0.915 0.32  0.295 0.22  0.497 -0.52 
  0.915 0.30  0.296 0.40  0.502 -0.68 
  0.915 0.36  0.297 0.12  0.505 -0.42 
  0.913 -0.14  0.297 0.30  0.509 -0.54 
  0.913 0.34  0.297 -0.06  0.520 -0.08 
  0.913 0.00  0.297 0.32  0.527 -0.50 

1-3  0.919 -0.46, 0.54  0.283 -0.24, 0.80  0.473 -0.78, 0.40 
  0.919 -0.52, 0.80  0.284 -0.16, 0.80  0.473 -0.74, 0.10 
  0.919 -0.54, 0.76  0.284 -0.24, 0.74  0.473 -0.78, 0.20 
  0.919 -0.58, 0.78  0.285 -0.14, 0.76  0.473 -0.72, 0.68 
  0.919 -0.42, 0.60  0.285 -0.24, 0.64  0.473 -0.74, 0.44 
  0.919 -0.42, 0.62  0.285 -0.20, 0.76  0.473 -0.72, 0.42 
  0.918 -0.42, 0.70  0.286 -0.16, 0.76  0.473 -0.72, 0.38 
  0.918 -0.42, 0.76  0.286 -0.52, 0.80  0.473 -0.76, 0.12 

1-3-3  0.920 -0.46, 0.74  0.284 -0.14, 0.68  0.462 -0.76, 0.78 
  0.919 -0.44, 0.72  0.285 -0.18, 0.78  0.466 -0.78, 0.30 
  0.919 -0.62, 0.78  0.285 -0.18, 0.76  0.468 -0.80, 0.66 
  0.919 -0.44, 0.68  0.286 -0.14, 0.76  0.468 -0.70, 0.64 
  0.919 -0.60, 0.74  0.286 -0.18, 0.62  0.469 -0.46, 0.54 
  0.919 -0.58, 0.64  0.287 -0.24, 0.60  0.469 -0.46, 0.26 
  0.918 -0.50, 0.74  0.287 -0.12, 0.58  0.470 -0.72, 0.50 
  0.918 -0.48, 0.78  0.287 -0.10, 0.70  0.471 -0.48, 0.76 

Note. RPD = routing decision point. 
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Table 12. Partition of Items and Constraints of the Top Four MSTs based on Marginal 

Test Reliability: 1-2-2 MST with 60 Items under 400-Item Pool 

      Content Strand  Cognitive 

RDP  Module  
itemn   1  2  3  4  1  2  3 

0.38  1M  21  3  7  4  7  7  7  7 
  2E  17  6  5  4  2  5  3  9 
  2H  17  6  5  4  2  5  3  9 
  3E  22  6  3  7  6  3  5  14 
  3H  22  6  3  7  6  3  5  14 

0.40  1M  13  3  5  5  0  6  2  5 
  2E  25  5  6  6  8  4  8  13 
  2H  25  5  6  6  8  4  8  13 
  3E  22  7  4  4  7  5  5  12 
  3H  22  7  4  4  7  5  5  12 

0.32  1M  20  6  6  3  5  4  4  12 
  2E  19  6  4  4  5  4  5  10 
  2H  19  6  4  4  5  4  5  10 
  3E  21  3  5  8  5  7  6  8 
  3H  21  3  5  8  5  7  6  8 

0.30  1M  16  4  7  2  3  3  5  8 
  2E  21  4  5  7  5  6  5  10 
  2H  21  4  5  7  5  6  5  10 
  3E  23  7  3  6  7  6  5  12 
  3H  23  7  3  6  7  6  5  12 

Note. RPD = routing decision point. 
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Table 13. Partition of Items and Constraints of the Top Four MSTs based on Marginal 

Test Reliability: 1-3 MST with 60 Items under 400-Item Pool 

      Content Strand  Cognitive 

RDP  Module  
itemn   1  2  3  4  1  2  3 

-0.46, 0.54  1M  39  10  13  6  10  11  11  17 
  2E  21  5  2  9  5  4  4  13 
  2M  21  5  2  9  5  4  4  13 
  2H  21  5  2  9  5  4  4  13 

-0.52, 0.80  1M  33  7  8  12  6  8  8  17 
  2E  27  8  7  3  9  7  7  13 
  2M  27  8  7  3  9  7  7  13 
  2H  27  8  7  3  9  7  7  13 

-0.54, 0.76  1M  34  10  9  7  8  11  9  14 
  2E  26  5  6  8  7  4  6  16 
  2M  26  5  6  8  7  4  6  16 
  2H  26  5  6  8  7  4  6  16 

-0.58, 0.78  1M  37  5  10  10  12  9  10  18 
  2E  23  10  5  5  3  6  5  12 
  2M  23  10  5  5  3  6  5  12 
  2H  23  10  5  5  3  6  5  12 

Note. RPD = routing decision point. 
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Table 14. Partition of Items and Constraints of the Top Four MSTs based on Marginal 

Test Reliability: 1-3-3 MST with 60 Items under 400-Item Pool 

      Content Strand  Cognitive 

RDP  Module  
itemn   1  2  3  4  1  2  3 

-0.46, 0.74  1M  30  7  7  9  7  7  9  14 
  2E  15  3  5  3  4  3  3  9 
  2M  15  3  5  3  4  3  3  9 
  2H  15  3  5  3  4  3  3  9 
  3E  15  5  3  3  4  5  3  7 
  3M  15  5  3  3  4  5  3  7 
  3H  15  5  3  3  4  5  3  7 

-0.44, 0.72  1M  27  7  5  8  7  7  6  14 
  2E  17  5  3  3  6  4  5  8 
  2M  17  5  3  3  6  4  5  8 
  2H  17  5  3  3  6  4  5  8 
  3E  16  3  7  4  2  4  4  8 
  3M  16  3  7  4  2  4  4  8 
  3H  16  3  7  4  2  4  4  8 

-0.62, 0.78  1M  33  8  10  8  7  8  9  16 
  2E  15  3  3  5  4  4  4  7 
  2M  15  3  3  5  4  4  4  7 
  2H  15  3  3  5  4  4  4  7 
  3E  12  4  2  2  4  3  2  7 
  3M  12  4  2  2  4  3  2  7 
  3H  12  4  2  2  4  3  2  7 

-0.44, 0.68  1M  27  7  8  4  8  6  7  14 
  2E  17  4  4  5  4  4  5  8 
  2M  17  4  4  5  4  4  5  8 
  2H  17  4  4  5  4  4  5  8 
  3E  16  4  3  6  3  5  3  8 
  3M  16  4  3  6  3  5  3  8 
  3H  16  4  3  6  3  5  3  8 

Note. RPD = routing decision point. 
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Table 15. Partition of Items and Constraints of the Top Four MSTs based on Maximum 

CSEE: 1-2-2 MST with 60 Items under 400-Item Pool 

      Content Strand  Cognitive 

RDP  Module  
itemn   1  2  3  4  1  2  3 

-0.64  1M  25  7  7  4  7  7  7  11 

  2E  20  6  5  6  3  5  2  13 

  2H  20  6  5  6  3  5  2  13 

  3E  15  2  3  5  5  3  6  6 

  3H  15  2  3  5  5  3  6  6 

-0.56  1M  25  5  9  7  4  8  6  11 

  2E  20  4  3  5  8  4  9  7 

  2H  20  4  3  5  8  4  9  7 

  3E  15  6  3  3  3  3  0  12 

  3H  15  6  3  3  3  3  0  12 

-0.52  1M  22  5  4  8  5  6  6  10 

  2E  24  8  6  4  6  6  6  12 

  2H  24  8  6  4  6  6  6  12 

  3E  14  2  5  3  4  3  3  8 

  3H  14  2  5  3  4  3  3  8 

-0.68  1M  36  7  9  11  9  9  9  18 

  2E  12  5  2  4  1  4  2  6 
  2H  12  5  2  4  1  4  2  6 
  3E  12  3  4  0  5  2  4  6 
  3H  12  3  4  0  5  2  4  6 

Note. RPD = routing decision point. 
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Table 16. Partition of Items and Constraints of the Top Four MSTs based on Maximum 

CSEE: 1-3 MST with 60 Items under 400-Item Pool 

      Content Strand  Cognitive 

RDP  Module  
itemn   1  2  3  4  1  2  3 

-0.78, 0.4  1M  45  13  12  9  11  14  9  22 

  2E  15  2  3  6  4  1  6  8 

  2M  15  2  3  6  4  1  6  8 

  2H  15  2  3  6  4  1  6  8 

-0.74, 0.1  1M  45  11  11  12  11  10  11  24 

  2E  15  4  4  3  4  5  4  6 

  2M  15  4  4  3  4  5  4  6 

  2H  15  4  4  3  4  5  4  6 

-0.78, 0.2  1M  46  11  12  12  11  12  8  26 

  2E  14  4  3  3  4  3  7  4 

  2M  14  4  3  3  4  3  7  4 

  2H  14  4  3  3  4  3  7  4 

-0.72, 0.68  1M  41  9  10  12  10  10  11  20 

  2E  19  6  5  3  5  5  4  10 
  2M  19  6  5  3  5  5  4  10 
  2H  19  6  5  3  5  5  4  10 

Note. RPD = routing decision point. 
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Table 17. Partition of Items and Constraints of the Top Four MSTs based on Maximum 

CSEE: 1-3-3 MST with 60 Items under 400-Item Pool 

      Content Strand  Cognitive 

RDP  Module  
itemn   1  2  3  4  1  2  3 

-0.76, 0.78  1M  
16  3  7  4  2  5  4  7 

  2E  
31  7  6  6  12  8  10  13 

  2M  
31  7  6  6  12  8  10  13 

  2H  
31  7  6  6  12  8  10  13 

  3E  
13  5  2  5  1  2  1  10 

  3M  
13  5  2  5  1  2  1  10 

  3H  
13  5  2  5  1  2  1  10 

-0.78, 0.3  1M  
21  8  6  5  2  5  5  11 

  2E  
26  5  7  6  8  6  7  13 

  2M  
26  5  7  6  8  6  7  13 

  2H  
26  5  7  6  8  6  7  13 

  3E  
13  2  2  4  5  4  3  6 

  3M  
13  2  2  4  5  4  3  6 

  3H  
13  2  2  4  5  4  3  6 

-0.8, 0.66  1M  
31  6  7  10  8  8  8  15 

  2E  
14  5  4  2  3  5  3  6 

  2M  
14  5  4  2  3  5  3  6 

  2H  
14  5  4  2  3  5  3  6 

  3E  
15  4  4  3  4  2  4  9 

  3M  
15  4  4  3  4  2  4  9 

  3H  
15  4  4  3  4  2  4  9 

-0.7, 0.64  1M  
31  8  9  9  5  9  8  14 

  2E  
17  3  4  2  8  4  4  9 

  2M  
17  3  4  2  8  4  4  9 

  2H  
17  3  4  2  8  4  4  9 

  3E  
12  4  2  4  2  2  3  7 

  3M  
12  4  2  4  2  2  3  7 

  3H  
12  4  2  4  2  2  3  7 

Note. RPD = routing decision point. 
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Figure 9. An example of route mapping to targeted subpopulations in the 1-3-3 MST 

proposed by Luo and Kim (2018) 
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Figure 10. An example of modified route mapping to targeted subpopulations in the 1-3-

3 MST 
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Figure 11. Scatter plots between the routing decision points (RDPs) and three objective 

functions: 32-Item Test under 200-Item Pool 

 

Figure 12. Scatter plots between the routing decision points (RDPs) and three objective 

functions: 60-Item Test under 200-Item Pool 
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Figure 13. Scatter plots between the routing decision points (RDPs) and three objective 

functions: 32-Item Test under 400-Item Pool 

 

Figure 14. Scatter plots between the routing decision points (RDPs) and three objective 

functions: 60-Item Test under 400-Item Pool 
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Figure 15. Route information functions for the top four MSTs based on marginal test 

reliability: 1-2-2 MST with 60 Items under 400-Item Pool 

 

 

 

Figure 16. Route information functions for the top four MSTs based on marginal test 

reliability: 1-3 MST with 60 Items under 400-Item Pool 
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Figure 17. Route information functions for the top four MSTs based on marginal test 

reliability: 1-3-3 MST with 60 Items under 400-Item Pool 
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Figure 18. Module information functions for the top four MSTs based on marginal test 

reliability: 1-2-2 MST with 60 Items under 400-Item Pool 

 

 

Figure 19. Module information functions for the top four MSTs based on marginal test 

reliability: 1-3 MST with 60 Items under 400-Item Pool 
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Figure 20. Module information functions for the top four MSTs based on marginal test 

reliability: 1-3-3 MST with 60 Items under 400-Item Pool 
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Figure 21. Route information functions for the top four MSTs based on maximum CSEE: 

1-2-2 MST with 60 Items under 400-Item Pool 

 

 

Figure 22. Route information functions for the top four MSTs based on maximum CSEE: 

1-3 MST with 60 Items under 400-Item Pool 
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Figure 23. Route information functions for the top four MSTs based on maximum CSEE: 

1-3-3 MST with 60 Items under 400-Item Pool 

  



 

145 

 

Figure 24. Module information functions for the top four MSTs based on maximum 

CSEE: 1-2-2 MST with 60 Items under 400-Item Pool 

 

 

 

 

Figure 25. Module information functions for the top four MSTs based on maximum 

CSEE: 1-3 MST with 60 Items under 400-Item Pool 
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Figure 26. Module information functions for the top four MSTs based on maximum 

CSEE: 1-3-3 MST with 60 Items under 400-Item Pool 
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