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ABSTRACT

BLOOD SUPPLY CHAIN NETWORKS
IN

HEALTHCARE:
GAME THEORY MODELS

AND
NUMERICAL CASE STUDIES

MAY 2019

PRITHA DUTTA

BACHELOR OF SCIENCE, UNIVERSITY OF CALCUTTA

MASTER OF SCIENCE, UNIVERSITY OF DELHI

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Anna Nagurney

A crucial component of every healthcare system is the safe and steady supply of

the life-saving product, blood. In order to meet the demand for blood consistently,

it is imperative to maintain a robust supply chain. The blood banking industry

in the United States, faced with emerging challenges, which include, an increase in

operating costs, rise in competition among blood centers, insufficient reimbursement

from payers such as insurance companies and government programs, in addition to

inherent challenges such as donor motivation, seasonal shortages, perishability, is

trying to adapt to the changing dynamics to sustain itself economically. The altruistic

nature of this industry and the financial implications for its various stakeholders,

vii



makes the efficient management of blood supply chains an important and interesting

area of study.

In this dissertation, I contribute to the existing literature on blood banking by

modeling the operational and economic challenges throughout the blood supply chain

in the context of competition using game theory. I develop a model for blood ser-

vice organizations competing for donations where they use service quality levels at

collection sites as their strategic variables to increase their collection of blood from

voluntary donors. I further construct a competitive blood supply chain network model

that captures all major activities as well as perishability along the supply chain from

collection of blood to distribution to hospitals.

As a crucial extension to the study on blood supply chains, I develop a network

framework with multiple tiers of decision-makers including payers, that captures the

decentralized nature of the blood banking system in the United States. The solutions

from this multi-objective decision-making problem include quantities of blood to be

supplied and transfused, given demand is known, as well as the financial transactions

between the different tiers of stakeholders. For each model the governing equilibrium

conditions are derived, and equivalent variational inequality formulations presented.

The models and their relevance are further illustrated through simulated case stud-

ies. The results obtained provide valuable insights that can inform healthcare policy

makers and regulators.
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CHAPTER 1

INTRODUCTION AND RESEARCH MOTIVATION

Blood supply chains constitute a critical part of the healthcare industry in any

country. Blood transfusions are integral parts of any major surgeries. The number of

units transfused can vary from one pint to dozens of pints for critical surgeries such as

organ transplants. In addition, blood transfusions are used to treat certain diseases,

including, for example, malaria-related anemia (see Obonyo et al. (1998)). Moreover,

blood transfusions are often needed in the case of accidents as well as natural disasters

because of injuries sustained by the victims.

The statistics provided by the American Red Cross on their website give an idea

of the supply of, and demand for blood products in the United States (American

Red Cross (2017)). Every day in the United States approximately 36,000 units of

red blood cells are needed. Nearly 21 million blood components are transfused each

year in the country while on average, 13.6 million whole blood and red blood cells are

collected per year. While supply shortages in other industries imply financial losses

for the organizations, in case of blood supply chains there are greater consequences

as it can lead to societal loss through deaths.

Blood supply chains in the United States are decentralized and form complex

networks with several interconnected stakeholders including the blood service orga-

nizations who collect, store and distribute blood, hospitals and trauma centers that

use blood for transfusions, insurance companies and government payer programs that

reimburse hospitals for their cost, and patients. The nonprofit and altruistic nature

of the blood banking industry coupled with the financial ramifications for its var-
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ious stakeholders in blood supply chains present interesting areas for research. At

every stage in the supply chain stakeholders face numerous operational and strategic

challenges. In the subsequent sections of this dissertation I provide details of these

inherent issues in managing blood supply chains as well as emerging ones which pro-

vide the background and motivation for the research presented in Chapters 3, 4, 5

and suggested in Chapter 6 in this dissertation.

1.1. Supply Side Challenges

A unique feature of the blood banking industry is that the supply of the product

is solely dependent on donations by individuals to the blood banks and blood service

organizations collecting blood, which, for the most part, are nonprofits. Blood can

neither be manufactured nor substituted by any other product. The American Red

Cross (2017) reports that the number of donors in the United States in a year is

approximately 6.8 million. Interestingly, according to the World Health Organization

(2017), globally, 74 countries obtain more than 90% of their blood supply from volun-

tary unpaid blood donors, whereas 71 countries collect more than 50% of their blood

supply from family/replacement or paid donors. In Britain, according to Gregory

(2015), just 4% of the residents regularly donate blood with the National Health Ser-

vice stating that it can no longer guarantee sufficient supplies. In New Zealand, about

4% of the population donates blood (see New Zealand Blood (2016)). According to

the World Health Organization (2010), blood donation by 1% of the population is

generally the minimum needed to meet a nation’s most basic requirements for blood;

the requirements are higher in countries with more advanced health care systems.

However, the average donation rate is 15 times lower in developing countries than in

developed countries. Globally, more than 70 countries had a blood donation rate of

less than 1% in 2006.
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While it is difficult to invoke altruism in people and to motivate them to donate

blood, in some cases individuals who are motivated to donate blood might not qualify

to do so. According to the Food and Drug Administration regulations (FDA (2018)),

in the United States, blood donors have to go through a strict screening procedure.

In addition to meeting the age, weight, and hemoglobin level requirements, as well as

the time period between donations, donors are also screened for disease risk factors

and may get deferred for reasons such as exhibiting signs and symptoms of colds or

the flu, and/or relevant transfusion-transmitted infections, i.e., HIV, viral hepatitis,

etc. (cf. American Association of Blood Banks (2017)). As a result, 38% of the

country’s population is eligible to donate blood at any given time. However, less

than 10% actually donates blood in a year (cf. American Red Cross (2017)). Issues

of seasonality place additional pressures on obtaining blood donations since donors

may be preoccupied with holidays and/or weather-related issues. Hence, since the

blood banking industry has to rely on voluntary donations from altruistic donors, it

faces major challenges in terms of maintaining a sufficient supply of blood and will

continue to do so, given the aging population. This fundamental supply side issue

motivated the research in Chapter 3 and is also taken into consideration in Chapter

4 in this dissertation.

In conjecture to consumable product supply chains one might think of keeping

excess supply as a solution to seasonal shortages. However, blood is a perishable

product, with platelets lasting only 5 days and red blood cells having a lifetime of

42 days (cf. American Red Cross (2017), Blood Centers of America (2018). Hence,

excess supply can also lead to loss through wastage. Moreover, at various stages in the

blood supply chain such as testing, storage, a percentage of the collected blood is lost.

This needs to be taken into account by the blood service organizations while targeting

the collection amount and agreeing to the supply quantity with the hospitals.
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1.2. Role of Competition

The blood banking industry in the United States is at a crossroads and is faced

with several changes in the market dynamics. It is trying to adapt to these changes

to sustain itself economically (cf. Nagurney (2017)). According to the American

Red Cross, the leading supplier of blood in the United States, with about 40% of

the market, there was a 33% decrease in blood transfusions in the period 2010-2014

(Wald (2014)). Further, Ellingson et al. (2017) report that in 2015 the number of

red blood cell (RBC) units transfused in the United States was 11,349,000 marking

a 13.9 percent decrease since 2013. The decrease in demand, resulting, for example,

from medical advances associated with minimally invasive technologies, in addition

to the scarcity of donors, has given rise to stiff competition among blood service

organizations.

Industry experts are noting that the blood supply chain is becoming more and

more similar to traditional commercial supply chains. Consequently, although the

blood banking industry is characteristically not for profit, it is not surprising to find

the prevalence of competition among blood service organizations in the United States.

Competition exists for blood donations as well as for supply contracts with hospitals

and other medical facilities (Snyder (2001), Hart (2011)). Pierskalla (2005), on page

141, emphasized in his overview of the supply chain management of blood banks that

“To some extent there is a war out there. Many of the suppliers are in heavy, mostly

negative competition among themselves and with many of the HBBs (hospital blood

banks)” (see also Cohen, Pierskalla, and Sassetti (1987)).

Competition in the United States blood banking industry has been recognized

in the popular press. As early as 1989, Gorman, reporting on competition among

blood banks in California, remarked that the Palomar-Pomerado Hospital District

established its own laboratory, staff, and recruiting drive to collect blood for use

primarily at its two hospitals striking out against the decades old San Diego Blood
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Bank. Barton (2002) reported that in Florida the competition between Community

Blood Centers and South Florida Blood Banks had become “ferocious.” Since 2011,

a small Sarasota-based blood bank, SunCoast Communities Blood Bank, had been

competing for blood donations with a much larger organization, Florida Blood Ser-

vices, that served hospitals in Tampa and neighboring areas (Smith (2011)). In 2012

the plight of SunCoast Communities Blood Bank in conducting its operations be-

came more evident when it urged the state of Florida to stop the merger between

three blood service organizations; namely, Orlando-based Florida’s Blood Centers,

the Community Blood Centers of Lauderhill, and Florida Blood Services of St. Pe-

tersburg on grounds of antitrust issues (Smith (2012)). More recently, in Tennessee

(cf. Potts (2015)), a new blood center was opened by Blood Assurance in the town of

Athens, where another blood center, Medic, currently uses six mobile blood centers

with Medic officials noting their concern about the competition and whether they

could honor their existing contracts with hospitals.

In 2013 the Eastern Maine Medical Center ended its contract with the American

Red Cross to do business with Puget Sound Blood Center, a Seattle-based community

blood bank (Barber (2013)). This trend is visible all across the country. Stone (2015)

notes that “loyal blood donors will no longer see the iconic red cross on the side of

the blood mobile next time they give blood at one of Mission Health’s 17 facilities in

Western North Carolina” because of a switch of supplier to a regional nonprofit blood

bank of South Carolina, The Blood Connection, from the American Red Cross, ending

a 30 year old contractual relationship. Prior to this new three year contract during

which The Blood Connection will be the sole blood provider to Mission Health, it

had been providing only a supplemental blood supply to the Mission hospitals. More

recently, at the end of 2016, the American Red Cross lost its business in Central

Arkansas to Arkansas Blood Institute, an affiliate of the Oklahoma Blood Institute.
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This resulted in a layoff of 44 Red Cross employees at two blood centers (Brantley

(2017)).

It is evident from the above examples that hospitals and medical centers may have

several options for suppliers not only within the community and region, but also from

out of state blood banks that may offer lower prices. In order to mitigate the risk of

shortages due to possible supply shortfalls, hospitals and trauma medical centers may

try to diversify their supplier base and contract with multiple blood service organi-

zations. The contracts vary in terms of price, quantity, product mix and duration

of partnerships ] (Merola (2017)). There have been cases where reduced prices have

led hospitals to switch blood suppliers (Schwartz (2012)). This competitive environ-

ment in the blood banking industry forms the basis of the research presented in this

dissertation.

1.3. Economic Relationships

Blood banking is a multi-billion dollar industry with the global market for blood

products projected to reach $41.9 billion by 2020 (Global Industry Analysts, Inc.

(2015)). The blood banking industry world-wide is a capital-intensive industry in

which, however, the major stakeholders such as the blood suppliers and hospitals /

medical centers in many countries are nonprofit organizations. At every stage in the

blood supply chain the blood suppliers (blood service organizations) incur high costs

associated with the collection of whole blood, the processing of the collected blood

and the segregation of the components, the testing for disease markers, storage of

blood bags at the appropriate temperature, and, finally, distribution to hospitals and

other medical facilities. With strict regulations enforced in the United States by the

Food and Drug Administration and the introduction of new disease markers, such

as the one for the Zika virus to ensure safety of the transfused blood, there is, in
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addition, a recognition of the importance of research and development, which also

requires capital investment (Mulcahy et al. (2016)).

The United States constitutes the largest market for blood products in the world.

However, the annual blood bank revenue is experiencing a decline, falling to 1.5 billion

USD in 2014 from as high as 5 billion USD in 2008 (Wald (2014)) with the indus-

try faced with, on the average, a decreasing demand and a rise in stiff competition

(Nagurney (2017)). It is of utmost importance to ensure the economic sustainability

of the blood service organizations in order to maintain a safe and steady supply of

blood in the country.

The new economic landscape for this industry has been accompanied by an in-

creasing number of mergers and acquisitions (cf. Toland (2014), Masoumi, Yu, and

Nagurney (2017)) with the goal of identifying and exploiting various synergies, in-

cluding cost-based ones. The growing trend of mergers is evident, for example, from

the fact that the number of members in Americas’ Blood Centers, the largest net-

work of nonprofit community blood centers in North America, has dropped from 87

to 68 members due to 19 partnerships and 6 mergers formed in the five years between

2010-2015 among their member blood banks (Masoumi, Yu, and Nagurney (2017)).

Blood service organizations are not the only stakeholders in the supply chain

facing issues in term of cost-effectiveness and revenue margins. There exists a lot of

pressure on hospitals and, similarly, medical centers, in turn, to reduce the number of

transfusions to check the overutilization and wastage of blood while managing their

blood inventory efficiently to avoid shortages. Under financial stress, mergers and

consolidations have been a characteristic of not only blood service organizations but

also of hospitals, lately, and competition among hospitals has decreased (Kacik (2017),

Gaynor, Mostashari, and Ginsburg (2017)). Some policy makers are emphasizing the

need for more competition among health care providers for better service to patients at

lower prices (Hyde (2016)). On another spectrum, industry executives argue that they
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face sufficient competition from neighboring hospitals, new entrants, and alternative

sources of healthcare. The cost of providing healthcare is continuing to increase in

the United States and it is becoming more difficult to negotiate better reimbursement

rates from hard-bargaining insurers (Dafny and Lee (2016)).

Hospitals in the United States get reimbursed for their patients’ procedures, in-

cluding blood transfusions, by different types of payers such as private insurers and

government programs such as Medicare. The process of billing for blood products

and receiving reimbursements for transfused units from different payer groups is a

complicated process and has been a topic of concern among industry professionals

(America’s Blood Centers (2017a)). In 2018 the proposed reimbursement rates for

blood products by the Centers for Medicare and Medicaid Services showed reduction

in prices for several products. These payment policies have been criticized by orga-

nizations, including the America’s Blood Centers, who continue to push the Centers

for Medicare and Medicaid Services for fairer payment strategies (America’s Blood

Centers (2017a)). Inadequate reimbursements may affect the transactions between

hospitals and blood service organizations who struggle to cover the rising cost of

blood collection and testing, and, thereby, impact the economic sustainability of the

entire blood supply chain (Mulcahy et al. (2016)). Although, currently, the payment

methods used by Medicare and other private insurance companies following their suit

succeed in checking for the overutilization of blood, the blood banking industry faces

serious challenges due to a clear disconnect between the payments received and the

actual cost of blood.

Mulcahy et al. (2016) propose alternative payment methods that might be ben-

eficial for all stakeholders in the industry. One of the alternatives is a cost-based

reimbursement policy which would take into account the number of units of blood

transfused, in contrast to the current inpatient payment policy. The Medicare re-

imbursement for blood in inpatient setting falls under MS-DRG (Medicare Severity
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Diagnosis Related Groups) which makes it difficult to separate the exact costs for

the blood products (Toner et al. (2011)), while the outpatient reimbursement rates

are determined using a cost-to-charge ratio methodology which uses data submitted

by the hospitals and is susceptible to errors due to use of improper billing codes.

The majority of blood transfusions occurs in an inpatient setting while around only

10-20 percent occurs in an outpatient setting. Hence, the former accounts for a large

portion of revenue generated from blood transfusion (Mulcahy et al. (2016)).

The changing dynamics in the blood banking industry is forcing blood banks (also

referred to as blood service organizations) to be more innovative in conducting their

business. Blood banks need to price their products competitively based on the sup-

plied quantity in order to recover costs of their operations and to generate revenue for

activities such as research and development required for providing a steady supply of

safe blood. Hence, there is a need for a change in the approach towards blood supply

chain management, which should take into consideration not only the well-defined

problems of perishability, outdating, shortage, and wastage (see, e.g., Nagurney, Ma-

soumi, and Yu (2012)), but also limits on supply capacity and competition among

blood banks. In light of the recent changes in the industry there also needs to be an

intensified focus on the economics of blood supply chain networks to identify ways to

make it more efficient and cost-effective and, hence, sustainable.

In this dissertation, I contribute to the study of blood supply chains by taking a

holistic approach to developing game theory models that capture the current compet-

itive landscape of the industry in the United States and include all major activities

along the supply chain as well as the objectives of multiple stakeholders. The results

obtained from analyzing the mathematical models through simulated case studies pro-

vide valuable insights and can inform policy makers. In particular, this dissertation

attempts to find answers to the following research questions:
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• In a competing scenario, what should be the service quality levels at the blood

collection sites run by different blood service organizations?

• How do the varying service quality levels affect the amount of blood collected

from different collection sites?

• What should be the optimal blood flows along various paths, taking perishabil-

ity and capacity constraints into consideration, in a competitive blood supply

chain network framework to ensure the supply of the minimum amount of blood

required by hospitals?

• How do disruptions in various activities and reduction in capacities along the

supply chain affect the revenue margin for blood service organizations?

• What should be the price per pint of blood charged by the blood service orga-

nizations in order to cover their costs?

• What should be the appropriate reimbursement rates received by the hospi-

tals, and medical centers from the insurance companies and programs for blood

transfusion to ensure economic sustainability of the entire supply chain?

This research adds to the literature on game theory and healthcare and, specifi-

cally, to game theory and blood supply chains, which has been very limited, to-date.

1.4. Literature Review

This section discusses the relevant literature on several topics covered in this

dissertation. I provide a review of the extant literature and identify the gaps that I

have tried to bridge.
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1.4.1 Donor Motivation

As mentioned earlier, due to its reliance on voluntary donations one of the ma-

jor challenges in the blood banking industry is donor motivation. There have been

several studies on the factors that motivate people to become blood donors. While

in some cases blood donations are incentivized even with monetary compensations,

some economists and industry practitioners believe that it is altruism that mainly

drives donors to donate their blood with the idea that it is going to help save the

lives of people, at times, even in their communities, and, sometimes, even themselves

(see, e.g., Lacetera, Macis, and Slonim (2012) and the references therein). Much of

the theoretical works on blood donor motivation found in existing literature focus on

altruism (Andreoni (1990), Mellström and Johanesson (2008), Evans and Ferguson

(2013)). Others speculate that blood donors may be motivated by a notion of duty

rather than unselfishness (see Wildman and Hollingsworth (2009)).

In their paper, Gillespie and Hillyer (2002) look at the studies conducted on the

topic of blood donation decisions over the preceding three decades, focusing on both

first time and return donors. They identify blood donation process measures such as

the general donation experience for first time donors in terms of comfort, convenience

of the process, and treatment by the staff in charge of technical and administrative

activities as factors affecting donation decisions. It is further mentioned that negative

donation experiences account for 6-19 percent attrition for all donors and 20 to as

high as 41 percent of the drop-out rate for first time donors. In Charbonneau et al.

(2015) the authors report deterrents among regular whole blood donors, lapsed whole

blood donors and plasma/platelet donors. Based on their survey they found that for

a significant percentage of donors in all three categories too much waiting time is

a deterrent. These claims are also supported by the empirical evidence provided in

Yuan et al. (2011), Finck et al. (2016) and Schreiber et al. (2006). These papers

suggest that, while motivators are mainly altruistic, the deterrents are all factors
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controlled by the blood service organizations. Hence, there is reason to believe that

improving such aspects can have a positive impact on blood donations.

Personal experience and donor satisfaction from the blood donation process, along

with the image or awareness of the impact of the organization collecting blood, have

been pointed out as significant factors in donor motivation and retention in several

studies (Nguyen et al. (2008), Aldamiz-echevarria and Aguirre-Garcia (2014)). In

other words, it can be said that the quality of services provided by the blood banks

during the collection or donation process plays a significant role in the decision-making

process of first time as well as return donors.

There also exists literature on the assessment of blood banks in terms of service

quality as perceived by donors, which, again, suggests a direct relationship between

donor satisfaction and donation decisions (Al-Zubaidi and Al-Asousi (2012), Jain,

Doshit, and Joshi (2015)). For example, Schlumpf et al. (2008), in a survey of over

7,900 blood donors, determined that prior donation frequency, intention to return,

donation experience, and having a convenient location appear to significantly predict

donor return. Craig et al. (2016), in turn, estimated the effect of wait time at

the blood donation center on the satisfaction, intention to donate, and actual return

behavior of blood donors and found that for a 38% increase in wait time there is a 14%

decrease in whole blood donations. Thus, longer wait times entail substantial social

costs and also attest to the importance of the quality of service for blood organizations

in terms of donations. Convenience is also identified in the literature as a factor that

can influence donor behavior (Schreiber et al. (2006)) in terms of clinic accessibility,

which also attests to the relevance of quality of service. Cimarolli (2012) in her

thesis, which focused on blood donations in Canada, emphasized that it is of utmost

importance to improve the experiences of those donating blood, especially first-timers,

by optimizing clinic locations and resources, minimizing negative reactions, lowering

wait time, and increasing donor comfort. Perera et al. (2015) specifically noted, in
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their study of blood donor programs in Sri Lanka, that blood donor programs could

be improved there by addressing the provision of quality service.

While there exists a rich body of literature on the optimization of blood supply

chains, as discussed in the following section, to ensure that demand is met as closely

as possible and that shortages are minimized, with a view towards the perishability

of this life-saving product (see, e.g., Nagurney et al. (2013), Duan and Liao (2014)),

a thorough search of the published journal literature fails to return any significant

work on the modeling of competition for donors among blood service organizations.

Blood donations comprise the very basis of blood supply chains and play a crucial

role in the stability of the entire blood supply system. Hence, it is of academic as

well as practical significance to develop a model capturing the competition among

organizations collecting blood.

1.4.2 Blood Supply Chain

The body of literature on blood supply optimization has been growing steadily

over the years with some of the fundamental literature including that of Nahmias

(1982) on perishable product inventory and that of Cohen and Pierskalla (1979) tar-

geted at hospital and regional blood banks. Beliën and Forcé (2012) provide a com-

prehensive review of the supply chain management of blood products. The authors

classify the works according to various categories such as the type of blood product,

the solution method utilized, etc. Given the uncertainty in demand and supply of

blood and the complex nature of blood supply chains, some authors have used simu-

lation techniques to optimize the inventory levels (see, e.g., Rytilä and Spens (2006),

Kopach (2008)) while others (see, e.g., Pierskalla (2005), Hemmelmayr et al. (2009))

have used mathematical programming to solve associated facility location and rout-

ing problems. Sarhangian et al. (2017) studied the performance of threshold-based

allocation policies for optimizing blood inventory taking into consideration the trade-
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off between age of the blood and availability. Ramezanian and Behboodi (2017) used

mixed integer linear programming (MILP) to solve a deterministic location/allocation

problem for blood collection facilities that takes into consideration the utility of blood

donors in order to motivate them. They further utilized a robust optimization method

to account for the issue of uncertainty in demand for blood. Osorio, Brailsford, and

Smith (2018) distinguish between blood collection methods and present a multiobjec-

tive optimization problem that deals with the issue of assigning donors to a certain

collection method while considering stochastic demand

Fortsch and Khapalova (2016) tackle some of the issues of blood supply chain

management by using various forecasting techniques to better predict the demand for

blood at the blood centers; thereby, reducing the uncertainty regarding the demand

for blood. Nagurney, Masoumi, and Yu (2012) take into account uncertainty in the

demand for blood and construct the full associated supply chain network of a blood

service organization. Dillon, Oliveira, and Abbasi (2017) uses stochastic programming

to deal with the uncertainty in the demand for blood. Another paper that handles

the stochastic demand for blood is that of Zahiri and Pishvaee (2017).

El-Amine, Bish, and Bish (2017) focus on blood screening and consider that the

budget-constrained blood center’s goal is to construct a robust postdonation blood-

screening scheme that minimizes the risk of an infectious donation being released

into the blood supply. Ayer et al. (2017), in turn, consider when and from which

mobile collection sites to collect blood for cryo production, so that the weekly collec-

tion target is met while the collection costs are minimized. Further, in Ayer et al.

(2018), the authors develop a dynamic programming approach to the problem and

create a decision support tool to help the American Red Cross select cryo collection

sites. Hosseinifard and Abbasi (2016) consider the effect of centralized inventory in

a two echelon supply chain model and show how centralization of the hospital level

inventory increases the sustainability and resilience of the blood supply chain. A
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recent interesting work has also considered the design of a blood supply chain net-

work in a crisis via a robust stochastic model (see Salehi, Mahootchi, and Husseini

(2017). Overall, there are few studies that address the supply side in blood banking

(Fahimnia et al. (2017), Ramezanian and Behboodi (2017)) and especially in the

context of competition.

Perishability of blood and wastage due to outdating is another common issue in

blood supply chains and, hence, has been incorporated into some studies (Chazan

and Gal (1977), Nagurney and Masoumi (2012), Nagurney, Masoumi, and Yu (2012),

Duan and Liao (2014), Wang and Ma (2015)). In addition to optimizing the in-

ventory of Red Blood Cells, Duan and Liao (2014) tackle the issue of blood group

compatibility and substitution, while Dillon, Oliveira, and Abbasi (2017) use stochas-

tic programming to deal with the uncertainty in the demand for blood. Much of the

recent work on blood supply chains focuses on the optimization of the inventory at

the hospital and blood bank levels as well as on the optimization of the shipment of

blood from the blood banks to the hospitals (Gunpinar and Centeno (2015), Wang

and Ma (2015)). However, there is a dearth of research on optimization of the entire

blood supply chain network due to its complexity. In their literature review paper,

focusing on quantitative models in blood supply chain management, Osorio, Brails-

ford, and Smith (2015) mention a few studies on integrated models or models that

include all stages of the blood supply chain (see also, e.g., Katsaliaki and Brailsford

(2007), Delen, Erraguntla, and Mayer (2011), Nagurney, Masoumi, and Yu (2012)).

For example, Nagurney, Masoumi, and Yu (2012) developed a multicriteria optimiza-

tion model for a regional blood banking system while capturing the myriad associated

supply chain network activities. Inspired by this work I develop a blood supply chain

network in a noncooperative competitive environment in Chapter 4 which adds to

our understanding of how competition among blood supply chains affects the supply

of the product and the revenue generated by the blood banks.
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1.4.3 Competitive Supply Chain Networks

There exists a body of scientific literature that uses the concept of Nash equi-

librium (cf. Nash (1950, 1951)) in decentralized supply chains, although, overall,

the work is fairly recent (see, e.g., Nagurney, Dong, and Zhang (2002), Ha, Li, and

Ng (2003), Bernstein and Federgruen (2005), Dong et al. (2005), Xiao and Yang

(2008), Anderson and Bao (2010), Toyasaki, Daniele, and Wakolbinger (2014)), with

the books by Nagurney (2006) and Nagurney and Li (2016) providing extensive ref-

erences. In particular, Nagurney, Dong, and Zhang (2002) developed an equilibrium

model for a competitive supply chain network with separate tiers for multiple man-

ufacturers, multiple retailers, and multiple demand markets. They formulated and

solved the multitiered supply chain network equilibrium problem as a variational in-

equality problem in order to obtain the equilibrium product flows and prices. Dong

et al. (2005) conceptualized the three tiers in their supply chain network to denote

manufacturers who can use one of several shipment alternatives to send the products

to the distributors who comprise the second tier, and, finally, to retailers who are

faced with stochastic demand. Other papers dealing with competition among supply

chain stakeholders and demand uncertainty include those by Tsiakis et al. (2001),

Bernstein and Federgruen (2005), Xiao and Yang (2008), and Mahmoodi and Eshghi

(2014).

Bernstein and Federgruen (2005) studied the equilibrium conditions in a two-

echelon supply chain where a single supplier supplies materials to multiple competing

retailers who face uncertain demand. The authors also explored the impacts of coor-

dination between the two echelons through contracts. Mahmoodi and Eshghi (2014)

considered price competition between two-tiered supply chains consisting of manu-

facturers and retailers. The authors proposed three different algorithms to obtain the

equilibrium solutions in three possible industry structures and examined the effects

of competition and demand uncertainty intensity on the solutions and supply chain
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profits in a numerical example. Farahani et al. (2014) provided a comprehensive

literature review of competitive supply chain design models in which they classified

the papers based on several major features of the models such as the number of tiers

considered, the type of demand, the type of competition, etc. While the majority of

the papers discussed above deal with supply chain structures with two tiers, in reality,

supply chain networks may be more complex and involve multiple network economic

activities as well as several stakeholders competing. Nagurney (2010) proposed a

supply chain competition model with activities such as manufacturing, storage, and

distribution for profit-maximizing firms. Masoumi, Yu, and Nagurney (2012), in

turn, constructed a supply chain network model for oligopolistic competition among

pharmaceutical companies while taking into account the perishable nature of drugs,

whereas Yu and Nagurney (2013) developed a competitive food supply chain net-

work model, which also included perishability and price differentiation. However, as

pointed out in the previous section as well, there does not exist any work on the

modeling of blood supply chain networks in the context of competition.

1.4.4 Capacity Constraints

Capacity constraints in supply chains have been studied extensively as evidenced

in the papers by Gavirneni (2002), Lee and Kim (2002), Choi, Dai, and Song (2004),

Goh, Lim, and Meng (2007), Jung et al. (2008), Nagurney and Li (2016), Nagurney,

Yu, and Besik (2017), and Nagurney (2018). The capacities considered in these works

pertain to physical capacities of production plants, distribution channels, freight ser-

vice providers, etc., which vary from one firm to another. Similar to commercial

firms, blood service organizations have limited resources in terms of space for collec-

tion, processing, and storage, and access to transportation vehicles, etc. Masoumi,

Yu, and Nagurney (2017) introduce upper bounds on the capacity volume of vari-

ous activities in the blood supply chain network consisting of collection, processing,
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shipment, storage, and distribution along with frequencies of supply chain activities.

However, blood service organizations face an additional constraint on the supply side

due to limited number of eligible and motivated donors in any region.

Nagurney, Yu, and Besik (2017) utilize the concept of a Variational Equilibrium

to formulate and solve the Generalized Nash Equilibrium (GNE) problem in the

case of commercial supply chain network capacity competition with outsourcing with

capacities associated with shared links of storage and freight service provision. A

detailed discussion of GNE, in the context of a nonprofit, disaster relief framework,

and the associated challenges of formulation and solution, is available in Nagurney,

Alvarez Flores, and Soylu (2016) and the references therein.

As mentioned earlier, supply side capacity is a major issue in blood supply chains.

While the demand for blood is highly volatile, through supply contracts with blood

banks hospitals try to ensure that they have a minimum amount of blood available to

avoid shortages, and at the same time set an upper bound on the demand to minimize

wastage. Such supply and demand constraints have not been included in the studies

present in the existing literature on blood supply chains.

1.4.5 Game Theory and Nonprofits

Noncooperative game theory is a powerful tool that is used extensively for for-

mulating and solving problems where there is competition. While it is primarily

used in the case of profit-making entities, several studies have used game theory to

model competition among nonprofit organizations; see, e.g., Ortmann (1996), Tuck-

man (1998), Castaneda, Garen, and Thornton (2008), Bose (2015), and Nagurney

and Li (2017). There is, however, a limited number of studies applying game theory

in the realm of nonprofit supply chains and even fewer in the context of blood ser-

vices. Saxton and Zhuang (2013) argued for the relevance of game theory in markets

for charitable contributions and presented a model consisting of an organization and
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a donor. Zhuang, Saxton, and Wu (2014) provided a sequential game theoretical

model of disclosure-donation interactions with one nonprofit organization and mul-

tiple donors. Nagurney, Alvarez Flores, and Soylu (2016) developed a Generalized

Nash Equilibrium network model in which nonprofit organizations are competing for

financial funds for post-disaster relief operations, while minimizing costs associated

with relief item distribution.

While there are some studies on the effects of competition among nonprofit orga-

nizations (see Muggy and Heier Stamm (2014), Nagurney, Alvarez Flores, and Soylu

(2016), Nagurney and Li (2017), Nagurney et al. (2018)), and the references therein),

to the best of my knowledge there is no prior work modeling the competition among

blood service organizations.

1.5. Dissertation Overview

The dissertation consists of six chapters with the first chapter dealing with the

research motivation and literature review. In Chapter 2, I recall the methodologies

that are utilized in this dissertation, mainly variational inequality theory (Nagurney

(1999)) and its relation to game theory (Nash (1950, 1951)). Below I present the

contributions in Chapters 3 through 5 and outline a possible extension and future

directions for the blood supply chain research in Chapter 6 of this dissertation.

1.5.1 Contributions in Chapter 3

It is of great value and importance to blood service organizations to understand

the reasons behind donation decisions in order to ensure a sufficient supply of this

life-saving product. I conceptualize the operational factors affecting donor decisions

reported in empirical studies combined together as the service quality of the blood

collection sites and develop a game theory model, whose solution yields the desired

service quality levels at the blood collection sites and the corresponding quantities of
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blood received. I provide a game theory Nash Equilibrium network framework since

changes in the blood industry have resulted in greater competition among blood

collection organizations.

Indeed, as noted by Meckler and Neergaard (2002), the blood banking industry

has seen a rise in competition among blood banks in terms of recruiting and retaining

donors as the number of organizations providing blood services has grown. Donors

in parts of the United States, for example, may have the option of giving to the

American Red Cross, to a local community blood center or hospital, or to America’s

Blood Centers’ member organizations which make up North America’s largest network

of nonprofit community blood centers, and operate more than 600 blood donation

collection sites, or to the United Blood Services, if in proximity.

It is also important to emphasize that blood organizations incur huge costs for

organizing blood donation drives and other operations such as testing, processing of

collected blood, transportation, and storage which have to be met through revenue

generation. This is achieved by charging money per pint to hospitals, healthcare

clinics, and trauma centers, etc. that require blood (cf. Nagurney, Masoumi, and

Yu (2012)). The revenue generated covers costs and can be invested back into the

process to improve the services provided by the blood banks and collection agencies.

Moreover, organizations involved in blood banking and supply derive a utility in

terms of satisfaction from providing quality service. Hence, it is beneficial for them to

increase the number of donors and the amount of blood donated. However, improving

the service quality to attract more donors implies, in turn, an increase in costs. The

trade-off between the two can be easily observed by analyzing the model presented in

this chapter. Chapter 3 of this dissertation, is based on the paper by Nagurney and

Dutta (2019a).
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1.5.2 Contributions in Chapter 4

The supply chain network competition model for blood service organizations

(BSOs) in Chapter 4 makes several contributions to the existing literature on blood

supply chains. The blood supply chain network structure developed here is the first

of its kind that can capture competition on a regional as well as national level and

traces all major blood supply chain activities starting from collection, testing and

processing to storage, and distribution. I include multiple, competing blood service

organizations in which the link cost functions are not assumed to be separable. The

cost on a link may, in general, depend not only on the flow on that link but also on

flows on other links of the specific BSO’s supply chain network as well as on the flows

on links of other BSOs’ supply chain networks.

Common/shared capacities are incorporated on the supply side in terms of blood

donations, and common/shared constraints on the demand side due to demand point

constraints consisting of lower and upper bounds on the blood needed. No model,

to-date, considers such features with the former uniquely relevant to blood supply

chain network competition, not considered until this study, and the latter also very

relevant due to the need to meet the demand for blood while also minimizing wastage.

The utility functions of the blood service organizations contain revenue as well as

altruism/ beneft components with the latter being weighted. Nagurney and Li (2017)

also considered nonprofit competition with revenue and altruism features but in the

case of hospital competition on a simpler, bipartite network and with the altruism

component of an entirely different construct than herein. This model enables the

incorporation of different factors that would affect prices that distinct hospitals and

medical centers would be willing to pay for RBCs and that different blood service

organizations would, therefore, be able to charge them. This chapter is based on the

paper by Nagurney and Dutta (2019b).
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1.5.3 Contributions in Chapter 5

In this chapter, I extend the work done in Chapter 4 by adding another tier of

decision-makers comprised of insurance companies and programs or patient payer

groups that reimburse hospitals for providing transfusion services, and the last activ-

ity in the blood supply chain which is the transfusion of blood. Hence, the integrated

supply chain network model that I develop here includes all major stakeholders in the

blood supply chain; namely, the blood banks or blood service organizations, the hospi-

tals, and the patient payer groups. The network structure captures the decentralized

nature of the blood supply chains in the United States and is the first competitive

perishable product supply chain network model in healthcare with multiple tiers,

multiple paths, and multiple associated distinct types of stakeholders.

While equilibrium optimal flow of blood from blood service organizations to hos-

pitals along different paths are computed, this model also determines the amount of

blood transfused by different hospitals to patients in different payer groups. A main

focus of this chapter is to find a way to bridge the gap between payments received

by hospitals and their cost of procuring blood from blood service organizations, that

threatens the economic sustainability of blood supply chains in the United States.

Deriving inspiration from an alternative payment policy suggested in Mulcahy et

al. (2016), I developed the mathematical model here to also determine the optimal

reimbursement rates received by hospitals from payers and the optimal prices that

hospitals agree to pay to blood service organizations. This chapter is based on the

paper by Dutta and Nagurney (2018).

1.5.4 Concluding Comments

The main contributions of the research done in this dissertation are summarized

below.
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1. The mathematical models constructed in Chapters 3, 4, and 5 are the first com-

petitive network models in the context of blood banking that capture the economics

of the blood supply chains. While in Chapter 3 the focus is only on the collection

operation from voluntary blood donors, in the subsequent chapters the entire supply

chain from blood service organizations to the end users, that is, the hospitals and

patients is modeled. The contributions are in terms of the progression of each model

with added layers of complexity.

2. It is a well-established fact that quality and customer satisfaction in service

industries can provide competitive advantage to firms (Ghobadian, Speller and Jones

(1994). There have been studies on the effect of quality in the healthcare industry

(Brook and Kosecoff (1988), Rivers and Glover (2008), Nagurney and Li (2017)).

However, the model presented in Chapter 3 is the first model that captures the effect

of service quality on competition in the blood banking industry which makes it unique.

3. In Chapters 4 and 5, I assume multiple, competing blood service organizations

in which the link cost functions are not assumed to be separable. In the case of

multiple blood supply chain networks, in contrast, Masoumi, Yu, and Nagurney (2017)

considered link cost functions that were separable. The generality of the cost functions

here enables the modeling of supply chain network competition for resources among

the BSOs.

4. The inclusion of perishability in the models in Chapters 4 and 5 make them

pragmatic. When dealing with a highly perishable product such as blood it is imper-

ative to account for it.

5. The objective functions of the blood service organizations and hospitals include

an altruisim component which helps in capturing their nonprofit behavior.

6. Lagrange analysis presented in the different chapters provide nice economic

interpretations for the analytical results. In Chapter 3, the analysis provides economic

trade-offs associated with the upper and lower bounds of service quality levels. In
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Chapter 4, the Lagrange analysis again sheds light on the marginal loss and gain

associated with the lower and upper bounds on supply, link capacities as well as

demand, while in Chapter 5, the equilibrium Lagrange multipliers reveal the prices

charged by the BSOs to hospitals.

7. The methodologies used in this dissertation are game theory and variational

inequality theory. In Chapters 3 and 5 the governing equilibrium concept is that

of Nash equilibrium, and in Chapter 4 the problem is formulated as a Generalized

Nash Equilibrium one. Qualitative results are provided in this dissertation along with

discussion of computational procedures and results obtained from numerical cases.

8. In the final chapter, I present my conclusions and provide further directions for

research in this area.
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CHAPTER 2

METHODOLOGIES

In this chapter, I provide an overview of the fundamental theories and methodolo-

gies that are utilized in this dissertation. I first review variational inequality theory

which has been utilized throughout this dissertation as the essential methodology to

analyze the equilibria of blood supply chain networks with supply side and demand

side competition, and multiple decision-makers. Variational inequality theory is a

powerful methodology with widespread use in solving network economic equilibrium

models. Some of the relationships between variational inequality and game theory to

model the competition among blood service organizations as well as other stakehold-

ers in the blood banking industry are also presented in this chapter.

In addition, I recall the theory of Generalized Nash Equilibrium which is utilized

in Chapter 4 of this dissertation. Additional theorems and proofs associated with

finite-dimensional variational inequality theory can be found in Nagurney (1999).

Finally, I review the algorithms: the Euler method and the modified projection

method. The Euler method is employed to solve the variational inequality problems in

Chapters 3 and 4. The modified projection method is applied to solve the variational

inequality problem in Chapter 5.

2.1. Variational Inequality Theory

In this section, I provide a brief overview of the theory of variational inequalities

followed by qualitative results, specifically concerning the existence and uniqueness of
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solutions. All definitions and theorems are taken from Nagurney (1999). All vectors

are assumed to be column vectors.

Definition 2.1 (Finite-Dimensional Variational Inequality Problem)

The finite-dimensional variational inequality problem, VI(F,K), is to determine a

vector X∗ ∈ K ⊂ Rn, such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (2.1a)

where F is a given continuous function from K to Rn, K is a given closed convex set,

and 〈·, ·〉 denotes the inner product in n-dimensional Euclidean space.

In (2.1a), F (X) ≡ (F1(X), F2(X), . . . , Fn(X))T , and X ≡ (X1, X2, . . . , Xn)T . Re-

call that for two vectors u, v ∈ Rn, the inner product 〈u, v〉 = ‖u‖‖v‖cosθ, where θ

is the angle between the vectors u and v, and (2.1a) is equivalent to

n∑
i=1

Fi(X
∗) · (Xi −X∗i ) ≥ 0, ∀X ∈ K. (2.1b)

The variational inequality problem is a general problem that encompasses a wide

spectrum of mathematical problems, including; optimization problems, complemen-

tarity problems, and fixed point problems (see Nagurney (1999)). It has been shown

that optimization problems, both constrained and unconstrained, can be reformulated

as variational inequality problems. The relationship between variational inequalities

and optimization problems is now briefly reviewed.

Proposition 2.1 (Formulation of a Constrained Optimization Problem as a

Variational Inequality)

Let X∗ be a solution to the optimization problem:

Minimize f(X) (2.2)
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subject to:

X ∈ K,

where f is continuously differentiable and K is closed and convex. Then X∗ is a

solution of the variational inequality problem:

〈∇f(X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (2.3)

where ∇f(X) is the gradient vector of f with respect to X, where∇f(X) ≡ (∂f(X)
∂X1

, . . . ,

∂f(X)
∂Xn

)T .

Proposition 2.2 (Formulation of an Unconstrained Optimization Problem

as a Variational Inequality)

If f(X) is a convex function and X∗ is a solution to VI(∇f,K), then X∗ is a solution

to the optimization problem (2.2). In the case that the feasible set K = Rn, then the

unconstrained optimization problem is also a variational inequality problem.

The variational inequality problem can be reformulated as an optimization prob-

lem under certain symmetry conditions. The definitions of positive-semidefiniteness,

positive-definiteness, and strong positive-definiteness are recalled next, followed by a

theorem presenting the above relationship.

Definition 2.2 (Positive Semi-Definiteness and Definiteness)

An n× n matrix M(X), whose elements mij(X); i, j = 1, ..., n, are functions defined

on the set S ⊂ Rn, is said to be positive-semidefinite on S if

vTM(X)v ≥ 0, ∀v ∈ Rn, X ∈ S. (2.4)

It is said to be positive-definite on S if

vTM(X)v > 0, ∀v 6= 0, v ∈ Rn, X ∈ S. (2.5)
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It is said to be strongly positive-definite on S if

vTM(X)v ≥ α‖v‖2, for some α > 0, ∀v ∈ Rn, X ∈ S. (2.6)

Theorem 2.1 (Formulation of an Optimization Problem from a Variational

Inequality Problem Under Symmetry Assumption)

Assume that F (X) is continuously differentiable on K and that the Jacobian matrix

∇F (X) =


∂F1

∂X1
. . . ∂F1

∂Xn

... . . .
...

∂Fn

∂X1
. . . ∂Fn

∂Xn

 (2.7)

is symmetric and positive-semidefinite. Then there is a real-valued convex function

f : K 7−→ R1 satisfying

∇f(X) = F (X) (2.8)

with X∗ the solution of VI(F,K) also being the solution of the mathematical program-

ming problem:

Minimize f(X)

subject to:

X ∈ K,

where f(X) =
∫
F (X)Tdx, and

∫
is a line integral.

Thus, variational inequality is a more general problem formulation than an op-

timization problem formulation, since it can also handle a function F (X) with an

asymmetric Jacobian (see Nagurney (1999)). Next, I recall the qualitative proper-

ties of variational inequality problems, especially, the conditions for existence and

uniqueness of a solution.

28



Existence of a solution to a variational inequality problem follows from continuity

of the function F (X) entering the variational inequality, provided the feasible set K

is compact as stated in Theorem 2.2.

Theorem 2.2 (Existence of a Solution)

If K is a compact convex set and F (X) is continuous on K, then the variational

inequality problem admits at least one solution X∗.

Theorem 2.3 (Condition for Existence if Feasible Set is Unbounded)

If the feasible set K is unbounded, then VI(F,K) admits a solution if and only if

there exists an R > 0 and a solution of VI(F,S), X∗R, such that ‖X∗R‖ < R, where

S = {X : ‖X‖ ≤ R}.

Theorem 2.4 (Existence Following a Coercivity Condition)

Suppose that F (X) satisfies the coercivity condition

〈F (X)− F (X0), X −X0〉
‖X −X0‖

→ ∞ (2.9)

as ‖X‖ → ∞ for X ∈ K and for some X0 ∈ K. Then VI(F,K) always has a solution.

According to Theorem 2.4, the existence condition of a solution to a variational

inequality problem is guaranteed if the coercivity condition holds. Next, certain

monotonicity conditions are utilized to discuss the qualitative properties of existence

and uniqueness. Some basic definitions of monotonicity are provided first.

Definition 2.3 (Monotonicity)

F (X) is monotone on K if

〈F (X1)− F (X2), X1 −X2〉 ≥ 0, ∀X1, X2 ∈ K. (2.10)
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Definition 2.4 (Strict Monotonicity)

F (X) is strictly monotone on K if

〈F (X1)− F (X2), X1 −X2〉 > 0, ∀X1, X2 ∈ K, X1 6= X2. (2.11)

Definition 2.5 (Strong Monotonicity)

F (X) is strongly monotone on K if

〈F (X1)− F (X2), X1 −X2〉 ≥ α‖X1 −X2‖2, ∀X1, X2 ∈ K, (2.12)

where α > 0.

Definition 2.6 (Lipschitz Continuity)

F (X) is Lipschitz continuous on K if there exists an L > 0, such that

〈F (X1)− F (X2), X1 −X2〉 ≤ L‖X1 −X2‖2, ∀X1, X2 ∈ K. (2.13)

L is called the Lipschitz constant.

Theorem 2.5 (Uniqueness Under Strict Monotonicity)

Suppose that F (X) is strictly monotone on K. Then the solution to the VI(F,K)

problem is unique, if one exists.

Theorem 2.6 (Uniqueness Under Strong Monotonicity)

Suppose that F (X) is strongly monotone on K. Then there exists precisely one solu-

tion X∗ to VI(F,K).

In summary of Theorems 2.2, 2.5, and 2.6, strong monotonicity of the function F

guarantees both existence and uniqueness, in the case of an unbounded feasible set

K. If the feasible set K is compact, that is, closed and bounded, the continuity of F

guarantees the existence of a solution. The strict monotonicity of F is then sufficient

to guarantee its uniqueness provided its existence.

30



2.2. The Relationships between Variational Inequalities and

Game Theory

In this section, some of the relationships between variational inequalities and game

theory are briefly discussed.

Nash (1950, 1951) developed noncooperative game theory, involving multiple play-

ers, each of whom acts in his/her own interest. In particular, consider a game with

m players, each player i having a strategy vector Xi = {Xi1, ..., Xin} selected from

a closed, convex set Ki ⊂ Rn. Each player i seeks to maximize his/her own utility

function, Ui: K → R, where K = K1 × K2 × . . . × Km ⊂ Rmn. The utility of player

i, Ui, depends not only on his/her own strategy vector, Xi, but also on the strat-

egy vectors of all the other players, (X1, . . . , Xi−1, Xi+1, . . . , Xm). An equilibrium is

achieved if no one can increase his/her utility by unilaterally altering the value of its

strategy vector. The formal definition of the Nash equilibrium is recalled as follows.

Definition 2.7 (Nash Equilibrium)

A Nash equilibrium is a strategy vector

X∗ = (X∗1 , . . . , X
∗
m) ∈ K, (2.14)

such that

Ui(X
∗
i , X̂

∗
i ) ≥ Ui(Xi, X̂

∗
i ), ∀Xi ∈ Ki,∀i, (2.15)

where X̂∗i = (X∗1 , . . . , X
∗
i−1, X

∗
i+1, . . . , X

∗
m).

It has been shown by Hartman and Stampacchia (1966) and Gabay and Moulin

(1980) that given continuously differentiable and concave utility functions, Ui, ∀i,

the Nash equilibrium problem can be formulated as a variational inequality problem

defined on K.
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Theorem 2.7 (Variational Inequality Formulation of Nash Equilibrium)

Under the assumption that each utility function Ui is continuously differentiable and

concave, X∗ is a Nash equilibrium if and only if X∗ ∈ K is a solution of the variational

inequality

〈F (X∗), X −X∗〉 ≥ 0, X ∈ K, (2.16)

where F (X) ≡ (−∇X1U1(X), . . . ,−∇XmUm(X))T, and ∇Xi
Ui(X) = (∂Ui(X)

∂Xi1
, . . . ,

∂Ui(X)
∂Xin

).

The conditions for existence and uniqueness of a Nash equilibrium are now intro-

duced. As stated in the following theorem, Rosen (1965) presented existence under

the assumptions that K is compact and each Ui is continuously differentiable.

Theorem 2.8 (Existence Under Compactness and Continuous Differentia-

bility)

Suppose that the feasible set K is compact and each Ui, is continuously differentiable

∀i. Then existence of a Nash equilibrium is guaranteed.

On the other hand, Gabay and Moulin (1980) relaxed the assumption of the com-

pactness of K and proved existence of a Nash equilibrium after imposing a coercivity

condition on F (X).

Theorem 2.9 (Existence Under Coercivity)

Suppose that F (X), as given in Theorem 2.7, satisfies the coercivity condition (2.9).

Then there always exists a Nash equilibrium.

Furthermore, Karamardian (1969) demonstrated existence and uniqueness of a

Nash equilibrium under the strong monotonicity assumption.

Theorem 2.10 (Existence and Uniqueness Under Strong Monotonicity)

Assume that F (X), as given in Theorem 2.7, is strongly monotone on K. Then there

exists precisely one Nash equilibrium X∗.
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Additionally, based on Theorem 2.5, uniqueness of a Nash equilibrium can be

guaranteed under the assumptions that F (X) is strictly monotone and an equilibrium

exists.

Theorem 2.11 (Uniqueness Under Strict Monotonicity)

Suppose that F (X), as given in Theorem 2.7, is strictly monotone on K. Then the

Nash equilibrium, X∗, is unique, if it exists.

2.3. Generalized Nash Equilibrium (GNE)

In this section, I present a brief discussion on Generalized Nash Equilibrium

(GNE) in which the strategies of the players, defined by the underlying constraints,

depend also on the strategies of their rivals. A frequently encountered class of General-

ized Nash games deals with a common coupling constraint that the players’ strategies

are required to satisfy (Kulkarni and Shanbhag (2012)). These games are also known

as Generalized Nash games with shared constraints (Facchinei and Kanow (2007),

Rosen (1965)).

Definition 2.10 (Generalized Nash Equilibrium)

A strategy vector X∗ ∈ K ≡
∏I

i=1K
i, X∗ ∈ S, constitutes a Generalized Nash Equi-

librium if for each player i; i = 1, ..., I :

Ui(X
∗
i , X̂

∗
i ) ≥ Ui(Xi, X̂∗i ), ∀Xi ∈ Ki,∀X ∈ S, (2.17)

where

X̂∗i ≡ (X∗1 , . . . , X
∗
i−1, X

∗
i+1, . . . , X

∗
I ),

Ki is the feasible set of individual player and S is the feasible set consisting of the

shared constraints.

Bensoussan (1974) formulated the GNE problem as a quasivariational inequality.

However, GNE problems are challenging to solve when formulated as quasivariational
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inequality problems for which the state-of-the-art in terms of algorithmic procedures

is not as advanced as that for variational inequality problems. In Kulkarni and

Shanbhag (2012), the authors provide sufficient conditions to establish the theory of

Variational Equilibrium as a refinement of the GNE which is utilized in Chapter 4 of

this dissertation.

Definition 2.11 (Variational Equilibrium)

A strategy vector X∗ is said to be a variational equilibrium of the above Generalized

Nash Equilibrium game if X∗ ∈ K,X∗ ∈ S is a solution of the variational inequality:

−
I∑
i=1

〈∇Xi
Ûi(X

∗), Xi −X∗i 〉 ≥ 0, ∀X ∈ K, ∀X ∈ S. (2.18)

A notable feature of a variational equilibrium that I discuss in Chapter 4 in this

dissertation is that the Lagrange multipliers associated with the shared or coupling

constraints are the same for all players in the game which provides an elegant economic

interpretation in terms of fairness.

2.4. Algorithms

In this section, I review the algorithms that are used in this dissertation. The

Euler method, which is based on the general iterative scheme of Dupuis and Nagurney

(1993), and the modified projection method of Korpelevich (1977) are presented.

2.4.1 The Euler Method

The Euler-type method algorithm and it’s convergence conditions are given below.

At an iteration τ+1 of the Euler method (see also Nagurney and Zhang (1996)), where

τ denotes an iteration counter, one computes:

Xτ+1 = PK(Xτ − ατF (Xτ )), (2.19)
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where F is the function in (2.1a), and PK is the projection on the feasible set K,

defined by

PK(X) = argminX′∈K‖X
′ −X‖. (2.20)

I now provide the complete statement of the Euler method.

Step 0: Initialization

Set X0 ∈ K.

Let τ = 0 and set the sequence {ατ} so that
∑∞

τ=0 ατ = ∞, ατ > 0 for all τ , and

ατ → 0 as τ →∞.

Step 1: Computation

Compute Xτ+1 ∈ K by solving the variational inequality subproblem:

〈Xτ+1 + ατF (Xτ )−Xτ , X −Xτ+1〉 ≥ 0, ∀X ∈ K. (2.21)

Step 2: Convergence Verification

If max |Xτ+1
l − Xτ

l | ≤ ε, for all l, with ε > 0, a pre-specified tolerance, then stop;

otherwise, set τ := τ + 1, and go to Step 1.

Assumption 2.1

Suppose we fix an initial condition X0 ∈ K and define the sequence {Xτ , τ ∈ N} by

(2.19). I assume the following conditions:

1.
∑∞

τ=0 aτ =∞, aτ > 0,aτ → 0 as τ →∞.

2. d(Fτ (x), F (x))→ 0 uniformly on compact subsets of K as τ →∞.

3. The sequence {Xτ , τ ∈ N} is bounded.

Theorem 2.12 (Convergence of the General Iterative Scheme)

Let S denote the set of stationary point of the projected dynamical system (2.19),

equivalently, the set of solutions to the variational inequality problem (2.1a). As-

sume Assuption 2.1. Suppose {Xτ , τ ∈ N} is the scheme generated by (2.19). Then

d(Xτ , S)→ 0 as τ →∞, where d(Xτ , S)→ 0 = infX∈S‖Xτ −X‖.
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Corollary 2.1 (Existence of a Solution Under the General Iterative Scheme)

Assume the conditions of Theorem 2.12, and also that S consists of a finite set of

points. Then limτ→∞Xτ exists and equals to a solution to the variational inequality.

In the subsequent chapters, for each model, I derive the explicit formulae for all

the strategy vectors in the respective variational inequalities formulated.

2.4.2 The Modified Projection Method

The modified projection method of Korpelevich (1977) can be utilized to solve a

variational inequality problem in standard form (cf. (2.1a)). This method is guaran-

teed to converge if the monotonicity (cf. (2.10)) and Lipschitz continuity (cf. (2.13))

of the function F that enters the variational inequality (cf. (2.1a)) hold, and a solution

to the variational inequality exists.

I now recall the modified projection method, and let τ denote an iteration counter.

Step 0: Initialization

Set X0 ∈ K. Let τ = 1 and let α be a scalar such that 0 < α ≤ 1
L

, where L is the

Lipschitz continuity constant (cf. (2.13)).

Step 1: Computation

Compute X̄τ by solving the variational inequality subproblem:

〈X̄τ + αF (Xτ−1)−Xτ−1, X − X̄τ 〉 ≥ 0, ∀X ∈ K. (2.22)

Step 2: Adaptation

Compute Xτ by solving the variational inequality subproblem:

〈Xτ + αF (X̄τ )−Xτ−1, X −Xτ 〉 ≥ 0, ∀X ∈ K. (2.23)
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Step 3: Convergence Verification

If max |Xτ
l −Xτ−1

l | ≤ ε, for all l, with ε > 0, a prespecified tolerance, then stop; else,

set τ := τ + 1, and go to Step 1.

Theorem 2.13 (Convergence of the Modified Projection Method)

If F (X) is monotone and Lipschitz continuous (and a solution exists), the modified

projection algorithm converges to a solution of variational inequality (2.1a).

In the following chapters, I derive the variational inequality formulations of the

competitive blood supply chain network models. The computational algorithms re-

viewed in this chapter, which are the Euler method and the modified projection

method, are also adapted accordingly to solve a number of simulated case studies.
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CHAPTER 3

COMPETITION FOR BLOOD DONATIONS

In this chapter, I develop a bipartite supply chain network consisting of two tiers

representing blood service organizations (BSOs) and blood collection regions. Each

BSO collects blood from multiple sites. The blood service organizations have, as their

strategic variables, the quality of service that they provide donors at their collection

sites in the regions. It is well-recognized that and, as highlighted in Chapter 1, the

quality of service at the blood collection sites plays a big role in repeat donations.

Moreover, donors receive no financial remuneration in this model and this is quite

reasonable since, in many countries, payments for blood donations are not permitted.

I assume that the voluntary donors react to the service quality levels and, hence, the

amount of blood received from each collection site varies depending on the level of

service quality provided.

The formal definition of the word “quality” implies the standard of something

as measured against other things of similar kind or, in other words, the degree of

excellence of something. Service quality pertaining to the blood collection process at

different facilities operated by blood service organizations would include operational

characteristics such as cleanliness, wait time, hours of donation (convenience), loca-

tion of the facilities, and treatment by staff that affect donation decisions as supported

by empirical findings in the existing literature (Gillespie and Hillyer (2002), Nguyen et

al. (2008), Aldamiz-echevarria and Aguirre-Garcia (2014), Al-Zubaidi and Al-Asousi

(2012), Yuan et al. (2011), Finck et al. (2016), Schreiber et al. (2006)). Different

facilities, even operated by the same blood service organization, may have different
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associated service quality, depending on the size, the resources available there, and

location of the service. For example, a permanent unit may be more comfortable to

some donors, and be viewed as providing a higher quality of service than a mobile

unit. Moreover, the service quality may vary from one organization to another for

similar reasons and even the experience of personnel can be a factor.

The blood service organizations in the model developed in this chapter compete

noncooperatively with the objective of maximizing their transaction utilities until a

Nash Equilibrium is achieved. Since in the United States, blood service organizations

are, for the most part, not-for-profit, the utility function consists of a service utility

or altruism term in addition to revenue generated from selling the collected blood to

healthcare facilities such as hospitals, trauma centers, and the cost of collection. The

solution of the model yields the desired service quality levels at the blood collection

sites and the corresponding quantities of blood received. Results obtained from such

a model can provide managerial insights to the blood service organizations in terms of

decisions about improving the service quality levels at their various blood collection

sites to increase the amount of blood donations that they receive as well as the

associated financial implications.

This chapter is based on the paper Nagurney and Dutta (2019a), and is organized

as follows. In Section 3.1, I present the competitive network model for blood dona-

tions, identify the Nash Equilibrium conditions, and provide the variational inequality

formulation. I also establish that the equilibrium quality level pattern of the blood

service organizations is guaranteed to exist and provide conditions for uniqueness of

the solution. Further, I derive an equivalent formulation to the variational inequality

problem for competition among the blood service organizations which utilizes La-

grange multipliers associated with the lower and upper bounds of the quality levels

that the blood service organizations can provide in the different regions in which they

have or may desire to have blood collection services and provide a richer interpre-
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tation of the underlying economic behavior of the blood service organizations. An

illustrative example is also presented. In Section 3.2, I outline the algorithm, which

yields closed form expressions at each iteration for the service quality levels, until

convergence is achieved and then demonstrate the generality of the modeling and

algorithmic framework through a series of numerical examples with accompanying

insights in Section 3.3. Lastly, I summarize the results and present the conclusions

in Section 3.4.

3.1. The Competitive Network Model for Blood Donations

Assume that there are m blood service organizations responsible for collecting the

blood donations, which are then tested, processed, and distributed to hospitals and

other medical facilities. A typical blood service organization is denoted by i. There

are n regions in which the blood collections can take place. The collection sites may

be fixed or mobile. A typical region is denoted by j. The time horizon for this model

is flexible but I have in mind a week or a month. The illustrative example in Section

3 provides an actual context for an application of the model, which is then further

expanded in the numerical examples in Section 3.3. The network structure of the

problem is depicted in Figure 3.1.
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Figure 3.1. The Network Structure of the Game Theory Model for Blood Donations
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Let Qij denote the quality of service that BSO i provides in region j. In order

to allow flexibility I introduce upper and lower bounds on the service quality levels.

Lower bounds could be employed as a target for a blood service organization or

correspond to a minimum set by a regulatory body. An upper bound would represent

the maximum achievable quality level by an organization in a region.

Group the strategic variables for each blood service organization into the vector

Qi ∈ Rn
+, and then group the quality of service levels for all blood service organizations

into the vector Q ∈ Rmn
+ . So Q is essentially an m×n matrix. There is a nonnegative

lower bound and a positive upper bound imposed on each strategic variable, such

that

Q
ij
≤ Qij ≤ Q̄ij, j = 1, . . . , n. (3.1)

The feasible set Ki for blood service organization i; i = 1, . . . ,m, is defined as

Ki ≡ {Qi| (3.1) holds}. The feasible set underlying all players in the game, that is,

the blood service organizations, is denoted by K where K ≡
∏m

i=1K
i.

I now describe the components of the transaction utility faced by each blood

service organization that capture the total cost associated with the blood collection

in the different regions, the utility corresponding to providing the quality levels, and

the revenue generated from the blood donations. Each blood service organization

seeks to maximize its transaction utility, which depends on the quality levels not

only that it controls but also on those determined by the competing blood service

organizations in the various regions.

Each blood service organization i encumbers a total cost ĉij associated with col-

lecting blood in region j, such that

ĉij = ĉij(Q), j = 1, . . . , n, (3.2)

where ĉij is assumed to be convex and continuously differentiable for all i, j. Note

that the total cost depends, in general, on the quality of service that the blood service
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organization i provides at its facility in each region j, as well as on the quality levels

of the other blood service organizations. Some facilities may be more spacious, have

more staff, provide greater comfort, have shorter waiting times, and also be cleaner,

all factors that enter into the quality of the service and experience of the blood donors.

Also, the blood service organizations may be competing for blood service professionals

as well as other resources so that the generality of the functions in (3.2) allows for

greater modeling flexibility. The total cost functions in (3.2) also include the cost of

supplies for collecting the blood.

Each blood service organization i, since it values the service that it provides to

donors, enjoys a utility associated with the service given by: ωi
∑n

j=1 γijQij, where the

ωi and the γijs; j = 1, . . . , n, take on positive values (cf. Nagurney, Alvarez Flores, and

Soylu (2016) and the references therein). This component of the transaction utility

represents a monetized utility reflecting the value that the blood service organization

places on providing collection services at quality levels in the regions under study. If

the blood service organization does not wish to consider this component, then ωi can

be set equal to zero. However, for organizations such as the American Red Cross,

these operations might give more visibility and create a goodwill among donors that

can eventually aid in fundraising for their other humanitarian operations.

In addition, each blood service organization i receives a volume of blood donations

in region j, denoted by Pij; j = 1, . . . , n, where

Pij = Pij(Q), (3.3)

where each Pij is assumed to be concave and continuously differentiable. These blood

donation functions capture competition for blood donations among the blood service

organizations based on the levels of quality of service that they provide. If need

be, these functions can include parameters associated with the level of organizational

effectiveness as well as the impact preference of donors. Donors can be expected to be
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more willing to give to reputable blood collection service organizations. Also, donors

often prefer that the blood that they donate be used in a region in proximity to them.

For example, Mews and Boenigk (2013), in an online experiment with 144 potential

donors, found that organizational reputation is easily damaged by negative news in the

press and that this leads to a significantly lower willingness to donate blood for such

an organization among potential donors. They also note that, in highly competitive

markets, as is the case in Germany (and other countries), intangible assets such as

organizational reputation and nonprofit brands have been proven to be of critical

importance.

Since blood service organizations charge for the blood that they provide and dif-

ferent organizations can and do price differently, I associate an average price πi for

blood (typically, measured in pints) for blood service organization i; i = 1, . . . ,m.

These prices correspond to the price associated with the blood collection activity

and, hence, would be fraction of the price charged for a pint of blood to hospitals and

other medical facilities. For example, the price for a pint of blood can range in the

United States from about $150 to as much as $300 and this price would also cover

testing and delivery. The revenue that blood service organization i achieves that is

associated with its blood collection activities over the time horizon is, hence, given

by πi
∑n

j=1 Pij(Q).

I now construct the optimization problem faced by blood service organization i; i =

1, . . . ,m. Each blood service organization i seeks to maximize its transaction utility,

Ui, with the transaction utility capturing income due to contractual payments for

the blood that it will distribute as well as the monetized utility that the organization

gains from providing the collection services to various regions and the costs associated

with collection. In particular, the optimization problem is as follows:

Maximize Ui = πi

n∑
j=1

Pij(Q) + ωi

n∑
j=1

γijQij −
n∑
j=1

ĉij(Q) (3.4)
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subject to (3.1).

For additional background on utility functions for nonprofit and charitable orga-

nizations, see Rose-Ackerman (1982) and Malani, Philipson, and David (2003).

The Nash Equilibrium conditions for the noncooperative game (cf. Nash (1950,

1951)) are stated below.

Definition 3.1: Nash Equilibrium for Blood Donations

A service quality level pattern Q∗ ∈ K is said to constitute a Nash Equilibrium in

blood donations if for each blood service organization i; i = 1, . . . ,m,

Ui(Q
∗
i , Q̂

∗
i ) ≥ Ui(Qi, Q̂∗i ), ∀Qi ∈ Ki, (3.5)

where

Q̂∗i ≡ (Q∗1, . . . , Q
∗
i−1, Q

∗
i+1, . . . , Q

∗
m). (3.6)

According to (3.5), a Nash Equilibrium is established if no blood service organi-

zation can improve upon its transaction utility by altering its quality service levels,

given that the other organizations have decided on their quality service levels.

3.1.1 Variational Inequality Formulation

I now present the variational inequality formulation of the above supply chain

Nash Equilibrium in quality of service levels.

Theorem 3.1: Variational Inequality Formulation of the Nash Equilibrium

for Blood Donations

A service quality level pattern Q∗ ∈ K is a Nash Equilibrium according to Definition

3.1 if and only if it satisfies the variational inequality problem:

−
m∑
i=1

n∑
j=1

∂Ui(Q
∗)

∂Qij

× (Qij −Q∗ij) ≥ 0, ∀Q ∈ K, (3.7)
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or, equivalently, the variational inequality:

m∑
i=1

n∑
j=1

[
n∑
k=1

∂ĉik(Q
∗)

∂Qij

− ωiγij − πi
n∑
k=1

∂Pik(Q
∗)

∂Qij

]
×
[
Qij −Q∗ij

]
≥ 0, ∀Q ∈ K.

(3.8)

Proof: We know that each feasible set Ki; i = 1, . . . ,m, is convex since it con-

sists of simple box constraints. Hence, it follows that the Cartesian product K of

these sets is also convex. Under the imposed conditions on the blood donation func-

tions Pij(Q), and the total cost functions ĉij(Q), for all i, j, we also know that the

utility functions Ui; i = 1, . . . ,m, are concave and continuously differentiable, since

the utility functions consist of such functions, and a linear expression. Therefore,

according to Proposition 2.2 in Gabay and Moulin (1980), which established the

equivalence between the solution to a Nash equilibrium problem and the solution to

the corresponding variational inequality problem, we know that each blood service

organization i; i = 1, . . . ,m, maximizes its utility according to Definition 3.1 if and

only if Q∗ ∈ K solves:

−
m∑
i=1

n∑
j=1

∂Ui(Q
∗)

∂Qij

× (Qij −Q∗ij) ≥ 0, ∀Q ∈ K,

which is precisely variational inequality (3.7).

In order to obtain variational inequality (3.8) from variational inequality (3.7),

note that:

−∂Ui(Q
∗)

∂Qij

=
n∑
k=1

∂ĉik(Q
∗)

∂Qij

− ωiγij − πi
n∑
k=1

∂Pik(Q
∗)

∂Qij

, ∀i, j,

and, therefore, variational inequality (3.8) also holds. 2

The above variational inequality formulations of the Nash Equilibrium problem

can be put into standard variational inequality form given by (2.1a) presented in
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Chapter 2. The mn-dimensional column vector X ≡ Q and the mn-dimensional

column vector F (X) has as its (i, j)-th component, Fij:

Fij(X) ≡ −∂Ui(Q))

∂Qij

=

[
n∑
k=1

∂ĉik(Q)

∂Qij

− ωiγij − πi
n∑
k=1

∂Pik(Q)

∂Qij

]
, (3.9)

with the feasible set K ≡ K. Then, clearly, variational inequality (3.7) and (3.8) can

be put into standard form (2.1a).

Existence of a solution Q∗ to variational inequality (3.7) and also (3.8) is guar-

anteed from the standard theory of variational inequalities (cf. Chapter 2) since the

function F (X) that enters the variational inequality is continuous and the feasible

set K is compact. Moreover, from the strict monotonicity condition described in

Definition 2.4 (cf. Chapter 2) we have that the equilibrium solution Q∗ is unique.

3.1.2 An Equivalent Formulation of Variational Inequality with Lagrange

Multipliers

I now describe and analyze an equivalent formulation of variational inequality

(3.7) which provides a deeper analysis of the Lagrange multipliers that are associated

with the constraints (3.1), in the form of lower and upper bounds, on the levels of

quality.

Observe that the feasible set K can be rewritten as

K = {Q ∈ Rmn : Q
ij
−Qij ≤ 0, Qij − Q̄ij ≤ 0, i = 1, . . . ,m; j = 1, . . . , n}. (3.10)

Also, variational inequality (3.7) can be rewritten as a minimization problem. For

example, by setting

V (Q) = −
m∑
i=1

n∑
j=1

∂Ui(Q
∗)

∂Qij

× (Qij −Q∗ij), (3.11)
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we have that

V (Q) ≥ 0 inK and min
K

V (Q) = V (Q∗) = 0. (3.12)

Now consider the Lagrange function:

L(Q, λ1, λ2) = −
m∑
i=1

n∑
j=1

∂Ui(Q
∗)

∂Qij

× (Qij −Q∗ij)

+
m∑
i=1

n∑
j=1

λ1ij(Qij
−Qij)

+
m∑
i=1

n∑
j=1

λ2ij(Qij − Q̄ij), (3.13)

where Q ∈ Rmn, λ1, λ2 ∈ Rmn
+ , λ1 = {λ11, . . . , λmn}, and λ2 = {λ211, . . . , λ2mn}.

Since for the convex set K the Slater condition is verified and Q∗ is a minimal

solution to problem (3.14), according to well-known theorems (see Jahn (1994)), there

exist Lagrange multiplier vectors λ̄1, λ̄2 ∈ Rmn
+ such that the vector (Q∗, λ̄1, λ̄2) is a

saddle point of the Lagrange function (15), that is,

L(Q∗, λ1, λ2) ≤ L(Q∗, λ̄1, λ̄2) ≤ L(Q, λ̄1, λ̄2), ∀Q ∈ K, ∀λ1, λ2 ∈ Rmn
+ , (3.14)

and

λ̄1ij(Qij
−Q∗ij) = 0, λ̄2ij(Q

∗
ij − Q̄ij) = 0, i = 1, . . . ,m; j = 1, . . . , n. (3.15)

From the right-hand side of (3.16) it follows that Q∗ ∈ Rmn
+ is a minimal point of

L(Q, λ̄1, λ̄2) in the whole space Rmn and, hence, for all i and j:

∂L(Q∗, λ̄1, λ̄2)

∂Qij

= −∂Ui(Q
∗)

∂Qij

− λ̄1ij + λ̄2ij = 0 (3.16)

together with conditions (3.15).
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Conditions (3.15) and (3.16), which hold for all i and j, represent an equivalent

formulation of variational inequality (3.7).

Indeed, it is easy to see that from (3.15) and (3.16), variational inequality (3.7)

follows. For example, multiplication of (3.16) by (Qij −Q∗ij) yields

−∂Ui(Q
∗)

∂Qij

× (Qij −Q∗ij)− λ̄1ij(Qij −Q∗ij) + λ̄2ij(Qij −Q∗ij) = 0

and, by taking into account (3.15):

−∂Ui(Q
∗)

∂Qij

× (Qij −Q∗ij) = λ̄1ij(Qij −Q∗ij)− λ̄2ij(Qij −Q∗ij)

= λ̄1ij(Qij −Qij
) + λ̄2ij(Q̄ij −Qij) ≥ 0. (3.17)

Summation over all i and j of (3.17) yields variational inequality (3.7).

I now proceed to analyze the marginal transaction utilities of the blood service

organizations.

From (3.16) we have that

−∂Ui(Q
∗)

∂Qij

− λ̄1ij + λ̄2ij = 0, i = 1, . . . ,m; j = 1, . . . , n.

Therefore, if Q
ij
< Q∗ij < Q̄ij, then we get, using also (3.8):

−∂Ui(Q
∗)

∂Qij

=

[
n∑
k=1

∂ĉik(Q
∗)

∂Qij

− ωiγij − πi
n∑
k=1

∂Pik(Q
∗)

∂Qij

]
= 0,

i = 1, . . . ,m; j = 1, . . . , n. (3.18)

On the other hand, if λ̄1ij > 0 and, hence, Q∗ij = Q
ij

and λ̄2ij = 0, then we get that

−∂Ui(Q
∗)

∂Qij

=

[
n∑
k=1

∂ĉik(Q
∗)

∂Qij

− ωiγij − πi
n∑
k=1

∂Pik(Q
∗)

∂Qij

]
= λ̄1ij,
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i = 1, . . . ,m; j = 1, . . . , n, (3.19)

and if λ̄2ij > 0 and, hence, Q∗ij = Q̄ij and λ̄1ij = 0, we have that

−∂Ui(Q
∗)

∂Qij

=

[
n∑
k=1

∂ĉik(Q
∗)

∂Qij

− ωiγij − πi
n∑
k=1

∂Pik(Q
∗)

∂Qij

]
= −λ̄2ij,

i = 1, . . . ,m; j = 1, . . . , n. (3.20)

I now proceed to analyze (3.18) through (3.20). From equality (3.18), which holds

when Q
ij
< Q∗ij < Q̄ij, observe that for blood service organization i, which provides

a quality level of service of Q∗ij to blood donors in region j, the marginal transaction

utility is zero; that is, the marginal total cost:
∑n

k=1
∂ĉik(Q

∗)
∂Qij

is equal to the marginal

utility associated with providing the service and the marginal revenue associated with

the acquired blood donations in region j: ωiγij + πi
∑n

k=1
∂Pik(Q

∗)
∂Qij

.

According to equality (3.19), if Q∗ij = Q
ij

, then the minus marginal transaction

utility is equal to λ̄1ij. In other words, the marginal total cost exceeds the marginal

utility associated with providing the service and the marginal revenue. The blood

service organization i then suffers a marginal loss given by λ̄1ij.

Finally, according to (3.20), in which case Q∗ij = Q̄ij and λ̄2ij > 0, minus the

marginal transaction utility is equal to −λ̄2ij. In this case the marginal utility plus

the marginal revenue exceeds the marginal total cost. Blood service organization i

experiences a marginal gain given by λ̄2ij.

From the above analysis, the equilibrium/optimal Lagrange multiplier vectors of

variables λ̄1 and λ̄2 provide a rigorous interpretation of the behavior of the competition

with respect to the provision of blood services, under the quality service level bounds.

I remark that Langrangean analysis has also yielded useful insights into equilibrium

problems in cybersecurity (cf. Daniele, Maugeri, and Nagurney (2017)) and in finance

(see Daniele, Giuffre, and Lorino (2016)).
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3.1.3 An Illustrative Example

An example is now presented to illustrate some of the above concepts. I will

expand it in Section 3.3 to construct a series of numerical examples.

The example is inspired, in part, by the American Red Cross (cf. Arizona

Blood Services Region (2016)) issuing a recent call for donations since its supplies of

blood are low due to seasonal colds and flu and the devastating impact of Hurricane

Matthew, which made landfall in the United States on October 8, 2016, affected such

states as Florida, Georgia, and the Carolinas, and disrupted blood donations in many

locations in the Southeast of the United States. Specifically, I focus on Tucson, Ari-

zona, where the American Red Cross held recent blood drives at multiple locations

and where there are also competitors for blood, including United Blood Services.

Example 3.1: Two BSOs and Two Blood Collection Regions

Example 3.1 serves as the baseline. It consists of two blood service organizations

(BSOs), the American Red Cross and the United Blood Services, corresponding to

uppermost nodes 1 and 2 in Figure 3.2. There are also two blood collection regions

in Tucson, denoted by the lowermost nodes in Figure 3.2. For example, in its recent

call for blood donations (cf. Arizona Blood Services Region (2016)), the America Red

Cross had two locations in Tucson for collection. United Blood Services is a nonprofit

organization that was founded in 1943 in Arizona and provides blood and services

to more than 500 hospitals in 18 states (cf. United Blood Services (2016)). United

Blood Services also collects blood in Tucson. The collection site nodes 1 and 2 are

fixed, rather than mobile, for both organizations.

The components of the transaction utility functions (3.4) of the blood service

organizations are as follows.

I consider a month of collection of whole blood cells. According to Meyer (2017),

Executive Vice President of the American Red Cross (in a private communication),

productive Red Cross sites collect, on the average, 700-840 whole blood units a month.
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Figure 3.2. Example 3.1

The blood donation functions for the American Red Cross are:

P11(Q) = 10Q11 −Q21 −Q22 + 130, P12(Q) = 12Q12 −Q21 − 2Q22 + 135.

Note that the fixed terms of 130 and 135 reflect the baseline of repeat donors that

the American Red Cross expects over the month in the two regions, respectively.

The blood donation functions for the United Blood Services are:

P21(Q) = 11Q21 −Q11 −Q12 + 123, P22(Q) = 12Q22 −Q11 −Q12 + 135.

The United Blood Services has a lower baseline population of donors in these blood

collection regions than the America Red Cross. Its attention to quality is as good or

higher than that of the American Red Cross, according to the respective functions.

The utility function components of the transaction utilities of these blood service

organizations are:

ω1 = 9, γ11 = 8, γ12 = 9,

ω2 = 10, γ21 = 9, γ22 = 10.

The above parameters reflect that Organization 2 derives greater utility from provid-

ing quality blood collection services than Organization 1.
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The total costs of operating the blood collection sites over the time horizon, which

must cover costs of employees, supplies, and energy, and providing the level of quality

service, are:

ĉ11(Q) = 5Q2
11 + 10, 000, ĉ12(Q) = 18Q2

12 + 12, 000.

ĉ21(Q) = 4.5Q2
21 + 12, 000, ĉ22(Q) = 5Q2

22 + 14, 000.

The bounds on the quality levels are:

Q
11

= 50, Q̄11 = 80, Q
12

= 40, Q̄12 = 70,

Q
21

= 60, Q̄21 = 90, Q
22

= 70, Q̄22 = 90.

The prices, which correspond to the collection component of the blood supply

chain, are: π1 = 70 and π2 = 60.

First, observe that the objective function (3.4) of each blood service organization

is, given the above functional forms, concave and continuously differentiable. In

order to solve Example 3.1, I utilize variational inequality (3.8), and, because of

the simplicity of the functions above (which I generalize for additional numerical

examples), equilibrium quality levels can easily be obtained.

Specifically, using formula (3.10) for each Fij, I obtain the following equations:

F11(Q
∗) = 10Q∗11 − 772 = 0,

F12(Q
∗) = 36Q∗12 − 921 = 0,

F21(Q
∗) = 9Q∗21 − 750 = 0,

F22(Q
∗) = 10Q∗22 − 820 = 0.

Note that we also have to be cognizant of the lower and upper bounds on the quality

levels. Solving the above equations yields : Q∗11 = 77.2, Q∗12 = 25.5, Q∗21 = 83.3, and
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Q∗22 = 82. Checking whether the values lie within the respective bounds I observe that

they all do, except for Q∗12, which, hence, is set to its lower bound so that: Q∗12 = 40.

According to this solution, the Red Cross stands to collect 736.7 units of blood at

region 1, since P11(Q
∗) = 736.7 and 367.7 units of whole blood at region 2. United

Blood service, on the other hand, stands to collect, since P21(Q
∗) = 922.1, that

number of units per month at region 1, and 1001.80 units in region 2 (since P22(Q
∗) =

1001.8). Hence, United Blood Services collects a larger number of units of blood in

the two regions.

It is also known, according to the Lagrangean analysis above, that, since only Q∗12

is at its lower bound and no quality service levels are at their upper bounds: λ̄111 = 0,

λ̄121 = 0, λ̄122 = 0, and λ̄211 = 0, λ̄212 = 0, λ̄221 = 0, λ̄222 = 0. Also, since Q∗12 = Q
12

, I

get λ̄112 =
∑2

k=1
∂ĉ1k(Q

∗)
∂Q12

− ω1γ12 − π1
∑2

k=1
∂P1k(Q

∗)
∂Q12

= 1359. The American Red Cross

suffers a marginal loss given by λ̄112. The transaction utilities at the equilibrium

quality levels are: U1(Q
∗) = 5, 507.20 and U2(Q

∗) = 40, 285.99. In this illustrative

example, the United Blood Services organization provides a higher level of quality

services at each of its locations in Tucson and garners a higher transaction utility

than the American Red Cross.

In the numerical examples in Section 3.3, I consider more general blood donation

functions and also add both a competitor and a new region and analyze the resulting

blood service organization quality levels and the incurred transaction utilities.

3.2. The Algorithm

Here I outline the computational procedure used to solve the examples in Section

3.3. Specifically, the variational inequalities (3.7) and (3.8) are amenable to solution

via the Euler method of Dupuis and Nagurney (1993) which is described in Section

2.4. Below I present the closed form expression for the service quality levels of blood

service organizations.
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Explicit Formulae for the Euler Method Applied to the Blood Donation

Service Organization Game Theory Model

The elegance of this algorithm for the variational inequality (3.8) for the computation

of solutions to the model is clear from the following explicit formula (cf. also (2.21)).

In particular, I have the following closed form expression for the quality service levels

i = 1, . . . ,m; j = 1, . . . , n, at iteration τ + 1:

Qτ+1
ij = max{Q

ij
,min{Q̄ij, Q

τ
ij+aτ (πi

n∑
k=1

∂Pik(Q
τ )

∂Qij

+ωiγij−
n∑
k=1

∂ĉik(Q
τ )

∂Qij

)}}. (3.21)

3.3. Numerical Examples

I now present numerical examples focused on an area of Arizona. These build on

the illustrative example in Section 3.1. In Nagurney and Dutta (2019a) the Euler

method was implemented using FORTRAN on a Linux system. The convergence

criterion was ε = 10−5, that is, the Euler method was considered to have converged if,

at a given iteration, the absolute value of the difference of each quality service level

(see (3.21)) differed from its respective value at the preceding iteration by no more

than the ε. The Euler method was initialized by setting all the quality service levels

to their lower bounds.

In the subsequent examples, Examples 3.2 through 3.6, different features are

added. In Example 3.2, more general blood donation functions than those used in Ex-

ample 3.1 are introduced and this changes the solution significantly. In Example 3.3,

a collection region is added to show how that can benefit the competing blood service

organizations. Example 3.4 incorporates an additional blood service organization to

increase the competition. With Example 3.5, it is shown how over time increased

competition can affect the outcomes. Lastly, in Example 3.6, there are three blood

service organizations competing for donations in three collection regions. Hence, with

each example a layer of complexity is added, which demonstrates the generality of

the modeling and computational framework.
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Below I provide additional information for each numerical example.

Example 3.2: Two BSOs and Two Blood Collection Regions with Different

Form of Blood Donation Functions

Example 3.2 has the same network topology as Example 3.1, that is, the one depicted

in Figure 3.2. The data are identical to those in Example 3.1 except here, significantly

more general blood donation functions are used to observe how that changes the

solutions. In particular, the new Pij functions are constructed from the ones in

Example 3.1 thus: αij
√
Pij for i = 1, 2; j = 1, 2 with α11 = 50, α12 = 30, α21 = 40,

and α22 = 20.

The computed equilibrium quality levels are:

Q∗11 = 72.43, Q∗12 = 40.00, Q∗21 = 64.61, Q∗22 = 70.00.

The Euler method requires 34 iterations to converge to this solution. BSO 1 provides

a higher level of quality of service in Region 1 whereas BSO 2 does in Region 2. BSO

1 collects P11 = 1341.37 units of blood in Region 1 and P12 = 607.74 units of blood in

Region 2, whereas BSO 2 collects P21 = 1074.27 units in Region 1 and P22 = 587.39

units of blood in Region 2. The revenue of BSO 1 is 136,437.78 and that of BSO 2

is: 99,699.67. The monetized service utility component of the transaction utility of

BSO 1 is 8,455.10 and that of BSO 2 is 12,814.97. BSO 1 incurs costs of 77,031.92

and BSO 2 incurs costs of 69,285.48. The revenue minus the cost (net revenue) for

BSO 1 is: 59,405.86, whereas the revenue minus the cost for BSO 2 is: 30,414.19.

The values of the transaction utilities of the blood service organizations at the

equilibrium values are, hence: U1 = 67, 860.96 and U2 = 43, 229.16. Note that both

organizations have over the time period revenues that exceed their costs, which is

important for the sustainability of their operations. Also, BSO 1 garners a larger

number of units of blood donated in each region than does BSO 2. In Region 1

BSO 1 has a higher level of quality service than does BSO 2 but in Region 2 BSO
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2 provides a higher level of quality service. However, the “brand” of BSO 1, which

is also reflected in its P12 function, dominates, although not significantly in terms of

units collected in Region 2.

Observe that both Q∗12 and Q∗22 are at their lower bounds. Hence, according

to the Lagrange analysis theoretical results presented in Section 3.1 we know that:

λ̄111 = λ̄211 = 0 and λ̄121 = λ̄221 = 0. Also, we have that λ̄112 = 737.03, λ̄212 = 0, and

λ̄122 = 354.85, λ̄222 = 0. Therefore, BSO 1 suffers a marginal loss of 737.03 associated

with its services in Region 2 and BSO 2 suffers a marginal loss of 354.85 associated

with its services in Region 2.

Example 3.3: Two BSOs and Three Blood Collection Regions

Example 3.3 has the network topology in Figure 3.3. The data are as in Example 3.2

but with the addition of a possible new blood collection point in Region 3. In this

example, the quality of service level lower bounds associated with the blood service

organizations servicing Region 3 in terms of collections are set to 0.
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Figure 3.3. Example 3.3

The data are as follows: α13 = 40, α23 = 30, and

P13(Q) = 40
√

10Q13 −Q23 + 50, P23(Q) = 30
√

11Q23 −Q13 + 50,

γ13 = 9, γ23 = 10,
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and

ĉ13(Q) = 10Q2
13 + 15, 000, ĉ23(Q) = 9Q2

23 + 13, 000.

The lower and upper bounds on the new links, in turn, are:

Q
13

= 0, Q
23

= 0,

Q̄13 = 60, Q̄23 = 70.

The Euler method converges in 34 iterations to the following equilibrium quality

level pattern:

Q∗11 = 72.43, Q∗12 = 40.00, Q∗13 = 38.84,

Q∗21 = 64.61, Q∗22 = 70.00, Q∗23 = 33.70.

Note that the equilibrium quality levels for Q∗11, Q
∗
12, and Q∗21, Q

∗
22 remain as in

Example 3.2 since the underlying functions for these blood service organization and

blood region pairs remain as in Example 3.2. Also, it is known from the theoretical

analysis in Section 3.1 that since both Q∗13 and Q∗23 are neither at their lower or at

their upper bounds, we have that: λ̄113 = λ̄213 = λ̄123 = λ̄223 = 0.00.

BSO 1 receives 804.73 units of blood in Region 3 whereas BSO 2 receives 586.24

units of blood in Region 3. The revenue of BSO 1 is now 196,739.25 and that of BSO

2 is: 134,874.17. The monetized service utility component of the transaction utility is

11,601.49 for BSO 1 and 16,185.06 for BSO 2. Since now both organizations operate

a facility in an additional region the costs for BSO 1 are equal to 167,283.03 and for

BSO 2 the costs are: 127,589.64. The transaction utility for BSO 1, U1 = 41, 057.70,

and the transaction utility for BSO 2, U2, is now 23, 469.59.

The revenue for each organization is higher in this example, with a new blood

collection facility in a new region, than that obtained in Example 3.2. However, the

cost is also higher. By collecting blood donations from three regions, rather than
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two, the organizations achieve a higher monetized service utility by serving more

regions. The net revenue for BSO 1 is now 29,456.22 and it is 7,284.53 for BSO 2.

For each organization the revenue still exceeds the costs, which means that collecting

blood in Region 3 does not hurt them financially. However, the net revenue for each

organization is lower in this example than in Example 3.2.

Example 3.4: Three BSOs and Two Blood Collection Regions

Example 3.4 is constructed from Example 3.2, and has the same data, except for the

new data corresponding to the addition of a new competitor, BSO 3, as depicted in

Figure 3.4.
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Figure 3.4. Example 3.4

The data for BSO 3 are:

P31(Q) = 50
√

11Q31 −Q21 + 50, P32(Q) = 40
√

10Q32 −Q12 + 2000,

ω3 = 10, γ31 = 10, γ32 = 11,

with the total cost functions given by:

ĉ31(Q) = 6q231 + 10, 000, ĉ32(Q) = 5Q2
32 + 12, 000,

and with the lower and upper bounds as follows:

Q
31

= 50, Q̄31 = 90,
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Q
32

= 40, Q̄32 = 80.

The price π3 = 80. Recall that here I just consider the collection component of

the blood supply chains.

The Euler method requires 40 iterations for convergence and yields the following

equilibrium quality service level pattern:

Q∗11 = 72.43, Q∗12 = 40, Q∗21 = 64.61, Q∗22 = 70, Q∗31 = 70.73, Q∗32 = 66.65.

Observe that, since the blood donation functions of the original blood service or-

ganizations have not changed, their quality service levels and, hence, their transaction

utilities remain as in Example 3.2; the same holds for the donations, revenue amounts,

costs, as well as the monetized service utility component of the transaction utilities.

BSO 3 has a transaction utility U3 = 104, 706.44. The amounts of its blood

donations received are: P31 = 1, 381.47 and P32 = 2, 049.99. Its revenue is: 274,516.72

and its monetized service utility component of its transaction utility is: 14,111.81,

with its cost equal to 184,922.09. This blood service organization has a net revenue

equal to 89,594.63. BSO 3 has the highest net revenue of all the organizations, in

this example, since the net revenue for BSO 1 in Example 3.2 was 59,405.86 and

that for BSO 2: 30,414.19. This is due, in part to BSO 3 being able to achieve

the highest volume of donations. Its quality levels do not lie at the bounds so that:

λ̄131 = λ̄231 = λ̄132 = λ̄232 = 0.

Example 3.5: Competition from BSO 3 Intensifies

Example 3.5 is constructed from Example 3.4. It is assumed that some time has

transpired and now both BSOs 1 and 2 realize that there is more competition from

BSO 3.

Hence, their blood donation functions are now modified to capture the impact of

competition from BSO 3 as follows:
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For BSO 1:

P11(Q) = 50
√

10Q11 −Q21 −Q22 − .5Q31 + 130,

P12(Q) = 30
√

12Q12 −Q21 − 2Q22 − .3Q32 + 135,

and BSO 2:

P21(Q) = 40
√

11Q21 −Q11 −Q12 − .2Q21 + 113,

P22(Q) = 20
√

12Q22 −Q11 −Q12 − .3Q32 + 135.

The remainder of the data is identical to that in Example 3.4.

The Euler method converges in 40 iterations and yields the following quality ser-

vice level pattern:

Q∗11 = 73.57, Q∗12 = 40, Q∗21 = 64.99, Q∗22 = 70, Q∗31 = 70.73, Q∗32 = 66.65.

The transaction utilities are now: U1 = 64, 439.25, U2 = 42, 572.30, and U3 =

104, 222.39. The volumes of blood donations are now as follows: for BSO 1: P11 =

1, 318.43, P12 = 592.46; for BSO 2: P21 = 1, 059.31, P22 = 580.15, and for BSO 3:

P31 = 1, 381.22 and P32 = 2, 049.99. BSO 1 has a revenue of 133,762.72, costs equal to

77,860.27, and a monetized service quality component of the transaction utility equal

to 8,536.80. BSO 2, in turn, enjoys a revenue of 98,367.77, encumbers costs equal to

68,644.69, and a monetized service quality component of its transaction utility equal

to 12,849.21. BSO 3 obtains a revenue of 274,497.03, incurs costs of 185,38.53, and a

monetized service quality component of its transaction utility equal to 15,112.89.

Observe that only Q∗12 and Q∗22 are, again, at their lower bounds. Hence, according

to the Lagrange analysis theoretical results presented in Section 3.1 we know that:

λ̄111 = λ̄211 = 0, λ̄121 = λ̄221 = 0, λ̄131 = λ̄231 = 0 and also λ̄132 = λ̄232 = 0. Also, we now

have that λ̄112 = 720.98, λ̄212 = 0, and λ̄122 = 351.79, λ̄222 = 0. Therefore, BSO 1 suffers

a marginal loss of 720.98 associated with its services in Region 2 and BSO 2 suffers
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a marginal loss of 351.79 associated with its services in Region 2. These marginal

losses are lower than those they suffered in Example 3.2.

Interestingly, with increased competition, blood donors benefit in that the quality

service levels provided are now as high or higher than in Example 3.4 and both blood

service organizations (BSOs) 1 and 2 provide a higher quality service in Region 1

than in Example 3.4. But, of course, this comes at a higher cost so their transaction

utilities are lower now than in Example 3.4. Also, in terms of financial sustainability,

note that for BSO 1, its net revenue is now: 55,902.45; for BSO 2, this value is:

29,723.08, and for BSO 3: 89,109.50. With increased competition, the net revenues

decrease for all blood service organizations but these are, nevertheless, still significant

and would allow for investment, whether to enhance their operations or, if feasible,

to engage in R&D and further innovation for blood services.

In addition, comparing the amounts of blood collected by the two organizations

in the two regions in Example 3.2 with the results obtained here, it is seen that the

blood collections from both regions decrease for BSO 1 and BSO 2. However, due to

the presence of a competing organization the overall blood collection increases. This

finding is consistent with the empirical findings in Bose (2015).

Example 3.6: Three BSOs and Three Blood Collection Regions

Example 3.6 is constructed from Example 3.5 but it has a new blood collection region.

Hence, as depicted in Figure 3.5, there are now three regions for blood collection, as

well as three blood service organizations.

The data remain as in Example 3.5 with the addition of the new data below:

α13 = 40, α23 = 30, α33 = 50,

P13(Q) = 40
√

10Q13 −Q23 − .2Q33 + 150,

P23(Q) = 30
√

11Q23 −Q13 − .2Q33 + 150,
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Figure 3.5. Example 3.6

P33(Q) = 50
√

10Q33 −Q23 − .3Q13 + 100,

ĉ13(Q) = 100Q2
13 + 15, 000 ĉ23(Q) = 9Q2

23 + 13000, ĉ33(Q) = 8Q2
33 + 10000,

and with lower and upper bounds on the new links to Region 3 given by:

Q
13

= 0, Q
23

= 0, Q
33

= 40,

Q̄13 = 60, Q̄23 = 70, Q̄33 = 90.

Also, we have that

γ13 = 9, γ23 = 10, γ33 = 10.

The Euler method, again, converges in 40 iterations to the following equilibrium

pattern:

Q∗11 = 73.57, Q∗12 = 40, Q∗13 = 36.32,

Q∗21 = 64.99, Q∗22 = 70, Q∗23 = 31.51,

Q∗31 = 70.73, Q∗32 = 66.65, Q∗33 = 56.39.

The transaction utilities are now: U1 = 129, 918.82, U2 = 58, 877.95, and U3 =

168, 602.63.

All of the Lagrange multipliers are equal to 0 except for the following: λ̄112 =

720.98, λ̄122 = 351.79.
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All three blood service organizations enjoy a higher transaction utility by collecting

blood in all three regions, rather than just two regions.

The volumes of blood donations are now: for BSO 1: P11 = 1, 318.43, P12 =

592.46, P13 = 867.59; for BSO 2: P21 = 1, 059.31, P22 = 580.15, P23 = 635.70,

and for BSO 3: P31 = 1, 381.22, P32 = 2, 049.99, and P33 = 1, 246.49. BSO 1 has

a revenue of 194,493.95, a cost equal to 76,054.13, and a monetized service quality

component of the transaction utility equal to 11,478.99. BSO 2, in turn, enjoys a

revenue of 136,509.97, a cost 93,632.34, and a monetized service quality component

of its transaction utility equal to 16,000.32. BSO 3 obtains a revenue of 374,216.53,

incurs a cost 226,36.88, and a monetized service quality component of its transaction

utility equal to 20,751.96.

The net revenue of BSO 1 is now equal to 118,439.83; that of BSO 2 is: 42,877.63,

and that of BSO 3: 147,850.66. All blood service organizations gain by servicing

another region even in the case of competition.

3.4. Summary and Conclusions

In this chapter, I developed a game theory model for blood donations that focuses

on blood service organizations, which are increasingly challenged by competition in

this unique industry. Indeed, blood is a product that is life-saving, but, at the same

time, it cannot be manufactured, but must be donated by individuals. The model

is network-based and the governing concept is that of Nash Equilibrium. The blood

service organizations compete for blood donations in different regions and donors re-

spond to the quality of service that the blood service organizations provide in blood

collection. I formulated the governing equilibrium conditions as a variational in-

equality problem and prove that the solution is guaranteed to exist. Conditions for

uniqueness are also provided and additional theoretical results based on Lagrange
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theory associated with the lower and upper bounds on the service quality levels are

established.

The modeling and algorithmic framework is illustrated through a series of exam-

ples for which the computed equilibrium quality service levels as well as the Lagrange

multipliers, along with analysis are provided. The results obtained for the volume

of donations, the revenue, and the costs of each blood service organization, and the

monetized component of the transaction utility, which corresponds to the utility as-

sociated with providing quality service from the different examples, show how these

components vary depending on the intensity of competition. The results also demon-

strate how increased competition can yield benefits for blood donors in terms of

quality level of service. In addition, the examples show that the blood service organi-

zations can benefit, from enhanced transaction utility, by providing additional blood

collection sites. Importantly, the results also reveal that blood service organizations

that do “good,” can also be financially sustainable.

The results obtained from this model can also provide important managerial in-

sights. For blood collection regions that have lower quality levels, internal assessments

can be made by the blood service organizations to figure out the individual factors

responsible for such low levels such as longer wait time, unfriendly staff, etc. Ac-

cordingly, intervention techniques such as better scheduling, and improved training

of staff can be implemented. However, improving the service quality implies increase

in cost. The blood service organizations can easily observe the financial implications

of their decisions from the analysis.

In addition, it might be of value to blood service organizations to conduct surveys

at the blood collection sites and come up with service quality measures that are

weighted averages of the scores on the different operational facets mentioned in extant

literature that affect donor retention. The blood banking industry is highly regulated

by the Food and Drug Administration (FDA). Blood collection procedures have to
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follow strict protocols stated by the FDA in order to ensure that the collected blood

is safe. This research suggests that, in addition to emphasizing safety measures for

blood collection such as proper donor screening, attention should be given to the

service quality aspects of the blood collection sites to maintain a steady supply of

blood from motivated donors.
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CHAPTER 4

SUPPLY CHAIN NETWORK COMPETITION AMONG
BLOOD SERVICE ORGANIZATIONS

This chapter is based on the paper by Nagurney and Dutta (2019b). In the

competitive supply chain network model developed in this chapter I include multiple,

competing blood service organizations which are supplying blood to different hospitals

and trauma centers through multiple paths that include all major supply activities

such collection, processing and testing, shipment, storage and distribution. There is

a cost associated with each link representing the cost for that particular operation.

Similar to the utility function in Chapter 3, the utility function of the blood service

organizations here contains revenue as well as altruism/benefit components with the

latter being weighted. Further, in this model common/shared capacities on the blood

donations are imposed to incorporate supply side competition while upper and lower

bounds on the demand are included to address issues of shortage and wastage.

The equilibrium blood product flows in terms of RBCs are determined for each

blood service organization, given the competition and the constraints. Perishability

along the supply chain is captured and also differentiated prices are revealed. The

governing equilibrium conditions are that of Generalized Nash Equilibrium due to

the presence of shared constraints. I provide alternative variational inequality formu-

lations of the Generalized Nash Equilibrium problem, along with economic analysis

utilizing Lagrange theory associated with the various capacity constraints as well as

the demand constraints. Finally, an effective computational scheme is applied to

compute the equilibrium solutions in numerical examples comprising the case study.
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The remainder of this chapter is organized as follows. In Section 4.1, the model is

constructed, and alternative variational inequality formulations provided. In addition,

Lagrange analysis is conducted to gain insights into the economic meaning associated

with the supply and demand constraints. In Section 4.2, the computational procedure

is described, along with explicit formulae, at each iteration, for the RBC path flows,

and the Lagrange multipliers associated with the blood collection links, the physical

capacity link bounds, and the demand point upper and lower bounds for RBCs. I

then demonstrate the applicability of the framework through a case study consisting

of a series of numerical examples in Section 4.3. The summary of the results, and

conclusions are provided in Section 4.4.

4.1. The Multiple Blood Service Organizations Supply Chain

Network Competition Model

Blood service organizations (blood banks) collect blood periodically through blood

drives at collection facilities and/or through blood mobile units. Once whole blood

is collected at the collection sites it is sent to component laboratories for processing

and testing for disease markers. The processing involves separation of the whole

blood into components such as red blood cells, plasma, and platelets. Different blood

products have different shelf lives and each type of product also needs to be stored

at specific temperatures. Hence, supply chain management strategies for blood need

to be component-specific. I focus on RBCs in this model since these are the most

common type of blood product and are used for transfusions in surgeries, treatments

for cancer and other diseases, etc.

As depicted in Figure 4.1, there are I blood service organizations competing with

each other. Each blood service organization i can collect blood at niC collection sites.

I assume that there are J regions in which blood banks can set up collection sites or

send blood mobiles to. Each of the niC ; i = 1, .., I, collection sites belongs to a region
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Figure 4.1. Supply Chain Network Topology for I Blood Organizations

j; j = 1, . . . , J . Collected blood by i is then shipped to niB blood centers. From

there, blood is sent to niCL component laboratories for testing and processing and,

subsequently, shipped to niS storage facilities. The component laboratories may not
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be separate physical entities but may exist within the blood centers (cf. Nagurney,

Masoumi, and Yu (2012)). The subsequent tier of the supply chain network for

i; i = 1, . . . , I, in Figure 4.1, is comprised of niD distribution centers. The blood

banks may serve the same nH demand points consisting of hospitals, medical centers,

etc., and denoted by the bottom nodes: H1, . . . , HnH
in Figure 4.1. These “demand

markets” may be served by multiple blood banks since this is the case in reality. For

example, Baystate Health in Massachusetts procures blood from the American Red

Cross and from the Rhode Island Blood Bank in addition to having in-house blood

collection (Merola (2017)).

Each link between a pair of nodes denotes an activity along the supply chain.

The links from the blood service organizations to the collection sites represent the

collection procedure. The next set of links to the component labs represent the

processing and testing of blood. The successive sets of links denote, respectively,

storage, shipment, and distribution to demand points. There are also some direct

links from storage facilities to demand points since in some cases blood banks work

closely with the hospitals and monitor their inventory levels and ship the required

amount of blood directly to reduce cost (Wellis (2017)). Hence, the network topology

corresponding to even a single blood service organization, as depicted in Figure 4.1,

is more general than those constructed in Nagurney, Masoumi, and Yu (2012) and in

Masoumi, Yu, and Nagurney (2017).

This model can be used to capture regional as well as nationwide competition.

Moreover, large blood service organizations such as the American Red Cross and

the New York Blood Center have multiple component labs, storage, and distribution

centers, whereas smaller community ones might have one each. The time horizon in

which all the activities are occurring is assumed to be one week in this model.

The network topology of the blood service organizations’ supply chains is repre-

sented by G = [N,L] where N and L denote the sets of nodes and links, respectively.
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Table 4.1. Multiplier Notation for Perishability

Notation Definition
αa The arc multiplier associated with link a, which represents the percent-

age of throughput on link a. αa ∈ (0, 1]; a ∈ L.
αap The arc-path multiplier, which is the product of the multipliers of the

links on path p that precede link a; a ∈ L and p ∈ P ; that is,

αap ≡


δap

∏
b∈{a′<a}p

αb, if {a′ < a}p 6= Ø,

δap, if {a′ < a}p = Ø,

where {a′ < a}p denotes the set of the links preceding link a in path p
and δap = 1, if link a is contained in path p, and 0, otherwise.

µp The multiplier corresponding to the percentage of throughput on path

p; that is, µp ≡
∏
a∈p

αa; p ∈ P .

Li is defined as the set of all the directed links corresponding to the sequence of

activities pertaining to the supply chain network of blood service organization i;

i = 1, . . . , I. Associated with each link a is a total operational cost function, denoted

by ĉa ∀a ∈ L, representing the cost for each activity corresponding to collection, pro-

cessing and testing, storage and distribution. A path p consists of a sequence of links

originating at one of the top origin nodes in Figure 4.1, ranging from node 1 through

node I, and ending at a destination node, corresponding to one of the demand points:

H1, . . . , HnH
.

In order to capture perishability, I utilize a generalized network approach with

appropriate arc and path multipliers (see also, e.g., Nagurney et al. (2013)) as defined

in Table 4.1. Moreover, since the blood product under consideration is RBCs those

paths that would have a time length greater than 42 days are explicitly removed from

the network(s) in Figure 4.1 since they would, in effect, be infeasible (and against

Food and Drug Administration regulations).
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Let xp denote the nonnegative flow of blood on path p. Let the weekly demand

for blood from blood service organization i at demand point k be denoted by dik; i =

1, ..., I; k = H1, . . . , HnH
. Let P i

k denote the set of all paths joining blood service

organization node i with destination node Hk. The demands are grouped into the

vector d ∈ RInH
+ .

The conservation of flow equation that has to hold for each blood service organi-

zation i; i = 1, . . . , I, at each demand point k; k = H1, . . . , HnH
, is

∑
p∈P i

k

µpxp = dik, (4.1)

that is, the demand for blood at each demand point from each blood service organiza-

tion has to be satisfied. Observe that, according to (4.1) the amount of blood product

flow along a path that arrives at a destination node is equal to the path multiplier

times the initial flow on the path since there may be losses due to testing, etc.

Moreover, the path flows must be nonnegative, that is:

xp ≥ 0, ∀p ∈ P, (4.2)

where P denotes the set of all paths in the network in Figure 4.1 from origin nodes

corresponding to the organizations to the destination nodes corresponding to the

demand points.

Let fa denote the flow of blood on link a. Then, the following conservation of flow

equations must also hold:

fa =
∑
p∈P

xpαap, ∀a ∈ L. (4.3)

Note that, according to (4.3), the initial product flow on link a is the sum of the

product flows along paths that contain that link, taking into account possible losses

in the preceding activities.
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As mentioned earlier, the raw material in the supply chain for blood products

cannot be manufactured but has to be collected from voluntary donors. Hence, the

total amount of blood that can be collected is restricted in terms of the percentage of

population that is eligible to donate blood in a particular region in a given week. An

eligible donor, say, in Sarasota County in Florida, is unlikely to travel to a distant

region in the state or to another state, unless it is in proximity, to donate blood.

Therefore, I specify region-based populations and recall that, typically, a donor do-

nates one pint of blood at a time. Let Lj1 denote the set of top-tier links in the

network in Figure 4.1 representing blood collection in region j. Then we have the

following constraint for each region j; j = 1, . . . , J :

∑
a∈Lj

1

fa ≤ Sj, (4.4)

where Sj represents the total population eligible to donate blood in a given week in

region j; j = 1, . . . , J . Unlike commercial product supply chains with capacity con-

straints, in this case, the constraint is not on the physical capacity of the production

or collection facilities but on the actual supply of the raw material. Observe that

(4.4) is a common, that is, a shared constraint among the blood service organizations

if a given region includes collection links of multiple blood service organizations.

In addition, explicit link capacities are incorporated on all the network links in

Figure 4.1, which represent the actual physical capacities. Hence, for each blood

service organization i; i = 1, . . . , I, each link a ∈ Li has a positive associated capacity

denoted by ua. Then, the following constraints must also be satisfied:

fa ≤ ua, ∀a ∈ Li, i = 1, . . . , I. (4.5)

All the link flows in the network are grouped into the vector f ∈ RnL where nL is the

total number of elements in L, the set of all links.
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Finally, hospitals and medical centers, that is, the demand points, have con-

straints, which may be included in the contracts with the blood service organizations.

In particular, they contract for a lower bound for the weekly deliveries of blood, while

also dealing with upper bounds on the amounts that they can safely store in order to

also reduce wastage and associated costs. These constraints are as follows:

I∑
i=1

∑
p∈P i

k

µpxp ≥ dk, k = H1, . . . , HnH
, (4.6)

I∑
i=1

∑
p∈P i

k

µpxp ≤ d̄k, k = H1, . . . , HnH
, (4.7)

where dk denotes the lower bound for units of RBCs at demand point k and d̄k denotes

the upper bound at k. Observe that these are common/shared constraints for the

blood service organizations and, hence, will affect their feasible sets, as they compete

to serve the hospitals and medical centers with blood.

The total link cost on link a, denoted by ĉa, ∀a ∈ L, may, in general, be a function

of all the link flows in the network. This is to enable the modeling of competition for

resources across the blood service organizations’ supply chain networks. Hence, we

have that

ĉa = ĉa(f), ∀a ∈ L. (4.8)

For example, blood service organizations may compete for staff to conduct the various

supply chain network activities; moreover, they may compete for freight services for

distribution purposes, etc.

The price that demand point k is willing to pay for a unit of RBCs from blood

service organization i is denoted by ρik for i = 1, . . . , I; k = H1, . . . HnH
and is given

by the function:

ρik = ρik(d), i = 1, . . . , I; k = H1 . . . , HnH
. (4.9)
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Hence, the price charged per unit of RBCs may, in general, depend on the vector of

demands, due to the competition among the hospitals and medical centers for blood.

The prices represent the value that a hospital or medical center places on a unit of

RBC from a specific blood service organization and that it is willing to pay. These

price functions may incorporate parameters reflecting the duration of the contract, if

the BSO is selected by the particular hospital, as well as historical information as to

the reliability of the former.

In addition, since the majority of blood banks in the United States are nonprofits,

there is a utility associated with the service that they provide (cf. Nagurney, Alvarez

Flores, and Soylu (2016)). Let γik correspond to a measurement of the satisfaction

that blood service organization i derives from supplying blood to demand point k.

The overall such “service” utility of blood service organization i associated with all

the demand points is then given by
∑HnH

k=H1
γikdik. This service utility also represents

altruism (cf. Nagurney, Alvarez Flores, and Soylu (2016)). In addition, each blood

service organization i associates a weight ωi with its service utility, which monetizes

it. According to the function ωi
∑HnH

k=H1
γikdik, the greater the amount made available,

the more patients that can benefit and, therefore, the greater the good that can be

accomplished.

By synthesizing the above revenue and cost terms as well as what may be consid-

ered to be a weighted altruism function, the utility function of blood service organi-

zation i; i = 1, . . . , I, denoted by Ui, can be expressed as:

Ui =

HnH∑
k=H1

ρik(d)dik + ωi

HnH∑
k=H1

γikdik −
∑
a∈Li

ĉa(f). (4.10)

The utility function (4.10) is assumed to be concave and continuously differentiable.

It is to be noted that this is the utility of each blood service organization over a time

horizon of a week.
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In this model, the blood service organizations are trying to maximize their utility,

subject to constraints (4.1)-(4.7), while competing for the quantity of blood to be

obtained and to be supplied to the hospitals and medical centers. Hence, each blood

service organization has, as its strategies, its vector of path flows, Xi, such that

Xi ≡ {{xp}|p ∈ P i} ∈ RnPi

+ , (4.11)

where P i denotes the set of all paths associated with i and nP i denotes the number

of paths from i to the demand points. Then, X is the vector of all the blood banks’

path flows, that is, X ≡ {{Xi}|i = 1, . . . , I}. I, also, for simplicity of notation, use

x ≡ X.

Using the conservation of flow equations (4.3), shared constraint (4.4) can be

rewritten, for each region j = 1, . . . , J , in terms of the strategic variables, i.e., the

path flows, as: ∑
a∈Lj

1

∑
p∈P

xpδap ≤ Sj, j = 1, . . . , J. (4.12)

Since collection of blood is the first activity in the network and there are no preceding

links, from the definition of the arc-path multiplier we have αap = δap.

Similarly, the individual blood bank’s capacity constraints for all activities can be

rewritten as follows:

∑
p∈P

xpαap ≤ ua, ∀a ∈ Li, i = 1, . . . , I. (4.13)

The i-th blood bank’s individual feasible set is defined as, Ki, given by

Ki ≡ {Xi|(4.2) and (4.13) hold for i}. (4.14)

Further, I define the feasible set consisting of the shared constraints, S, as:

S ≡ {X| (4.12), (4.6), and (4.7) hold}. (4.15)
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Also, in view of (4.1), the demand price functions (4.9) can be reexpressed as:

ρ̂ik = ρ̂ik(x) ≡ ρik(d), i = 1, . . . , I; k = H1, . . . , HnH
. (4.16)

Using the conservation of flow equations (4.1) through (4.3), and, given the form of

the total link cost functions, the demand price functions, and the weighted altruism

functions, I can define each blood service organization utility function in terms of

path flows only, that is, Ûi(X) ≡ Ui; i = 1, . . . I. These utilities are then grouped into

an I-dimensional vector Û , where

Û = Û(X). (4.17)

In this model it is assumed that the blood service organizations compete noncooper-

atively in an oligopolistic market framework in which each blood service organization

selects its blood product flows to maximize its utility, until an equilibrium is achieved,

according to the following definition.

Definition 4.1: Blood Supply Chain Network Generalized Nash Equilib-

rium

A blood product path flow pattern X∗ ∈ K ≡
∏I

i=1K
i, X∗ ∈ S, constitutes a blood

supply chain network Generalized Nash Equilibrium if for each blood service organi-

zation i; i = 1, ..., I :

Ûi(X
∗
i , X̂

∗
i ) ≥ Ûi(Xi, X̂∗i ), ∀Xi ∈ Ki,∀X ∈ S, (4.18)

where

X̂∗i ≡ (X∗1 , . . . , X
∗
i−1, X

∗
i+1, . . . , X

∗
I ).

According to (4.18) an equilibrium is established if no blood service organization

can unilaterally improve upon its utility by selecting an alternative vector of blood
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product flows, given the blood product flows of the other blood service organizations,

and subject to the capacity constraints, both individual and shared ones, the shared

demand constraints, and the nonnegativity constraints. It is to be noted that K and

S are both convex sets.

If there are no coupling, that is, shared, constraints in this problem then X and

X∗ in Definition 4.1 need only lie in the feasible set K, and, under the assumption

of concavity of the utility functions and that they are continuously differentiable, we

know that (cf. Gabay and Moulin (1980) and Nagurney (1999)) the solution to what

would then be a Nash Equilibrium problem (see Nash (1950, 1951)) would coincide

with the solution to the following variational inequality problem: determine X∗ ∈ K,

such that

−
I∑
i=1

〈∇Xi
Ûi(X

∗), Xi −X∗i 〉 ≥ 0, ∀X ∈ K, (4.19)

where 〈·, ·〉 denotes the inner product in the corresponding Euclidean space and

∇Xi
Ûi(X) denotes the gradient of Ûi(X) with respect to Xi.

However, as mentioned earlier, since here the blood service organizations have

common constraints on the amount of blood that can be collected, and on the amounts

to be delivered, the strategies of each BSO affect both the objective functions as well

as the feasible sets of the other BSOs. Consequently, this is a Generalized Nash

Equilibrium (GNE) which cannot be directly formulated as variational inequality

problem, but may be formulated as a quasi-variational inequality.

4.1.1 Variational Equilibrium and Variational Inequality Formulation

I now define the variational equilibrium which, as emphasized in Chapter 2, Sec-

tion 2.3 is a refinement of the Generalized Nash Equilibrium and is a specific type

of GNE (see Kulkarni and Shahbhang (2012)). In a GNE defined by a variational

equilibrium, the Lagrange multipliers associated with the shared constraints are all
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the same which provides a fairness interpretation and makes sense from an economic

standpoint. Specifically, we have:

Definition 4.2: Variational Equilibrium

A strategy vector X∗ is said to be a variational equilibrium of the above Generalized

Nash Equilibrium game if X∗ ∈ K,X∗ ∈ S is a solution of the variational inequality:

−
I∑
i=1

〈∇Xi
Ûi(X

∗), Xi −X∗i 〉 ≥ 0, ∀X ∈ K, ∀X ∈ S. (4.20)

I now expand the terms in the variational inequality (4.20). From the definition of

a gradient, it is known that

−∇Xi
Ûi(X) =

[
−∂Ûi
∂xp

; p ∈ P i
k; k = H1, . . . , HnH

]
. (4.21)

We also know that, in view of (4.1) and (4.10), that for paths p ∈ P i
k:

−∂Ûi
∂xp

= −
∂(
∑HnH

l=H1
ρil(d)

∑
q∈P i

l
µqxq + ωi

∑HnH
l=H1

γil
∑

q∈P i
l
µqxq −

∑
b∈Li ĉb(f))

∂xp
.

(4.22)

Then, making use of (4.1) and (4.3) and the expression (4.16), we have that for

p ∈ P i
k:

∂Ĉp(x)

∂xp
≡
∑
a∈Li

∑
b∈Li

∂ĉb(f)

∂fa
αap, (4.23a)

∂ρ̂il(x)

∂xp
≡ ∂ρil(d)

∂dik
µp, (4.23b)

and obtain for p ∈ P i
k:

−∂Ûi
∂xp

=

∂Ĉp(x)

∂xp
− ωiγikµp − ρ̂ik(x)µp −

HnH∑
l=H1

∂ρ̂il(x)

∂xp

∑
q∈P i

l

µqxq

 . (4.24)
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Hence, (4.20) is equivalent to the variational inequality: determine x∗ ∈ K, x∗ ∈ S

such that:

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

[
∂Ĉp(x

∗)

∂xp
−ωiγikµp− ρ̂ik(x∗)µp−

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q

]
× [xp−x∗p] ≥ 0,

∀x ∈ K, x ∈ S. (4.25)

For simplicity, I refer to ∂Ĉp(x)

∂xp
as the marginal total cost of path p.

Variational inequality (4.25) can now be put into the standard form given by

(2.1a) in Chapter 2. Let the p-th component of F (X) for a given i, k, p ∈ P i
k, ∀i, k,

be [
∂Ĉp(x)

∂xp
− ωiγikµp − ρ̂ik(x)µp −

HnH∑
l=H1

∂ρ̂il(x)

∂xp

∑
q∈P i

l

µqxq

]
, (4.26)

with K ≡ K1 ≡ K∩S, then variational inequality (4.25) can be put into the standard

form.

Remark: Existence of an Equilibrium Solution

It is assumed that the feasible set K is nonempty, which will be the case if the

capacities on the links and blood donor regions are sufficient to satisfy the sum of the

demands for blood at the demand points. An equilibrium blood flow pattern X∗ =

x∗ ∈ K satisfying variational inequality (4.26); equivalently, variational inequality

(4.25), is guaranteed to exist since the function F (X) is continuous under the imposed

assumptions and the feasible set K is compact, due to the nonnegative assumption on

the blood path flows and the link and blood donor regional upper bound capacities.

4.1.2 Alternative Variational Inequality Formulations and Lagrange Anal-

ysis with Economic Interpretation

In this part, I first present an alternative variational inequality formulation to the

one in (4.25), again, in path flows, but using Lagrange multipliers. I then conduct an
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economic analysis using Lagrange theory and conclude with, yet, another variational

inequality, which I utilize for computational purposes in Section 4.2.

Let ηj, ∀j, and θa; a ∈ L, denote the Lagrange multipliers associated with con-

straints (4.12) and (4.13), respectively. In addition, let σk; ∀k, denote the Lagrange

multiplier associated with the k-th lower bound demand constraint (4.6) and let εk;

∀k, denote the Lagrange multiplier associated with the k-th upper bound demand

constraint (4.7). The above Lagrange multipliers are grouped into the respective vec-

tors: η ∈ RJ
+, θ ∈ RnL

+ , σ ∈ RnH
+ , and ε ∈ RnH

+ . Also, let βp; ∀p ∈ P , denote the

Lagrange multiplier associated with each path p nonnegativity constraint (4.2) and

I group these Lagrange multipliers into the vector β ∈ RnP
+ . I define the feasible set

K2 ≡ {(x, β, η, θ, σ, ε)|x ∈ RnP
+ , β ∈ RnP

+ , η ∈ RJ
+, θ ∈ R

nL
+ , σ ∈ RnH

+ , ε ∈ RnH
+ }. Then,

we have the following result:

Theorem 4.1: Alternative Variational Inequality Formulation of the Vari-

ational Equilibrium in Path Flows

The variational inequlity (4.25) is equivalent to the variational inequality: determine

the vector of equilibrium path flows and Lagrange multipliers, (x∗, β∗, η∗, θ∗, σ∗, ε∗) ∈

K2, such that:

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

[
∂Ĉp(x

∗)

∂xp
−β∗p+

J∑
j=1

∑
a∈Lj

1

η∗j δap+
∑
a∈Li

θ∗aαap−ωiγikµp−σ∗kµp+ε∗kµp−ρ̂ik(x∗)µp

−
HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q

]
× [xp − x∗p]

+
∑
p∈P

x∗p×[βp−β∗p ]+
J∑
j=1

[
Sj−

∑
a∈Lj

1

∑
p∈P

x∗pδap

]
×[ηj−η∗j ]+

I∑
i=1

∑
a∈Li

[
ua−

∑
p∈P

x∗pαap

]
×[θa−θ∗a]

+

HnH∑
k=H1

(
I∑
i=1

∑
p∈P i

k

µpx
∗
p − dk)× (σk − σ∗k) +

HnH∑
k=H1

(d̄k −
I∑
i=1

∑
p∈P i

k

µpx
∗
p)× (εk − ε∗k) ≥ 0,

∀(x, β, η, θ, σ, ε) ∈ K2. (4.27)
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Proof: By setting:

V (x) =
I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

[
∂Ĉp(x

∗)

∂xp
−ωiγikµp−ρ̂ik(x∗)µp−

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q

]
×[xp−x∗p],

(4.28)

variational inequality (4.25) can be rewritten as:

MinKV (x) = V (x∗) = 0. (4.29)

Under the previously imposed assumptions we know that all the underlying functions

in (4.29) are continuously differentiable and convex.

Then let:

bp = −xp ≤ 0, ∀p,

ej =
∑
a∈Lj

1

∑
p∈P

xpδap − Sj ≤ 0, ∀j,

ga =
∑
p∈P

xpαap − ua ≤ 0, ∀a,

hk = dk −
I∑
i=1

∑
p∈P i

k

µpxp ≤ 0, ∀k,

rk =
I∑
i=1

∑
p∈P i

k

µpxp − d̄k ≤ 0, ∀k,

(4.30)

and

Γ(x) = (bp, ej, ga, hk, rk)p∈P ;j=1,...,J ;a∈L;k=H1,...,HnH
. (4.31)

Hence, the feasible set K can be rewritten as

K = {x ∈ RnP
+ : Γ(x) ≤ 0}. (4.32)

I now construct the Lagrange function:

L(x, β, η, θ, σ, ε) =
I∑
i=1

(−
HnH∑
k=H1

ρ̂ik(x)
∑
p∈P i

k

µpxp − ωi
HnH∑
k=H1

γik
∑
p∈P i

k

µpxp +
∑
a∈Li

ĉa(Ax))
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+
∑
p∈P

βpbp +
J∑
j=1

ηjej +
∑
a∈L

θaga +

HnH∑
k=H1

σkhk +

HnH∑
k=H1

εkrk, (4.33)

∀x ∈ RnP
+ ,∀β ∈ RnP

+ ,∀η ∈ RJ
+,∀θ ∈ R

nL
+ ,∀σ ∈ RnH

+ ,∀ε ∈ RnH
+ ,

where A is the arc-path incidence matrix with component ap = 1, if link a is contained

in path p and 0, otherwise; β is the vector with components: {βp, ∀p ∈ P}, with η

and the other vectors of Lagrange multipliers as defined above.

It is straightforward to establish that the feasible set K is convex and that the

Slater condition holds. Then, if x∗ is the minimal solution to problem (4.29), there

exist β∗ ∈ RnP
+ , η∗ ∈ RJ

+, θ∗ ∈ RnL
+ , σ∗ ∈ RnH

+ , and ε∗ ∈ RnH
+ such that the vector

(x∗, β∗, η∗, θ∗, σ∗, ε∗) is a saddle point of the Lagrange function (4.33), that is:

L(x∗, β, η, θ, σ, ε) ≤ L(x∗, β∗, η∗, θ∗, σ∗, ε∗) ≤ L(x, β∗, η∗, θ∗, σ∗, ε∗), (4.34)

∀x ∈ RnP
+ ,∀β ∈ RnP

+ ,∀η ∈ RJ
+,∀θ ∈ R

nL
+ ,∀σ ∈ RnH

+ ,∀ε ∈ RnH
+ ,

and

β∗pb
∗
p = 0, ∀p ∈ P,

η∗j e
∗
j = 0, ∀j,

θ∗ag
∗
a = 0, ∀a ∈ L,

σ∗kh
∗
k = 0, ε∗kr

∗
k = 0, ∀k. (4.35)

From the right-hand side of (4.35) it follows that x∗ ∈ RnP
+ is a minimal point

of L(x, β∗, η∗, θ∗, σ∗, ε∗) in the entire space RnP and, therefore, we have that for all

p ∈ P i
k, ∀i, ∀k:

∂L(x∗, β∗, η∗, θ∗, σ∗, ε∗)

∂xp

=
∂Ĉp(x

∗)

∂xp
− ωiγikµp − ρ̂ik(x∗)µp −

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q − β∗p +

J∑
j=1

∑
a∈Lj

1

η∗j δap
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+
∑
a∈Li

θ∗aαap − σ∗kµp + ε∗kµp = 0, (4.36)

together with conditions (4.35). Conditions (4.35) and (4.36) correspond to an equiv-

alent variational inequality to that in (4.25). For example, if we multiply (4.36) by

(xp − x∗p) and sum with respect to p ∈ P i
k, ∀i, ∀k, we obtain:

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

∂Ĉp(x∗)
∂xp

− ωiγikµp − ρ̂ik(x∗)µp −
HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q

× (xp − x∗p)

=
I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

β∗pxp −
I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

β∗px
∗
p

−
I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

J∑
j=1

∑
a∈Li

j

η∗jxpδap +
I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

J∑
j=1

∑
a∈Lj

1

η∗jx
∗
pδap

−
I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

∑
a∈Li

θ∗aαapxp +
I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

∑
a∈Li

θ∗aαapx
∗
p

+
I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

σ∗kµpxp−
I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

σ∗kµpx
∗
p−

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

ε∗kµpxp+
I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

ε∗kµpx
∗
p.

(4.37)

Examining the expressions on the right-hand side of the equal sign in (4.37) it is

known that for j = 1, . . . , J , ∀a ∈ L, and for k; k = H1, . . . , HnH
:

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

βpx
∗
p = 0,

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

∑
a∈Lj

1

η∗jx
∗
pδap = η∗jSj,

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

θ∗aαapx
∗
p = θ∗aua,
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I∑
i=1

∑
p∈P i

k

σ∗kµpx
∗
p = σ∗kdk,

I∑
i=1

∑
p∈P i

k

ε∗kµpx
∗
p = ε∗kd̄k. (4.38)

Hence, the right-hand side of (4.37) simplifies to:

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

β∗pxp −
J∑
j=1

η∗j (
I∑
i=1

∑
a∈Li

j

HnH∑
k=H1

∑
p∈P i

k

xpδap − Sj)−
∑
a∈L

θ∗a(fa − ua)

+

HnH∑
k=H1

σ∗k(
I∑
i=1

∑
p∈P i

k

µpxp − dk)−
HnH∑
k=H1

ε∗k(
I∑
i=1

∑
p∈P i

k

µpxp − d̄k) ≥ 0, (4.39)

and the conclusion follows. 2

I now provide an economic interpretation of the Lagrange multipliers. I consider

a path p ∈ P i
k for a fixed i and k where x∗p > 0, that is, the equilibrium blood flow on

the path is positive. Then, from the first line of (4.35) it is known that β∗p = 0. In

particular, I consider multiple distinct cases which are given below.

Case I: None of the Associated Constraints are Active

Let us first consider the case when the associated path capacity and demand con-

straints are not active, that is, in equality (4.36) we have that, in addition to β∗p = 0,

the corresponding η∗j = 0, as well as the corresponding θ∗a = 0, with also σ∗k = 0 and

ε∗k = 0. Hence, we then have that (4.36) satisfies

∂Ĉp(x
∗)

∂xp
− ωiγikµp − ρ̂ik(x∗)µp −

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q − β∗p +

J∑
j=1

∑
a∈Lj

1

η∗j δap

+
∑
a∈Li

θ∗aαap − µpσ∗k + µpε
∗
k = 0

⇐⇒ ∂Ĉp(x
∗)

∂xp
= ωiγikµp + ρ̂ik(x

∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q, (4.40)

which means that, in this case, the marginal total cost on path p is equal to the

marginal utility associated with weighted altruism of the pair (i, k) plus the marginal

revenue associated with the path p.
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Case II: The Associated Donor Supply Constraints Are Active but Other

Capacity and Demand Constraints Associated with the Path Are Not

I now consider the situation in which the blood collected in the regions that link a of

path p is contained in is equal to the available supply, in which case the corresponding

η∗j of those regions j will be positive. Also, the other capacity and demand constraints

relevant to path p are not at their bounds. Hence, we then get from (4.36) that

∂Ĉp(x
∗)

∂xp
= ωiγikµp + ρ̂ik(x

∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q −

J∑
j=1

∑
a∈Lj

1

η∗j δap, (4.41)

and, therefore,

∂Ĉp(x
∗)

∂xp
< ωiγikµp + ρ̂ik(x

∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q. (4.42)

This result is quite intuitive, since it implies that the marginal total cost on path p is

less than the marginal utility associated with the weighted altruism plus the marginal

revenue associated with the path p. This situation is beneficial for BSO i.

Case III: One or More Links on the Path Are at Their Capacities But No

Other Associated Capacity or Demand Constraints Are Active

In this case it is known that (4.36) yields:

∂Ĉp(x
∗)

∂xp
= ωiγikµp + ρ̂ik(x

∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q −

∑
a∈Li

θ∗aαap, (4.43)

and, therefore,

∂Ĉp(x
∗)

∂xp
< ωiγikµp + ρ̂ik(x

∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q. (4.44)

This is also reasonable, since if the path p has one or more links at their capacities,

then one would expect that the marginal total cost of that path would be less that
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the marginal utility associated with the weighted altruism/benefit function plus the

marginal revenue associated with the path p.

Case IV: The Demand Point That the Path Is Destined to Has Its Demand

at the Lower Bound Whereas No Other Associated Constraints Are Active

In this case it is known that σ∗k > 0 and all other relevant Lagrange multipliers are

zero so that expression (4.36) now yields:

∂Ĉp(x
∗)

∂xp
= ωiγikµp + ρ̂ik(x

∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q + µpσ

∗
k, (4.45)

and, hence,

∂Ĉp(x
∗)

∂xp
> ωiγikµp + ρ̂ik(x

∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q. (4.46)

This is not a desirable situation since the marginal total cost on the path p now

exceeds the marginal utility associated with the weighted altruism/benefit function

plus the marginal revenue associated with the path p.

Case V: The Demand Point That the Path Is Destined to Has Its Demand

at the Upper Bound Whereas No Other Associated Constraints Are Active

I now consider the case when the demand at point k is at its upper bound and no

other associated constraints are active (and, therefore, all other associated Lagrange

multipliers are equal to zero). We know that then ε∗k > 0 and we have that, according

to (4.36):

∂Ĉp(x
∗)

∂xp
= ωiγikµp + ρ̂ik(x

∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q − µpε∗k, (4.47)

and, consequently,
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∂Ĉp(x
∗)

∂xp
< ωiγikµp + ρ̂ik(x

∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q. (4.48)

According to (4.48), the marginal total cost on path p, in this case, is less than

the marginal utility associated with the weighted altruism/benefit function plus the

marginal revenue of the BSO and demand point pair (i, k). This is clearly another

desirable situation.

Taking into account the Lagrange multipliers, an equivalent variational formula-

tion to variational inequality (4.27) is the following: determine the vector of equilib-

rium path flows and Lagrange multipliers, (x∗, η∗, θ∗, σ∗, ε∗) ∈ K3, such that:

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

[
∂Ĉp(x

∗)

∂xp
+

J∑
j=1

∑
a∈Lj

1

η∗j δap +
∑
a∈Li

θ∗aαap−ωiγikµp−σ∗kµp + ε∗kµp− ρ̂ik(x∗)µp

−
HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q

]
× [xp − x∗p]

+
J∑
j=1

[
Sj −

∑
a∈Lj

1

∑
p∈P

x∗pδap

]
× [ηj − η∗j ] +

I∑
i=1

∑
a∈Li

[
ua −

∑
p∈P

x∗pαap

]
× [θa − θ∗a]

+

HnH∑
k=H1

(
I∑
i=1

∑
p∈P i

k

µpx
∗
p − dk)× (σk − σ∗k) +

HnH∑
k=H1

(d̄k −
I∑
i=1

∑
p∈P i

k

µpx
∗
p)× (εk − ε∗k) ≥ 0,

∀(x, η, θ, σ, ε) ∈ K3, (4.49)

where K3 ≡ {(x, η, θ, σ, ε)|x ∈ RnP
+ , η ∈ RJ

+, θ ∈ R
nL
+ , σ ∈ RnH

+ , ε ∈ RnH
+ }.

For the case study in Section 4.3, I utilize variational inequality (4.49). It is to

be noted that variational inequality (4.49) can also be put into standard form (2.1a)

(cf. Chapter 2).

4.2. The Computational Procedure

In this section, I describe the realization of the Euler method (cf. Chapter 2)

which is discussed in details in Section 2.4. As shown in Dupuis and Nagurney (1993)
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and Nagurney and Zhang (1996), for convergence of the general iterative scheme, the

sequence {aτ} must satisfy:
∑∞

τ=0 =∞, aτ > 0, aτ → 0, as τ →∞.

Specifically, the notable feature of this algorithm, when applied to the blood supply

chain network competition model, is that it yields closed form expressions for the

variables at each iteration, resulting in an elegant procedure for computations and

solution.

Explicit Formulae for the Euler Method Applied to the Alternative Vari-

ational Inequality Formulation (4.49)

In particular, for this problem, we have the following closed form expressions for the

path flows at iteration τ + 1. For each path p ∈ P i
k,∀i, k, we have:

xτ+1
p = max{0, xτp + aτ (ρ̂ik(x

τ )µp +

HnH∑
l=H1

∂ρ̂il(x
τ )

∂xp

∑
q∈P i

l

xτqµq + ωiγikµp −
∂Ĉp(x

τ )

∂xp

−
J∑
j=1

∑
a∈Lj

1

ητj δap −
∑
a∈Li

θτaαap + στkµp − ετkµp)}. (4.50)

The Lagrange multipliers associated with blood collection links a ∈ Lj1; j =

1, . . . , J , are computed according to:

ητ+1
j = max{0, ητj + aτ (

∑
a∈Lj

1

∑
p∈P

xτpδap − Sj)}. (4.51)

The closed form expression for the Lagrange multipliers for the capacity constraint

on link a ∈ Li; i = 1, . . . , I is:

θτ+1
a = max{0, θτa + aτ (

∑
p∈P

xτpαap − ua)}. (4.52)

Next, I provide the closed form expressions for the Lagrange multipliers associated

with the upper and lower bounds on the demands. The explicit formulae for the
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Lagrange multipliers associated with the lower bounds on the demands at demand

points: k = H1, . . . , HnH
, are:

στ+1
k = max{0, στk + aτ (dk −

I∑
i=1

∑
p∈P i

k

µpx
τ
p)}. (4.53)

The Lagrange multipliers associated with the upper bounds on the demands at

the demand points: k = H1, . . . , HnH
, in turn, are computed according to:

ετ+1
k = max{0, ετk + aτ (

I∑
i=1

∑
p∈P i

k

µpx
τ
p − dk)}. (4.54)

The algorithm is assumed to have converged when the absolute value of successive

iterates is less than or equal to the imposed convergence tolerance ε.

4.3. Numerical Examples

The numerical examples are inspired by a particular region of New England in

which there is growing competition between blood service organizations. The exam-

ples are stylized but capture the features of the game theory model and demonstrate

the types of insights that can be revealed.

In the paper Nagurney and Dutta (2019b) the Euler method was implemented in

FORTRAN and a Linux system at the University of Massachusetts Amherst was used

for the computations. The Euler method was initialized with all variables identically

equal to 0.00. The {aτ} sequence utilized was: .1{1, 1
2
, 1
2
, 1
3
, . . .}. The convergence

tolerance utilized was 10−6; in other words, the algorithm was terminated when the

absolute value of successive computed variable iterates was less than or equal to this

value. The numerical examples below contain explicit input and output data.
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Example 4.1: Baseline Example with Two BSOs and Four Hospitals

I consider two blood service organizations (BSOs), with BSO 1 being a local one, and

BSO 2 being an iconic national one. Please refer to Figure 4.2 for the supply chain

network topology for all the numerical examples. BOS 1 has two collection sites,

a single blood center for processing and testing as well as a single component lab

and storage facility, similar to, for example, the Rhode Island Blood Center, which

is based in Providence, Rhode Island. BSO 2, in turn, has three collection sites, two

blood centers for testing and processing, two component labs and storage facilities,

as well as distribution centers.

There are four demand points with the first and third, denoted, respectively, by H1

and H3 denoting major trauma hospitals and the other two: H2 and H4 corresponding

to smaller hospitals.

Also, there are three regions, as depicted in Figure 4.2, with Region 2 being

common (that is, in proximity) to a collection site of each organization. Here regions

correspond to counties.

I now provide the data for this example. Example 4.1 serves as the baseline from

which other examples are constructed.

The number of people eligible to donate blood in each of the regions are:

S1 = 6000, S2 = 2400, S3 = 3000.

Such values are reasonable since the Northeast has a higher percentage of senior

citizens (65 years and above) (Wilson (2013)) and older people are found to be less

likely to donate or retire from donating after a certain age ( Shaz et al. (2011), Aleccia

(2017)).

The weekly upper and lower bounds on the demand at each hospital are given

below:

dH1
= 200, dH1 = 350,
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Figure 4.2. The Supply Chain Network Topology for Examples 4.1-4.4

dH2
= 60, dH2 = 150,

dH3
= 200, dH3 = 300,

dH4
= 100, dH4 = 120.

The link definitions, associated link capacities, arc multipliers, total cost func-

tions, and computed equilibrium link flows and associated link Lagrange multipliers
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are provided in Table 4.2. Since BSO 2 operates on a national level, it has more

resources than BSO 1 which is reflected in many of the link capacities. The cost

functions and demand price functions are constructed using information obtained

from Tracy (2010), Carlyle (2012), Gunpinar and Centeno (2015), and Masoumi, Yu

and Nagurney (2017). Also, there are losses on links associated with testing and

processing, and, hence, those arc multipliers are less than 1.

The demand price functions are as follows:

BSO 1:

ρ1H1(d) = −0.07d1H1 − 0.02d2H1 + 300, ρ1H2(d) = −0.08d1H2 − 0.03d2H2 + 310,

ρ1H3(d) = −0.05d1H3 − 0.01d2H3 + 300, ρ1H4(d) = −0.04d1H4 − 0.02d2H4 + 280.

BSO 2:

ρ2H1(d) = −0.05d2H1 − 0.01d1H1 + 280, ρ2H2(d) = −0.07d2H2 − 0.04d1H2 + 290,

ρ2H3(d) = −0.03d2H3 − 0.01d1H3 + 280, ρ2H4(d) = −0.05d2H4 − 0.02d1H4 + 270.

The equilibrium link solution are reported in Table 4.2 since the number of paths

is quite large - equal to 60, whereas the number of links is 38.

In addition, it is assumed that the weights associated with the altruism compo-

nent of the BSOs’ objective functions are both equal to 1 so that ω1 = ω2 = 1.

Furthermore, we have that γ1H1 = 2, γ1H2 = 1, γ1H3 = 2, and γ1H4 = 1, whereas

γ2H1 = 2, γ2H2 = 1, γ2H3 = 2, and γ2H4 = 1. Hence, both BSOs assign a higher value

to servicing the larger hospitals.

It can be seen from Table 4.2 that four of the links are at their capacities and

these are links: 13, 34, 36, and 38. All these links are shipment links. Link 13 is

associated with BSO 1, whereas the other links are in BSO 2’s supply chain network.

The BSOs are advised to invest in enhancing the capacities in these links.
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Table 4.2. Definition of Links, Associated Weekly Link Capacities, Arc Multipliers,
Total Operational Link Cost Functions, Equilibrium Link Solution, and Link Capacity
Equilibrium Lagrange Multipliers for Example 4.1

Link a From Node To Node ua αa ĉa(f) f ∗a θ∗a
1 1 C1

1 250 1.00 0.24f 2
1 + 0.6f1 139.33 0.00

2 1 C1
2 200 1.00 0.4f 2

2 + 0.9f2 87.59 0.00
3 C1

1 B1
1 300 1.00 0.06f 2

3 + 0.1f3 139.33 0.00
4 C1

2 B1
1 250 1.00 0.07f 2

4 + 0.16f4 87.59 0.00
5 B1

1 CL1
1 500 0.97 0.36f 2

5 + 0.45f5 226.92 0.00
6 CL1

1 S1
1 500 1.00 0.02f 2

6 + 0.04f6 220.11 0.00
7 S1

1 D1
1 500 1.00 0.03f 2

7 + 0.09f7 166.40 0.00
8 D1

1 H1 50 1.00 0.4f 2
8 + 0.7f8 21.37 0.00

9 D1
1 H2 50 1.00 0.5f 2

9 + 0.9f9 28.38 0.00
10 D1

1 H3 100 1.00 0.15f 2
10 + 0.8f10 76.64 0.00

11 D1
1 H4 60 1.00 0.35f 2

11 + 0.6f11 40.00 0.00
12 S1

1 H1 50 1.00 0.4f 2
12 + 0.9f12 33.71 0.00

13 S1
1 H3 20 1.00 0.7f 2

13 + 1f13 20.00 5.02
14 2 C2

1 250 1.00 0.25f 2
14 + 0.7f14 130.81 0.00

15 2 C2
2 300 1.00 0.2f 2

15 + 0.8f15 148.27 0.00
16 2 C2

3 200 1.00 0.3f 2
16 + 0.5f16 112.99 0.00

17 C2
1 B2

1 100 1.00 0.12f 2
17 + 0.3f17 70.11 0.00

18 C2
1 B2

2 150 1.00 0.08f 2
18 + 0.27f18 60.71 0.00

19 C2
2 B2

1 100 1.00 0.16f 2
19 + 0.45f19 70.86 0.00

20 C2
2 B2

2 200 1.00 0.1f 2
20 + 0.5f20 77.41 0.00

21 C2
3 B2

1 100 1.00 0.2f 2
21 + 0.6f21 35.85 0.00

22 C2
3 B2

2 100 1.00 0.05f 2
22 + 0.08f22 77.14 0.00

23 B2
1 CL2

1 600 0.98 0.36f 2
23 + 0.8f23 176.81 0.00

24 B2
2 CL2

2 500 0.96 0.3f 2
24 + 0.7f24 215.25 0.00

25 CL2
1 S2

1 500 1.00 0.02f 2
25 + 0.05f25 173.28 0.00

26 CL2
2 S2

2 500 1.00 0.03f 2
26 + 0.04f26 206.64 0.00

27 S2
1 D2

1 150 1.00 0.15f 2
27 + 0.4f27 88.02 0.00

28 S2
1 D2

2 150 1.00 0.18f 2
28 + 0.65f28 85.25 0.00

29 S2
2 D2

1 200 1.00 0.09f 2
29 + 0.12f29 116.35 0.00

30 S2
2 D2

2 150 1.00 0.14f 2
30 + 0.5f30 90.30 0.00

31 D2
1 H1 100 1.00 0.24f 2

31 + 0.8f31 48.90 0.00
32 D2

1 H2 80 1.00 0.32f 2
32 + 0.9f32 51.65 0.00

33 D2
1 H3 100 1.00 0.25f 2

33 + f33 63.82 0.00
34 D2

1 H4 40 1.00 0.5f 2
34 + 0.8f34 40.00 3.02

35 D2
2 H1 150 1.00 0.1f 2

35 + 0.35f35 96.01 0.00
36 D2

2 H2 20 1.00 0.5f 2
36 + 0.8f36 20.00 8.80

37 D2
2 H3 80 1.00 0.35f 2

37 + 0.7f37 39.53 0.00
38 D2

2 H4 20 1.00 0.4f 2
38 + 0.9f38 20.00 22.84
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I also report the additional equilibrium Lagrange multipliers for this example. In

particular, we have that: η∗1 = η∗2 = η∗3 = 0.00, since none of the supply/donor upper

bound constraints in the three regions are binding.

The equilibrium demands for the RBCs at the demand points from the BSOs are:

d∗1H1
= 55.09, d∗1H2

= 28.39, d∗1H3
= 96.64, d∗1H4

= 40.00,

d∗2H1
= 144.91, d∗2H2

= 71.65, d∗2H3
= 103.36, d∗2H4

= 60.00,

and the associated demand prices for the RBCs at the equilibrium demand solution

are:

ρ1H1(d
∗) = 293.25, ρ1H2(d

∗) = 305.58, ρ1H3(d
∗) = 294.13, ρ1H4(d

∗) = 277.20,

ρ2H1(d
∗) = 272.20, ρ2H2(d

∗) = 283.85, ρ2H3(d
∗) = 275.93, ρ2H4(d

∗) = 266.20.

Hence, none of the demands are at the imposed upper bounds and, consequently,

all the associated Lagrange multipliers ε∗k; k = 1, . . . , 4, are equal to 0.00. On the

other hand, three of the demands are at the imposed lower bounds, at demand points:

H1, H3, and H4, and, therefore, the associated Lagrange multipliers: σ∗H1
, σ∗H3

, and

σ∗H4
, are all positive. In particular, these Lagrange multipliers, at equilibrium, have

the following computed values:

σ∗H1
= 0.55, σ∗H2

= 0.00, σ∗H3
= 5.80, σ∗H4

= 27.63.

I now report, for completeness, components of the objective function (cf. (4.10))

for BSO 1 and for BSO 2. For BSO 1, at the equilibrium solution, the revenue is

equal to: 64,341.70; the altruism component of the utility function is: 371.84, and the

total cost associated with its supply chain is: 33,099.85, resulting in a net revenue of:
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31,241.85 and a utility of: 31,613.70. As for BSO 2 its revenue is equal to: 104,275.07;

its altruism component of its utility function is: 628.19, and the total cost associated

with its supply chain network is: 86,525.06, yielding a net revenue of: 17,750.01 and

a utility of: 18,378.20.

Example 4.2: Upper and Lower Bounds on Demands Removed

Example 4.2 is constructed from Example 4.1 and has the identical data except that

the demand lower and upper bound constraints at the four hospital demand points are

removed. In Example 4.2 the potential impacts of removing such constraints in terms

of the RBC deliveries and the associated prices as well as the BSOs’ net revenues and

utilities are explored. The variational inequality (4.49) was adapted accordingly to

remove the terms and variables associated with the demand lower and upper bounds

and the Euler method was, as well. The computed equilibrium link flow pattern and

link capacity Lagrange multipliers are reported in Table 4.3.

The Lagrange multipliers associated with the three regions remain as in Example

4.1, that is, η∗1 = η∗2 = η∗3 = 0.00, since none of the supply/donor upper bound

constraints in the three regions are binding. The link capacities at links 13 and 38

are now at their upper bounds. These were also at their upper bounds in Example

4.1 but links 34 and 36 are no longer at their upper bounds.

The equilibrium demands for the RBCs at the demand points from the BSOs are

now:

d∗1H1
= 67.08, d∗1H2

= 34.48, d∗1H3
= 99.99, d∗1H4

= 13.32,

d∗2H1
= 158.41, d∗2H2

= 77.42, d∗2H3
= 97.0, d∗2H4

= 41.32,

and the associated demand prices for the RBCs at the equilibrium demand solution

are:

ρ1H1(d
∗) = 292.14, ρ1H2(d

∗) = 304.92, ρ1H3(d
∗) = 294.03, ρ1H4(d

∗) = 278.64,
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Table 4.3. Link, Equilibrium Link Solution, and Link Capacity Equilibrium La-
grange Multipliers for Example 4.2

Link a f ∗a θ∗a
1 136.03 0.00
2 85.49 0.00
3 136.03 0.00
4 85.49 0.00
5 221.51 0.00
6 214.87 0.00
7 155.56 0.00
8 27.78 0.00
9 34.48 0.00
10 79.99 0.00
11 13.32 0.00
12 39.30 0.00
13 20.00 13.10
14 128.84 0.00
15 146.03 0.00
16 111.29 0.00
17 69.08 0.00
18 59.76 0.00
19 69.81 0.00
20 76.22 0.00
21 35.31 0.00
22 75.98 0.00
23 174.20 0.00
24 211.96 0.00
25 170.71 0.00
26 203.48 0.00
27 84.32 0.00
28 86.39 0.00
29 111.31 0.00
30 92.17 0.00
31 54.97 0.00
32 57.42 0.00
33 61.40 0.00
34 21.84 0.00
35 103.44 0.00
36 20.00 0.00
37 35.64 0.00
38 19.84 13.60
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ρ2H1(d
∗) = 271.41, ρ2H2(d

∗) = 283.20, ρ2H3(d
∗) = 276.09, ρ2H4(d

∗) = 267.67.

Without the imposition of demand bounds at the hospital demand points, the

total equilibrium demand at H1 = 225.49; the total demand at H2 = 111.90; the

total demand at H3 = 197.03, and that at H4 = 54.64.

For BSO 1 we have that, at the equilibrium solution, the revenue is equal to:

63,221.34; the altruism component of the utility function is: 381.94, and the total cost

associated with its supply chain is: 31,685.55, leading to a net revenue of: 31,535.79

and a utility of: 31,917.73. As for BSO 2, its revenue is now equal to: 102,772.48;

its altruism component of its utility function is: 629.65, and the total cost associated

with its supply chain network is now: 83,461.70, yielding a net revenue of: 19,310.78

and a utility of: 19,940.43.

Both blood service organizations now enjoy higher net revenues, as well as higher

utilities, without the demand constraints. However, observe that, without those con-

straints, both hospitals H3 and H4 may suffer serious shortfalls in terms on needed

RBCs since dH3
= 200 and dH4

= 100 and the total deliveries are only, respectively

197.03 and 54.64. This example illustrates the merits of imposing lower demand

bounds, which can be part of the contracts between the hospital(s) and the BSO(s).

Also, another interesting result is regarding the altruism component of the BSO

utility functions. In Example 4.1, BSO 1 enjoyed an altruism component value of

371.84, whereas now, in Example 4.2, it enjoys an altruism component value of 381.94.

BSO 2 enjoyed an altruism component value of 628.19, whereas, in Example 4.2, the

corresponding value is 629.65. Hence, the respective BSO altruism component values

have increased.

Example 4.3: Decrease in Supply Capacity

Example 4.3 is also constructed from Example 4.1 and has the same data except for

the following. However, a major disruption is introduced in the form of a disease so

that the number of those eligible to donate blood drops considerably. In particular,
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let us now have that:

S1 = 500, S2 = 220, S3 = 120.

The new computed equilibrium link flow solution and corresponding Lagrange mul-

tipliers associated with the link capacity constraints are reported in Table 4.4.

Observe that now, unlike in Example 4.1, and due to a much decreased volume

of possible donations, the constraints for both Regions 2 and 3 are tight and the

associated Lagrange multipliers are now: η∗1 = 0.00, η∗2 = 109.82, and η∗3 = 85.00.

The equilibrium demands for the RBCs at the demand points in Example 4.3 are:

d∗1H1
= 77.39, d∗1H2

= 23.21, d∗1H3
= 116.17, d∗1H4

= 45.68,

d∗2H1
= 122.61, d∗2H2

= 36.79, d∗2H3
= 83.33, d∗2H4

= 54.33.

The associated demand prices for the RBCs at the equilibrium demand solution are:

ρ1H1(d
∗) = 292.13, ρ1H2(d

∗) = 307.04, ρ1H3(d
∗) = 293.33, ρ1H4(d

∗) = 277.09,

ρ2H1(d
∗) = 273.10, ρ2H2(d

∗) = 286.50, ρ2H3(d
∗) = 276.33, ρ2H4(d

∗) = 266.37.

The equilibrium total demands at the four hospital demand points are at their

respective lower bounds. The Lagrange multipliers, at the equilibrium, associated

with the lower and upper bounds on the demands at the four demand points are now:

σ∗H1
= 107.14, σ∗H2

= 90.43, σ∗H3
= 110.02, σ∗H4

= 129.07,

and

ε∗H1
= 0.00, ε∗H2

= 0.00, ε∗H3
= 0.00, ε∗H4

= 0.00.

I now report the values, at the computed equilibrium, of the components of the

objective function (cf. (4.10)) for BSO 1 and for BSO 2. For BSO 1 the revenue
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Table 4.4. Link, Equilibrium Link Solution, and Link Capacity Equilibrium La-
grange Multipliers for Example 4.3

Link a f ∗a θ∗a
1 237.60 0.00
2 33.49 0.00
3 237.60 0.00
4 33.49 0.00
5 271.09 0.00
6 262.96 0.00
7 196.94 0.00
8 3.38 0.00
9 23.21 0.00
10 96.67 0.00
11 45.68 0.00
12 46.01 0.00
13 20.00 13.10
14 186.51 0.00
15 68.06 0.00
16 51.94 0.00
17 86.42 0.00
18 100.09 0.00
19 35.42 0.00
20 32.64 0.00
21 18.86 0.00
22 33.07 0.00
23 140.70 0.00
24 165.80 0.00
25 137.89 0.00
26 159.17 0.00
27 68.17 0.00
28 9.72 0.00
29 86.81 0.00
30 72.36 0.00
31 42.78 0.00
32 25.43 0.00
33 52.44 0.00
34 34.33 0.00
35 79.83 0.00
36 11.36 0.00
37 30.89 0.00
38 20.00 13.60
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obtained is now equal to: 76,616.49; the altruism component of the utility function

is: 574.02, and the total costs associated with its supply chain is: 50,978.78 resulting

in a net revenue of: 25,637.71 and a utility of: 26,094.73. As for BSO 2, its revenue

is now equal to: 81,522.08; its altruism component of its utility function is: 503.00,

and the total cost associated with its supply chain network is: 87,042.11, yielding a

net revenue of: -5,520.03 and a utility of: -5,017,03.

With a much reduced donor base, the two BSOs still manage to meet their de-

livery obligations. However, BSO 1 suffers a reduction in net revenue and utility of

approximately 20%, as compared to the corresponding values in Example 4.1. BSO

2, on the other hand, experiences not only a significant reduction in net revenue and

utility, but these attain negative values and, hence, BSO 2 incurs a financial loss. This

example illustrates that blood service organizations need to maintain a sufficiently

large donor base for the life-saving product that is blood. This is especially essential

in times such as disease outbreaks as well as during different times of various seasons

when donors may not be available due to holidays or inclement weather.

Example 4.4: Decrease in Capacities of Critical Links

Example 4.4 is also constructed from Example 4.1 but in Example 4.4 the impacts of

decreased capacity associated with BSO 2’s testing and processing and storage links

24 and 26 due to a natural disaster are explored. The data is the same as in Example

4.1 except that now the link upper bounds u24 = 200 and u26 = 200. The computed

equilibrium link flow pattern and associated Lagrange multiplier pattern are reported

in Table 4.5.

Observe that links: 13, 24, 34, 36, and 38 are now at their capacities.

The equilibrium Lagrange multipliers associated with the bounds on donors in the

three regions are: η∗1 = η∗2 = η∗3 = 0.00 since these constraints are not binding.

The equilibrium demands for the RBCs at the demand points in Example 4.4 are:
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Table 4.5. Link, Equilibrium Link Solution, and Link Capacity Equilibrium La-
grange Multipliers for Example 4.4

Link a f ∗a θ∗a
1 140.65 0.00
2 88.43 0.00
3 140.65 0.00
4 88.43 0.00
5 229.08 0.00
6 222.21 0.00
7 167.35 0.00
8 22.45 0.00
9 26.22 0.00
10 78.68 0.00
11 40.00 0.00
12 34.86 0.00
13 20.00 5.71
14 127.67 0.00
15 144.65 0.00
16 109.84 0.00
17 72.21 0.00
18 55.46 0.00
19 72.05 0.00
20 72.60 0.00
21 37.80 0.00
22 71.94 0.00
23 182.15 0.00
24 200.00 17.81
25 178.51 0.00
26 192.00 0.00
27 90.63 0.00
28 87.88 0.00
29 107.11 0.00
30 84.89 0.00
31 48.47 0.00
32 46.50 0.00
33 62.77 0.00
34 40.00 1.74
35 94.22 0.00
36 20.00 5.23
37 38.55 0.00
38 20.00 21.38
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d∗1H1
= 57.31, d∗1H2

= 26.22, d∗1H3
= 98.68, d∗1H4

= 40.00,

d∗2H1
= 142.69, d∗2H2

= 66.50, d∗2H3
= 101.32, d∗2H4

= 60.00.

The associated demand prices for the RBCs, in turn, at the equilibrium demand

solution are:

ρ1H1(d
∗) = 293.13, ρ1H2(d

∗) = 305.91, ρ1H3(d
∗) = 294.05, ρ1H4(d

∗) = 277.20,

ρ2H1(d
∗) = 272.29, ρ2H2(d

∗) = 284.30, ρ2H3(d
∗) = 275.97, ρ2H4(d

∗) = 266.20.

The equilibrium total demands at the hospital demand points H1, H3, and H4

are at their respective lower bounds. The Lagrange multipliers, at the equilibrium,

associated with the lower and upper bounds on the demands at the four demand

points are now:

σ∗H1
= 4.11, σ∗H2

= 0.00, σ∗H3
= 9.08, σ∗H4

= 30.20,

and

ε∗H1
= 0.00, ε∗H2

= 0.00, ε∗H3
= 0.00, ε∗H4

= 0.00.

BSO 1’s revenue is now equal to: 64,925.04; the altruism component of the utility

function is: 78.20, and the total costs associated with its supply chain is: 33,706.32.

Hence, the net revenue is: 31,218.71 and the utility is: 31,596.91. BSO 2’s revenue

is now equal to: 101,693.17; its altruism component of its utility function is: 614.52,

and the total cost associated with its supply chain network is: 84,635.16, resulting in

a net revenue of: 17,058.01 and a utility of: 17,672.53.

Note that, with decreased capacity on critical links, BSO 2’s net revenue as well as

utility decrease relative to their respective values in Example 4.1. Interestingly, the
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reduced capacity of BSO 2 also affects BSO 1 and, although it now has higher rev-

enues, it also incurs higher costs, resulting in a reduced value of net revenue (31,218.71

versus 31,241.85). This suggests that the blood service organizations may gain by co-

operating rather than competing.

4.4. Summary and Conclusions

The blood services industry in the United States is undergoing major changes,

which include increasing competition among blood banks, that is, blood service or-

ganizations. In this chapter, I presented the first game theory model for competitive

supply chain networks associated with blood service organizations that includes not

only perishability but also an altruism component in their objective functions since

they are nonprofit organizations. In addition to capacities on the links represent-

ing the network economic activities associated with such supply chain networks, I

also incorporated upper bounds reflecting donations in different regions as well as

lower bounds and upper bounds associated with the demand for RBCs at the various

demand points, which correspond to hospitals and medical centers. Such demand

constraints ensure that each hospital or medical center has the minimum amount

needed for a given week while also guaranteeing that waste will be reduced because

of the upper bounds.

The novel features of the competitive supply chain network game theory model

resulted in a Generalized Nash Equilibrium (GNE), rather than just a Nash Equilib-

rium, since the utility function of each blood service organization depends on its own

strategies in the form of blood path flows, as well as those of the other BSOs, and

the feasible sets do as well. The concept of a variational equilibrium is utilized to

transform the problem into a variational inequality problem in which the Lagrange

multipliers corresponding to the shared / common constraints are equal among the

competitors. This provides a nice economic fairness interpretation.
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Alternative variational inequality formulations are also provided and a Lagrange

analysis with economic interpretations are presented. An algorithm was outlined

which resolves the problem into closed form expressions at each iteration in terms of

path flows and the various Lagrange multipliers. The algorithm was then applied to

compute solutions to a series of numerical examples for which full input and output

data are reported. The examples illustrated the impacts of disruptions as in a reduc-

tion in the number of donors as well as that of decreases in capacities of critical links

such as testing and processing on RBC prices, demands, net revenues of the blood

service organizations, and their overall utilities. The framework here focused on com-

petition among blood service organizations not only in terms of blood donations but

also for business with hospitals as well as along their supply chain networks through

the generality of the link total cost functions.

104



CHAPTER 5

MULTITIERED BLOOD SUPPLY CHAIN NETWORK
COMPETITION: LINKING BLOOD SERVICE

ORGANIZATIONS, HOSPITALS, AND PAYERS

This chapter is based on the paper by Dutta and Nagurney (2018). In this chapter,

I develop a multitiered blood supply chain network model. Extending the work in

Chapter 4, here I move further down the blood supply chain to include another tier

of stakeholders to the competitive blood supply chain network framework. In the

network structure presented here there are three distinct tiers of decision-makers

namely blood service organizations, hospitals and medical centers, and payers such

as government programs and private insurance companies.

While in the Chapter 4 I focused only on the economic transactions between the

blood service organizations and hospitals, in this chapter both the key economic rela-

tionships in the blood banking industry are considered through the reimbursements

received by hospitals for transfusing blood to patients from the payer groups as well as

the price per unit of blood charged by the blood service organizations to the hospitals.

The behavior of the individual decision-makers is discussed and their optimality

conditions are presented. The variational inequality formulation of the equilibrium

conditions for the entire blood supply chain is also provided. The objective here

is to determine the equilibrium flows along various paths from the blood service

organizations to the hospitals, the amount of blood transfused by different hospitals

to patients belonging to different payer groups in order to meet the demand, the

price per unit that hospitals agree to pay to the different blood suppliers, and the

reimbursements received by different hospitals from different payer groups.
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The rest of this chapter is organized as follows. In Section 5.1, I present the

multitiered blood supply chain network competition model, consisting of blood service

organizations, hospitals, and the payers. The behavior of each class of decision-

makers is described, and a unified variational inequality derived, whose solution yields

equilibrium blood logistical flows and prices. Illustrative examples are presented for

clarification and exposition purposes. In Section 5.2, qualitative properties of the

equilibrium pattern are given, and existence established under reasonable conditions.

The algorithm that is applied is outlined in Section 5.3, and explicit formulae at a

given iteration presented, along with conditions for convergence. Lastly, I present a

case study in Section 5.4 and summarize the results, and present my conclusions in

Section 5.5.

5.1. The Multitiered Blood Supply Chain Network Compe-

tition Model

The blood supply chain network (cf. Figure 5.1) consists of I competing blood

service organizations (BSOs), with a typical BSO denoted by i, HnH
hospitals, with a

typical hospital denoted by j, and TnT
payers, with a typical payer denoted by k. The

BSOs are depicted by the top-most nodes in Figure 5.1 and the payers by the bottom

nodes. Examples of patient payer types include: Medicare, Medicaid, other public

health insurance programs, private health insurance such as UnitedHealthcare, the

uninsured, etc. Each blood service organization i collects blood from niC collection

sites that include fixed and mobile sites. Once blood is collected by BSO i; i =

1, . . . , I, it is sent to niP component laboratories for testing and processing where

whole blood is separated into components such as Red Blood Cells (RBCs), platelets,

and plasma.

Blood is shipped from the component laboratories of each BSO i to niS storage

facilities that constitute the fifth tier of the supply chain network. The next level
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Figure 5.1. Blood Supply Chain Network Topology

of nodes represents the niD; i = 1, . . . , I, distribution centers. At times, the compo-

nent laboratories, storage facilities, and distribution centers are not separate physical

entities but exist within the blood centers. At the seventh tier blood reaches hos-
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pitals from multiple suppliers with whom they have contracts (Merola (2017)). Up

till the seventh tier this network structure is identical to Figure 4.1 (cf. Chapter 4).

However, in contrast to Chapter 4, here the hospitals also compete with one another

for patients belonging to different payer groups denoted by the last tier of nodes as

mentioned earlier. Each set of links between a pair of nodes denotes an activity along

the supply chain such as, for example, the collection of whole blood from donors,

shipment, testing and processing, storage, distribution, and, finally, transfusion.

In the subsequent sections the behavior of the blood service organizations is dis-

cussed and then that of the hospitals and, finally, the payers.

5.1.1 Behavior of the Blood Service Organizations and Their Optimality

Conditions

A path is a sequence of links, which are directed, and originates at a top origin

node representing a blood service organization and ending at a hospital node (cf.

Figure 5.1). N and L are defined as the sets of nodes and links, respectively, up to

the seventh tier representing the hospitals with Li denoting the set of links in BSO

i’s supply chain for i = 1, . . . , I. Associated with each link a, ∀a ∈ L, is a total cost

function ĉa representing the cost for the activity.

A significant challenge in managing blood supply chain is the perishable nature

of blood. Every component of blood is perishable with different expiration rates and

shelf lives. In order to capture perishability, the generalized network approach with

appropriate arc and path multipliers provided in Table 4.1 (cf. Chapter 4) is utilized

here. Since, again, we are dealing with RBCs those paths that would have a time

length greater than 42 days are explicitly removed from the network(s) in Figure 5.1

since they would, in effect, be infeasible (and against Food and Drug Administration

regulations).

108



Some of the functions defined below were used in Chapter 4. xp denotes the

nonnegative flow of blood on a path p sent from a BSO to a hospital. Let the

contracted amount of blood supplied by BSO i to hospital j be denoted by qij; i =

. . . , I; j = H1, . . . , HnH
. This is assumed to be the projected demand for a week. Let

P i
j denote the set of all paths joining BSO i with hospital j and P is the set of all

paths.

The conservation of flow equation that has to hold for each BSO i; i = 1, . . . , I,

at hospital j; j = H1, . . . , HnH
, is:

∑
p∈P i

j

xpµp = qij, (5.1)

where µp ≡
∏
a∈p

αa; p ∈ P, denotes the multiplier corresponding to the percentage

of throughput on path p (cf. Table 4.1). Hence, (5.1) implies that the sum of all

the actual, after perishability is factored in, path flows from a particular BSO to a

particular hospital should be equal to their contracted supply amount. The total

amount of blood supplied by a blood service organization i, qi, can be written as∑HnH
j=H1

∑
p∈P i

j
xpµp = qi.

Since the path flows must be nonnegative, we have that:

xp ≥ 0, ∀p ∈ P. (5.2)

Let fa denote the flow of blood on link a. Then, the following conservation of flow

equations must hold:

fa =
∑
p∈P

xpαap, ∀a ∈ L. (5.3)

According to (5.3), the initial blood product flow on link a is the sum of the

product flows along paths that contain that link, taking into account possible losses

in the preceding activities. All the flows corresponding to links in L are grouped into
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the vector f ∈ RnL where nL is the total number of elements in L. The total link cost

on a link a is assumed to be, in general, a function of all the flows in the network.

Therefore, we have that

ĉa = ĉa(f), ∀a ∈ L. (5.4)

The total cost on each link is assumed to be convex and continuously differentiable.

The total cost incurred by a blood service organization will be the sum of all the total

costs on links operated by the blood service organization. The price per unit charged

by BSO i to hospital j is denoted by ρ1∗ij . I discuss how the equilibrium prices are

recovered, once the model is solved, later in this section. The revenue generated by

each BSO is the product of the unit price and the amount of blood supplied.

As noted earlier, blood service organizations in the United States are predomi-

nantly nonprofits. Therefore, there is a utility associated with the service that they

provide (cf. Nagurney, Alvarez Flores, and Soylu (2016) and Nagurney and Li (2017)).

Let γij correspond to a measurement of the satisfaction that blood service organiza-

tion i derives from supplying blood to hospital j. The overall such “service” utility

of blood service organization i associated with all the demand points is then given by∑HnH
j=H1

γijqij, similar to the service utility function described in Chapter 4. In addi-

tion, each blood service organization i associates a weight ωi with its service utility,

which monetizes it.

The utility function of blood service organization i; i = 1, . . . , I, denoted by Ui,

can be expressed as:

Ui =

HnH∑
j=H1

ρ1∗ij qij + ωi

HnH∑
j=H1

γijqij −
∑
a∈Li

ĉa(f), (5.5a)

or, equivalently, in terms of path flows, through the use of (5.1) and (5.3):

Ûi =

HnH∑
j=H1

ρ1∗ij
∑
p∈P i

j

xpµp + ωi

HnH∑
j=H1

γij
∑
p∈P i

j

xpµp −
∑
a∈Li

˜̂ca(x), (5.5b)
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with˜̂ca(x) ≡ ĉa(f), ∀a ∈ L.

It is to be noted that the utility of each blood service organization is over a time

horizon of a week.

The blood service organizations seek to maximize their utility, while competing

for the quantity of blood supplied. Hence, each BSO has as its strategic variables, its

path flows, with Xi denoting the vector of path flows corresponding to blood service

organization i; i = 1, . . . , I:

Xi ≡ {{xp}|p ∈ P i}} ∈ RnPi

+ , (5.6)

where P i denotes the set of all paths associated with BSO i and nP i denotes the

number of paths from BSO i to the hospitals. X is the vector of all path flows, that

is, X ≡ {{Xi}|i = 1, . . . , I}. Further, the feasible set for blood service organization i

is defined as Ki ≡ {Xi|xi ∈ R
nPi

+ }. All vectors, as before, are column vectors.

The blood service organizations compete noncooperatively in an oligopolistic mar-

ket framework in which each blood service organization selects its own optimal blood

product flows to maximize its utility, given the optimal ones of its competitors. The

governing equilibrium concept underlying the behavior of the blood service organiza-

tions is, therefor, that of Nash (1950, 1951) equilibrium. The optimality conditions for

all the blood service organizations simultaneously can be expressed as the following

variational inequality (cf. Gabay and Moulin (1980), Nagurney (1999)): determine

x∗ ∈ K1, K1 ≡
∏I

i=1Ki, such that:

I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
∂Ĉp(x

∗)

∂xp
− ωiγijµp − ρ1∗ij µp

]
× [xp − x∗p] ≥ 0 ∀x ∈ K1, (5.7)

where ∂Ĉp(x)

∂xp
is for path p ∈ P i

j given by
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∂Ĉp(x)

∂xp
≡
∑
a∈Li

∑
b∈Li

∂ĉb(f)

∂fa
αap. (5.8)

The optimality conditions as expressed by (5.7) provide a nice economic interpretation

that a blood service organization will supply blood to a hospital by a path p (flow on

the path will be positive) if the “marginal total cost” on the path is exactly equal to

marginal utility associated with weighted altruism of the pair (i, j) plus the marginal

revenue associated with the path p, with perishability accounted for.

5.1.2 Behavior of the Hospitals and Their Optimality Conditions

I now discuss the competition among the hospitals. Hospitals are the stakeholders

in the blood supply chain network who are involved in transactions with both blood

suppliers, the BSOs, and the patient payer groups.

Each hospital j decides to transfuse an amount qjk of RBCs to patient group k.

The total amount of blood transfused by hospital j; j = H1, . . . , HnH
, cannot exceed

the total amount it receives from its contracted suppliers. Therefore, the following

condition must be satisfied
TnT∑
k=T1

qjk ≤
I∑
i=1

qij, (5.9a)

or, equivalently,
TnT∑
k=T1

qjk ≤
I∑
i=1

∑
p∈P i

j

xpµp. (5.9b)

The price charged by hospital j; j = H1, . . . , HnH
, for per unit of RBC transfused

is denoted by ρ2∗j . Similar to blood service organizations, many hospitals are not-

for-profits and, hence, will have a weighted altruism factor in their utility function

which is given as βj
∑TnT

k=T1
θjkqjk. In the case of a for profit hospital the weight βj

will simply be zero.

In addition to the cost of acquiring blood from the suppliers, hospitals incur a

holding cost for maintaining a proper inventory of blood. This cost is denoted by hj
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for hospital j; j = H1, . . . , HnH
, and is a function of

∑TnT
k=T1

qjk, the total amount of

blood transfused at hospital j.

The optimization problem for hospital j; j = H1, . . . , HnH
, then becomes

Maximize ρ2∗j

TnT∑
k=T1

qjk + βj

TnT∑
k=T1

θjkqjk − hj(
TnT∑
k=T1

qjk)−
I∑
i=1

ρ1∗ij
∑
p∈P i

j

xpµp, (5.10)

subject to constraint (5.9b) and the nonnegativity constraints: xp ≥ 0, ∀p ∈ Pj,

where Pj is the set of all paths terminating in j, and qjk ≥ 0 for all j and k.

Now the optimality conditions of the hospitals are obtained, assuming that each

hospital is faced with the above optimization problem, and that the hospitals compete

in a noncooperative manner to maximize their utilities, given the actions of the other

hospitals. It is to be noted that the hospitals seek to determine the optimal quantities

to be supplied to the patient groups as well as the amount to be received from different

suppliers. Assuming that the holding cost for each hospital is convex and continuous,

the optimality conditions for all hospitals, simutaneously, coincide with the solution

of the variational inequality: determine (x∗, q∗, η∗) ∈ K2 satisfying

I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
ρ1∗ij µp−η∗jµp

]
× [xp−x∗p]+

HnH∑
j=H1

TnT∑
k=T1

[
−ρ2∗j −βjθjk+

∂hj(
∑TnT

k=T1
q∗jk)

∂qjk
+η∗j

]

×[qjk − q∗jk] +

HnH∑
j=H1

[ I∑
i=1

∑
p∈P i

j

x∗pµp −
TnT∑
k=T1

q∗jk

]
× [ηj − η∗j ] ≥ 0

∀(x, q, η) ∈ K2, (5.11)

with the feasible set K2 defined as:

K2 ≡ {(x, q, η)|x ∈ RnP
+ , q ∈ RnHnT

+ , η ∈ RnH
+ }. (5.12)

Here ηj is the Lagrange multiplier associated with constraint (5.9) for hospital j, η is

the nH-dimensional vector of all the multipliers, and q denotes the nHnT -dimensional
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vector of blood flows between the hospitals and patient groups. For further back-

ground on such a derivation, see Nagurney, Dong, and Zhang (2002) and the refer-

ences therein. Similar to (5.7), in this derivation of the variational inequality the

prices charged are not considered to be variables. They become endogenous variables

in the complete equilibrium model.

The economic interpretation of the hospitals’ optimality conditions are discussed

and the justification of the hj functions is provided. From the first term in (5.11)

it can be inferred that if there is positive flow of blood products between a blood

service organization and hospital, then η∗j is precisely equal to the hospital’s payment

to the supplier, ρ1∗ij . From the second term of (5.11) we see that if q∗jk is positive,

that is, if patients from payer group k get transfusions from hospital j, then the

unit price charged by hospital j, ρ2∗j , plus its marginal service utility, βjθjk, is exactly

equal to its marginal cost of holding inventory plus its unit cost of procuring blood

(since η∗j = ρ1∗ij ). Further, from the third term in (5.11) it can be inferred that if η∗j

is positive, then the amount of blood received by hospital j is exactly equal to the

amount of blood transfused at hospital j. Hence, it can be said that the inventory

holding cost of a hospital is a function of the total amount of blood transfused at a

hospital.

5.1.3 Behavior of the Payer Groups and Equilibrium Conditions

As mentioned earlier, the payers are conceptualized as patients belonging to dif-

ferent payer groups. Since most of the surgeries requiring blood transfusion such as

knee replacements, cardiovascular surgery, organ transplants, etc., are planned ahead

of time, it is assumed that the demand for blood at each payer node depends on the

reimbursement that the payers (insurers) are willing to give. The type of insurance is

also known before blood transfusion takes place. Since for a patient getting treatment

at a hospital, the blood required for transfusion will be provided by that particular
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hospital, it is expected that the demand at each hospital from each payer group may

be different. Demand at patient payer group k for transfusions at hospital j is de-

noted by djk. The amount that payer type k is willing to reimburse to hospital j is

given as ρ3jk. Thus, we have that

djk = djk(ρ
3), ∀j,∀k, (5.13)

where ρ3 is the nHnT -dimensional vector of payer prices. The demand is assumed

to be monotonically decreasing in the reimbursement for j, but increasing in the

reimbursements for other hospitals. However, it is to be noted that if the demand is

quite price inelastic then the coefficients should be set accordingly.

In reality, healthcare payments received by different hospitals from the same payer

might vary significantly (Luhby (2013)). The reimbursement or payer price can de-

pend on several factors such as the payer mix, whether it is a teaching or non-teaching

hospital, the hospital’s location, its healthcare network, etc. For example, Medicare

pays a higher rate to teaching hospitals while private insurance companies negotiate

better rates for hospitals in their network.

The payers take into account not only the price charged by the hospitals in de-

termining which hospital to choose, but also the transaction cost. Let cjk denote

the transaction cost between hospital j and payer group k. It is assumed that the

transaction cost is continuous, positive, and of the general form

cjk = cjk(q), ∀j,∀k. (5.14)

Following the work of Nagurney, Dong and Zhang (2002) (see also Nagurney (2006)),

we have that the equilibrium conditions are: For all hospitals j; j = H1, . . . , HnH
,

and payers k = T1, . . . , TnT
:
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ρ2∗j + cjk(q
∗)


= ρ3∗jk if q∗jk > 0,

≥ ρ3∗jk if q∗jk = 0.

(5.15)

and

djk(ρ
3∗)


= q∗jk if ρ3∗jk > 0,

≤ q∗jk if ρ3∗jk = 0.

(5.16)

Conditions (5.15) imply that, in equilibrium, if q∗jk is positive, that is, there are

patients at demand market k that get blood transfusions from hospital j, then the

price charged by the hospital plus the transaction cost does not exceed the price that

the payer is willing to reimburse. Conditions (5.16) state that, if the equilibrium price

that a particular payer group is willing to pay for the blood product from a particular

hospital is positive, then the quantity of blood obtained from a hospital is precisely

equal to the demand of blood for that payer group. These conditions correspond to

the well-known spatial price equilibrium conditions but applied to an entirely novel

context of multitiered blood supply chain networks (cf. Takayama and Judge (1971),

Nagurney (1999), and the references therein).

In equilibrium, conditions (5.15) and (5.16) will have to hold for all k, and can, in

turn, be expressed as the variational inequality problem (see, e.g., Nagurney (1999)):

determine (q∗, ρ3∗) ∈ K3, such that

HnH∑
j=H1

TnT∑
k=T1

[ρ2∗j + cjk(q
∗)− ρ3∗jk]× [qjk − q∗jk] +

HnH∑
j=H1

TnT∑
k=T1

[q∗jk − djk(ρ3∗)]× [ρ3jk − ρ3∗jk] ≥ 0

∀(q, ρ3) ∈ K3, (5.17)

where the feasible set K3 ≡ {(q, ρ3) ∈ R2nHnT
+ }.

5.1.4 The Equilibrium Conditions of the Blood Supply Chain

In equilibrium, the amount of blood supplied by the blood service organizations

must be equal to the amount of blood received by the hospitals. In addition, the
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amount of blood transfused by the hospitals must be equal to the amount needed by

the patients. Furthermore, the equilibrium quantities and price pattern in the blood

supply chain must satisfy the sum of the inequalities (5.7), (5.11), and (5.17), in order

to formalize the agreements between the tiers. Hence, although there is competition

across a tier of decision-makers, whether BSOs or hospitals, there is cooperation

between tiers and the prices assist in this. I now state this explicitly in the following

definition.

Definition 5.1: Multitiered Blood Supply Chain Network Equilibrium

The equilibrium state of the supply chain is one where the blood product (RBC) flows

between the three distinct tiers of decision-makers coincide and the blood flows and

prices satisfy the sum of the optimality conditions (5.7), (5.11), and (5.17).

The following theorem is now established.

Theorem 5.1: Variational Inequality Formulation

The equilibrium conditions governing the supply chain model with competition are

equivalent to the solution of the variational inequality problem given by: determine

(x∗, q∗, η∗, ρ3∗) ∈ K4 satisfying:

I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
∂Ĉp(x

∗)

∂xp
− ωiγijµp − η∗jµp

]
×[xp − x∗p]

+

HnH∑
j=H1

TnT∑
k=T1

[cjk(q
∗) +

∂hj(
∑TnT

k=T1
q∗jk)

∂qjk
+ η∗j − βjθjk − ρ3∗jk]× [qjk − q∗jk]

+

HnH∑
j=H1

[ I∑
i=1

∑
p∈P i

j

x∗pµp−
TnT∑
k=T1

q∗jk

]
× [ηj − η∗j ] +

HnH∑
j=H1

TnT∑
k=T1

[q∗jk − djk(ρ3∗)]× [ρ3jk − ρ3∗jk] ≥ 0

∀(x, q, η, ρ3) ∈ K4, (5.18)

where K4 ≡ {(x, q, η, ρ3) ∈ RnP+2nHnT+nH
+ }.

117



Proof: At first the necessity condition is established, that the equilibrium conditions

imply variational inequality (5.18). Observe that, indeed, the summation of (5.7),

(5.11), and (5.17), yields variational inequality (5.18), after algebraic simplification.

For sufficiency the converse is now established, that is, that a solution to varia-

tional inequality (5.18) satisfies the sum of inequalities (5.7), (5.11), and (5.17), and

is, therefore, an equilibrium according to Definition 5.1. To inequality (5.18) add the

term −ρ1∗ij µp + ρ1∗ij µp to the term in the first set of brackets preceding the multiplica-

tion sign and add the term −ρ2∗j + ρ2∗j to the term in brackets preceding the second

multiplication sign. Such “terms” do not change the value of the inequality since

their value is equal to zero, with the resulting inequality of the form

I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
∂Ĉp(x

∗)

∂xp
− ωiγijµp − η∗jµp − ρ1∗ij µp + ρ1∗ij µp

]
×[xp − x∗p]

+

HnH∑
j=H1

TnT∑
k=T1

[cjk(q
∗) +

∂hj(
∑TnT

k=T1
q∗jk)

∂qjk
+ η∗j − βjθjk − ρ3∗jk − ρ2∗j + ρ2∗j ]× [qjk − q∗jk]

+

HnH∑
j=H1

[ I∑
i=1

∑
p∈P i

j

x∗pµp−
TnT∑
k=T1

q∗jk

]
× [ηj − η∗j ] +

HnH∑
j=H1

TnT∑
k=T1

[q∗jk− djk(ρ3∗)]× [ρ3jk− ρ3∗jk] ≥ 0,

∀(x, q, η, ρ3) ∈ K4, (5.19)

which, in turn, can be rewritten as

I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
∂Ĉp(x

∗)

∂xp
−ωiγijµp−ρ1∗ij µp

]
×[xp−x∗p]+

I∑
i=1

HnH∑
j=H1

[
ρ1∗ij µp−η∗jµp

]
×[xp−x∗p]

+

HnH∑
j=H1

TnT∑
k=T1

[
−ρ2∗j − βjθjk +

∂hj(
∑TnT

k=T1
q∗jk)

∂qjk
+ η∗j

]
× [qjk − q∗jk] +

HnH∑
j=H1

[ I∑
i=1

∑
p∈P i

j

x∗pµp

−
TnT∑
k=T1

q∗jk

]
× [ηj − η∗j ] +

HnH∑
j=H1

TnT∑
k=T1

[ρ2∗j + cjk(q
∗)− ρ3∗jk]× [qjk − q∗jk]
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+

HnH∑
j=H1

TnT∑
k=T1

[q∗jk − djk(ρ3∗)]× [ρ3jk − ρ3∗jk] ≥ 0, ∀(x, q, η, ρ3) ∈ K4. (5.20)

But inequality (5.20) is equivalent to the price and product flow pattern satisfying

the sum of (5.7), (5.11), and (5.17). The proof is complete. 2

The variational inequality (5.18) can be rewritten in standard variational inequal-

ity form ( cf. 2.1a) that is: determine Y ∗ ∈ K ⊂ RN , such that

〈F (Y ∗), Y − Y ∗〉 ≥ 0, ∀Y ∈ K, (5.21)

where Y ≡ (x, q, η, ρ3), F (Y ) ≡ (Fp, F
1
jk, Fj, F

2
jk)p∈P i

j ;i=1,...,I;j=H1,...,HnH
;k=T1,...,TnT

, and

the specific components of the function F are given by the functional terms preceding

the multiplication signs in (5.18). The term 〈·, ·〉 denotes the inner product in N -

dimensional Euclidean space, where N here is nP + 2nHnT + nH and K ≡ K4.

The variables in the variational inequality problem are: the product (RBC) flows

from the blood service organizations to the hospitals, x, the quantities of blood trans-

fused by the hospitals to the patient groups, q, the prices associated with transfusing

and storing blood by the hospitals, η, and the demand market prices or reimbursement

rates, ρ3.

I now discuss how to recover the blood service organizations’ equilibrium prices,

ρ1∗ij , for all i, j, and the hospitals’ equilibrium prices, ρ2∗j , for all j, from the solution

of the variational inequality (5.18). In the previous discussion in Section 5.1.2, it is

mentioned that if there is positive flow of blood products between a blood service

organization and hospital, then η∗j is precisely equal to the hospital’s payment to the

supplier, ρ1∗ij . η∗j is obtained from the solution of the inequality (5.18). On the other

hand, prices charged by the hospitals, ρ2∗j s, can be obtained by finding a q∗jk > 0, and

then from (5.15) setting

ρ2∗j = ρ3∗jk − cjk(q∗),

where ρ3∗jk is obtained from the solution of variational inequality (5.18).
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The result that, in equilibrium, the sum of the amounts of blood supplied to

each hospital is equal to the sum of the amounts of blood transfused at that hospital

is now established. This implies that each hospital, assuming utility maximization,

purchases from the blood service organizations only the amount of blood that is

actually transfused to the patients. Variational inequality (5.18) is utilized to establish

the above mentioned result. From the third term in (5.18) we can see that if η∗j > 0,

then we have
∑I

i=1

∑
p∈P i

j
x∗pµp =

∑TnT
k=T1

q∗jk. In other words, the “market clears” for

hospital j. Let us now consider the case where η∗j = 0. From (5.7) it is evident that,

if x∗p > 0, then we have that

∂Ĉp(x
∗)

∂xp
= ωiγijµp + ρ1∗ij µp,

and, if x∗p = 0, then we have that

∂Ĉp(x
∗)

∂xp
≥ ωiγijµp + ρ1∗ij µp.

Hence, from the first term in inequality (5.18), we can say that, if η∗j = 0, then

∂Ĉp(x
∗)

∂xp
− ωiγijµp ≥ 0,

which implies that x∗p = 0, p ∈ P i
j , ∀i, j. It follows then from the third term of

(5.18) that
∑TnT

k=T1
q∗jk = 0, and, hence, the market clears also in this case since the

flow into a hospital is equal to the flow out and equal to zero. Thus, established the

following is established:

Corollary 5.1

The market for the blood product clears for each hospital at the supply chain network

equilibrium.
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5.1.5 Illustrative Examples

In this section I present two examples to illustrate some of the above mentioned

concepts. The blood supply chain topology is depicted in Figure 5.2. A case study

with a more elaborate blood supply chain network topology is presented in Section

5.4.
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Figure 5.2. The Blood Supply Chain Network Topology for the Illustrative Examples

Example 5.1: Network with Two BSOs, Two Hospitals and One Payer

There are two blood service organizations supplying blood to two hospitals. The

hospitals in turn treat patients who belong to the group Payer Type T1. From each

BSO there are two paths reaching each hospital. For simplicity, each path consists of

two links. The paths are defined as follows: p1 = (1, 2), p2 = (1, 3), p3 = (4, 5), and

p6 = (4, 6). The time horizon is assumed to be a week.
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The total link cost functions are:

ĉ1(f1) = f 2
1 + 1.5f1, ĉ2(f2) = f 2

2 + 2f2, ĉ3(f3) = f 2
3 + 2.5f3,

ĉ4(f4) = f 2
4 + 2f4, ĉ5(f5) = f 2

5 + 2f5, ĉ6(f6) = f 2
6 + 2.5f6.

In this example it is assumed that no amount blood is lost in the supply chain;

hence, the arc-path multipliers, µps are all equal to 1, ∀p. Again, for ease of calcula-

tion, the parameters associated with the altruism components of the utility functions

are all zero, i.e, ω1 = ω2 = βH1 = βH2 = 0. The holding cost functions for the two

hospitals are:

hH1(qH1T1) = 1.5× qH1T1 , hH2(qH2T1) = 1.5× qH2T1 .

The transaction cost functions between the hospitals and payers are:

cH1T1(qH1T1) = qH1T1 + 100, cH2T1(qH2T1) = qH2T1 + 100.

The demand price functions are:

dH1T1 = −0.005ρ3H1T1
+ 0.002ρ3H2T1

+ 100, dH2T1 = −0.005ρ3H2T1
+ 0.002ρ3H1T1

+ 100.

Using inequality (5.18) ten linear equations are obtained which are as follows:

4x∗p1 + 2x∗p2 + 3.5− η∗H1
= 0,

122



4x∗p2 + 2x∗p1 + 4− η∗H2
= 0,

4x∗p3 + 2x∗p4 + 4− η∗H1
= 0,

4x∗p4 + 2x∗p3 + 4.5− η∗H2
= 0,

q∗H1T1
+ η∗H1

− ρ3∗H1T1
+ 101.5 = 0,

q∗H2T1
+ η∗H2

− ρ3∗H2T1
+ 101.5 = 0,

x∗p1 + x∗p3 − q
∗
H1T1

= 0,

x∗p2 + x∗p4 − q
∗
H2T1

= 0,

q∗H1T1
+ 0.005ρ3∗H1T1

− 0.002ρ3∗H2T1
− 100 = 0,

q∗H2T1
+ 0.005ρ3∗H2T1

− 0.002ρ3∗H1T1
− 100 = 0.

The equilibrium blood path flows from the blood service organizations to the hospitals

obtained by solving the above equations are: x∗p1 = x∗p2 = 49.29, x∗p3 = x∗p4 = 49.21.

In the absence of the altruism factors, we have that the η∗j s are precisely equal to

the prices charged by the blood service organizations, ρ1∗ij s. The equilibrium prices

charged by the BSOs are: η∗H1
= 299.25, η∗H2

= 299.75, respectively. This means

that Hospital H1 agrees to pay $299.25 per unit of blood and Hospital H2 agrees

to pay $299.75 per unit of blood. The price per unit charged by the hospitals are:

ρ2∗H1
= 300.75 and ρ2∗H2

= 301.25. This makes sense and is fair since Hospital H2 pays

a higher price for acquiring the blood, the price charged is also slightly higher than

that of Hospital H1.

At equilibrium, the quantities of blood transfused at each hospital are: q∗H1T1
=

q∗H2T1
= 98.50. Lastly, the reimbursements that Payer type T1 is willing to pay to

Hospital H1 and Hospital H2 are: ρ3∗H1T1
= 499.25 and ρ3∗H2T1

= 499.75, respectively.
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Example 5.2: Introducing Fractional Arc Multipliers

In this example, the data remain as in Example 5.1, except that the arc multipliers

are modified so that not all are equal to 1:

α1 = 1, α2 = 0.95, α3 = 1, α4 = 1, α5 = 1, α6 = 0.98.

Hence, the path multipliers are:

µp1 = 1× 0.95 = 0.95, µp2 = 1, µp3 = 1, µp4 = 1× 0.98 = 0.98.

Again, using inequality (5.18), we obtain the following set of equations:

3.9x∗p1 + 2x∗p2 + 3.5− 0.95η∗H1
= 0,

4x∗p2 + 2x∗p1 + 4− η∗H2
= 0,

4x∗p3 + 2x∗p4 + 4− η∗H1
= 0,

3.96x∗p4 + 2x∗p3 + 4.5− 0.98η∗H2
= 0,

q∗H1T1
+ η∗H1

− ρ3∗H1T1
+ 101.5 = 0,

q∗H2T1
+ η∗H2

− ρ3∗H2T1
+ 101.5 = 0,

0.95x∗p1 + x∗p3 − q
∗
H1T1

= 0,

x∗p2 + 0.98x∗p4 − q
∗
H2T1

= 0,

q∗11 + 0.005ρ3∗H1T1
− 0.002ρ3∗H2T1

− 100 = 0,

q∗H2T1
+ 0.005ρ3∗H2T1

− 0.002ρ3∗H1T1
− 100 = 0.

The equilibrium path flows are now: x∗p1 = 48.35, x∗p2 = 51.36, x∗p3 = 52.53, x∗p4 =

48.10.
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The equilibrium prices charged by the BSOs are: η∗H1
= 310.29, η∗H2

= 307.63,

respectively. The price per unit charged by Hospital H1 and Hospital H2 are ρ2∗H1
=

311.75 and ρ2∗H2
= 307.63, respectively.

At equilibrium, the quantities of blood transfused at each hospital are: q∗H1T1
=

98.46, and q∗H2T1
= 98.49. The reimbursements that Payer Type T1 is willing to pay to

Hospital H1 and Hospital H2 are: ρ3∗H1T1
= 510.26, and ρ3∗H2T1

= 506.12, respectively.

If we compare the results in the two examples, we can see that even under the

consideration that a fraction of the collected blood perishes or is wasted along the

supply chain, the amount of blood transfused at each hospital remains almost same.

However, while in Example 5.1 all the paths had similar flows, in Example 5.2, the

paths without perishability have higher flows than those with perishability. Due to

wastage of some amount of collected blood the cost is likely to increase, and hence, the

equilibrium prices obtained in Example 5.2 are higher. The payer agrees to pay higher

rates in Example 5.2 which enables the hospitals to pay higher prices to the blood

suppliers in order to cover the cost of the wasted blood and still meet the demand.

Hence, the blood supply chain functions efficiently even in the face of perishability of

blood products.

5.2. Qualitative Properties

In this section, some qualitative properties of the solution to the variational in-

equality (5.18) are provided. I first present the existence results. Since the feasible

set underlying the variational inequality problem (5.18), K4, is not compact it is not

possible to derive existence of a solution from the sole assumption of continuity of the

function F (Y ) (cf. Kinderlehrer and Stampacchia (1980)). However, we can impose

a rather weak condition to ensure the existence of a solution pattern. Let

Kb ≡ {(x, q, η, ρ3)|0 ≤ x ≤ b1; 0 ≤ q ≤ b2; 0 ≤ η ≤ b3; 0 ≤ ρ3 ≤ b4}, (5.22)
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where b = (b1, b2, b3, b4) and x ≤ b1; q ≤ b2; η ≤ b3; ρ
3 ≤ b4 means that xp ≤ b1; qjk ≤

b2; ηj ≤ b3; ρ
3
jk ≤ b4 for all p ∈ P i

j ,∀i, j, k. Then Kb is a bounded, closed convex subset

of RnP+2nHnT+nH
+ . Thus, the following variational inequality:

〈F (Y b), Y − Y b〉 ≥ 0, ∀Y b ∈ Kb, (5.23)

admits at least one solution Y b ∈ Kb, from the standard theory of variational in-

equalities, since Kb is compact and F is continuous. Following Kinderlehrer and

Stampacchia (1980)( see also Theorem 1.5 in Nagurney (1999)), we have:

Lemma 5.1

Variational inequality 5.21 admits a solution if and only if there exists a b > 0 such

that variational inequality (5.23) admits a solution in Kb with

xb < b1, qb < b2, ηb < b3, ρ3b < b4. (5.24)

Under the conditions in Theorem 5.2 below it is possible to construct the upper

bounds b1, b2, b3, and b4 large enough so that the restricted variational inequality

(5.23) will satisfy the boundedness condition (5.24) and, thus, existence of a solution

to the original variational inequality problem according to Lemma 5.1 will hold.

Theorem 5.2: Existence of a Solution

Suppose that there exist positive constants M , N , and R with R > 0 such that:

∂Ĉp(x)

∂xp
− ωiγijµp ≥M, ∀x with xp ≥ N, p ∈ P i

j ,∀i, j, (5.25)

cjk(q) +
∂hj(

∑TnT
k=T1

qjk)

∂qjk
≥M, ∀q with qjk ≥ N, ∀j, k,

djk(ρ
3) ≤ N, ∀ρ3 with ρ3jk > R,∀j, k. (5.26)

Then variational inequality (5.21); equivalently, variational inequality (5.18), admits

at least one solution.
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Proof: Follows from Lemma 5.1. See also the proof of existence for Proposition 1 in

Nagurney and Zhao (1993) and the existence proof in Nagurney, Dong, and Zhang

(2003). 2

It can be argued that, from an economics perspective, assumptions (5.25) and

(5.26) are reasonable, since, when flow of RBCs on a path between a blood service

organization and a hospital pair is large, it can be expected the “marginal” cost on

the path minus the marginal service utility associated with the weighted altruism to

exceed a positive lower bound. Similarly, when the amount of blood transfused by

a hospital to a patient group is positive, the transaction cost between the pair and

marginal cost of holding the blood in inventory by the hospital will exceed a lower

bound. Lastly, in case the demand market price is very high, the demand for the

product can be expected to be low (even if slightly).

Lemma 5.2: Monotonicity

Assume that the link total cost functions and the inventory holding cost functions

are convex, the transaction cost functions are monotone increasing, and the demand

functions are monotone decreasing functions. Then the vector function F that enters

the variational inequality (5.21) is monotone, that is,

〈F (Y ′)− F (Y ′′), Y ′ − Y ′′〉 ≥ 0, ∀Y ′, Y ′′ ∈ K. (5.27)

Proof: Let Y ′ = (x′, q′, η′, ρ3′), Y ′′ = (x′′, q′′, η′′, ρ3′′) with Y ′ ∈ K and Y ′′ ∈ K. Then

inequality (5.26) can be seen in the following deduction:

〈F (Y ′)− F (Y ′′), Y ′ − Y ′′〉 =
I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
∂Ĉp(x

′)

∂xp
− ∂Ĉp(x

′′)

∂xp

]
× [x′p − x′′p]

+

HnH∑
j=H1

TnT∑
k=T1

[
∂hj(

∑TnT
k=T1

q′jk)

∂qjk
−
∂hj(

∑TnT
k=T1

q′′jk)

∂qjk

]
× [q′jk − q′′jk]
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+

HnH∑
j=H1

TnT∑
k=T1

[
cjk(q

′)− cjk(q′′)
]
× [q′jk − q′′jk]

+

HnH∑
j=H1

TnT∑
k=T1

[−djk(ρ3′) + djk(ρ
3′′)]× [ρ3′jk − ρ3′′jk ]

= (I) + (II) + (III) + (IV ). (5.28)

Now, we can write (I) as:

(I) =
I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
∂Ĉp(x

′)

∂xp
− ∂Ĉp(x

′′)

∂xp

]
× [x′p − x′′p]

=
I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[∑
a∈Li

∑
b∈Li

∂ĉb(f
′)

∂fa
αap −

∂ĉb(f
′′)

∂fa
αap

]
× [x′p − x′′p]

=
I∑
i=1

HnH∑
j=H1

[∑
a∈Li

∑
b∈Li

∂ĉb(f
′)

∂fa
− ∂ĉb(f

′′)

∂fa

]
×
∑
p∈P i

j

[x′pαap − x′′pαap]

=
I∑
i=1

HnH∑
j=H1

[∑
a∈Li

∑
b∈Li

∂ĉb(f
′)

∂fa
− ∂ĉb(f

′′)

∂fa

]
× [
∑
p∈P i

j

x′pαap −
∑
p∈P i

j

x′′pαap]

=
I∑
i=1

HnH∑
j=H1

[∑
a∈Li

∑
b∈Li

∂ĉb(f
′)

∂fa
− ∂ĉb(f

′′)

∂fa

]
× [f ′a − f ′′a ]. (5.29)

Since the total link cost functions are convex, we have:

(I) =
I∑
i=1

HnH∑
j=H1

[∑
a∈Li

∑
b∈Li

∂ĉb(f
′)

∂fa
− ∂ĉb(f

′′)

∂fa

]
× [f ′a − f ′′a ] ≥ 0. (5.30)

The convexity of the holding cost functions, hj(qj) for all j yields

(II) =

HnH∑
j=H1

TnT∑
k=T1

[
∂hj(

∑TnT
k=T1

q′jk)

∂qjk
−
∂hj(

∑TnT
k=T1

q′′jk)

∂qjk

]
× [q′jk − q′′jk] ≥ 0. (5.31)
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Since cjk, for all j, k, are assumed to be monotone increasing, and djk, for all j, k, are

assumed to be monotone decreasing, we have that

(III) =

HnH∑
j=H1

TnT∑
k=T1

[
cjk(q

′)− cjk(q′′)
]
× [q′jk − q′′jk] ≥ 0, (5.32)

and

(IV ) =

HnH∑
j=H1

TnT∑
k=T1

[−djk(ρ3′) + djk(ρ
3′′)]× [ρ3′jk − ρ3′′jk ] ≥ 0. (5.33)

Substituting (5.30) – (5.33) into the right-hand side of (5.28), it can be concluded

that (5.28) is nonnegative. The proof is complete. 2

Definition 5.2: Lipschitz Continuity

The function that enters the variational inequality problem (5.21) is Lipschitz contin-

uous if

‖F (Y ′)− F (Y ′′)‖ ≤ L ‖Y ′ − Y ′′‖ ∀Y ′, Y ′′ ∈ K, (5.34)

where L > 0 is known as the Lipschitz constant.

The properties of monotonicity and Lipschitz continuity are utilized to establish

the convergence of the algorithm in the following section.

5.3. Algorithm: The Modified Projection Method

In this section, the realization of the modified projected method (cf. Section 2.4.2)

for the computation of the variational inequality (5.18) is described. Below I present

each step of the computation with respect to this model and provide the explicit

formulae.

The statement of the modified projection method for the solution of variational

inequality 5.21, applied to the blood supply chain network model, is as follows, where

τ is the iteration counter:

Step 0. Initialization
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Initialize with Y 0 ∈ K. Set τ = 1 and select ψ, such that 0 < ψ ≤ 1/L, where L is

the Lipschitz constant (see (5.34)).

Step 1: Computation

Compute Ȳ τ by solving the variational inequality subproblem (cf. (2.22)):

〈Ȳ τ + ψF (Y τ−1)− Y τ−1, Y − Ȳ τ 〉 ≥ 0, ∀Y ∈ K. (5.35a)

(5.35a) is now expanded, according to the details of (5.18), for this model. Com-

pute (x̄τ , q̄τ , η̄τ , ρ̄3τ ) ∈ K4 by solving the variational inequality subproblem:

I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
x̄τp + ψ

(
∂Ĉp(x

τ−1)

∂xp
− ωiγijµp − ητ−1j µp

)
− xτ−1p

]
× [xp − x̄τp]

+

HnH∑
j=H1

TnT∑
k=T1

[
q̄τjk + ψ

(
cjk(q

τ−1) +
∂hj(

∑TnT
k=T1

qτ−1jk )

∂qjk
+ ητ−1j − βjθjk − ρ3jk

τ−1
)
− qτ−1jk

]

×[qjk − q̄τjk +

HnH∑
j=H1

[
η̄τj + ψ

( I∑
i=1

∑
p∈P i

j

xτ−1p µp −
TnT∑
k=T1

qτ−1jk

)
− ητ−1j

]
× [ηj − η̄τj ]

+

TnT∑
k=T1

[
ρ̄3τjk + ψ

(
qτ−1jk − djk(ρ

3τ−1)

)
− ρ3jk

τ−1
]
× [ρ3jk − ρ̄3τjk ] ≥ 0, ∀(x, q, η, ρ3) ∈ K4.

(5.35b)

Step 2: Adaptation

Compute Y τ by solving the variational inequality subproblem (cf. (2.23)):

〈Y τ + ψF (Ȳ τ )− Y τ−1, Y − Y τ 〉 ≥ 0, ∀Y ∈ K. (5.36a)

(5.36a) is now expanded according to (5.18). Compute (xτ , qτ , ητ , ρ3τ ) ∈ K4 by

solving the variational inequality subproblem:

I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
xτp + ψ

(
∂Ĉp(x̄

τ )

∂xp
− ωiγijµp − η̄τj µp

)
− xτ−1p

]
× [xp − xτp]
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+

HnH∑
j=H1

TnT∑
k=T1

[
qτjk +ψ

(
cjk(q̄

τ ) +
∂hj(

∑TnT
k=T1

q̄τjk)

∂qjk
+ η̄τj −βjθjk− ρ̄3τjk

)
− qτ−1jk

]
× [qjk− qτjk]

+

HnH∑
j=H1

[
ητ + ψ

( I∑
i=1

∑
p∈P i

j

x̄τpµp −
TnT∑
k=T1

q̄τjk

)
− ητ−1

]
× [ηj − ητj ]

+

TnT∑
k=T1

[
ρ3τjk + ψ

(
q̄τjk − djk(ρ̄3τ )

)
− ρ3jk

τ−1
]
× [ρ3jk − ρ3τjk ] ≥ 0, ∀(x, q, η, ρ3) ∈ K4.

(5.36b)

Step 3: Convergence Verification

If |Y τ − Y τ−1| ≤ ε, for ε > 0, a pre-specified tolerance level, then stop; otherwise, set

τ := τ + 1, and go to Step 1 (cf. Subsection 2.4.2).

Specifically, for this model, if |xτp − xτ−1p | ≤ ε, |qτjk − qτ−1jk | ≤ ε, |ητj − ητ−1j | ≤

ε, |ρ3τ − ρ3τ−1| ≤ ε ∀p ∈ P i
j , i = 1, ..., I, j = H1, ..., HnH

, k = T1, ..., TnT
for ε > 0, a

pre-specified tolerance level, then stop; otherwise, set τ := τ + 1, and go to Step 1.

Explicit Formulae for the Modified Projection Method

The elegance of this algorithm applied to the blood supply chain network competition

model in that at each iteration, closed form expressions are obtained for the variables,

resulting in an easy to implement computational procedure. Below the closed form

expressions for the solutions of (5.35b) are provided .

The closed form expression for the blood path flows at iteration τ is: For each

path p ∈ P i
j ,∀i, j, compute:

x̄τp = max

{
0, xτ−1p − ψ

(
∂Ĉp(x

τ−1)

∂xp
− ωiγijµp − ητ−1j µp

)}
. (5.37)

The amount of blood transfused, qjk, ∀j, k, at iteration τ , is computed according

to:

q̄τjk = max

{
0, qτ−1jk −ψ

(
cjk(q

τ−1)+
∂hj(

∑TnT
k=T1

qτ−1jk )

∂qjk
+ητ−1j −βjθjk−ρ3jk

τ−1
)}

. (5.38)
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The Lagrange multipliers, ηj, j = H1, . . . , HnH
, are computed at iteration τ using

the formula:

η̄τj = max

{
0, ητ−1 − ψ

( I∑
i=1

∑
p∈P i

j

xτ−1p µp −
TnT∑
k=T1

qτ−1jk

)}
. (5.39)

Lastly, at iteration τ , the closed form expression for the demand prices, ρ3jk, j =

H1, . . . , HnH
; k = T1, . . . , TnT

, is:

ρ̄3τjk = max

{
0, ρ3

τ−1
jk − ψ

(
qτ−1jk − djk(ρ

3τ−1)

)}
. (5.40)

Analogous closed form expressions to those above can be easily obtained also for

(5.36b).

5.4. The Case Study

In this section, I present a case study that is solved using the modified Projection

Method. Although the network structure is stylized the aim is to capture the complex

landscape of blood banking in Southern California. There are three major blood ser-

vice organizations; namely, the American Red Cross, the San Diego Blood Bank, and

LifeStream, that collect and supply blood to hospitals in Southern California that have

been facing shortages in recent times (Austin (2018), Hayden (2018)). LifeStream, a

community based nonprofit blood bank, supplies blood products and services to more

than 80 Southern California hospitals in five counties: San Bernardino, Riverside, Los

Angeles, Orange, San Diego, and Imperial, while San Diego Blood Bank, another a

regional nonprofit blood service organization, serves San Diego, Imperial, Los Ange-

les, and Orange Counties. The American Red Cross also has a strong presence in

this region with multiple donor centers and supply contracts with UC San Diego and

Scripps Health facilities (Sisson (2017)).

In the network structure shown in Figure 5.3 there are two blood service orga-

nizations, one a smaller regional blood bank such as LifeStream or the San Diego
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Blood Bank, and, the other – a larger one such as the American Red Cross. Both of

these blood service organizations supply blood to two hospitals which treat patients

belonging to three payer groups: two private ones such as those covered by the Kaiser

Foundation Health Plan, which has one of the highest customer satisfaction ratings

according to a NCQA 2015-2016 report, and Blue Shield of California, which has one

of the lowest ratings according to the same report, and the other – a government

payer program such as Medicare or Medicaid. Given that hospitals and blood centers

are facing shortages, it is not unreasonable to assume that each hospital has more

than one supplier to mitigate the risk of running out of blood as observed in the

Northeastern part of the United States. I now provide the data for this problem.

Baseline Example: Two BSOs, Two Hospitals and Three Payers

In Lagerquist et al. (2017), the authors provide an analysis of the cost of transfusing

one unit of RBC in a Canadian hospital. Based on their data, the per unit cost of

inventory and storage at the hospital was obtained as 30.80 CAD.

Using this information and converting it to USD the inventory holding costs for the

two hospitals are constructed as:

hH1(

T3∑
k=T1

qH1k) = 23.6× (qH1T1 + qH1T2 + qH1T3),

and

hH2(

T3∑
k=T1

qH2k) = 24× (qH2T1 + qH2T2 + qH2T3).

Below, I present the transaction cost functions for this problem. It is to be noted

that this cost might include various costs that are not directly associated with the

procurement of blood, and maintaining it’s inventory such as cost of cross matching,

transfusion, and administrative costs for billing, etc. Linear cost functions are used

which are given as follows:

cH1T1(qH1T1) = 0.5qH1T1+10, cH1T2(qH1T2) = 0.5qH1T2+9, cH1T3(qH1T3) = 0.5qH1T3+8,
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JĴ?











�

J
J
J
J
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Figure 5.3. The Supply Chain Network Topology for Case Study

cH2T1(qH2T1) = 0.5qH2T1+10, cH2T2(qH2T2) = 0.5qH2T2+10, cH2T3(qH2T3) = 0.5qH2T3+8.
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While it is mentioned in Section 5.1 that reimbursements received by a hospital

from different payers might vary, the transaction costs might also vary depending

on the type of payer. According to Ho and Lee (2017) average cost per patient

for a hospital varies from one payer to another due to long-term relationships with

particular insurance companies or due to ” complementarities in information systems

with some insurers.”

Assuming that the overall base weekly demand for RBCs across all payer types

at each hospital is 250 units the demand price functions are constructed as follows:

dH1T1 = −0.007ρ3H1T1
+ 0.001ρ3H2T1

+ 100, dH2T1 = −0.005ρ3H2T1
+ 0.003ρ3H1T1

+ 100,

dH1T2 = −0.007ρ3H1T2
+ 0.001ρ3H2T2

+ 50, dH2T2 = −0.005ρ3H2T2
+ 0.003ρ3H1T2

+ 50,

dH1T3 = −0.007ρ3H1T3
+ 0.001ρ3H3T1

+ 100, dH2T3 = −0.005ρ3H2T3
+ 0.003ρ3H1T3

+ 100.

The weights associated with the altruism components of the blood service organi-

zations’ objective function are ω1 = ω2 = 1. The coefficients of the altruism function

are assumed to be γ1H1 = 1, γ1H2 = 1, γ2H1 = 1, γ2H2 = 1. The hospitals also have

an altruism component in their objective functions and the associated weights are

assumed to be βH1 = βH2 = 1, while the coefficients are θH1T1 = 1, θH1T2 = 1, θH1T3 =

2, θH2T1 = 1, θH2T2 = 1, θH2T3 = 2. Both the hospitals associate greater service utility

in treating patients belonging to government payer program.

In the paper by Dutta and Nagurney (2018) the modified projection method was

implemented in FORTRAN and a Linux systems at the University of Massachusetts

Amherst was used for the computations. The algorithm was initialized by setting

all the variables equal to 0.00 and with ψ set to .05. The algorithm was considered

to have converged when the absolute difference of the difference of each successive

iterate was less than or equal to 10−4. The equilibrium conditions held with an

excellent accuracy.
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In Table 5.1 I provide the total link cost functions, the arc multipliers associated

with each link as well as the computed equilibrium link flows. The total link cost

functions capture the fact that the two most expensive operations for the blood

services organizations are collection of blood from donors, and testing and processing

of the collected units.

In addition to the computed equilibrium link flow values in Table 5.1, which are

obtained from the equilibrium path flows, the other computed equilibrium values of

the variables are:

η∗H1
= 184.92, η∗H2

= 194.67,

q∗H1T1
= 98.46, q∗H1T2

= 48.61, q∗H1T3
= 98.55,

q∗H2T1
= 99.43, q∗H2T2

= 49.53, q∗H2T3
= 99.41.

and

ρ3∗H1T1
= 257.76, ρ3∗H1T2

= 231.83, ρ3∗H1T3
= 245.80

ρ3∗H2T1
= 268.39, ρ3∗H2T2

= 233.43, ρ3∗H2T3
= 266.37.

Using the procedure described in Section 5.1.4, the equilibrium prices of the BSOs

and that of the hospitals are recovered: ρ1∗1H1
= ρ1∗2H1

= 184.92 and ρ1∗1H2
= ρ1∗2H2

=

194.67. Also, ρ2∗H1
= 198.52 and ρ2∗H2

= 208.67.

Also, for completeness, I provide the incurred demands at the equilibrium prices

at the different payers and these are:

dH1T1 = 98.46, dH1T2 = 48.61, dH1T3 = 98.55,

dH2T1 = 99.43, dH2T2 = 49.53, dH2T3 = 99.41,

Finally, the incurred utilities of the blood service organizations and the hospitals

at the equilibrium pattern are presented. The utility of BSO 1 is: 25,187.59 and that
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Table 5.1. Definition of Links, Associated activity, Arc Multipliers, Total Opera-
tional Link Cost Functions, and Equilibrium Link Solution

Link a From Node To Node αa ĉa(f) f ∗a
1 1 C1

1 1.00 0.452
1 + 0.6f1 49.96

2 1 C1
2 1.00 0.35f 2

2 + 0.5f2 57.35
3 1 C1

3 1.00 0.32f 2
3 + 0.6f3 64.24

4 C1
1 B1

1 1.00 0.09f 2
4 + 0.36f4 49.96

5 C1
2 B1

1 1.00 0.12f 2
5 + 0.5f5 57.35

6 C1
3 B1

1 1.00 0.1f 2
6 + 0.35f6 64.24

7 B1
1 P 1

1 0.98 0.5f 2
7 + 0.86f7 171.55

8 P 1
1 S1

1 1.00 0.12f 2
8 + 0.5f8 168.12

9 S1
1 D1

1 1.00 0.09f 2
9 + 0.5f9 64.36

10 S1
1 H1 1.00 0.05f 2

10 + 0.68f10 103.76
11 D1

1 H1 1.00 0.04f 2
11 + 0.8f11 0.00

12 D1
1 H2 1.00 0.06f 2

12 + 0.8f12 64.36
13 2 C2

1 1.00 0.3f 2
13 + 0.8f13 104.72

14 2 C2
2 1.00 0.25f 2

14 + 0.65f14 138.95
15 2 C2

3 1.00 0.32f 2
15 + 0.6f15 97.36

16 C2
1 B2

1 1.00 0.1f 2
16 + 0.28f16 82.57

17 C2
1 B2

2 1.00 0.15f 2
17 + 0.3f17 22.15

18 C2
2 B2

1 1.00 0.15f 2
18 + 0.35f18 33.17

19 C2
2 B2

2 1.00 0.12f 2
19 + 0.45f19 105.78

20 C2
3 B2

1 1.00 0.16f 2
20 + 0.5f20 53.18

21 C2
3 B2

2 1.00 0.08f 2
21 + 0.6f21 44.17

22 B2
1 P 2

1 0.98 0.4f 2
22 + 0.65f22 168.93

23 B2
2 P 2

2 0.97 0.45f 2
23 + 0.8f23 172.11

24 P 2
1 S2

1 0.96 0.02f 2
24 + 0.05f24 165.55

25 P 2
2 S2

2 1.00 0.04f 2
25 + 0.07f25 166.94

26 S2
1 D2

1 1.00 0.2f 2
26 + 0.4f26 80.61

27 S2
1 D2

2 1.00 0.18f 2
27 + 0.6f27 78.32

28 S2
2 D2

1 1.00 0.12f 2
28 + 0.45f28 99.96

29 S2
2 D2

2 1.00 0.15f 2
29 + 0.5f29 66.98

30 D2
1 H1 1.00 0.08f 2

30 + 0.5f30 75.12
31 D2

1 H2 1.00 0.1f 2
31 + 0.6f31 105.45

32 D2
2 H1 1.00 0.12f 2

32 + 0.35f32 66.75
33 D2

2 H2 1.00 0.16f 2
33 + 0.4f33 78.55
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of BSO 2: 47,806.95. The utility of Hospital H1 is: 985.40 and that of Hospital H2:

495.25.

I now consider three variants of the baseline example, in which the weights asso-

ciated with altruism are modified. Specific changes made to the Basline Example are

reported below. The remainder of the data remains as in the Baseline Example. The

computed equilibrium flows are reported in Table 5.2 for all the Variants.

Variant 1: Altruism Weights for BSOs Set to Zero

In Variant 1 the weights of the BSOs are all set to zero, that is, ω1 = ω2 = 0.

Besides the reported link equilibrium values in Table 5.2, the modified projection

method also yielded the following equilibrium values for the other variables:

η∗H1
= 283.54, η∗H2

= 293.33,

q∗H1T1
= 97.87, q∗H1T2

= 48.02, q∗H1T3
= 97.96,

q∗H2T1
= 99.23, q∗H2T2

= 49.33, q∗H2T3
= 99.21,

and

ρ3∗H1T1
= 356.08, ρ3∗H1T2

= 330.15, ρ3∗H1T3
= 344.12

ρ3∗H2T1
= 366.95, ρ3∗H2T2

= 332.00, ρ3∗H2T3
= 364.93

For completeness, I also report the recovered prices at the top tier and the middle

tier. Specifically, we have: ρ1∗1H1
= ρ1∗2H1

= 283.54 and ρ1∗1H2
= ρ1∗2H2

= 293.33. In

addition, we have that: ρ2∗H1
= 297.14 and ρ2∗H2

= 307.33.

Also, for completeness, I would like to mention that the incurred demands at the

equilibrium prices at the different payers are exactly equal to the corresponding q∗jk

value, which conforms well with the equilibrium conditions.

The utility of BSO 1 is now: 24,952.65 and that of BSO 2 is: 47,365.72, whereas

the utility of Hospital H1 is: 979.48 and that of Hospital H2 is: 493.29.
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Table 5.2. Links and Link Equilibrium Solution for Variant Examples

Link a From Node To Node Variant 1 f ∗a Variant 2 f ∗a Variant 3 f ∗a
1 1 C1

1 49.71 49.94 49.68
2 1 C1

2 57.08 57.32 57.04
3 1 C1

3 63.93 64.20 63.89
4 C1

1 B1
1 49.71 49.92 49.68

5 C1
2 B1

1 57.08 57.32 57.04
6 C1

3 B1
1 63.93 64.20 63.89

7 B1
1 P 1

1 170.72 171.44 170.61
8 P 1

1 S1
1 167.31 168.01 167.20

9 S1
1 D1

1 64.26 64.34 64.25
10 S1

1 H1 103.05 103.67 102.95
11 D1

1 H1 0.00 0.00 0.00
12 D1

1 H2 64.26 64.34 64.25
13 2 C2

1 104.22 104.66 104.16
14 2 C2

2 138.29 138.27 138.21
15 2 C2

3 96.89 97.30 96.83
16 C2

1 B2
1 82.18 82.52 82.13

17 C2
1 B2

2 22.04 22.13 22.03
18 C2

2 B2
1 33.01 33.15 32.99

19 C2
2 B2

2 105.28 105.72 105.21
20 C2

3 B2
1 52.93 53.15 52.90

21 C2
3 B2

2 43.96 44.15 43.94
22 B2

1 P 2
1 168.12 168.82 168.02

23 B2
2 P 2

2 171.29 172.00 171.18
24 P 2

1 S2
1 164.76 165.45 164.66

25 P 2
2 S2

2 166.15 166.84 166.04
26 S2

1 D2
1 80.23 80.56 80.18

27 S2
1 D2

2 77.94 78.27 77.89
28 S2

2 D2
1 99.49 99.90 99.42

29 S2
2 D2

2 66.66 66.94 66.62
30 D2

1 H1 74.53 75.04 74.45
31 D2

1 H2 105.18 105.42 105.15
32 D2

2 H1 66.28 66.68 66.22
33 D2

2 H2 78.33 78.52 78.30
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Variant 2: Altruism Weights for Hospitals Set to Zero

In Variant 2, only the weights associated with the hospitals are set to zero, that is, we

have βH1 = βH2 = 0 with all the rest of the data as in the Baseline Example. Please

refer to Table 5.2 for the computed equilibrium link flows.

As can be seen from Table 5.2 all the equilibrium link flows are higher than the

corresponding values for Variant 1.

The other computed equilibrium values of the variables are:

η∗H1
= 184.74, η∗H2

= 194.49,

q∗H1T1
= 98.41, q∗H1T2

= 48.56, q∗H1T3
= 98.42,

q∗H2T1
= 99.41, q∗H2T2

= 49.46, q∗H2T3
= 99.42,

and

ρ3∗H1T1
= 267.54, ρ3∗H1T2

= 241.62, ρ3∗H1T3
= 265.55

ρ3∗H2T1
= 278.20, ρ3∗H2T2

= 253.33, ρ3∗H2T3
= 276.20

As for the equilibrium prices at the top and middle tiers, these are now: ρ1∗1H1
=

ρ1∗2H1
= 184.74 and ρ1∗1H2

= ρ1∗2H2
= 194.49. In addition, we have: ρ2∗H1

= 278.20 and

ρ2∗H2
= 218.49

As in the above examples, the q∗jk value coincides with the incurred equilibrium

demand djk(ρ
3∗),∀j, k.

The utility of BSO 1 is now: 25,156.20 and that of BSO 2: 47,747.99, whereas the

utility of Hospital H1 is: -0.02 and that of Hospital H2 is: 0.01.

This result is quite interesting. First, note that the entire supply chain of each

BSO is captured in the model. As for the hospitals, the focus is on its blood supply

operations, but each hospital engages in numerous other activities. The utilities of

both hospitals without the altruism component of the objective functions are essen-

tially zero, which implies economic sustainability on the part of the blood operations.

140



It is important to emphasize that the hospitals are nonprofits and, were they for profit

organizations, then their respective objective functions would be modified from those

in (5.10). Moreover, it is to be noted that in the United States, blood transfusion

costs account for 1% of a hospitals budget, typically, which is considered to be high

(Hemez (2016)).

Variant 3: All Altruism Weights Set to Zero

In Variant 3, all the weights associated with altruism for all the BSOs and all the

hospitals were identically equal to zero, with the rest of the data as in the Baseline

Example. This would correspond, in effect, to the stakeholders in terms of the BSOs

and the hospitals being non altruistic and operating, more or less, in a profit-like

manner. Please refer to Table 5.2 for the computed equilibrium link flow pattern.

Observe that, of the three Variant examples, the equilibrium link flows are the lowest

for Variant 3. Also, note that the highest equilibrium link flows occur in the Baseline

Example. The computed equilibrium values for the other variables are:

η∗H1
= 283.36, η∗H2

= 293.15,

q∗H1T1
= 97.82, q∗H1T2

= 47.94, q∗H1T3
= 97.83,

q∗H2T1
= 99.21, q∗H2T2

= 49.26, q∗H2T3
= 99.22,

and

ρ3∗H1T1
= 365.87, ρ3∗H1T2

= 339.94, ρ3∗H1T3
= 363.87

ρ3∗H2T1
= 376.76, ρ3∗H2T2

= 351.78, ρ3∗H2T3
= 374.76

The recovered equilibrium prices charged by the hospitals to the BSOs are: ρ1∗1H1
=

ρ1∗2H1
= 283.36 and ρ1∗1H2

= ρ1∗2H2
= 293.15. The recovered prices at the hospitals are:

ρ2∗H1
= 306.96 and ρ2∗H2

= 317.15. The utility of BSO 1 is now: 24,921.40 and that

of BSO 2: 47,307.50, whereas the utility of Hospital H1 is now: -.12 and that of
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Hospital H2: .06. Again, the utilities of both hospitals are essentially zero in this

variant, which represents that none of the stakeholders assign a positive value to the

altruism component in their respective objective functions.

5.4.1 Additional Discussion of the Numerical Results for Baseline Exam-

ple and Its Variants

As can be seen from the numerical results in the case study the equilibrium prices

increase down the tiers, which is very reasonable economic behavior. Furthermore, as

can be seen from Variant 3, the equilibrium prices charged to the various payers are the

highest of all the examples comprising the case study. This is intuitive since in Variant

3 without the altruism weights, the blood service organizations and hospitals act like

profit-maximizing entities. The prices paid by the hospitals to the blood suppliers

that are obtained in the Baseline Example and its Variants more or less tally with

the prices reported in empirical studies of Toner et al. (2011) and Ellingson et al.

(2017). In Toner at al. (2011), the authors report that the average cost of acquisition

of one unit of RBCs in the West is 228.31 with a standard deviation of 42. According

to Ellingson et al. (2017), the interquartile range for the price paid by hospitals in

the United States for a unit of leukocyte-reduced RBCs in 2015 was 197 to 228, while

that of non-leukocyte-reduced RBCs was 185 to 205.

Again, I emphasize that, although the case study is stylized it, nevertheless, il-

lustrates important features of this unique supply chain in which the product cannot

be produced but must be donated, while, at the same time, it then undergoes mul-

tiple activities of testing, processing, and distribution to hospitals, with subsequent

dissemination to needy patients for the medical procedures. Moreover, the model

captures, in a novel way, that payments for blood services can depend on the method

of payment and reimbursement to hospitals.
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5.5. Summary and Conclusions

In this chapter, I developed a mathematical model that integrates the behaviors

of three major stakeholders in the blood supply chain: blood service organizations,

hospitals and medical centers, and patient payer groups. The model captures the

current competitive landscape of the blood banking industry in the United States,

and explores a cost-based pricing scheme for blood products that is aimed at bridging

the disconnect between actual costs of acquiring a unit of red blood cells for transfu-

sion and the payments received by the hospitals and the blood suppliers. The model

optimizes, under competition, the flow of blood through the paths joining the blood

service organizations with the hospitals, the amount of blood transfused to each pa-

tient payer group at each hospital, and determines the equilibrium prices charged by

the blood service organizations, and the reimbursements received by the hospitals.

To the best of my knowledge, this is the first perishable product supply chain net-

work model to include the complex economic interplays between the different tiers

of decision-makers in the blood supply chain. I also quantify and incorporate the

nonprofit or altruistic nature of blood centers and hospitals through a service utility

component in their utility functions.

The theory of variational inequalities was utilized to formulate the equilibrium

conditions for each stakeholder, and, subsequently, the entire integrated supply chain.

Qualitative properties are also presented as well as examples for illustrative purposes.

The algorithm is outlined and applied to solve numerical examples comprising a case

study focusing on blood service organizations in California.

The equilibrium prices obtained reveal how the prices increase as the blood service

organizations and hospitals act less altruistically. Under every scenario that is ex-

amined the prices obtained closely resemble those in practice. The results also show

that the equilibrium prices increase in progression down the tiers, which ensures the

economic stability of the blood supply chain. In terms of policy implications the
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results show the benefit of having a pricing scheme for blood products based on the

volume of blood transfused and the actual costs of all the supply chain operations,

and how the reimbursements to hospitals vary by payer type.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1. Conclusions

The aim of this dissertation was to analyze how horizontal competition among

blood centers, the key players in the blood banking industry, and their supply chains

has affected the supply of the product and the economic stability of the industry. Rise

in competition among blood centers is one of the several emerging issues in the blood

banking system in the United States. The changes in the industry in response to

these challenges provide interesting areas for research that have immense healthcare

policy implications.

One of the most pressing issues faced by blood centers or blood service organiza-

tions is recruitment of donors since the blood banking industry is solely dependent

on altruistic voluntary donors for the raw material. With the rise in the number of

blood service organizations, the blood collection operation has become more and more

competitive (Barton (2002), Smith (2011)). Competition among blood service orga-

nizations also exists for supply contracts with hospitals and trauma centers (Barber

(2013), Brantley (2017)).

Due to the potential for fatal consequences caused by unavailability of blood prod-

ucts, to-date, most of the studies on blood banking have justifiably focused on prob-

lems such as inventory planning to minimize shortage and wastage, vehicle routing

problems for transshipment of excess blood between hospitals, and so on. However,

with phenomena such as increase in cost of testing donated blood and other opera-

tions, the price of blood varying considerably across the United States, it is essential
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to scrutinize the economic aspects associated with each activity in the supply chain.

Blood centers, which are nonprofit organizations, incur high costs in collecting, pro-

cessing, testing, storing, and distributing blood to the demand markets. They charge

the hospitals and other medical facilities a fee per pint of blood supplied to recover

these costs. The hospitals in turn get reimbursed for their costs by payers such

as private insurance companies, and government programs such as Medicare, Medi-

caid. However, there appears to be a disconnect between the reimbursements received

and the actual costs of acquiring blood. Hence, several regional as well as national

level blood service organizations have been operating at low margins (Mulcahy et al.

(2016)).

In Chapter 3 of this dissertation, I developed a non-cooperative game theory model

for blood service organizations competing on the quality of service provided at their

collection sites with the objective of maximizing their utility which consists of revenue,

cost and an altruism component. I imposed upper and lower bounds on the quality

levels and derived the economic implications of each. In Chapter 4, I constructed and

analyzed a competitive blood supply chain network model that captures the supply

side as well as demand side competition among blood centers. Each important activity

in the blood supply chain is mapped, associated costs considered and persihability

of the product along the various paths in the network is also included. The novel

features of the model resulted in a Generalized Nash Equilibrium. In Chapter 5, I

extended the blood supply chain network framework by incorporating an additional

tier of decision-makers; namely, the patient payer groups. The multitiered network

captures the decentralized nature of the blood banking system in the United States

and tests the merits of a proposed cost-based payment policy for blood products.
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6.2. Future Research

This dissertation has demonstrated how competitive game theory techniques can

be used effectively to test the status quo in blood banking as well as proposed pol-

icy changes that can make management of the blood supply chain more efficient.

However, as the industry adapts itself to various changes and new policies are put

forward, opportunities for future research emerge. In this section, I discuss some of

those directions.

6.2.1 Outsourcing of Donor Testing

In recent times in response to the greater uncertainty in demand, and an increase

in the cost of operations, blood service organizations have adopted various methods

to adjust to the changes in the market and to sustain themselves economically. As

mentioned in Chapter 1, there has been a growing trend of mergers and acquisitions

among blood service organizations. However, another recent development in the blood

banking industry is the consolidation of the donor testing facilities and outsourcing

of the testing operation by smaller blood collection establishments to centralized

laboratories that can afford to maintain this capital-intensive operation. According

to Dr. Jorge Rios, Medical Director of the American Red Cross Blood Services,

East Division, at present the cost of testing ranges from 40 to 60 USD per donor,

and it varies with the volume of units tested. The cost also depends on the size of

the independent testing laboratory; the bigger the lab, the lower is the cost (Rios

(2018)). I intend to study the financial implications of outsourcing the blood testing

operation by the regional blood banks to centralized testing laboratories on the various

stakeholders in the industry.

Due to the nonprofit nature of blood service organizations they do not sell blood

to hospitals to increase profits but charge them a fee to recover their costs (Engel

(2007)) and a large part of that cost is attributed to testing the collected blood for
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various infectious diseases. The Food and Drug Administration (FDA) of the United

States is responsible for ensuring that the supply of blood in the country is safe. The

FDA provides a list of tests to be carried out on the collected blood which include tests

for HIV, Hepatitis B, C, Syphilis, Zika virus, etc. FDA recommended the screening

of individual units of donated whole blood and blood components for Zika virus by

blood centers in all states in the United States in 2016 (Nelson (2017)).

Ellingson et al. (2017) conducted a nation wide study to determine the projected

cost of the Zika virus test on donated blood and found that it would cost 137 mil-

lion USD (with 95% confidence interval) annually. Indeed, this test has added to

the financial stress faced by blood service organizations in the times of decreasing

revenue margins. While it is important to test collected blood for the virus before

transfusion to minimize any risk, Saá et al. (2018) found that the screening of indi-

vidual donations in the United States had a low yield while being extremely costly.

According to Branswell (2018) the Zika testing operation ran by the American Red

Cross costs roughly $137 million a year, and resulted in detection of only eight units

that tested positive for the virus between June 2016 and September 2017. The article

also mentions that “The high screening cost and low number of positive detections

works out to about $5.3 million for each positive unit the Red Cross pulled from the

system”.

Given such conditions it is not surprising that in 2018 the American Red Cross

consolidated its National Testing Laboratories and joined Creative Testing Solutions

(CTS) to become the largest nonprofit blood donor testing laboratory organization

in the United States (America’s Blood Centers (2017b)). According to the website

Creative Testing Solutions, owned by three major players in the industry, the Amer-

ican Red Cross, OneBlood, and Vitalant, will test approximately 9 million donor

samples, which is about 75 percent of the country’s blood supply, at six high volume

laboratory facilities located in Charlotte, Dallas, Phoenix, Portland, St. Louis, and
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Tampa in 2018 (CTS (2018)). In addition to CTS, the other players in the market

include Qualtex Laboratories, ViroMed Laboratories, and blood service organizations

such as the New York Blood Center, which conduct their own testing, and also for

other regional blood banks.

While the size of CTS might allow it to offer lower prices than its competitors

to blood centers due to economies of scale, it might also provide leverage with test

builders and even with regulators. However, the creation of such an organization

also raises concern with respect to the stability and the resilience of the blood supply

chain in the United States in case of disruption leading to unavailbility of testing

services for days, or even weeks (Katz (2017)). Hence, it would be of great value

to study the effect of this new development in the blood banking industry and the

trade-offs between outsourcing and in-house blood testing. The network structure in

Chapter 4 can be extended to include outsourced testing. This can be achieved by

introducing links denoting outsourced testing and nodes representing external testing

laboratories. In addition, we can investigate and model the behavior of the donor

testing facilities as a separate tier of decision makers in the multitiered blood supply

chain network.

6.2.2 Inclusion of Brokers

The changing dynamics in the blood banking sector have also given rise to new

business models such as the brokerage model. Mulcahy et al. (2016) explains the

brokerage business model where organizations connect hospitals in need of blood

with blood centers with excess blood. Revenue is generated through fees charged

on each completed transaction. Two prominent examples of a brokerage model are

the National Blood Exchange (NBE), a program run by the American Association

of Blood Banks, and a software technology and services company called Bloodbuy.

Bloodbuy uses a series of matching algorithms to pair a hospital with a blood bank
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based on the amount of blood available at the blood bank and what the hospital is

willing to pay.

The brokerage system has several merits. Hospitals contracting with blood cen-

ters from various parts of the country have already become prevalent. These new

organizations make nationwide procurement of blood easier as they can ensure that

hospitals and health centers anywhere in the country can get their demand fulfilled

without having to pay unfair high prices. One of the advantages of this model re-

ported in Mulcahy et. al. (2016) is that it provides price transparency and can result

in cost savings. It can induce more competitive pricing for both blood centers and

hospitals while minimizing shortage and wastage of blood. A game theory model can

be developed and analyzed with the brokers constituting a separate tier of decision-

makers. Such a model can capture the monetary transactions of the brokers and can

also verify the perceived merits of the brokerage model.

The brokerage model also adds an intriguing layer of complexity to the modeling

of blood supply chain networks. NBE claims to be a resource sharing program but

Bloodbuy is a profit-maximizing company. The inclusion of profit-maximizing entities

in the blood banking industry, which has traditionally operated in the nonprofit

sector, has not been studied. At the same time we can study the operation of a

program such as NBE from a system optimization perspective which can reveal the

effect of centralization on the efficiency of the blood banking system.
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