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ABSTRACT 

 

THE PREVENTION OF OBESITY-ASSOCIATED COLORECTAL CANCER VIA DIETARY 
SUPPRESSION OF INFLAMMATION-DRIVEN WNT-SIGNALING    

MAY 2019 

JINCHAO LI, B.S., SHANDONG UNIVERSITY OF TRADITIONAL CHINESE MEDICINE 

M.S., ANHUI MEDICAL UNIVERSITY 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Zhenhua Liu 

 

Colorectal cancer (CRC) is the third leading cause of cancer deaths in the United States. A 

number of population studies have established that modifiable lifestyle factors such as obesity 

plays an important role in colorectal carcinogenesis. In the United States, more than one-third of 

adults are obese and obesity prevalence rates have no sign of decrease. Therefore, the 

development of effective strategy to prevent obesity-induced CRC is a public health priority. 

This study aimed to investigate whether genetic or dietary strategies can prevent obesity-

induced CRC and determine the potential molecular mechanisms underlying the prevention 

effects of these strategies. We use Apc1638N mice, germline heterozygous mutation in the Apc 

gene, and Caco-2 cell line to study intestinal tumorigenesis. Hematoxylin and eosin stain and 

QuickPlex SQ 120, a chemiluminescence assay, were used to measure the inflammatory 

status. Real time PCR, Western blot assay, and immunohistochemical analysis were used to 

further examine the signaling pathway status. We found that loss of Tumor necrosis factor alpha 

(TNF-α) decreased obesity associated intestinal tumorigenesis by decreasing the inflammation, 

and manipulating the β-catenin pathway and NF-kB signaling. In addition, IKK, component of 

the NF-kB signaling, was involved in the regulation of β-catenin pathway. The administration of 

Vitamin D (VD), at 5000 IU level, exerted an anti-inflammatory property, and leaded to 
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suppressed intestinal Wnt-signaling and tumorigenesis in obese mice. The molecular function of 

sulforaphane (SFN) on a high dose of VD supplementation, although displayed on the inhibition 

of HDAC and the activation of autophagy, needs further investigation. Butyrate can increase the 

activity of Wnt/β-catenin pathway. Knocking down FFAR2 by siRNA decreased the expression 

of cleaved caspase 3 and the expression of phospho-GSK3β (Ser9) and active β-catenin in 

Caco-2 cells, subsequently mitigated the anticancer effect of butyrate. 
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CHAPTER 1 

INTRODUCTION 

 

Colorectal cancer (CRC) is a major cause of morbidity and mortality throughout the world. It is 

the third most common cancer in the United States, with around 140,000 new cases being 

diagnosed last year. The pathogenetic mechanisms underlying CRC development are complex 

and include hereditary and environmental factors. There is strong evidence that modifiable 

lifestyle factors, including obesity, play a crucial role in CRC carcinogenesis (Gunter and 

Leitzmann 2006).  

 

Obesity is epidemic in most western countries and is a major preventable risk factor for CRC 

cancer incidence and mortality. Currently, the mechanisms underlying obesity associated CRC 

cancer include: chronic low-grade inflammation, altered microbiomes, and increased levels of 

hormones, chemokines, and adipocytokines (Berger 2014). Many studies have suggested that 

obesity associated chronic inflammation might mediate its complications, such as CRC. It is 

suggested that chronic inflammation plays a crucial role in CRC development and progression, 

given the fact that multiple inflammatory cells and inflammatory cytokines present in tumor 

microenvironments. However, the molecular mechanisms linking obesity associated 

inflammation to CRC cancer remain unclear.   

 

There has been considerable interest in the use of diet for cancer prevention. A large amount of 

evidence has shown that diet has the potential to influence inflammation status and cancer 



2 
 

development. Epidemiological studies have suggested that consumption of vegetables, fruits, 

and whole grain is associated with a low inflammation status and reduced risk of CRC cancers. 

On the other hand, consumption of red and processed meat is associated with a high 

inflammation status and increased risk of CRC cancers. It is generally recognized that 

vegetables and fruits such as cruciferous vegetables (broccoli, brussels sprouts, and cabbage), 

fiber, whole grain, and some of the vitamins such as Vitamin D might have CRC cancer 

prevention effects. However, whether knockout TNF-a, supplementation butyrate, or 

combination of Vitamin D with SFN can prevent obesity associated CRC and the precise 

molecular mechanisms underlying its CRC cancer prevention effects remain unclear. 

 

Activation of Wnt signaling at the bottom of the intestinal crypts is essential for intestinal 

homeostasis (Flanagan, Austin et al. 2018). Hyperactivation of Wnt pathway is present in almost 

all CRC. Loss of APC function is crucial in aberrant Wnt signaling in CRC, as previous studies 

have shown that different mutations of APC could result in different levels of activity of canonical 

Wnt pathway and subsequent CRC incidence (Christie, Jorissen et al. 2013). In addition, 

inflammatory cytokines such as TNF-a might activate Wnt pathway (Liu, Brooks et al. 2012; 

Bradford, Ryu et al. 2017).  

 

My dissertation aims to investigate whether knockout TNF-a, combination of Vitamin D with 

SFN, or supplementation of butyrate, can prevent obesity associated CRC and whether 

inhibition of inflammation and subsequent inhibition of Wnt pathway are involved in the cancer 

prevention effects of those strategy. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Colorectal cancer 

2.1.1 Epidemiology of CRC 

Colorectal cancer (CRC) is the third leading cause of cancer death in the United States in both 

men and women. In 2018, it is estimated that ≈ 64 640 women and 75 610 men in the United 

States were diagnosed with CRC and 23 240 women and 27 390 men died from CRC. The 

pathogenesis of CRC development is complex. Both genetic and environmental factors may 

play an important role in the development of CRC (De Rosa, Pace et al. 2015). Almost 75% of 

CRC do not have positive family history and are sporadic. Only 25% of CRC cases have 

positive family history.  

 

2.1.2 Environmental factors 

The environmental risk factors of CRC development include obesity, smoking, heavy drinking, 

high intake of red meat and processed meat. It is estimated that every unit increase of the BMI 

is associated with 2-3% increased risk of developing CRC. Heavy drinking and smoking is 

associated with 20-50% increased risk of developing CRC (Liang, Chen et al. 2009; Fedirko, 

Tramacere et al. 2011). Every 100 g increase of consumption of red meat and processed meat 

is associated with 16% increased risk of CRC (Song, Garrett et al. 2015).  
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On the other hand, increased intake of Vitamin D, fiber, vegetables, whole grains are associated 

with decreased risk of CRC. In addition, 30 minutes of moderate activity can decrease the risk 

of CRCs by 10%(Arem, Moore et al. 2014). Clinic studies also have shown that long term use of 

low-dose of aspirin can prevent the incidence of CRC (Algra and Rothwell 2012).  

 

2.1.3 Pathogenesis of CRC 

The above risk factors can cause normal colon epithelial cells into benign polyps and 

subsequently into malignant carcinomas by activating oncogenes and deactivating tumor 

suppressor genes through long term accumulation of genetic mutations and alteration of 

epigenetics. As shown in Figure 2.1, the top one shows the well recognized pathway: from 

tubular adenomas to adenocarcinomas. The bottom one shows a recently described pathway: 

from serrated polyps to serrated colorectal cancer.  

 

Figure 2.1 Pathogenesis of CRC. Source: Ernst J. Kuipers. Colorectal cancer. Nature Reviews 

Disease Primers volume 1, Article number: 15065 (2015). Available at 

https://www.nature.com/articles/nrdp201565 
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There are three distinct pathogenesis mechanisms by which CRC develop: the chromosomal 

instability (CIN), microsatellite instability (MSI), CpG island methylator phenotype (CIMP). CIN is 

composed of 85% of CRC. MSI is caused by loss of DNA mismatch repair activity, occurring in 

about 15% of all CRC (Bogaert and Prenen 2014). CIMP is characterized by a widespread CpG 

island methylation (Nazemalhosseini Mojarad, Kuppen et al. 2013). Loss function of APC plays 

a pivotal role in the development of CIN phenotype CRC. In my dissertation, I focused on the 

most common CRC: CIN phenotype. 

 

2.1.4 Prevention of CRC 

CRC can be prevented by altering the modifiable factors such as unhealthy diet and lifestyle 

factors. Since previous studies have shown that high intake of red meat, processed meat, highly 

refined grains and starches, and sugars are associated with increased risk of CRC. Therefore, 

decreasing the consumption of those foods and intake more fiber, vegetable, fruits, beans, and 

unsaturated fatty acids might lower the risk of CRC. There are also many studies indicating that 

increased intake of calcium and Vitamin D might lower risk of CRC. Long term and small dose 

of Aspirin and Satin usage might prevent the incidence of CRC. However the role of these 

interventions in the prevention of CRC remains controversial. In terms of lifestyle, researchers 

found that quit smoking and heavy drinking, avoiding of obesity, and regular physical activity 

may have the benefit of reducing the risk of CRC (Chan and Giovannucci 2010).  

 

2.2 Obesity and obesity associated inflammation 
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Obesity, an epidemic, can increase many chronic diseases, such as diabetes, chronic heart 

diseases, and cancer, including CRC. Obesity may lead to adipose dysfunction and increased 

expression of proinflammatory cytokines. In the tumor microenvironments, there are many 

inflammatory cells and cytokines, which can stimulate cell proliferation, decrease cell apoptosis, 

and promote cancer metastasis. Therefore, it is believed that chronic inflammation is a central 

component of tumor development, progression, and metastasis. Besides inflammation, obesity 

associated dysregulated metabolisms, such as insulin resistance, hyperglycemia, and 

dyslilidemia, are also involved in obesity associated tumor incidence and growth. 

 

2.2.1 Adipose tissue inflammation 

Recently, adipose tissue is recognized as the body’s largest endocrine organ. Adipose tissue 

can secret many kind of cytokines and adipokines. When the energy consumed excesses than 

needs, because of the needs of energy storage, adipose tissue has to remodel to accommodate 

this need. The adipose tissue remodeling processes include: adipose tissue expansion 

(increased adipocyte size and/or number); recruitment of proinflammatory immune cells; 

remodeling of the vasculature and the extracellular matrix. Subsequently, the above remodeling 

processes can lead to significant changes in the composition of the adipose tissue, and 

decreasing the number of the anti-inflammatory Treg and TH2 cells, while increasing the 

numbers of pro-inflammatory TH1 and CD8+ T cells. 

 

2.2.2 Mechanisms of inflammatory responses in obese adipose tissue 

Adipocytes play a pivotal role in adipose inflammation. Adipocytes express adiponectin and 

leptin. After secreted by adipocytes, leptin induces inflammatory response in obesity. However, 

adiponectin has anti-inflammatory effects. Circulating levels of adiponectin decrease associated 
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with increasing visceral obesity. Leptin plays a key role in inducing adipose proinflammatory 

processes (Deng, Lyon et al. 2013). Leptin stimulates the secretion of several cytokines, such 

as TNF-α, IL-1, IL-6, and IL-12. Leptin also increases reactive oxygen species (ROS) production 

and the secretion of leukotriene B4, cyclooxygenase 2 (COX2), and nitric oxide (Carbone, La 

Rocca et al. 2012). Leptin also can increase T cell proliferation and TH1 cell polarization and 

inhibits Treg proliferation, which is an important negative regulator of adipose inflammation. 

During obesity, immune cells is increased in adipose tissue, which is one of the characteristics 

of obesity and a major component of adipose inflammation linked to systemic complications of 

obesity (Xu, Barnes et al. 2003). Therefore, drugs or bioactive compounds that promote 

macrophages toward M2, might have the potential to inhibit adipose tissue inflammation and 

systemic complications of obesity (Han, Jung et al. 2013). 

 

2.2.3 Adipose tissue and the tumor microenvironment 

Tumor microenvironment (TME) plays a crucial role in the initiation and progression of CRC. 

The TME are composed of fibroblasts, adipocytes, cytokines, inflammatory and immune cells, 

blood vessels, and extracellular matrix. The TME usually has increased level of cytokines and 

growth factors which can increase antiinflammatory TH2 and Tregs, and decrease 

proinflammatory TH1 cells. It is believed that TME can prevent carcinogenesis in normal 

conditions. However, TME can also be modified and then become promoting progression and 

metastasis (Chen, Zhuang et al. 2015). Cancer cells, immune cells, and inflamed adipose tissue 

can alter TME, and subsequently promote tumor progression. For instance, inflammatory 

environment can induce mutations and proliferation of these cells, activate transcription factors 

such as STAT3, NF-kB, and activator protein 1; increase nutrients supply by angiogenesis. 

Tumor-promoting cytokines are proinflammatory cytokines, such as TNF-α, IL-1β. TNF-α, IL-1β 
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can induce epithelial-mesenchymal transition (EMT), and tumor metastasis into lymphatics and 

remote organs. 

 

2.2.4 Obesity and CRC 

2.2.4.1 Epidemiology of Obesity associated CRC 

It is estimated that around 11% of CRC cases are caused by overweight and obesity. 

Epidemiological studies have shown that obesity is associated with a 30-70% increased risk of 

cancer. Specifically, it is suggested that visceral adiposity are more closely associated with CRC 

(Donohoe, O'Farrell et al. 2014). Beside the role of obesity in CRC incidence, obesity is also 

associated with poor prognosis of CRC. Inflammatory bowel diseases independently increase 

CRC risk, highlighting the role of inflammation in CRC development (Farraye, Odze et al. 2010; 

Khandekar, Cohen et al. 2011). Therefore, it is well accepted that obesity and chronic 

inflammation play as pivotal role in CRC initiation, tumor progression, and metastasis. 

 

2.2.4.2 Obesity and cancer initiation 

Epidemiological and experimental data suggest that leptin and adiponectin are associated with 

CRC risk(Drew 2012). Specially, increased leptin expression is associated with increased risk of 

CRC, whereas, decreased adiponectin is associated with CRC pathogenesis (Tutino, 

Notarnicola et al. 2011; Hebbard and Ranscht 2014). Hardwick et al, suggested that high fat diet 

(HFD) induced CRC carcinogenesis is mediated through increased serum leptin levels 

(Hardwick, Van Den Brink et al. 2001). The possible explanation is that, in lean adipose tissue, 

adiponectin suppresses secretion of adipose-derived proinflammatory cytokines such as IL-6, 

however, in obese adipose tissue, leptin increases production of TNF-α, IL-6, and IL-12, which 
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can promote CRC incidence. In consistent with this explanation, adiponectin knockout mice 

exhibits high level of proinflammatory cytokines (including IL-6, IL-1β, and TNF-α) and develops 

larger size of CRC. Among those proinflammatory cytokines, TNF-α may activate transcription 

factor NF-kB, which can increase secretion of proangiogenic factors and growth factors. 

 

2.3 Tumor necrosis factor-α 

Tumor necrosis factor-α (TNF-α), a glycoprotein, was reported that it can induce necrosis of 

cancer without injury to other surrounding normal tissues (Carswell, Old et al. 1975). In 1984, 

TNF-α gene was cloned, and recombinant human TNF-α could induce necrosis of cancer in 

mice, which seems have great promise in the treatment of cancer (Pennica, Nedwin et al. 

1984). 

 

2.3.1 TNF-α Signaling  

TNF-α is mostly secreted by the activated inflammatory cells, such as macrophages, mast cells, 

and T lymphocyte, but other cell types including cancer cells also secret TNF-α. TNF-α is first 

synthesized as a type II transmembrane protein (tmTNF-α) which contains an external C-

terminus and cytoplasmic N-terminus (Figure 2.2). The cleavage of the extracellular domain of 

tmTNF-α by TNF-α-converting enzyme (TACE, a matrix metalloprotease) leads to the 

production of soluble TNF-α (sTNF-α).  
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Figure 2.2. Diagram showing tmTNF-α (membrane TNF-α) cleavage by TACE into sTNF-α 

(soluble TNF-α). 

 

tmTNF-α and sTNF-α are both active. TNF-α can bind with two different receptors, TNF-α 

receptor 1 (TNFR1) and TNF-α receptor 2 (TNFR2). Both TNFR1 and TNFR2 receptors do not 

have intrinsic enzyme activity and therefore they need cytosolic adaptor proteins to transduce 

intracellular signals. TNF-α can activate pathways that control three distinct cellular responses: 

cell survival and proliferation; transcription of pro-inflammatroy genes; and cell death (Waters, 

Pober et al. 2013). TNFR1 activation can control the following signaling pathways: the nuclear 

factor-kappa B (NF-κB), the extracellular signal-regulated kinase (ERK), the c-Jun N-terminal 

Kinase (JNK), the p38 mitogen-activated protein kinase (p38 MAPK), the 1 acidic 

sphingomyelinase (A-SMase), and the neutral sphingomyelinase (N-SMase) Pathways (Olmos 

and Llado 2014).  



11 
 

 

After binding with TNF-α, TNFR1 will do a conformational change in its cytoplasmic portion, 

which will assemble the TNFR complex 1, which include TNF receptor-associated death domain 

(TRADD), receptor-interacting protein 1 (RIP1; also known as RIPK1), cellular inhibitor of 

apoptosis proteins (cIAPs), TNF receptor-associated factor 2 (TRAF2) and TRAF5(Song, Zhou 

et al. 2016). Compared to the signaling pathways initiated by TNFR1, TNFR2 is the preferential 

receptor for tmTNF-α and is less characterized. TNFR2 can activate IKK, leading to nuclear 

translocation of NF-κB through a pathway similar to TNFR1(Sun 2011). Distinct signaling 

pathways upon TNFR2 binding have also been studied (Rodriguez, Cabal-Hierro et al. 2011). 

Previous study have shown that TNFR2 can potentiate the apoptotic response to TNF-α, 

suggesting that TNFR2 may function as a high-affinity trap of TNF-α that delivers the ligand 

signal to TNFR1 (Richter, Messerschmidt et al. 2012).  

 

After binding with TNF-α, TNFR1 has a conformational change, leading the assembly of the 

TNFR complex 1. TNFR complex 1 include TNF receptor-associated death domain (TRADD), 

receptor-interacting protein 1 (RIP1; also known as RIPK1), cellular inhibitor of apoptosis 

proteins (cIAPs), TNF receptor-associated factor 2 (TRAF2) and TRAF5 (Song, Zhou et al. 

2016). Unlike TNFR1, TNFR2 are more likely bind to tmTNF-α and are less studied. TNFR2 can 

activate IKK, resulting in nuclear translocation of NF-κB (Sun 2011). Previous study suggested 

that TNFR2 can potentiate the apoptotic response to TNF-α, suggesting that TNFR2 may 

function as a high-affinity trap of TNF-α that delivers the ligand signal to TNFR1 (Richter, 

Messerschmidt et al. 2012).  

 

2.3.2 TNF-α response in tumors 
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At first, TNF-α was recognized as a promising strategy for cancer treatment. However, it has 

also been shown that TNF-α can be derived from many tumor cells (Zins, Abraham et al. 2007; 

Al-Lamki, Sadler et al. 2010; Aggarwal, Gupta et al. 2012; Landskron, De la Fuente et al. 2014). 

As a result, the role of TNF-α in tumor survival, migration, and invasion, are more and more 

appreciated. 

 

2.3.2.1 TNF-α and cancer cell death 

The binding of TNF-a to TNFR1 leads to the assembles signaling complex I, which recruits Fas-

associated death domain protein (FADD), forming a complex DISC (also known as complex 2) 

(Micheau and Tschopp 2003). Caspases-8 and caspases-10, which are initiator caspases, are 

activated within the DISC complex (Parrish, Freel et al. 2013). Activated caspases-8 and 10 can 

directly cleave and activate effector caspases, such as caspases 3 and 6. Effector caspase can 

then cleave nuclear lamins leading to the nuclear fragmentation. It is well known that inhibition 

of caspases is capable of protecting cells from apoptotic cell death. In contrast, necrosis has a 

feature of a gain in cell volume, swelling of organelles, and irreversible plasma membrane 

damage (Festjens, Vanden Berghe et al. 2006). Necroptosis can be initiated by the TNF-a DISC 

through RIPK-1-mediated recruitment and activation of the structurally related protein RIPK-3 

(Hitomi, Christofferson et al. 2008; Bonnet, Preukschat et al. 2011; Welz, Wullaert et al. 2011). 

Interestingly, even absence of FADD or pro-caspase 8, TNF-α can also induce cell death. 

Another mechanism of how TNF-α exerts antitumor effects is through induction of autophagy, 

which can be a precursor to both apoptotic and necrotic cell death (Figure 2.3 ).  
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Figure 2.3. TNF-α induces tumor apoptosis and necroptosis via distinct signaling pathways. 

 

2.3.2.2 TNF-α and cancer-related inflammation 

TNF-α, being secreted in a setting such as chronic inflammation and infections, can increase 

the risk of cancer.  For example, Helicobacter pylori is an important risk factor gastric cancer; 

inflammatory bowel disease increases the risk of colonic cancer (Wroblewski, Peek et al. 2010; 

Kim and Chang 2014).  TNF-α might speed up cancer cell growth by modulating leukocytes, 

including T cells, B cells and/or tumor-associated macrophages (TAMs). TNF-α can increase 

TNFR1-dependent IL-17 production, subsequently, myeloid cell was recruited into the tumor 

microenvironment and tumor growth was accelerated (Charles, Kulbe et al. 2009). TNF-α also 

plays an important role in tumor angiogenesis by inducing VEGF production. B cells are 

important effector cells for TNF-α-mediated carcinogenesis and produce a significant amount of 
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TNF-α. TNF-α may modulate the activity of regulatory B cells through repressing anti-tumor 

immunity (Schioppa, Moore et al. 2011).  

 

2.3.2.3 TNF-α and cell proliferation, survival, and angiogenesis 

TNF-α stimulates proliferation, invasion, survival, migration, and angiogenesis via TNFR1. In 

addition,  TNF-α binding with TNFR2 also activates the PI3K/Akt pathway leading to cell 

migration and proliferation (Yang, Wang et al. 2018). In vascular endothelial cells, TNF-α may 

activate epithelial and endothelial tyrosine kinase (Etk) and vascular endothelial growth factor 

receptor 2 (VEGFR2), leading to enhanced angiogenesis (Pan, An et al. 2002; Zhang, Xu et al. 

2003). In renal cell carcinoma, TNF-α may increase tumor progression by acting selectively 

through a TNF-α/Etk/VEGFR2 pathway. (Al-Lamki, Sadler et al. 2010). 

 

2.3.3 TNF-α as a therapy for cancer. 

Although TNF-α can be used to treat cancer, it has several side effects such as fever, septic 

shock, and cachexia (Locksley, Killeen et al. 2001). It is estimated that the maximum tolerated 

dose (MTD) that can be used systemically in clinic is 10-fold lower than the dose inducing 

cancer cell death (Schiller, Storer et al. 1991; Skillings, Wierzbicki et al. 1992). Due to those 

side effects, the clinical application of TNF-α was restricted to the isolated limb perfusion (ILP) 

setting for soft tissue sarcoma (STS) and melanoma in-transit metastases confined to the limb. 

It is reported that the combination of TNF-α and melphalan may induce regression of 

unresectable metastases from colorectal cancer. TNF-α is believed to target the tumor 

vasculature, by decreasing Alpha-v-beta-3 integrin (Ruegg, Yilmaz et al. 1998; Grunhagen, de 

Wilt et al. 2006). It is suggested that TNF-α can increase tumor blood vessel permeability, thus 

leading to increased tissue concentration of chemotherapy and destroying the tumor 
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vasculature (Seynhaeve, Hoving et al. 2007). TNF-α may also promote tumor necrosis by 

inducing coagulant effect, in which TNF-α can increase fibrin deposition and thrombus formation 

in the cancer vasculature (Zhang, Deng et al. 1994; Zhang, Deng et al. 1996).  

 

2.3.4 TNF-α as a target for cancer. 

Komori et al first reported that TNF-α may be involved in activation of oncogene and DNA 

damage(Komori, Yatsunami et al. 1993). TNF-α can increase the carcinogenesis by stimulating 

clonal evolution (Li, Sejas et al. 2007). In addition, TNF-α can also contribute to carcinogenesis 

by inducing DNA damage in cancer cells, and normal lung epithelial cells(Babbar and Casero 

2006; Yan, Wang et al. 2006). Furthermore, clinical trials suggested that neutralizing TNF-α 

might be beneficial in cancer patients. In a phase I study, the anti-TNF antibody infliximab can 

stabilize previously progressing advanced cancer in 7 of 41 patients (Brown, Charles et al. 

2008). In a phase II study, TNF-α antagonist etanercept, a soluble TNFR2 fusion protein that 

binds and neutralizes TNF-α, can also stabilize diseases in 6 of 30 progressing ovarian cancer 

patients(Madhusudan, Foster et al. 2004), and in 14 of 30 renal cell cancer patients (Harrison, 

Obermueller et al. 2007). However, the molecular mechanisms of action of anti-TNF in cancer 

patients are still unclear. It is suggested that TNF-α antagonists inhibit cytokine and chemokine 

production, recruitment of inflammatory cells, angiogenesis and extracellular matrix degradation 

(Tracey, Klareskog et al. 2008). Some of the mouse model experiments demonstrated a role for 

TNF antagonists in cancer prevention. Previous studies also have shown that traditional medical 

herbal and the polyphenols present in tea inhibit TNF-α release (Fujiki, Suganuma et al. 2003). 

Recent studies suggested that tumor microenvironment levels of sTNF-R2 may represent a 

factor of poor prognosis and in epithelial ovarian cancer (Nomelini, Borges Junior et al. 2018). 

Given the fact that TNF-α plays an important role in regulating innate immunity, TNF-α 

antagonists might increase risk of infection. Therefore, many patients with rheumatoid arthritis 
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or other chronic inflammatory diseases are recruited in the clinic trials for studying cancer 

incidence during TNF-α antagonist treatment (Table 1). 

 

Study Design  Diseases Treatment Duration Results  

Cohort study Rheumatoid 

Arthritis 

TNF inhibitor 

and rituximab 

13 years Not increase risk of 

cancer(Silva-Fernandez, Lunt 

et al. 2016) 

Cohort study Inflammatory 

bowel disease 

TNF inhibitor 3.7 years Not increase risk of cancer 

(Nyboe Andersen, Pasternak 

et al. 2014). 

Cohort study Rheumatoid 

Arthritis 

TNF inhibitor 9.4 years Not increase risk of 

cancer(Raaschou, Frisell et al. 

2015) 

Cohort study Crohn’s disease 

Ulcerative 

colitis 

Vedolizumab 54 weeks Not increase risk of 

cancer(Amiot, Serrero et al. 

2017) 

Cohort study Rheumatoid 

Arthritis 

TNF inhibitor 5 years Not increase risk of 

cancer(Mercer, Lunt et al. 

2015) 

Clinical trial Advanced 

caner 

Infliximab 50 weeks No evidence of disease 

acceleration(Brown, Charles et 

al. 2008)  
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Cohort study Rheumatoid 

Arthritis 

TNF inhibitor 10 years Not increase risk of 

cancer(Phillips, Zeringue et al. 

2015) 

Cohort study Rheumatoid 

Arthritis 

TNF inhibitor 14 years Reduced risk of cancer(Wu, 

Chen et al. 2014) 

Table 1. Effects of TNF inhibitor on risk of cancer. 

 

2.4 Vitamin D 

Vitamin D is a group of steroids with a broken ring: secosteroids. Vitamin D is grouped into two 

major physiologically relevant forms, ergocalciferol (vitamin D2), which is mostly derived from 

plants, and cholecalciferol (vitamin D3), which is photosynthesized in the skin of animal by the 

action of UVB on 7-dehydrocholesterol. The most major source of vitamin D is obtained by 

cutaneous production from UVB. Sincere the production of vitamin D can be interrupted by 

latitude, season, ageing, skin pigmentation, it is crucial to get enough vitamin D from diet to 

maintain a satisfied vitamin D level (Bikle 2014). In the United States, the main dietary source of 

vitamin D is from dietary products and some fortified foods such as breakfast cereals, soy 

beverages, and orange juice. Natural sources of vitamin D include fish, and egg yolks. 

 

2.4.1 Synthesis and Metabolism of Vitamin D 

Vitamin D3 can be obtained from dairy products and fish oils or be photosynthesized in the skin 

by the action of sun exposure on 7-dehydrocholesterol. As shown in Figure 2.4, synthesis of 

vitamin D depends on the doses of UVB. Since sunscreen, skin color can block sun exposure, 

sunscreen and skin color decrease the production of vitamin D (Matsuoka, Wortsman et al. 
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1992). Vitamin D is transported to the liver in the blood vessels by binding to vitamin D-binding 

protein (DBP). In the liver, vitamin D is converted into 25-hydroxyviatmin D [25(OH)D3] by the 

25-hydroxylase (CYP27A1), resulting to 25(OH)D3. The 25(OH)D3 is then hydroxylated in the 

kidney by 1-hydroxylase (CYP27B1, 1-OHase), yielding the active form of vitamin D, 

1,25(OH)2D3. 1,25(OH)2D3 has different effects on various target tissues. In the kidney, 24 

hydroxylase (CYP24) also can hydroxylate 25(OH) D3 and 1,25(OH)2 D3, resulting 24,25(OH)2 

D3, 1,24, 25(OH)3 D3. Compared to active 1,25(OH)2 D3, 24,25(OH)2 D3 and 1,24, 25(OH)3 D3 

are relatively inactive (Bikle 2014). Calcitriol [1,25(OH)2 D3] exerts multiple cancer prevention 

effects on various malignant cells and animal models. 

 

Figure 2.4. Vitamin D synthesis and metabolism 
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2.4.2 Mechanisms of the anti-cancer effects of calcitriol 

As shown in Figure 2.5, several molecular mechanisms are involved in the cancer prevention 

effects of calcitriol. It is suggested that the cancer prevention effects of calcitriol is obtained by 

binding to nuclear vitamin D receptor (VDR), mostly via genomic actions (Deeb, Trump et al. 

2007; Mikhak, Hunter et al. 2007; Ingraham, Bragdon et al. 2008; Li, Li et al. 2017).  

 

Figure 2.5. Mechanisms underlying the anticancer effects of calcitriol 

 

2.4.2.1 Regulation of cell cycle and apoptosis  

Calcitriol has anti-proliferative effect in many cancer cells by modifying cell cycle (Sarkar, 

Hewison et al. 2016), inducing apoptosis (Dou, Ng et al. 2016). Specifically, calcitriol decreases 

the proliferation of cancer cells through increasing the production of cyclin dependent kinase 

(CDK) inhibitors p21 and p27, and decreasing CDK activity (Flores, Wang et al. 2010). In the 

meanwhile, the combination of calcitriol and conventional therapies might also downregulate the 

expression and activity of important signaling pathways which can regulate the cell cycle. 

(Segovia-Mendoza, Diaz et al. 2017).  

 

2.4.2.2 Enhancement of differentiation  
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Besides inhibition of proliferation, calcitriol also has the ability of inducing the differentiation of a 

variety of cancer cells, including CRC cells (Diaz, Diaz-Munoz et al. 2015). In addition, calcitriol 

can induce terminal differentiation of human myeloid leukemia cells into monocytes and 

macrophages (Vasylyeva, Chen et al. 2005). Previous study also has shown that calcitriol might 

be able to upregulate the expression of myoepithelial markers in SUM159 mammospheres 

(Shan, Wahler et al. 2017).   

 

2.4.2.3 Modulation of angiogenesis  

Calcitriol can decrease the angiogenesis of new blood vessel formation in cancer 

microenvironment. For example, in Vdr-null mice, there are increased expression of pro-

angiogenic factors such as Hypoxia-inducible factor 1 alpha (HIF 1α), vascular endothelial 

growth factor (VEGF), angiopoietin 1, platelet-derived growth factor (PDGF) in tumors (Chung, 

Han et al. 2009). In addition, Calcitriol can inhibit cyclooxygenase-2 (COX-2) induced production 

of prostaglandin E2 (PGE2), which can induce angiogenesis by secreting HIF 1α in cancer cells 

(Fukuda, Kelly et al. 2003).  

 

2.4.2.4 Anti-inflammation  

As I discussed above, a large amount of evidence suggests that chronic inflammation plays an 

important role in cancer development and progression (Koul, Kumar et al. 2010; Sfanos, 

Hempel et al. 2014; Crusz and Balkwill 2015). Previous studies have shown that calcitriol 

exhibits anti-inflammatory actions in several cancers (Krishnan and Feldman 2011). Calcitriol 

decreases the expression of COX2, PGE2, and other inflammatory cytokines in prostate cancer 

cells (Moreno, Krishnan et al. 2005) and ovarian cancer cell lines (Thill, Woeste et al. 2015). 

This may be because calcitriol can alter several pro-carcinogenic inflammatory pathways, such 
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as NF-κB(Bao, Yao et al. 2006; Cohen-Lahav, Shany et al. 2006), and p38 stress kinase 

pathway(Nonn, Peng et al. 2006).  

 

2.4.3 Vitamin D in clinical trials 

In WHI clinical trial, supplementation with a small amount of vitamin D3 (400 IU per day) and 

calcium (1 g per day) did not show a CRC prevention effect. (Wactawski-Wende, Kotchen et al. 

2006). One limitation of this study is that the low dose of vitamin D (400 IU per day) may not 

significantly raise the serum 25(OH)D levels (Tella, Gallagher et al. 2014). Reanalyzing the WHI 

clinical trial, Ding et al found that vitamin D and calcium supplementation may exert CRCs 

cancer prevention effects in postmenopausal women who do not use estrogen therapy (Ding, 

Mehta et al. 2008). Vahedpoor et al found that after 6 months of vitamin D supplementation, 

patients with cervical intraepithelial neoplasia grade 1 have shown cancer regression and 

improved metabolic status(Vahedpoor, Jamilian et al. 2017). However, in a RCT study of 

healthy postmenopausal women, vitamin D and calcium supplementation did not decrease the 

cancer risk after 4 years of supplementation(Lappe, Watson et al. 2017). One possible 

explanation of negative results is that the control participants have a higher baseline serum 

vitamin D level (32.8 ng/ml) compared with the US population. It is estimated that 75-80% the 

US adult population had serum vitamin D levels less than 30 ng/ml, and approximately 30% had 

vitamin D levels below 20 ng/ml(Yetley 2008). In patients with early recurrent prostate cancer, 

calcitriol therapy decreased the rate of rise of prostate specific antigen (PSA) (Gross, Stamey et 

al. 1998).  

 

2.5 Sulforaphane 

2.5.1 Sulforaphane Bioavailability 
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Sulforaphane (SFN) [1-isothiocyanato-4-(methylsulfinyl)butane], a isothiocyanate, has been 

reported that it has chemopreventive property. SFN contains an isothiocyanate group (−N = C = 

S) and a methylsulfonyl side chain (R-(S-O)-R). (Figure 2.6) SFN is a plant-origin isothiocyanate 

organosulfur compounds, which has been extensively studied. It has been suggested that SFN 

has many biological effects including cancer prevention(Amjad, Parikh et al. 2015), and 

inflammation prevention (Greaney, Maier et al. 2016).   

 

Figure 2.6. The molecular structure of sulforaphane in broccoli 

 

Besides its well known cancer prevention effect, SFN is known to possess anti-inflammatory 

property(Liu and Talalay 2013). Nuclear factor kappa B (NFkB) plays a pivotal role in the 

inflammatory conditions (Tak and Firestein 2001). It is well known that NFkB activation can lead 

to the up-regulation of oncogenes and proinflammatory cytokines in the colon cancer and 

prostate cancer. It has been reported that NFkB pathway is highly active in patients with solid 

cancers such as colon, prostate, breast cancers(Aggarwal and Gehlot 2009). Further studies 

have suggested that SFN formed adducts with cysteine residues in the extracellular domain of 

TLR4, resulting in the inhibition of NFκB mediated signaling pathway. 

 

2.5.2 Anticancer Activity of Sulforaphane 
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Epigenetic alterations play a pivotal role in the cancer prevention effects of SFN (Golson and 

Kaestner 2017). Compared with genetic alterations, epigenetic changes are reversible. There 

are two major types of modifications in epigenetic alterations: histone modifications, which are 

flexible, and DNA methylation, which are generally stable (Kouzarides 2007). Histone 

acetylation reduces the positive charge of the histone proteins, leading to a reduced affinity for 

DNA and resulting in an open chromatin structure that easies the access of transcription factors 

to specific gene loci. In the mean time, histone deacetylases (HDACs) can remove the acetyl 

group (Figure 2.7). It is well known that overexpression and / or over activity of HDAC are 

characteristics of cancer, which can lead to a reduced transcription of genes responsible for 

apoptosis and cell cycle arrest (Fraga, Ballestar et al. 2005).  

 

 

Figure 2.7. Modulation of chromatin conformation and transcriptional status by acetylation of 

lysine tails in histone core proteins. HDAC, histone deacetylase; HAT, histone acetyltransferase.  
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SFN can act as an HDAC inhibitor, resulting in cancer cell cycle arrest and apoptosis (Ho, 

Clarke et al. 2009). Myz ak et al., first reported that SFN can increase TOPflash reporter activity 

without changing expression of β-catenin, indicating that SFN alterd the activity of HDAC 

(Myzak, Karplus et al. 2004). In human embryonic kidney 293 cells, SFN dose-dependently 

decrease HDAC activity (Myzak, Karplus et al. 2004). It is suggested that 15 µM SFN can 

significantly inhibit HDAC activity in three prostate epithelial cell lines (BPH-1, LNCap, and PC3) 

(Myzak, Hardin et al. 2006). Another study reported that after a single oral dose of SFN, SFN 

significant inhibited HDAC activity in the colonic mucosa and suppressed tumor development in 

APCmin mice (Myzak, Dashwood et al. 2006). In HCT116 colon cancer cells, 15 µM SFN can 

significantly inhibit the activity of HDAC1, HDAC2, HDAC3, and HDAC8 after 36 h of treatment 

(Rajendran, Delage et al. 2011).  

 

Previous studies have shown that DNA methylation pattern is changed during cancer initiation 

and progression. The changes include global and site specific DNA hypomethylation as well as 

gene specific promoter hypermethylation (Portela and Esteller 2010; Baylin and Jones 2011). 

Hypomethylation of the promoter of oncogenes can increase their expression, while, DNA 

hypermethylation may lead to the inhibition of genes involved in cell cycle regulation and 

apoptosis. Regulation of DNA methylation patterns are mediated by DNA methyltransferases 

(DNMTs). DNMTs are overexpressed in leukemic, gastric, lung, and prostate cancer (Mizuno, 

Chijiwa et al. 2001; Etoh, Kanai et al. 2004; Morey Kinney, Smiraglia et al. 2008; Lin, Wu et al. 

2010).  
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Previous studies have shown that the expression of DNMT1 and DNMT3a was inhibited by SFN 

treatment in human breast cancer cells and prostate cancer cell lines(Meeran, Patel et al. 2010; 

Hsu, Wong et al. 2011). Treatment with SFN for 24 h can decrease global methylation in LNCap 

cells(Kobayashi, Nakamura et al. 2009). SFN treatment can decrease methylated CpG sites in 

the promoter region of cyclin D2 in prostate cancer cells. In addition, SFN treatment can also 

decrease methylation at the binding site of the c-Myc transcription factor. However, SFN 

treatment failed to alter abnormal methylation patterns in critical genes involved in colon 

carcinogenesis in colon cancer cells (Barrera, Johnson et al. 2013).   

 

2.5.3 Sulforaphane in Human Studies 

A number of clinical trials are conducted to determine the cancer prevention effects of SFN. 

Kensler et al have shown that the level of SFN metabolites is inversely associated with cancer 

markers in resident of Qidong who have a high risk of hepatocellular carcinoma (Kensler, Chen 

et al. 2005). Another study shows that consumption of 400 µM glucoraphanin may increase the 

excretion of airborne pollutants (Kensler, Ng et al. 2012). Kirsh et al reported that consumption 

of cruciferous vegetables especially broccoli is associated with a significantly decreased risk of 

prostate cancer (Kirsh, Peters et al. 2007). However, in another clinic study, treatment with 200 

µM per day of SFN-rich extracts did not lead to ≥ 50% PSA declines in the majority of patients 

(Alumkal, Slottke et al. 2015).  

 

2.6 Butyrate 

2.6.1 Background  
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Butyrate is a four-carbon short-chain fatty acid, which can be produced by anaerobic bacteria 

fermentation of dietary fiber in the colon (Figure 2.8). 2 metabolic pathways are involved in the 

production of butyrate. In the first pathway, butyryl-CoA is phosphorylated and converted to 

butyrate by butyrate kinase (Louis and Flint 2017). In the other pathway, the butyryl-

CoA:acetate CoAtransferase transfers the CoA moiety of butyryl-CoA to acetate, resulting to the 

production of butyrate and acetyl-CoA (Trachsel, Bayles et al. 2016). Butyrate is the major 

energy source for colonocytes (Slavin 2013; Conlon and Bird 2014).  

  

Figure 2.8. Butyrate Chemical Structure 

 

Butyrate are absorbed across the apical membrane of the colonocytes by both diffusion and 

short-chain fatty acid (SCFA) transporter. There are two SCFA transporters, monocarboxylate 

transporter (MCT) isoform 1 (MCT1), and solute carrier (SLC) family 5 member 8 (SLC5A8) 

(Counillon, Bouret et al. 2016). Orphan G protein-coupled receptor 41 (GPR41) and GPR43 are 

the receptors for SCFA. GPR41 and GPR43 are also known as FFAR3 and FFAR2 respectively 

(Brown, Goldsworthy et al. 2003). Butyrate preferentially binds to GPR41 over GPR43. GPR41 

is universally expressed in a variety of tissues including adipose tissue, pancreas, spleen, lymph 

nodes, bone marrow, and peripheral blood mononuclear cells including monocytes(Brown, 

Goldsworthy et al. 2003; Le Poul, Loison et al. 2003). GPR43 also expressed in colon cells, and 
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adipocytes, and the highest expression of GPR43 was found in immune cells such as 

monocytes and neutrophils (Nilsson, Kotarsky et al. 2003). 

 

2.6.2 Butyrate and Anti-inflammation 

Studies have shown that butyrate is a promising anti-inflammatory agent. Butyrate can inhibit 

the secretion of the proinflammatory cytokines such as IFN-γ, TNF-α, IL-1β, IL-6, and IL-8, 

whereas enhance the production of the anti-inflammatory cytokines IL-10 and TGF-β. It is 

suggested that the molecular mechanisms underlying the inhibition of inflammation by butyrate 

are partially due to inhibition of NF-κB. Further studies suggest that butyrate suppresses the NF-

κB signaling pathway activation by rescuing the redox machinery and controlling reactive 

oxygen species (Russo, Luciani et al. 2012). Activation of PPAR-γ by butyrate is another 

possible mechanism of anti-inflammatory activity of butyrate. Previous studies have suggested 

that PPAR-γ is a member of the nuclear receptors, and activation of PPAR-γ can exert anti-

inflammatory effects (Mattace Raso, Simeoli et al. 2013). Butyrate may inhibit signaling of IFN-γ, 

which plays a crucial role in inflammation-associated CRC development (Schwab, Reynders et 

al. 2007; Zimmerman, Singh et al. 2012).  

 

2.6.3 Butyrate and CRC 

Epidemiological and animal studies have shown that dietary fiber can inhibit CRC incidence 

(Baena and Salinas 2015; Encarnacao, Abrantes et al. 2015). One of the explanations of CRC 

prevention effect of butyrate is that bacterial fermentation convert resistant starch to SCFA 

(Song, Garrett et al. 2015). Among SCFA, butyrate plays a pivotal role in the 

prevention/inhibition of colon carcinogenesis (Manning and Gibson 2004). Butyrate can induce 

colon cancer cell differentiation and apoptosis, and inhibit colon cancer cell 
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differentiation(Goncalves, Araujo et al. 2011). Similarly, several animal studies also suggested a 

protective effect of butyrate on CRC carcinogenesis (D'Argenio, Cosenza et al. 1996; Kameue, 

Tsukahara et al. 2004; Lu, Nakanishi et al. 2013). Human studies also found an inverse 

relationship between the levels of butyrate in the human colon and the incidence of CRC 

(Bingham, Day et al. 2003). The risk of developing tumors are higher in the distal colon where 

the concentration of butyrate is lower, implicating butyrate has CRC prevention effect 

(Mortensen, Holtug et al. 1988). 

 

It seems that the underlying mechanisms of cancer prevention effect of butyrate involve 

regulation of gene expression, which due to its capacity of HDAC inhibition. Acting as a HDAC 

inhibitor, butyrate can result in hyperacetylation of histones. Beside HDAC, it is likely that 

butyrate has other targets, such as DNA methylation (Dehaan, Gevers et al. 1986), histone 

methylation (Pesavento, Yang et al. 2008), hyperacetylation of nonhistone proteins (White, 

Mulligan et al. 2006), inhibition of histone phosphorylation(Mathew, Ranganna et al. 2010), 

regulation of expression of micro-RNAs (miRNA) (Hu, Dong et al. 2011), and modulation of 

intracellular kinase signaling (Basson and Hong 1998). In addition, butyrate can also alter 

immune response in the colon and moderate gut bacteria community to maintain colonic 

mucosa homeostasis(Lupton 2004). The cancer prevention effect of butyrate depends on its 

intracellular concentration (Mariadason 2008; Ashktorab, Belgrave et al. 2009).  

 

2.7 Wnt pathway 

The Wnts, a group of nineteen secreted glycoproteins , which is composed of approximately 

300 amino acids. The Wnts can activate many signaling pathways, including the canonical 

Wnt/b-catenin pathway, Wnt/Ca2+ pathway, and the Wnt/polarity pathway(Prakash and 
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Swaminathan 2015). The Wnt proteins are approximately 40 kDa in size. The Wnt signaling 

pathway is highly conserved and plays a central role in regulating development and stemness. 

Aberrant Wnt signaling plays an important role in the initiation of many cancers. Constitutively 

active Wnt signaling is a driver of CRCs progression.  

 

2.7.1 Canonical and non-canonical Wnt signaling 

The Wnt signaling pathway is divided into canonical (b-catenin dependent) and non-canonical 

(b-catenin independent) pathways. The characteristics of the canonical Wnt pathway are the 

accumulation of b-catenin in the cytoplasm, and its subsequent translocation to the nucleus. 

When the Wnt ligands is absent, cytoplasmic b-catenin is phosphorylated by a degradation 

complex, which is composed of the tumor suppressor adenomatous polyposis coli (APC), the 

scaffolding protein AXIN and two kinases CK1 (casein kinase 1) and GSK3b (glycogen 

synthase kinase 3b) (Figure 2.9). b-TrCP, a ubiquitin ligase, then recognized phosphorylated b-

catenin, therefore, b-catenin is ubiquinated and targeted for degradation by the 

proteasome(Tabatabai, Linhares et al. 2017). Wnt ligands first bind to Frizzled receptors as well 

as LRP5/6 co-receptors, which can induces dishevelled (DVL) phosphorylation, which 

subsequently recruits Axin and destruction complex to the cell membrane. Without destruction 

complex, b-catenin accumulated in the cytoplasmic and subsequent enter nucleus. In the 

nucleus, b-catenin can bind to the TCF/LEF (T-cell factor/lymphoid enhancer factor) 

transcription factors and recruit the transcriptional Kat3 co-activatiors p300 and CBP (CREB-

binding protein) to initiate the transcription of Wnt target genes(Duchartre, Kim et al. 2016). 
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Figure 2.9. Canonical Wnt Pathway. A. Wnt off. When Wnt protein is absent, β-catenin is 

constantly degraded by the destruction complex which includes Axin, APC, Gsk3, and CK1. The 

destruction complex targets β-catenin for ubiquitylation (Ub) and subsequently degraded by 

proteasome. B. W0nt on. The binding of Wnt protein to the Frizzled/Lrp5/6 receptors resulting in 

the phosphorylation of disheveled (Dvl). Activated Dvl then recruits Axin, which can inhibit the 

destruction complex, leading to the accumulation of β-catenin in the cytoplasma, which then 

enters into the nucleus where it can bind to TCF/LEF to initiate transcription.  



31 
 

 

2.7.2 Wnt signaling and cancer 

Wnt signaling is crucial for intestinal crypts homeostasis and maintenance of intestinal stem 

cells (Flanagan, Austin et al. 2018). It is well known that hyperactivation of Wnt pathway is 

present in almost all CRC. Wnt signaling plays a pivotal role in CRCs incidence and is the basis 

for CRCs tumorigenesis in patients with familial adenomatous polyposis and in Apc mutant mice 

model. It is estimated that approximately 92% of sporadic CRCs contain at least one mutation in 

Wnt signaling (2012). Loss of APC function is the main driver of CRCs carcinogenesis. Previous 

studies have shown that different mutations of APC result in different activity level of canonical 

Wnt pathway (Christie, Jorissen et al. 2013). Interestingly, if APC function is restored, colon 

adenomas could regress to normal tissue, which suggested that continuous Wnt signaling 

alteration is crucial for CRCs maintenance (Dow, O'Rourke et al. 2015). Notably, although 

truncated APC is present, Wnt secretion still can modulate the Wnt pathway signaling 

(Voloshanenko, Erdmann et al. 2013). 

 

Besides Apc mutation, mutations in the R-spondin/Lgr5/RNF43 are all involved in CRCs 

initiation (de Lau, Peng et al. 2014). Interestingly, somatic RNF43 mutations are appeared 

mutually exclusive with Apc mutations and exhibits in 19% of total CRCs cases (Giannakis, 

Hodis et al. 2014). R-spondin 3 mutations and fusion proteins are occurred in 10% of CRC 

cases. Since RNF43 mutant CRCs is dependent on Wnt secrection, RNF43 mutant CRCs is 

highly susceptible to Wnt secretion targeted therapy (van de Wetering, Francies et al. 2015). 

 

Chromosomal instability (CIN) is present in 65 - 70% of sporadic CRCs. CIN is involved in loss 

of function of Wnt signaling components, particularly APC (Caldwell, Green et al. 2007; Rusan 
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and Peifer 2008). Recent study has shown that insufficient basal Wnt/STOP may accelerate 

microtubule assembly rates and CIN in CRCs cells, while restore normal assembly rates could 

reverse the CIN phenotype (Ertych, Stolz et al. 2014; Stolz, Neufeld et al. 2015).  

SNAI2 is a crucial transcriptional factor that plays a pivotal role in epithelial to mesenchymal 

transition (EMT). Canonical Wnt signaling pathway can phosphorylate GSK3β and stabilize 

SNAI2, leading to increased EMT (Wu, Li et al. 2012). PI3K-Akt signaling inhibition can lead to 

accumulation of β-catenin and FOXO3a, resulting in the increased metastasis (Tenbaum, 

Ordonez-Moran et al. 2012). It was reported that Fzd2 expression facilitated EMT and cell 

migration by Fyn and Stat3. In a xenograft mouse model of colon cancer, Fzd2 inhibition leads 

to reduced tumor growth and metastasis (Gujral, Chan et al. 2014). 

 

2.7.3 Targeting Wnt signaling in CRC 

Vantictumab (OMP-18R5) can block WNT-FZD ligand-receptor binding at the membrane, as it is 

an antibody that targets the FZD receptors (Gurney, Axelrod et al. 2012). Vantictumab is not  on 

the Phase 1b to evaluate for the effects of cancer prevention, such as breast, ovarian, and 

pancreatic cancers, but not CRCs. Considering the fact that the hyperactivation of Wnt signaling 

in CRCs is caused by Apc mutation, it is not surprising that blocking WNT-FZD ligand-receptor 

interaction is not a effective treatment for colon cancer. However, CRCs patients who carry 

RNF43 mutation are suitable for vantictumab, because ligand-receptor interaction is needed to 

initiate the Wnt response (van de Wetering, Francies et al. 2015; Madan, Ke et al. 2016). 

 

The destruction complex degrades β-catenin, therefore, it is an promising target to alter Wnt 

pathway. It has been shown that regulation of Axin function via modulating Tankyrase activity 

can stabilize the destruction complex. Tankyrase enzymes (TNKS and TNKS2) can destabilize 
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the destruction complex by PARsylating Axin and subsequent degradation of Axin. Previous 

study suggested that blocking TNKS can inhibit the proliferation of APC-mutant CRC in vitro and 

in vivo. In addition, TNKS blockade can synergize with regular chemotherapies and drugs that 

inhibit RAS/MAPK and PI3K/AKT pathways (Schoumacher, Hurov et al. 2014; Schoumacher, 

Hurov et al. 2014; Wu, Luo et al. 2016). However, more studies need to done to study the safety 

and efficacy of TNKS inhibition. 

 

Another strategy is to hamper β-catenin binding with specific transcriptional co-activators. For 

example, CCT036477 is small compound that inhibit the binding of β-catenin with CREB binding 

protein (CBP) (Emami, Nguyen et al. 2004; Gonsalves, Klein et al. 2011; Jarde, Evans et al. 

2013). In vitro studies have shown CCT036477 can dramatically reduce levels of Wnt reporter 

gene activity, decrease expression of β-catenin downstream targets, and block binding to the 

co-activator TCF. However, little is known about the efficacy of these compounds in vivo.  

 

Anti-CTLA4, anti-PD1 blocking are antibodies that can inhibit immune checkpoint. Interestingly, 

a recent study has shown that modulating of Wnt/β-catenin signaling pathway may be involved 

in the cancer prevention effect of anti-CTLA4, anti-PD1 antibody(Spranger, Bao et al. 2015). It 

maybe because that Wnt/β-catenin signaling inhibition may decrease dendritic cells (DCs) 

mediated tumor tolerance (Oderup, LaJevic et al. 2013; Swafford and Manicassamy 2015). 

Therefore, poor response to anti-CTLA4, anti-PD1 antibodies might due to high Wnt/β-catenin 

signaling activity. Combination Wnt/β-catenin inhibition with immunotherapy might be promising 

strategy for CRCs treatment. 
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CHAPTER 3 

PURPOSE OF THE STUDY 

3.1 Research Aims and Hypotheses 

3.1.1 Aim 1 

The primary objective of the study 1 is to determine if inhibition of TNF-α production is an 

effective strategy to delay or prevent high fat diet induced colon cancer onset. To achieve this 

goal, we will use the Apc1638N mice, which are heterozygous for a germline mutation in Apc. 

Apc1638N mice have a mild tumorigenic phenotype (3 vs 100 tumors) and longer lifespan (>1 

years vs 4-6 months) (Heyer, Yang et al. 1999; Taketo 2006).  

 

Chronic inflammation is a central component of obesity associated cancer. TNF-α is a key pro-

inflammatory cytokine which induces other inflammatory mediators. Therefore, many studies 

have done to examine the cancer prevention effects of blocking TNF-α on tumorigenesis. It has 

been shown that eliminating TNF-α or TNFR can inhibit tumor induction and growth (Moore, 

Owens et al. 1999; Suganuma, Okabe et al. 1999).  

 

The Wnt pathway is crucial for maintenance of the intestinal epithelia.  Hyperactive Wnt 

pathway can induce the incidence and development of colon cancer (Zhan, Rindtorff et al. 

2017). It was shown that TNF-α actives Wnt signaling via the induction of GSK3β 

phosphorylation (Oguma, Oshima et al. 2008).  

We hypothesize that genetic ablation of TNF-α will be an effective strategy to attenuate the 

development of colon cancer in mice fed a high fat diet. Moreover, we propose that eliminating 

TNF-α induces a decrease of Wnt signaling leading to a reduced risk of colon cancer in mice fed 



35 
 

a high fat diet. We will evaluate the effects of genetic ablation of TNF-α on obesity associated 

intestinal tumorigenesis. QuickPlex SQ 120, a chemiluminescence assay, was used to measure 

the inflammatory cytokines. To determine the activation of Wnt pathway and its downstream 

genes, we performed Real time PCR and Western blot assay. Immunohistochemical analysis 

was used to further confirm the activation of Wnt pathway. 

 

3.1.2 Hypothesis 1 

It has been reported that inhibition of TNF-α may reduce cancer risk (Bernert, Sekikawa et al. 

2003; Karabela, Kairi et al. 2011). However, it remains to be determined whether inhibition of 

TNF-α can decrease high fat diet induced colon cancer. The role of TNF-α in high fat diet 

induced colon cancer will be examined in this study using TNF-α-deficient mice crossed with 

Apc1638N mice. We hypothesize that ablation of TNF-α decrease the risk of obesity associated 

CRCs. To test this hypothesis, Apc1638N mice will be randomly divided into 2 dietary groups, 12 

animals / group: LF, a low fat diet (10 cal% fat); HF, a high fat diet (60 kcal% fat). 12 TNF-α-

deficient mice crossed with Apc1638N mice will receive a high fat diet (60 kcal% fat). After 16 

weeks on diet starting at 4-6 weeks of age, mice were euthanized with CO2. Plasma samples 

were collected and stored at -80 °C for analyses of cytokines. Tissue samples were collected 

using the methods reported before (Liu, Brooks et al. 2012). 

 

TNF-α is one of the central cytokines in the inflammation. Our working hypothesis is that genetic 

ablation of TNF-α may attenuate inflammation in the diet-induced obese mice. To test this 

hypothesis, the inflammatory cytokines were measured by a chemiluminescence assay using 

the QuickPlex SQ 120 (Meso Scale Diagonostics, Rockville, MD). Inflammation of the colon will 

be further confirmed by H&E stained histological sections. 
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Based on our previous studies, we have confirmed that high fat diet induced obesity is 

associated with a significant increase of TNF-α level in mouse colon, and activation of the Wnt 

signaling pathway. Therefore, we hypothesize that tumorigenesis effects of TNF-α is mediated 

by a direct activation of Wnt pathway, and genetic ablation of TNF-α might down-regulate Wnt 

pathway. We will analyze the effects of genetic ablation of TNF-α on key signaling proteins of 

Wnt pathway by immunoblotting analysis. We will measure the levels of phospho-GSK3β 

(Ser9), the inactive form of GSK3β, and the dephosphorylated β-catenin (Ser37 or Thr41), the 

active form, which are two key molecules in the Wnt pathway. Immunohistochemical analysis 

will be utilized to further determine the effect of genetic ablation of TNF-α on the activation of 

active β-catenin. Our expectation is that genetic ablation of TNF-α attenuates active β-catenin 

and its downstream targets in APC1638N mice.  

 

3.1.3 Aim 2 

The study 2 aimed to test a dietary strategy, the supplementation of a high dose of vitamin D 

(VD) or its combination with sulforaphane (SFN), to inhibit intestinal inflammation and thereby 

obesity-associated tumorigenesis. VD is crucial for a variety of physiological and pathological 

processes in the human body. VD also can regulates numerous cellular pathways that affect cell 

proliferation, differentiation, and apoptosis, therefore, VD plays an important role in cancer 

incidence, prognosis, and mortality (Fleet 2008; Ng 2014). However, studies have shown 

conflicting results.  

 

In study 2, we used a high VD (5,000 IU) with a low VD (200 IU) as a control group. The 

phytochemical sulforaphane (SFN) is an isothiocyanate derived in cruciferous vegetables and is 
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especially high in broccoli and broccoli sprouts. Epidemiologic studies suggest that higher intake 

of cruciferous vegetables is associated with low risk of CRC (Wu, Yang et al. 2013). It is 

suggested that SFN may act as a histone deacetylase (HDAC) inhibitor activity in human CRC 

cell lines (Ho, Clarke et al. 2009). In addition, previous studies have shown that HDAC inhibitors 

can sensitize cancer cells to anti-cancer drugs (Regel, Merkl et al. 2012). However, the 

combination effects of VD and SFN on high fat diet induced CRCs is not well studied.  

 

3.1.4 Hypothesis 2 

We anticipate that VD co-administration with SFN may further inhibit obesity associated colon 

cancer. To investigate the effect of VD or VD in combination with SFN in obesity-associated 

intestinal tumorigenesis, we evaluated the development of tumor in the APC1638N mouse model 

with or without VD or VD+SFN supplementation.  

 

The dietary phytochemical SFN is an isothiocyanate found in cruciferous vegetables and has a 

particularly high concentration in broccoli. SFN is known for its antitumor properties, but, the 

mechanisms by which SFN might exert anticarcinogenic effects remain unclear. SFN inhibits 

HDAC activity in many cancer cells(Dashwood and Ho 2008; Ho, Clarke et al. 2009; Dickinson, 

Rusche et al. 2015; Kim, Fujita et al. 2016). Histone deacetylase inhibitors (HDACis) can alter 

nuclear and cytoplasmic protein acetylation modify gene expression. Previous studies have 

shown that HDACis alone or in combination with other anti-cancer agents are promising 

treatment stragegies(Thurn, Thomas et al. 2011; Arrighetti, Corno et al. 2015; Ray, Das et al. 

2018). Since activity of VD receptor (VDR) can be modulated epigenetically by histone 

acetylation, the combination of VD and HDACi has been studied. Several studies have shown 

that the combination of VD and HDACi is synergistic in cancer models, especially including 
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those are resistant to VD alone(Rashid, Moore et al. 2001; Banwell, O'Neill et al. 2004; Khanim, 

Gommersall et al. 2004; Malinen, Saramaki et al. 2008). However, there are little evidence on 

the antitumor effect of combination of VD and SFN. 

 

Chronic inflammation is a well-known risk factor for tumorigenesis. Previous studies have shown 

that high fat diet can induce inflammation, in addition, VD and SFN might have anti-inflammation 

property (Kim, Kim et al. 2014; Mousa, Misso et al. 2016). Therefore, we hypothesize that VD 

and SFN supplementation can inhibit high fat diet induced inflammation.  

 

It is well known that aberrant Wnt signaling play an important role in CRCs oncogenesis. We will 

analyze the effects of VD and SFN on key signaling proteins of Wnt pathway by immunoblotting 

analysis. We will measure the levels of phospho-GSK3β (Ser9), the inactive form of GSK3β, 

and the dephosphorylated β-catenin (Ser37 or Thr41), the active form, which are two key 

molecules in the Wnt pathway. We hypothesis that VD and SFN alleviates obesity induced 

colon cancer through TNF-α/GSK3β/β-catenin pathway. 

 

3.1.5 Aim 3 

Butyrate is an intestinal microbiota metabolite of dietary fiber. It can exhibit chemoprevention 

effects on CRCs development. However, the mechanistic action of butyrate remains to be 

determined. FFAR2 has been suggested to mitigate colonic inflammation, which plays a pivotal 

role in the development of colon cancer.  
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The current study will assess whether FFAR2 protects against colon carcinogenesis. To 

determine the effect of FFAR2, we will treat caco-2 cells with physiological concentrations of 

butyrate (1, 2, 5 µM). To further measure the effects of FFAR2, we will perform siRNA to 

knockdown the expression of FFAR2. To assess the activation of Wnt pathway and its 

downstream genes, we performed Real time PCR and Western blot assay. 

Immunohistochemical analysis was used to further confirm the activation of Wnt pathway. 

 

3.1.6 Hypothesis 3 

The assumption is that treatment of Caco-2 cells with butyrate, a HDAC inhibitor, will exert 

antitumor effects. Caco-2 cells were cultured with the indicated concentration of butyrate for 24 

h. The cell viability was determined by MTT assay and the cell apoptosis was assessed by flow 

cytometry and expression of cleaved caspase-3.  

 

Based on our preliminary data, we have shown that butyrate treatment increases the protein 

expression of β-catenin. Therefore, it is possible that the antitumor effects of the butyrate are 

mediated by a direct effect of butyrate on Wnt signaling. To test this hypothesis, we will examine 

the activation of Wnt pathway and the expression of Wnt pathway downstream genes by the 

Real time PCR and Western blot assay and immunohistochemical analysis.        

                                                                                                                                           

It is not known the role of FFAR2 in the antitumor effects of butyrate. FFAR2 has been 

suggested to regulate colonic inflammation, which is a major risk factor in colon carcinogenesis. 

Previous studies have shown that the expression of FFAR2 have significantly reduced in 

CRC(Tang, Chen et al. 2011; Bindels, Dewulf et al. 2013). Aberrant HDAC activity has been 
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implicated in CRC progression. Therefore, we hypothesize that Knowdown of FFAR2 might 

suppress the anticancer effects of butyrate. We will test our hypothesis by knowdown FFAR2 

using siRNA then start the treatment of colon cancer cells with butyrate. 
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CHAPTER 4 

TUMOR NECROSIS FACTOR-Α KNOCK OUT MITIGATES INTESTINAL INFLAMMATION 
AND TUMORIGENESIS IN APC1638N MICE FED A HIGH-FAT DIET 

 

4.1 Abstract 

Colorectal cancer (CRC) is a major cause of morbidity and mortality throughout the world. 

Previous study has shown diet-induced obesity is associated with elevated TNF-α and 

hyperactive of Wnt signaling pathway, yet the role of TNF-α has not been extensively studied in 

the obesity associated CRC. The present study aims to examine the role of TNF-α in the obesity 

associated CRC and the molecular mechanism by which obesity increases the risk of CRCs. 

Apc1638N mice were given a low fat diet (LF, 10 kcal% fat), or a high fat diet (HF, 60 kcal% fat). 

TNF-a-/- Apc1638N mice were given a high fat diet (HF, 60 kcal% fat). After 16 weeks on diet 

starting at 4-6 weeks of age, mice were euthanized with CO2. TNF-α deletion decreased CRC 

incidence and size. Inflammation was suppressed by TNF-α deletion. TNF-α deletion also 

decreased the activity of Wnt/b-catenin and NF-kB pathway. In this study, we found that loss of 

TNF-α decreased obesity associated intestinal tumorigenesis by decreasing the inflammation, 

and manipulating the β-catenin pathway and NF-kB signaling. In addition, IKK, component of 

the NF-kB signaling, is involved in the regulation of β-catenin pathway. 
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4.2 Introduction 

 

Colorectal cancer (CRC) is a major cause of morbidity and mortality throughout the world. It is 

the third most common cancer in the United States, with around 140,000 new cases being 

diagnosed last year. The pathogenetic mechanisms underlying CRC development are complex 

and include genetic and environmental factors. Wnt/β-catenin pathway is crucial in maintaining 

colon homeostasis and colon stem cells. It is estimated that aberrant activation of the Wnt/β-

catenin pathway is present in over 94% of human CRCs(2012). Most of them harbor mutations 

in the adenomatous polyposis coli (APC) gene, which may result in the accumulation of β-

catenin in the cytoplasm and subsequent translocation of β-catenin to the nucleus. In the 

nucleus, β-catenin binds with the TCF/LEF family members and initiates the transcription of its 

downstream genes. 

 

There is strong evidence that modifiable lifestyle factors, including obesity, play a crucial role in 

CRC carcinogenesis (Gunter and Leitzmann 2006). Since the prevalence of obesity is nearly 

40% in the US adults, the study of obesity associated CRC becomes a top priority. Although 

considerable efforts have been made, the mechanisms underlying the association between 

obesity and CRC remain elusive. It is believed that obesity associated inflammation plays a 

pivotal role in the CRC pathogenesis (Kolb, Sutterwala et al. 2016).  

   

Tumor necrosis factor-α (TNF-α) is a potent pro-inflammatory cytokine which plays a key role in 

the immune function during inflammation. TNF-α is mainly secreted by activated immune cells, 

especially macrophages, mast cells, and T lymphocyte, but other cell types including cancer 
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cells also secret TNF-α. TNF-α was first reported that it can induce tumor necrosis (Carswell, 

Old et al. 1975). Interestingly, subsequent studies suggested that TNF-α might be a potential 

cancer target, as it can induce cancer proliferation, migration, and angiogenesis. TNF-α induced 

obesity might activate Wnt signaling, which drives the development of CRCs (Liu, Brooks et al. 

2012). However, the understanding of molecular mechanisms by which obesity increases the 

risk of CRCs is not complete. 

 

As the prevalence of obesity increases alarmingly, it is urgent to find the safe and effective 

strategies to prevent obesity associated CRC. In this study, we found that loss of TNF-α 

decreased obesity associated intestinal tumorigenesis by decreasing the inflammation, and 

manipulating the β-catenin pathway and NF-kB signaling. In addition, IKK, component of the 

NF-kB signaling, is involved in the regulation of β-catenin pathway. 

 

4.3 Materials and Methods 

4.3.1 Animals 

All animal study protocols were approved by the Institutional Animal Care and Use Committee 

of the University of Massachusetts, Amherst, and animal experiments were conducted in 

compliance with NIH guidelines for the care and use of laboratory animals. Apc1638N mice were 

used as previously described (Li, Frederick et al. 2018). TNF-a knockout (TNF-a-/-) mice were 

purchased from the Jackson Laboratory (Bar Harbor, ME). To produce TNF-a-/- Apc1638N mice, 

TNF-a-/- mice were mated with Apc1638N mice on a C57BL/6 background.  
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Apc1638N mice were given a low fat diet (LFD, 10 kcal% fat), or a high fat diet (HFD, 60 kcal% 

fat) (APPENDIX A). TNF-a-/- Apc1638N mice were given a high fat diet (TNF-a KO HFD, 60 kcal% 

fat). Fresh diet were given on a daily basis during the 16 weeks treatment. After 16 weeks on 

diet starting at 4-6 weeks of age, mice were euthanized with CO2. Plasma samples were 

collected and stored at -80 °C for analyses of cytokines. Tissue samples were collected using 

the methods reported before (Liu, Brooks et al. 2012). Briefly, intestine was excised and opened 

longitudinally for tumor inspection, then flushed with iced phosphate buffered saline (PBS) 

containing a protease inhibitor cocktail and placed on a bed of crushed ice. The mucosa was 

gently scraped off, placed in a foil packet, frozen in -80 °C and subsequently used for all DNA, 

RNA and protein assays.  

 

4.3.2 Inflammatory cytokine assays 

The inflammatory cytokines were measured by a chemiluminescence assay using the 

QuickPlex SQ 120 (Meso Scale Diagonostics, Rockville, MD). Assays were performed 

according to the manufacturer’s instructions. Briefly, on the bottom of 96-well plates, antibodies 

for 10 cytokines, TNF-α, IFN-γ, IL-1β, IL-17A, IL-6, IL-2, IL-10, IL-4, IL-22, and IL-23, were 

coated, and then 25 µl of calibrator standards or samples were added to each well. After 

washing for 3 times, 50 µl of the detection antibody solution was added to each well. A four-

parameter logistic fit curve was generated for each analyte using the standards and the levels of 

inflammatory cytokines in samples were calculated accordingly. Cytokines are express as ng of 

cytokine per milliliter. All standards and samples were measured in duplicate. 

 

4.3.3 Real-time PCR for gene expression 
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RNA samples were extracted from the colonic scrapings with Trizol reagent (Invitorgen, 

Carlsbad, CA). The concentration as well as purity of RNA samples was measured using 

NanoDrop 2000 (Thermo Scientific, Waltham, MA). The first-strand cDNAs were synthesized 

from total RNAs using QuantiTect Reverse Transcription Kit (Qiagen, Valencia, CA). Real-time 

PCR was performed on the ViiATM 7 Real-Time PCR System (Applied Biosystems, Carlsbad, 

CA) using the SYBR green PCR reagent kit (Invitrogen, Carlsbad, CA). The copy number of 

each transcript was calculated with respect to the GAPDH copy number. Primer sequences and 

thermal cycling conditions were listed in APPENDIX B. 

 

4.3.4 Western blot analyses 

As reported before (Sun, Yu et al. 2011), 40 μg of protein from each treatment was separated 

by 10% SDS-PAGE and transferred onto a PVDF membrane. After blocking with 10% instant 

nonfat dry milk, membranes were incubated with specific antibodies overnight at 4 °C, followed 

by incubation with the secondary antibody. Antibody binding was detected with the enhanced 

ECL detection system. Notable western blots results were quantified using Image J software 

after normalizing to corresponding loading controls. 

 

4.3.5 Histopathological and immunohistochemical analysis 

A section of colon, 3-5 μm, were fixed in 10% neutral buffered formalin, then processed for 

paraffin embedding and tissue sectioning. Slides were stained with hematoxylin and eosin 

(H&E) and observed under a light microscope to assess inflammation status of the colon. The 

histological scores were evaluated by a blinded observer and given scores according to the 

following measures: crypt architecture (scored 0-2 with 0 as normal and 2 as most crypt 

distortion); inflammatory cell infiltration (0-2 with 0 as normal and 2 as most dense inflammatory 
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infiltrate); goblet cell depletion (0-1 with 0 as goblet cells present and 1 goblet cell depleted) and 

cryptitis (0-1 with 0 as absent and 1 present). The histological score is the sum of each score. 

Immunohistochemical (IHC) analysis for specific proteins was performed as previously 

described (Liu, Brooks et al. 2012). Briefly, after the sequential processes of rehydration and 

antigen retrieval, tissue sections were incubated with primary antibodies overnight at 4°C, LC3B 

(Cell Signaling), and Active β-Catenin (Ser33/37/Thr41) (Cell Signaling). On the next day, the 

sections were incubated with peroxidase-labeled secondary antibody and developed using DAB 

(Dako, Stanta Clara, CA). Positive signal was detected as a brown color under a light 

microscope and scored using Fiji software. Briefly, run image and color deconvolution. Chose 

“H DAB” as the stain. The intensity numbers of the “Color_2 image” in the results window were 

converted to optical density numbers and then scored relative to control.  

 

4.3.6 Statistical analysis 

Values in the text are presented as means ± S.E.M. A one-way ANOVA (treatment) statistical 

analyses were performed using Graphpad Prism 5 followed by multiple comparisons (Tukey 

method) among all treatments (groups). To explicitly present the data in the figure, the 

comparisons were only shown between the HFD group and other treatment groups. Values of p 

< 0.05 were considered statistically significant among the comparisons. Fisher’s exact test was 

used for tumor incidence. The expression of each gene was normalized to the housekeeping 

gene GAPDH (DCt = Cttarget gene-CtGAPDH). Statistical analyses were performed based on ΔCt and 

relative expression is reported as 2−ΔΔCt, where ΔΔCt=DCt-Experiment-DCt-Control.   
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4.4. Results 

 

4.4.1 TNF-α deficient mice less susceptible to obesity associated tumorigenesis 

Previous study has shown diet-induced obesity is associated with elevated TNF-α and 

hyperactive of Wnt signaling pathway, yet the role of TNF-α has not been extensively studied in 

the obesity associated CRC (Liu, Brooks et al. 2012). To determine TNF-α function in obesity 

associated CRC, we subjected animals from both genotypes to high fat diet. As expected, the 

high fat diet induced obesity mice had increased incidence of CRC (HFD, 84.6%), compared 

with mice fed a low fat diet (LFD, 46.2%). Loss of TNF-α decreased the incidence to 52.4% 

(TNF-α KO HFD) (Figure 4.1A). For the tumor size, as measured by the diameter of the tumor, 

the high fat diet-induced obesity significantly increased the tumor size (LFD: 0.18 cm ± 0.03 vs 

HFD: 0.35 cm ± 0.04), loss of TNF-α decreased the tumor size by 35.4% (TNF-α KO HFD: 0.23 

cm ± 0.03) (Figure 4.1B,C). These results indicate that TNF-α knockout can decrease obesity 

associated CRC promotion and slow CRC progression. 
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Figure 4.1. TNF-α knockout mice show less obesity associated carcinogenesis. A) Incidence of 

obesity associated colon cancer. B) Average tumor size. C) Representative intestinal tumors of 

each group. Data are presented as the mean ± SEM. *p < 0.05, **p < 0.01. 

  

4.4.2 TNF-α knockout suppressed obesity associated inflammatory response 

Chronic inflammation plays a pivotal role in obesity associated CRC. Obesity is recently 

recognized as a chronic inflammation disease. In addition, TNF-α plays a key role in systemic 

inflammation. We therefore determined the role of TNF-α in obesity associated inflammation. As 

expected, high fat diet induced obesity is associated with an increased expression of TNF-α, IL-

1β, IL-6, and IFN-γ in peripheral plasma. TNF-α deletion led to a decreased expression of those 

pro-inflammatory cytokines (Figure 4.2A-D). Considering the chronic local inflammation 

mediated by TNF-α plays a pivotal role in tumor promotion, we then measured the local 

inflammation status by histochemical staining. Consistently, our histochemical staining further 

demonstrated that high fat diet induced obesity showed an increased inflammatory cell 

infiltration, goblet cell loss, and cryptitis when compared to the low fat group (p < 0.01), TNF-α 

deletion mitigated the intestinal mucosal damage (Figure 4.2E-F).  These observations indicated 

that TNF-α knockout suppressed obesity associated inflammatory response, which may involve 

in the CRC prevention effect of TNF-α knockout.  
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Figure 4.2. TNF-α deletion inhibits obesity associated inflammation. A-D) Analysis of 

inflammatory cytokines in serum. Inflammatory cytokines were analyzed by chemiluminescent 

assay (n = 8). E-F) Representative histopathology and inflammatory scores of the colon in each 

group (n = 4-6). Inflammatory cell infiltration, goblet cell loss, and cryptitis were observed in 

colon after feeding high-fat diet. Data are presented as the mean ± SEM. *p < 0.05, **p < 0.01. 

 

4.4.3 TNF-α deletion down regulated active β-catenin and its downstream genes in 

APC1638N mice 

It is well known that aberrant Wnt signaling plays a crucial role in colorectal oncogenesis. We 

therefore examined the effects of TNF-α deletion on Wnt signaling in CRC. By immunoblotting 

analysis, we measured the levels of phospho-GSK3β (Ser9) protein, the inactive form of 

GSK3β, and the dephosphorylated β-catenin (Ser37 or Thr41) protein, the active form, which 
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are the two key molecules in the Wnt pathway. As shown in Figure 4.3A,B, high fat diet induced 

obesity mice had increased expression of phospho-GSK3β (Ser9) and active β-catenin, 

whereas, TNF-α knockout decrease the expression of phospho-GSK3β (Ser9) and active β-

catenin. We further examined the mRNA expression of Wnt pathway downstream oncogenes, 

Axin 2, c-Jun, c-Myc, and cyclin D1. Consistent with protein data, we found that the high fat diet 

induced obesity mice had increased mRNA expression of these downstream genes, while TNF-

α knockout deceased the mRNA expression of these downstream genes (Figure 4.3C). To 

further confirm these results, we performed immunohistochemistry. Immunohistochemistry also 

revealed less β-catenin positivity in the TNF-α knockout group compared to the HFD group 

(Figure 4.3D,E). Collectively, these results suggested that decreased activity of Wnt pathway 

might be responsible for the cancer prevention effect of TNF-α knockout. 
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Figure 4.3 TNF-α loss affects the expression of Wnt signaling. A-B) Representative western 

blots and relative quantification of GSK-3βSer9 phosphorylation and active β-catenin in colonic 

scrapings (n = 6-8). C) mRNA expression of Wnt pathway downstream genes (n = 5-8). D-E) 

Representative β-catenin IHC in tissues from the small intestine of APC1638N mice (n= 4-6) and 

quantification of immunohistochemical images. Data are presented as the mean ± SEM. *p < 

0.05, **p < 0.01. 

 

4.4.4 TNF-α deletion down regulated NF-kappa B signaling in APC1638N mice 

NF-κB plays a key role in the regulation of inflammatory responses and carcinogenesis. TNF-α 

can activate survival pathways which is mediated by the NF-κB (Gupta, Bi et al. 2005). We 

therefore, examined whether TNF-α deletion can down regulate the NF-κB pathway. In NF-κB 

pathway, cytokines such as TNF-a, IL-1 phosphorylate specific serine residues of nuclear factor 
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NF-κB inhibitor kinase (IKKa and IKKb), which can then phosphorylate nuclear factor of kappa 

light polypeptide gene enhancer in B-cells inhibitor (I-kB) and NF-kB p65, leading to the 

activation of NF-κB pathway. Consistent with previous findings (Carlsen, Haugen et al. 2009; 

Vykhovanets, Shankar et al. 2011), we observed that high fat diet induced obesity activated NF-

kappa B signaling in APC1638N mice (Figure 4.4A, B). TNF-a deletion decreased the expression 

of p-IKKa(Ser176)/IKKb(Ser177), p-IkBa(Ser32), and p-NF-kB p65(Ser536), indicating the 

down-regulation of NF-kB pathway. 

 

 

Figure 4.4 TNF-α loss down regulates NF-kB pathway. A-B) Representative western blots and 

relative quantification of p-IKKa(Ser176)/IKKb(Ser177), p-IkBa(Ser32), and p-NF-kB 

p65(Ser536) in colonic scrapings (n = 6-8). Data are presented as the mean ± SEM. *p < 0.05, 

**p < 0.01. 
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4.4.5 IKK is involved in the obesity associated activation of β-catenin pathway 

Previous studies suggested that IKK can activate Wnt/β-catenin pathway (Lamberti, Lin et al. 

2001; Carayol and Wang 2006). We therefore, examined whether IKK is involved in the obesity 

associated activation of β-catenin pathway. The effects of PS-1145, a potent IKK inhibitor, on 

NF-kB pathway and β-catenin pathway were measured by western blot. Consistent with in vivo 

data, TNF-α (20ng/ml) also activated NF-kB pathway and β-catenin pathway in Caco-2 cells. 

The inhibition of IKK by PS-1145 reduced the activation of NF-kB pathway and β-catenin 

pathway induced by TNF-α (Figure 4.5A). These data suggested that IKK is involved in the 

obesity associated activation of β-catenin pathway. 

 

 

Figure 4.5. NF-kB pathway positively regulated β-catenin pathway by IKK. A) Representative 

western blots p-IkBa(Ser32), p-NF-kB p65(Ser536), p-GSK3b(Ser9), and active b-catenin in 

caco-2 cell lines. Data are presented as the mean ± SEM. *p < 0.05, **p < 0.01. 
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4.5 Discussion 

Obesity, an epidemic, is a worldwide public health issues especially in developed countries. 

Obesity is associated with increased risk of many chronic diseases, such as cancer, diabetes, 

and chronic heart diseases. It is estimated that obesity attributes a 30% greater risk of CRC(Ma, 

Yang et al. 2013). In the United States, ~1/3 of the population is obese and there is no sign of 

decrease from the current prevalence of obesity. CRC is the third leading cause of cancer death 

in the United States in both men and women. In 2018, it is estimated that ≈ 64 640 women and 

75 610 men in the United States were diagnosed with CRC and 23 240 women and 27 390 men 

died from CRC. Therefore, it is urgent to develop safe and practical strategies to prevent obesity 

associated CRC. 

 

It is believed that obesity associated inflammation is a central component of CRC development 

and progression. Among inflammatory cytokines, TNF-α plays a crucial role in obesity 

associated inflammation (Liu, Brooks et al. 2012). TNF-α was first found in 1975, recognized as 

a promising strategy for cancer treatment. However, previous studies have shown that TNF-α 

can be secreted by many tumor cells (Zins, Abraham et al. 2007; Al-Lamki, Sadler et al. 2010; 

Aggarwal, Gupta et al. 2012; Landskron, De la Fuente et al. 2014). As a result, the role of TNF-

α in tumor survival, migration, and invasion, are more and more appreciated. In 1993, a study 

first suggested that TNF-α might implicate in the oncogene activation and the DNA damage (Li, 

Sejas et al. 2007). Subsequent clinic trails indicated that neutralizing TNF-α might be beneficial 

in cancer patients (Brown, Charles et al. 2008).  

  

Popivanova et al have suggested that TNF-α plays a crucial role in the initiation of ulcerative 

colitis (UC) associated colon cancer (Popivanova, Kitamura et al. 2008). Blocking TNF-α can 
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decrease the CRC progression in mice UC model treated with azoxymethane (AOM) and 

dextran sulfate sodium (DSS). Liu et al reported that high fat diet induced obesity is associated 

with a 72% increase in the expression of TNF-α and increased expression of p-GSK3β, β-

catenin, and Wnt downstream genes. Previous studies have shown that TNF-α can induce 

GSK3β phosphorylation and subsequently stabilize β-catenin (Oguma, Oshima et al. 2008; Liu, 

Brooks et al. 2012; Coskun, Olsen et al. 2014), two key components within Wnt pathway. 

Considering the fact that Wnt signaling is crucial for CRC incidence and progression, TNF-α 

deletion might decrease the Wnt signaling and incidence of CRC. In this study, we found that 

TNF-α knockout decrease the incidence of CRC from 84.6% to 52.4% and tumor size by 35.4% 

in Apc1638N mice fed a high fat diet. Our observation indicated that blocking TNF-α might be a 

strategy to prevent obesity associated CRC. We also found that TNF-α knockout decreased 

obesity associated inflammation. Previous studies have suggested that TNF-a might activate 

Wnt/β-catenin pathway through inducing GSK3β phosphorylation (Oguma, Oshima et al. 2008; 

Liu, Brooks et al. 2012; Coskun, Olsen et al. 2014). In consistent with these studies, we found 

that TNF-α deletion decreased the expression of phospho-GSK3β (Ser9) and active β-catenin, 

indicating the cancer prevention effects of TNF-α deletion might act through down-regulation of 

Wnt/β-catenin pathway.  

 

NF-κB is involved in the regulation of inflammatory responses and cancer development, 

therefore, NF-κB plays a pivotal role in the obesity associated CRC. IKKa and IKKb are 

essential for TNF-a induced NF-kB activation (Tak and Firestein 2001). Phosphorylated IKKa 

and IKKb can then phoshporylate I-kB and NF-kB p65, leading to NF-kB translocation to the 

nucleus. Consistent with previous findings (Carlsen, Haugen et al. 2009; Vykhovanets, Shankar 

et al. 2011), we observed that high fat diet induced obesity activated NF-kB signaling and TNF-

a deletion down regulated of NF-kB pathway in APC1638N mice. There is crosstalk between 
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Wnt/β-catenin pathway and NF-kB pathway during inflammation, for instance, IKK can activate 

Wnt/β-catenin pathway (Lamberti, Lin et al. 2001; Carayol and Wang 2006). Our data indicated 

that NF-kB signaling might positively regulate the Wnt/β-catenin pathway through IKK, which 

can activate IkBa and NF-kB, at the same time activate GSK3β and β-catenin. 

 

4.6 Conclusions 

In conclusion, we found that TNF-α deletion decreased obesity associated intestinal 

tumorigenesis by decreasing the production of multiple proinflammatory cytokines, and 

downregulated the β-catenin pathway and NF-kB signaling. IKK, component of the NF-kB 

signaling is involved in the regulation of β-catenin pathway. 
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CHAPTER 5 

THE PREVENTION OF A HIGH DOSE OF VITAMIN D OR ITS COMBINATION WITH 

SULFORAPHANE ON INTESTINAL INFLAMMATION AND TUMORIGENESIS IN APC1638N 

MICE FED A HIGH-FAT DIET 

 

5.1 Abstract 

Our previous study showed that obesity-promoted inflammation is responsible for the activation 

of the intestinal tumorigenic Wnt-signaling. The present study aimed to test a dietary strategy, 

dietary supplementation with a high dose of vitamin D (VD) or its combination with sulforaphane 

(SFN), to inhibit intestinal inflammation and obesity-associated tumorigenesis. Apc1638N mice 

were randomly divided into 4 groups: LF, a low fat diet (10 kcal% fat) with 200 IU VD; HF, a high 

fat diet (60 kcal% fat) with 200 IU VD; HFD: a high fat diet with 5,000 IU VD; and HFDS, a high 

fat diet plus 5,000 IU VD and 0.23 g SFN per ~4,000 kcal. VD administration decreased tumor 

incidence and size, and the co-administration with SFN (HFDS) magnified the effects. 

Inflammation and Wnt-signaling were suppressed by VD. The addition of SFN decreased the 

activity of histone deacetylase (HDAC) and increased autophagy. The administration of VD, at 

5000 IU level, exerts an anti-inflammatory property, and leads to suppressed intestinal Wnt-

signaling and tumorigenesis in obese mice. The molecular function of SFN on a high dose of VD 

supplementation, although displayed on the inhibition of HDAC and the activation of autophagy, 

needs further investigation.  

 

 

 



58 
 

5.2 Introduction 

Colorectal cancer (CRC) is the third leading cause of cancer death in the United States. In 

2018, it is estimated that ~64,640 women and 75,610 men in the United States were diagnosed 

with CRC and 23,240 women and 27,390 men died from CRC. Epidemiological studies have 

shown that a number of modifiable lifestyle factors, including obesity, play important roles in 

colorectal carcinogenesis (Gunter and Leitzmann 2006). There is strong evidence suggesting 

that chronic overconsumption of a “western diet”- foods consisting high levels of fats is a major 

cause of obesity. In the United States, ~1/3 of the population is obese and there is no sign of 

decrease from the current prevalence of obesity. Therefore, developing a safe and economic 

strategy to prevent obesity-induced CRC is an important public health priority. 

 

Vitamin D (VD), is a pluripotent fat-soluble steroid that is essential for a variety of physiological 

and pathological processes in the human body. In addition to its important role in calcium 

absorption and bone health (Rautiainen, Manson et al. 2016; Uday and Hogler 2017), VD 

regulates a number of critical cellular pathways that affect cell proliferation, differentiation, and 

apoptosis. Therefore, VD potentially plays an important role in modulating cancer incidence, 

prognosis, and mortality (Fleet 2008; Ng 2014). However, epidemiological and clinical VD 

supplementation studies have shown inconsistent results. For example, in a sub-study of the 

Women’s Health Initiative trail, dietary supplementation with 400 IU of VD did not significantly 

reduce the risk of CRC (Brunner, Wactawski-Wende et al. 2011), however, it should be noticed 

that the supplement of 400 IU of VD per day did not significantly elevate the serum 25(OH)D 

level, a biomarker of VD status. In another study, dietary supplementation with 2,000 IU of VD 

did not lower the risk of CRC (Lappe, Watson et al. 2017); However, in a phase II clinical trial, a 

high dose of VD (8,000 IU for two weeks, followed by 4,000 IU) suppressed the progression of 

colon cancer (Ng, Nimeiri et al. 2017). Therefore, in this study, we examined the protective 
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effect of a high dose of VD (5,000 IU per ~4,000 kcal), on the development of intestinal tumor in 

the Apc1638N model.  

 

In addition, we further examined whether sulforaphane (SFN), an isothiocyanate derived from 

cruciferous vegetables, can magnify the anti-cancer effects of VD supplementation. 

Epidemiologic studies suggest that higher intake of cruciferous vegetables is associated with 

lower risk of CRC (Wu, Yang et al. 2013). Mechanisms of cancer chemoprevention by SFN 

include the ability to induce apoptosis of cancer cells by a mitogen-activated protein kinase 

(MAPK) pathway and the ability to alter carcinogen metabolism through the induction of Nrf2-

regulated genes. It has also been suggested that SFN inhibits histone deacetylase (HDAC) 

activity in human CRC cell lines (Ho, Clarke et al. 2009), and VD may interact with SFN to affect 

on gene expression through epigenetic mechanisms (e.g., chromatin acetylation) (Zhang, Leung 

et al. 2012; Seuter, Heikkinen et al. 2013). Of note, HDAC activity was significantly inhibited in 

the peripheral blood mononuclear cells after consumption of 68 g (∼105 mg SFN) of broccoli 

sprouts (Myzak, Tong et al. 2007). Therefore, SFN, even at physiologically feasible 

concentrations, might enhance the anti-cancer effect of VD. 

 

 

5.3 Materials and Methods 

5.3.1 Animals 

The protocol (2013-0070) was approved by the Institutional Animal Care and Use Committee of 

the University of Massachusetts Amherst, and animals were maintained in accordance with NIH 

guidelines for the care and use of laboratory animals. Apc1638N mice, which are heterozygous for 
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a germline mutation in the Apc gene, were utilized to study intestinal tumorigenesis. Compared 

to another commonly-used CRC model, the ApcMin mice, the Apc1638N mice have a mild  

tumorigenic phenotype (3 vs 100 tumors) and longer lifespan (>1 years vs 4-6 months) (Heyer, 

Yang et al. 1999; Taketo 2006), making it a more suitable models for dietary intervention studies 

since the modest degree of chemoprevention afforded by nutrients can easily be obscured in 

animals with more aggressive tumorigenic phenotypes. Although most genetic models, including 

the Apc1638N model, produce neoplasms primarily in the small intestine rather than the colon, this 

does not negate their validity since mouse models with Apc mutations share the same genetic 

and phenotypic similarities to humans with familial adenomatous polyposis, and moreover, the 

mouse and human APC orthologs are approximately 90 % identical (Shoemaker, Gould et al. 

1997). In many instances the modulation of small intestinal tumors recapitulates the 

chemopreventive effects of drugs and dietary components in human colon cancer (Yang, 

Edelmann et al. 1998).     

 

Apc1638N mice, including both males and females, were randomly divided into 4 dietary groups, 

~12 animals/group: LF, a low fat diet (10 kcal% fat) with 200 IU VD; HF, a high fat diet (60 

kcal% fat) with 200 IU VD; HFD: a high fat diet with 5,000 IU VD; and HFDS, a high fat diet plus 

5,000 IU VD and 0.23 g SFN on a 4,057kcal energy basis (APPENDIX A). Because a previous 

human study suggested that 68 g broccoli sprouts (∼105 mg SFN) significantly inhibited HDAC 

activity (Myzak, Tong et al. 2007) and a typical diet contains 2,000kcal, we therefore added 0.23 

g SFN on a 4,057kcal energy basis to achieve a physiologically relevant concentration. Fresh 

diet was given on a daily basis during the 16 weeks of dietary treatment. The 5000 IU VD, 

although 5 times higher than the National Research Council requirement for mice (1000 IU), is 

physiologically achievable without evident toxicity (Fleet, Gliniak et al. 2008).  Since this study 

focused on evaluating the effect of a high dose of VD, and whether SFN can magnify this effect, 
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we did not include a group with SFN supplementation alone to demonstrate their synergistic 

effects. After 16 weeks on a diet starting at 4-6 weeks of age, mice were euthanized with CO2. 

Plasma samples were collected and stored at -80 °C for analyses of cytokines. Tissue samples 

were collected using the methods reported before (Liu, Brooks et al. 2012). Briefly, intestine was 

excised and opened longitudinally for tumor inspection, then flushed with iced phosphate 

buffered saline (PBS) containing a protease inhibitor cocktail and placed on a bed of crushed 

ice. The mucosa was gently scraped off, placed in a foil packet, frozen in -80 °C and 

subsequently used for all DNA, RNA and protein assays.  

 

5.3.2 Serum 25(OH)D Assay 

Serum 25-hyroxyvitamin D (25(OH)D) was measured by radioimmunoassay using LIAISON 

total 25(OH)D assay (DiaSorin Inc., Stillwater, MN, USA) at the Jean Mayer USDA Human 

Nutrition Research Center on Aging at Tufts University. This method has been previously 

validated and reported (Selting, Sharp et al. 2016). 

 

5.3.3 Inflammatory cytokine assays 

The inflammatory cytokines were measured by an chemiluminescence assay using the 

QuickPlex SQ 120 (Meso Scale Diagonostics, Rockville, MD). Assays were performed 

according to the manufacturer’s instructions. Briefly, on the bottom of 96-well plates, antibodies 

for 10 cytokines, TNF-α, IFN-γ, IL-1β, IL-17A, IL-6, IL-2, IL-10, IL-4, IL-22, and IL-23, were 

coated, and then 25 µl of calibrator standards or samples were added to each well. After 

washing for 3 times, 50 µl of the detection antibody solution was added to each well.  A four-

parameter logistic fit curve was generated for each analyte using the standards and the levels of 
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inflammatory cytokines in samples were calculated accordingly. Cytokines are express as ng of 

cytokine per milliliter serum. All standards and samples were measured in duplicate. 

 

5.3.4 Real-time PCR for gene expression 

RNA samples were extracted from the colonic scrapings with Trizol reagent (Invitorgen, 

Carlsbad, CA). The concentration as well as purity of RNA samples was measured using 

NanoDrop 2000 (Thermo Scientific, Waltham, MA). The first-strand cDNAs were synthesized 

from total RNAs using QuantiTect Reverse Transcription Kit (Qiagen, Valencia, CA). Real-time 

PCR was performed on the ViiATM 7 Real-Time PCR System (Applied Biosystems, Carlsbad, 

CA) using the SYBR green PCR reagent kit (Invitrogen, Carlsbad, CA). The copy number of 

each transcript was calculated with respect to the GAPDH copy number. Primer sequences and 

thermal cycling conditions were listed as supporting information in APPENDIX B. 

 

5.3.5 Western blot analyses 

As reported before (Sun, Yu et al. 2011), 40 μg of protein from each treatment was separated 

by 10% SDS-PAGE and transferred onto a PVDF membrane. After blocking with 10% instant 

nonfat dry milk, membranes were incubated with specific antibodies overnight at 4°C, followed 

by incubation with the secondary antibody. Antibody binding was detected with the enhanced 

ECL detection system. Notable western blots results were quantified using Image J software 

after normalizing to a corresponding loading controls. 

 

5.3.6 Histopathological and immunohistochemical analysis 
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A section of colon, 3-5 μm, were fixed in 10% neutral buffered formalin, then processed for 

paraffin embedding and tissue sectioning. Slides were stained with hematoxylin and eosin 

(H&E) and observed under a light microscope to assess inflammation status of the colon. The 

histological scores were evaluated in a blinded manner and given scores according to the 

following measures: crypt architecture (scored 0-2 with 0 as normal and 2 as most crypt 

distortion); inflammatory cell infiltration (0-2 with 0 as normal and 2 as most dense inflammatory 

infiltrate); goblet cell depletion (0-1 with 0 as goblet cells present and 1 goblet cell depleted) and 

cryptitis (0-1 with 0 as absent and 1 present). The histological score is the sum of each score. 

Immunohistochemical (IHC) analysis for specific proteins was performed as previously 

described (Liu, Brooks et al. 2012). Briefly, after the sequential processes of rehydration and 

antigen retrieval, tissue sections were incubated with primary antibodies overnight at 4°C for 

LC3B (Cell Signaling), and active β-Catenin (Ser33/37/Thr41) (Cell Signaling). On the next day, 

the sections were incubated with peroxidase-labeled secondary antibody and developed using 

DAB (Dako, Stanta Clara, CA). Positive signal was detected as a brown color under a light 

microscope and scored using Fiji software. Briefly, images were uploaded to Fiji, and the color 

was deconvoluted. Chose “H DAB” as the stain. The intensity numbers of the “Color_2 image” in 

the results window were converted to optical density numbers and then scored relative to 

control.  

 

5.3.7 HDAC Activity Assay 

Nuclear extracts, prepared as described by Dignam (Dignam, Lebovitz et al. 1983), were used 

for HDAC activity assay using EpiQuik HDAC Activity/Inhibition Assay Kits (Epigentek, 

Farmingdale, NY) according to the manufacturer’s instructions. Briefly, 10 μg of nuclear extract 

was incubated with specific substrate for 45 min at 37 °C, followed by incubation with capture 
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antibody for 60 min and then detection antibody for 25 min at room temperature. Absorbance 

was determined at 450 nm using a microplate spectrophotometer.  

 

5.3.8 Statistical analysis 

Values in the text are presented as means ± S.E.M. One-way ANOVA (treatment) statistical 

analyses were performed using Graphpad Prism 5 followed by multiple comparisons (Tukey 

method) among all treatments (groups). To simplify data presentation in the figures, the 

comparisons were only shown between the HF groups with other treatment groups. Values of p 

< 0.05 were considered statistically significant among the comparisons. Fisher’s exact test was 

used for tumor incidence. The expression of each gene was normalized to the housekeeping 

gene GAPDH (DCt = Cttarget gene-CtGAPDH). Statistical analyses were performed based on ΔCt and 

relative expression is reported as 2−ΔΔCt, where ΔΔCt=DCt-Experiment-DCt-Control.   

 

5.4 Results 

5.4.1 Influence on serum 25(OH)D and physiology by 5000 IU vitamin D supplementation   

Previous studies indicate that a concentration of 60-80 ng/ml serum 25(OH)D, the major 

circulating form of VD and a standard indicator of vitamin D status, may be needed to reduce 

cancer risk (Garland, French et al. 2011). We therefore intentionally supplemented VD with a 

concentration of 5000 IU for the supplemental groups vs 200 IU for the control groups, which is 

lower than the NRC recommended level (1000 IU) for rodents on a ~4,000 kcal energy basis. 

This level of vitamin D was chosen as a better mimic of human vitamin D status as described by 

Fleet et al (Fleet, Gliniak et al. 2008) and Kallay et al (Hummel, Thiem et al. 2012). Serum levels 

of 25(OH)D in LF and HF group are 23.4±5.6 ng/ml, 14.3±1.7 ng/ml respectively, and levels in 
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the two VD supplemental groups (HFD and HFDS) were 62.0±2.3 ng/ml, 52.4±5.4 ng/ml 

respectively, which were significantly higher than the levels in the LF and HF groups (p < 0.01) 

(Figure 1A). With the consideration of potential toxicity by 5,000 IU VD supplementation, we 

examined the physiological alterations. No significant differences were observed in liver, 

pancreas, spleen, and kidney between in the VD supplemental groups (HFD and HFDS) when 

compared to the control group (HF).   

 

After 16 weeks treatment, the final body weights in LF, HF, HFD, and HFDS groups were 37.6 ± 

1.4g, 45.7 ± 1.8g, 45.0 ± 1.9g, 43.0 ± 1.4g, respectively (Figure 5.1B, D).  The final epididymal 

fat weights in LF, HF, HFD, and HFDS mice were 1.8 ± 0.1g, 2.6 ± 0.2g, 2.5 ± 0.2g, 2.1 ± 0.3g, 

respectively (Figure 5.1C). The final body weights and epididymal fat weights were significantly 

higher in the HF group relative to the control LF group (p < 0.05), but the supplementation of VD 

alone (HFD) or VD with SFN (HFDS) did not significantly decrease the body weight and 

epididymal fat weight (p > 0.05).   
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Figure 5.1. Influence on serum 25(OH)D and physiology by 5000IU kg−1 vitamin D 

supplementation. A) Serum 25(OH)D levels among the four dietary groups. B) Growth curve: 

Body weights were measured every other week. C) Epididymal adipose tissue weights in each 

group. D) Appearance of mice at the end of diets feeding. *p < 0.05, **p < 0.01. Data are mean 

± SEM. 

 

5.4.2 A high degree of vitamin D supplementation and its co-administration with 

sulforaphane inhibited obesity associated-intestinal tumorigenesis in APC1638N mice 

To investigate the effect of VD or VD in combination with SFN in obesity-associated intestinal 

tumorigenesis, we evaluated the development of tumor in the APC1638N mouse model with or 

without VD or VD+SFN supplementation. The high fat diet increased the tumor incidence from 
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46.1% (LF) to 84.6% (HF), whereas the supplementation of VD or VD in combination with SFN 

decreased the incidence to 63.6% (HFD) and 53.8% (HFDS) (Figure 5.2A). For the tumor size, 

as measured by the diameter of the tumor, the high fat diet significantly increased the size (LF: 

0.18 cm ± 0.03 vs HF: 0.35 cm ± 0.04), whereas the administration of VD or its co-

administration with SFN reduced the tumor size by 22.9% (0.27 cm ± 0.02) and 37.1% (0.22 cm 

± 0.02) respectively (Figure 5.2B, C). These data indicated that the supplementation of VD or its 

co-administration with SFN suppressed high fat diet-induced intestinal tumorigenesis in the 

APC1638N model, although only the shrinking of tumors in the co-administration group (HFDS) 

was reached a statistically significant degree (p < 0.05). 
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Figure 5.2. The influence of a high dose of vitamin D or its combination with sulforaphane on 

intestinal tumorigenesis in APC1638N mouse model. A) Incidence of high-fat-diet-induced colon 

cancer. B) Average tumor size. C) Representative intestinal tumors of each group. Data are 

presented as the mean ± SEM. *p < 0.05, **p < 0.01. 

 

5.4.3 The influence vitamin D or its combination with sulforaphane supplementations 

suppressed high fat diet-induced inflammatory response  

Chronic inflammation is a well-known risk factor for tumorigenesis. Previous studies have shown 

that high fat diet can induce inflammation, and VD and SFN might have anti-inflammatory 

properties (Kim, Kim et al. 2014; Mousa, Misso et al. 2016). Therefore, we examined to what 

extent VD and SFN supplementation can inhibit high fat diet-induced intestinal inflammation. We 

observed that VD alone significantly reduced (p < 0.05) the high fat diet- induced production of 

pro-inflammatory cytokines TNF-α, INF-γ, IL-2, and IL-17A, with a trend to decrease the 

production of IL-1β, and a trend to increase the secretion of the anti-inflammatory cytokine IL-10 

(Figure 5.3A). The combination of VD and SFN did not further augment the anti-inflammatory 

effect of VD. We did not observed any significant changes in the production of IL-6, IL-4, IL-22, 

and IL-23 cytokines by VD or its combination with SFN supplementations (data not shown). Our 

histochemical staining further demonstrated that high fat diet increased the intestinal 

inflammatory score when compared to the low fat group (p < 0.01), but  VD (HFD) or VD and 

SFN co-supplementation (HFDS) diminished inflammatory cell infiltration, goblet cell loss and 

cryptitis induced by high fat diet, with a change that reached a significant degree in the HFDS 

group (p < 0.05). There were no significant differences of between HFD and HFDS group 

(Figure 5.3B, C). 
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Figure 5.3. Effect of vitamin D and sulforaphane on inflammation. A) Analysis of inflammatory 

cytokines in serum inflammatory cytokines were analyzed by chemiluminescent assay (n = 8). 

B) Representative histopathology and inflammatory scores of the colon in each group (n = 6). 

Inflammatory cell infiltration, goblet cell loss, and cryptitis were observed in colon after feeding 

high-fat diet. Data are presented as the mean ± SEM. *p < 0.05, **p < 0.01. 

 

5.4.4 The supplementation of vitamin D and sulforaphane down-regulated active b-

catenin and its downstream targets in APC1638N mice 
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We further studied the effects of VD and SFN supplementation on signaling pathways involved 

in CRC. It is well known that aberrant Wnt signaling plays an important role in driving cell 

proliferation during colorectal oncogenesis. By immunoblotting analysis, we measured the levels 

of phospho-GSK3β (Ser9) protein, the inactive form of GSK3β, and the dephosphorylated β-

catenin (Ser37 or Thr41) protein, the active form, which are two key molecules in the Wnt 

pathway. As shown in Figure 5.4A, the expression of phospho-GSK3β (Ser9) and active β-

catenin in the colon mucosa was increased in the HF group compared to the LF group, 

whereas, VD significantly deceased expression of phospho-GSK3β and dephosphorylated β-

catenin. Co-administration VD with SFN did not further decrease the expression of phospho-

GSK3β and dephosphorylated β-catenin. Immunohistochemistry also revealed less β-catenin 

positivity in HFD and HFDS groups compared to HF group (Figure 5.4B). We further examined 

the mRNA expression of Wnt pathway downstream oncogenes, Axin 2, c-Jun, c-Myc, and cyclin 

D1. We found that the mRNA expressions of these downstream genes were increased in HFD-

induced obese mice, while VD alone led to decreased expressions of these genes (Figure 

5.4C). However, combining VD with SFN did not further inhibit the expression of the Wnt 

pathway downstream genes.  
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Figure 5.4. Effect of vitamin D and sulforaphane supplementation on β-catenin and its 

downstream genes. A) Representative Western blots and relative quantification of GSK-3β Ser9 

phosphorylation and active β-catenin in colonic scrapings (n = 6). B) Representative β-catenin 

IHC in tissues from the small intestine of APC1638N mice (n = 5) and quantification of 

immunohistochemical images. C) mRNA expression of Wnt pathway downstream genes (n = 8). 

Data are presented as the mean ± SEM. *p < 0.05, **p < 0.01. 

 

5.4.5 The sulforaphane supplementation decreased the total HDAC activity.  

To investigate whether the supplementation of SFN suppressed HDAC activities, the total 

HDAC activities were measured in nuclear extracts of mucosa. The SFN treatment group 

(HFDS) displayed significantly decreased level of total HDAC activities when compared to other 

groups (p < 0.05), and there were no differences among other groups without SFN 

supplementation (LF, HF, HFD) (Figure 5.5A). Western blotting results also showed that the 
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SFN administration decreased the HDAC6 protein level (Figure 5.5B). This provides evidence 

that the addition of SFN may be responsible for the enhanced antitumor effects by inhibition of 

HDAC activity.  

 

Figure 5.5. Effect of vitamin D and sulforaphane supplementation on the total histone 

deacetylase (HDAC) activity and the expression of vitamin D receptor. A) The total HDAC 

activity. B) Western blotting for HDAC6. Representative picture of Western blotting. Data are 

presented as the mean ± SEM (n = 3–5). *p < 0.05. 

 

5.4.6 The supplementation of vitamin D and sulforaphane enhanced autophagy in 

APC1638N mice 

Autophagy has been recognized as a basis for the health-promoting effects of VD (Hoyer-

Hansen, Nordbrandt et al. 2010). Previous studies also suggested that SFN induces autophagy 

in human colon cancer (Nishikawa, Tsuno et al. 2010), prostate cancer(Herman-Antosiewicz, 

Johnson et al. 2006), and breast cancer(Kanematsu, Uehara et al. 2010). To examine the role 

of autophagy in the protective effects of VD and SFN, we analyzed the level of LC3-ll, a well-

known marker of autophagy. As shown in Figure 5.6A, the level of LC3-ll in mice treated with 

VD was significantly increased (2.2 fold) when compared to mice in HF group (p < 0.05). The 

addition of SFN further significantly increased the level of LC3-ll (3.8 fold) compared to mice in 
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HF group (p < 0.01). To monitor autophagic flux, we further measured the level of P62, which 

serves as a link between LC3 and ubiquitinated substrates and is efficiently degraded by 

autophagy. After treatment with VD, P62 was markedly decreased, consistent with increased 

autophagy activity. In addition, the addition of SFN further decreased the level of P62, indicating 

autophagic activation. IHC results also show that, compared to mice in HF and HFD group, a 

strong staining of LC3-II was detected in mice treated with the co-supplementation (Figure 

5.6B). These results suggested that a high dose of VD supplementation can enhance the 

activity of autophagy, and the addition of SFN can magnify this effect.    

 

Figure 5.6. Effect of vitamin D and sulforaphane supplementation on the expression of LC3-ll, a 

marker of autophagy. A) Representative Western blots and relative quantification of LC3-ll in 

colonic scrapings (n = 6). B) Representative LC3-ll IHC in tissues from the small intestine of 

APC1638N mice (n = 5) and quantification of immunohistochemical images. Data are presented 

as the mean ± SEM. *p < 0.05, **p < 0.01. 
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5.5 Discussion 

Epidemiological studies have established obesity as a predisposing risk factors for CRC 

(Renehan, Tyson et al. 2008). Obesity rates have been steadily rising, and the prevalence of 

obesity among adults increased from 33.7% in 2007-2008 to 39.6% in 2015-2016 (Hales, Fryar 

et al. 2018). If this trend continues, there is no chance that the world could meet the target set 

by the UN as of 2025 (Di Cesare, Bentham et al. 2016). Therefore, it is necessary and urgent to 

understand the mechanisms by which obesity raises the risk of CRC and to design efficient and 

economic strategies to address this problem. 

 

Substantial epidemiologic and experimental studies have shown that higher intake or blood 

levels of VD is associated with the low risk of CRC (Wactawski-Wende, Kotchen et al. 2006; 

Gorham, Garland et al. 2007; Jenab, Bueno-De-Mesquita et al. 2010; Lee, Li et al. 2011; Grant 

2012), and a randomized, controlled clinical trial suggested that VD supplementation might 

decrease tumor-promoting inflammatory biomarkers such as TNF-a, IL-6, IL-1β, IL-8 (Hopkins, 

Owen et al. 2011). Since the initial discovery of escalated expression of TNF-α in adipose tissue 

in1993 (Hotamisligil, Shargill et al. 1993), it is now well accepted that obesity is associated with 

a state of chronic low-grade inflammation (Ramos, Xu et al. 2003), which is at least partially 

responsible for obesity-associated CRC (Coussens and Werb 2002). Therefore, VD 

supplementation holds promise as an effective dietary strategy for the prevention of obesity-

associated CRC. However, VD clinical studies have unfortunately been disappointing 

(Wactawski-Wende, Kotchen et al. 2006; Baron, Barry et al. 2015; Song, Garrett et al. 2015). 

Major reasons that may explain the inconsistency in findings among these studies include the 

dosage of supplementation (Wactawski-Wende, Kotchen et al. 2006; Baron, Barry et al. 2015; 
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Song, Garrett et al. 2015) and the fact that nutrients in foods more likely act in concert with each 

other and the assumption that a single nutrient alone has a substantial individual anti-cancer 

effect may not be valid (Jacobs and Steffen 2003; Flood, Rastogi et al. 2008). One randomized 

controlled trial (RCT) study found that daily supplementation of 400 IU VD with calcium had no 

effect on the incidence of CRC among postmenopausal women (Wactawski-Wende, Kotchen et 

al. 2006). One possible explanation for this observation was that 400 IU VD daily is too low of a 

dose, considering the fact that the mean increment in 25(OH)D caused by an additional 1,000 

IU/d is only 8 ng/ml at a starting value of 30 ng/ml(Garland, French et al. 2011). In another RCT 

study, supplementation with a higher VD dose (2,000 IU/d) and calcium di d not result in a 

significantly lower risk of all-type cancers at 4 years (Lappe, Watson et al. 2017). This might be 

due to a relatively high mean baseline serum 25(OH)D levels (32.8 ng/ml) in these healthy 

postmenopausal older women. In our study, the mean baseline serum 25(OH)D levels of HF 

group was 14.3±1.7 ng/ml. In addition, another RCT study suggested that high doses of VD 

(8,000 IU/d for two weeks, followed by 4,000 IU/d) suppressed the progression of colon cancer. 

Therefore, in the present study, we investigated the preventive effect of a high dose VD (5000 

IU) and its combination with SFN on intestinal inflammation and tumorigenesis in obese Apc1638N 

mice. Serum levels of 25(OH)D in the high dose VD supplementation groups (HFD and HFDS) 

were 62.0±2.3 ng/ml, 52.4±5.4 ng/ml respectively, which is consistent with a previous 

study(Hummel, Thiem et al. 2013). 

 

VD, via its most active metabolite 1,25-dihydroxyvitamin D3 [1,25(OH)2D], plays an important 

role in cellular processes by binding the nuclear VD receptor transcription factor and affecting 

expression of key genes involved in control of cellular proliferation, differentiation, and apoptosis 

(Deeb, Trump et al. 2007). Possible mechanisms underlying Wnt/β-catenin inhibition by 

1,25(OH)2D in colon cancer is that: 1,25(OH)2D inhibits the production of IL-1β in THP1 
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macrophages, and thereby inhibits the ability of macrophages to activate Wnt signaling in colon 

carcinoma cells (Kaler, Augenlicht et al. 2009). It has also been proposed that the 

chemopreventive properties of 1,25(OH)2D stem from its ability to increase the binding of VDR 

to β-catenin, thereby hampering the formation of the β-catenin/TCF complexes, and to induce 

the expression of the Wnt inhibitor DKK1 (Aguilera, Pena et al. 2007). SFN, an isothiocyanate 

found in cruciferous vegetables, has the property to inhibit HDAC activity in many cancer cells 

(Dashwood and Ho 2008; Ho, Clarke et al. 2009; Dickinson, Rusche et al. 2015; Kim, Fujita et 

al. 2016). Several studies have shown that the HDAC inhibitors (HDACi) can improve the effects 

of VD supplementation and HDACi can cause a synergistic effect in cancer models, especially 

those that are resistant to VD supplementation alone (Rashid, Moore et al. 2001; Banwell, 

O'Neill et al. 2004; Khanim, Gommersall et al. 2004; Malinen, Saramaki et al. 2008). However, 

there are little evidence about the antitumor effect of the combination of VD and SFN. 

 

In the present study, we demonstrated that a high dose of VD supplementation can significantly 

attenuated the obesity-induced elevated expression of TNF-a by 28.33%, IFN-γ by 39.24%, IL-2 

by 66.49%, IL-17A by 54.94% by 60 kcal% high fat diet. Previous studies have shown that TNF-

a can induce GSK3β phosphorylation and subsequently stabilize β-catenin (Oguma, Oshima et 

al. 2008; Liu, Brooks et al. 2012; Coskun, Olsen et al. 2014), two key components within Wnt 

pathway. Our data showed that the high dose VD supplementation can decrease the level of 

phospho-GSK3β and active β-catenin, in parallel with decreased mRNA expression of Axin 2, c-

Jun, c-Myc, and Cyclin D1, which are reported as Wnt pathway downstream genes. These 

obeservations are in agree with previous studies that have shown that 1,25(OH)2D can inhibit 

Wnt-signaling  and its downstream genes, such as c-Myc, cyclin D1 (Tong, Hofer et al. 1999; 

Larriba, Ordonez-Moran et al. 2011). 
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Our findings from this study demonstrated that co-administration of VD with SFN further 

decreased tumor incidence (HFD: 63.6% vs HFDS: 53.8%) and tumor size (HFD: 0.27cm vs 

HFDS: 0.22cm), but none of them reached a statistically significant degree. These observations, 

in agreement with previous findings (Shen, Khor et al. 2007), indicate the combination of dietary 

phytochemical SFN with other antitumor agents, such as VD, may be beneficial in CRC 

prevention. The co-administration (HFDS group) failed to further decrease tumor-promoting 

inflammatory cytokines and alter components of the Wnt pathway. Nevertheless, we observed 

that the addition of SFN inhibited the total HDAC activity and expression of HDAC6, which is 

consistent with previous studies that have shown that SFN and its metabolites SFN-Cys and 

SFN-NAC can inhibit HDACs (Myzak, Karplus et al. 2004; Myzak, Hardin et al. 2006). 

Considering HDACs are commonly overexpressed in human and mouse colon tumors 

(Mariadason 2008; Xu, Liu et al. 2016), SFN may be a promising adjunct dietary preventative 

agent.  

 

Without observing significant influences from the addition of SFN on inflammation and Wnt-

signaling, we examined another molecular mechanism, autophagy activity. Autophagy is an 

evolutionarily conserved lysosomal degradation pathway that is essential for cellular 

homeostasis and genomic integrity (Levine and Kroemer 2008). Its dysfunction has been linked 

to a wide range of diseases including cancer. Previous studies have shown that VD and its 

analogs can trigger autophagic death in many cancer cells (Wang, Lian et al. 2008; Tavera-

Mendoza, Westerling et al. 2017). SFN can also initiate autophagy in several cell types (Jo, Kim 

et al. 2014; Liu, Smith et al. 2017). Our data indicates that VD can activate colonic autophagy in 

obese Apc638N mice, and VD and SFN co-supplementation further activate autophagy with a 

statistically significant degree (p < 0.05). These findings suggest that the addition of SFN may 

magnify the influences of VD on autophagy. 
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5.6 Conclusions 

In conclusion, we found that a high dose of VD supplementation decreased obesity-associated 

intestinal tumorigenesis by decreasing the production of multiple proinflammatory cytokines, and 

subsequently altering the tumorigenic Wnt pathway in the Apc1638N model. The addition of SFN 

with a high dose of VD supplementation inhibited HDAC activity and further stimulated 

autophagy. Our findings warrant further pre-clinical and clinical studies to explore the cancer 

preventive effects of a high dose of VD and its combination with SFN supplementation on 

obesity-associated CRC.  
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CHAPTER 6 

FFAR2 KNOCKDOWN MITIGATES ANTICANCER EFFECTS OF BUTYRATE BY 

DYSREGULATION WNT/Β-CATENIN PATHWAY 

 

6.1 Abstract 

Previous studies have shown that butyrate is able to induce colon cancer cells apoptosis and 

differentiation. However, the detailed molecular mechanism of butyrate in suppression of colon 

cancer growth remains ambiguous. The present study aims to evaluate the mechanism by 

which butyrate modulates colon cancer growth. Caco-2 cells were treated with 0 mM, 1 mM, 2 

mM, 5 mM butyrate. MTT assay showed that 2 mM and 5 mM butyrate significantly induced cell 

death by 17.9% and 41.2% respectively. In addition, western blot indicated that 2 mM and 5 mM 

butyrate can significantly increase the expression of cleaved caspase 3 by 136% and 292% 

respectively. We also found that butyrate can increase the activity of Wnt/β-catenin pathway. 

Knocking down FFAR2 by siRNA decreased the expression of cleaved caspase 3 and the 

expression of phospho-GSK3β (Ser9) and active β-catenin in Caco-2 cells, subsequently 

mitigated the anticancer effect of butyrate. Based on these results, we conclude that FFAR2 is 

required for the cytotoxicity effects of butyrate and regulation of Wnt pathway. Our findings 

warrant further studies to explore the molecular mechanisms by which butyrate induces colon 

cancer death. 
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6.2 Introduction 

Colorectal cancer (CRC) is a major cause of morbidity and mortality throughout the world. It is 

the third most common cancer in the United States, with around 140,000 new cases being 

diagnosed last year. The pathogenetic mechanisms underlying CRC development are complex 

and include hereditary and environmental factors. There is strong evidence that dietary fiber 

plays a protective role in CRC carcinogenesis (Gunter and Leitzmann 2006; Sengupta, Muir et 

al. 2006).  

 

The gut fermentation of dietary fiber by colonic bacteria produces short-chain fatty acids 

(SCFAs). Butyrate, a four-carbon fatty acid, is a major energy source for colonocytes and 

promotes colonocytes proliferation (Guilloteau, Martin et al. 2010). Butyrate causes reduction in 

cancer cell proliferation by blocking the G1/S phase of the cell cycle (Vaziri, Stice et al. 1998). 

Like trichostatin A (TSA), butyrate is a histone deacetylase inhibitor (HDACi), regulating pro-

apoptotic protein expression by inhibiting HDACs. Cancer cells preferentially ferment glucose as 

an energy source even when oxygen is abundant. Therefore, butyrate is accumulated in the  

cancer cell cytoplasm, leading to an enhanced anticancer effects (Donohoe, Collins et al. 2012). 

 

Free fatty acid receptor 2 (FFAR2) is a G-protein coupled receptor for SCFAs (acetate, 

propionate, and butyrate). FFAR2 is preferentially expressed in normal colonocytes and 

neutrophols. Previous studies have shown FFAR2 is crucial for the resolution of inflammation, 

loss of FFAR2 might promote colon cancer by epigenetic dysregulation of inflammation 

suppresspors, such as sfrp1, dkk3, socs1 (Pan, Oshima et al. 2018). However, the role of 

FFAR2 in anticancer effects of butyrate is still not fully understood. 
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6.3 Materials and Methods 

6.3.1 Chemicals and reagents 

The sodium butyrate and 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium Bromide 

(MTT, Calbiochem®) was obtained from MilliporeSigma (Burlington, MA). Sodium butyrate was 

dissolved in phosphate buffered saline (1X) (PBS, Gibco™) to make 1 M, 2 M, 5 M stock 

solutions. MTT were dissolved in PBS to make a 5 mg/ml stock solution. Stock solutions were 

prepared freshly before use in the fume-hood. The stock solution were then filter-sterilized. 

Dulbecco's modified Eagle medium (1X) (DMEM, Gibco™), heat-inactivated fetal bovine serum 

(FBS, Gibco™), 0.25% trypsin-EDTA (1X) (Gibco™), penicillin-streptomycin (10,000 U/mL) 

(Gibco™), TRIzol® reagent (Invitrogen™), DEPC-treated water, high capacity cDNA reverse 

transcription kit (Applied Biosystems™) and PowerUp™ SYBR™ green master mix (Applied 

Biosystems™) were purchased from Thermo Fisher Scientific Co. (Waltham, MA). Goat anti-

rabbit IgG-HRP and goat anti-mouse IgG-HRP antibodies were purchased from Santa Cruz 

Biotechnology (Dallas, TX). phospho-GSK3β (Ser9), active β-catenin, cleaved-caspase 3 

antibodies were purchased from Cell Signaling Technology (Danvers, MA). 

 

6.3.2 Cell culture 

Human colon cancer cell line Caco-2 was obtained from American Type Culture Collection 

(ATCC). The Caco-2 cells were maintained in a 100 mm dish at 37°C in a 5% CO2 incubator in 

Dulbecco's modified Eagle medium (1X) (DMEM, Gibco™), supplemented with a 10% heat-

inactivated fetal bovine serum (FBS, Gibco™), 100 U/mL penicillin and 100 μg/mL streptomycin 

(Gibco™),  and 1 mM sodium pyruvate. Cells were passaged at 80% confluency, and the 

medium was changed every 72 hours.  
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6.3.3 Cell-viability assay (MTT assay) 

Cell viability was measured by the 3-(4,5-dimethylthylthiazol-2-yl)-2,5 diphenyltetrazolium 

bromide (MTT) method, as reported previously (Li, Yue et al. 2014). Briefly, Caco-2 cells were 

seeded in 96-well plates with 1×104 cells per well. After 70% confluency, suck the medium. 

Cells were treated with DMEM containing 1% FBS and butyrate (1-5 mM with PBS) or control 

medium containing 1% FBS for 48 hours. We added medium to the blank but did not seeding it. 

Cells were then incubated with MTT (0.5mg/mL) for 1 hour. After dissolved in DMSO, 

SpectraMax microplate reader (Molecular Devices, CA) were used to measure the absorbance 

at 570 nm wavelength. The OD value read from treatment and control groups then subtract the 

average OD value read from blank group. Results are expressed as the percentage of cell 

viability compared to the control. Experiments were repeated at least three times to ensure 

consistency of results. 

 

6.3.4 Real-time PCR for gene expression 

RNA samples were extracted from the colonic scrapings with Trizol reagent (Invitorgen, 

Carlsbad, CA). The concentration as well as purity of RNA samples was measured using 

NanoDrop 2000 (Thermo Scientific, Waltham, MA). The first-strand cDNAs were synthesized 

from total RNAs using QuantiTect Reverse Transcription Kit (Qiagen, Valencia, CA). Real-time 

PCR was performed on the ViiATM 7 Real-Time PCR System (Applied Biosystems, Carlsbad, 

CA) using the SYBR green PCR reagent kit (Invitrogen, Carlsbad, CA). The copy number of 

each transcript was calculated with respect to the GAPDH copy number. Primer sequences and 

thermal cycling conditions were listed as supporting information in APPENDIX B. 

 

6.3.5 Western blot analyses 
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As reported before (Sun, Yu et al. 2011), 40 μg of protein from each treatment was separated 

by 10% SDS-PAGE and transferred onto a PVDF membrane. After blocking with 10% instant 

nonfat dry milk, membranes were incubated with specific antibodies overnight at 4°C, followed 

by incubation with the secondary antibody. Antibody binding was detected with the enhanced 

ECL detection system. Notable western blots results were quantified using Image J software 

after normalizing to a corresponding loading controls. 

 

6.3.6 Small interfering RNA 

Caco-2 cells were seeded in 6-well plates with 1×106 cells per well. Caco-2 were then 

transfected by combining Lipofectamine RNAiMAX with Silencer Select small interfering RNA 

(siRNA) targeting FFAR2 (Invitrogen, Carlsbad, CA) in Opti-MEM (Gibco™) for 48 hours. After 

48 hours, siRNA complexes were removed and replaced with butyrate for another 48 hours. 

Cells were extracted for following experiments.   

 

6.3.7 Statistical analysis 

Values in the text are presented as means ± S.E.M. One-way ANOVA (treatment) statistical 

analyses were performed using Graphpad Prism 5 followed by multiple comparisons (Tukey 

method) among all treatments (groups). To simplify data presentation in the figures, the 

comparisons were only shown between the HF groups with other treatment groups. Values of p 

< 0.05 were considered statistically significant among the comparisons. Fisher’s exact test was 

used for tumor incidence. The expression of each gene was normalized to the housekeeping 

gene GAPDH (DCt = Cttarget gene-CtGAPDH). Statistical analyses were performed based on ΔCt and 

relative expression is reported as 2−ΔΔCt, where ΔΔCt=DCt-Experiment-DCt-Control.   
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6.4 Results 

6.4.1 Cytotoxicity of human colon cancer cell line Caco-2 in response to butyrate 

We first examined the cytotoxicity effects of butyrate on Caco-2 cell line by using a cell viability 

assay (MTT assay). MTT assay is a common colorimetric assay for assessing cell mitochondrial 

metabolic enzyme activity that reduces MTT. Therefore, MTT assay basically uses 

mitochondrial enzyme activity as an indicator of cell viability. The drugs that induce cytotoxicity 

and mitochondrial dysfunction will reduce the enzyme activity leading to a lower OD reader. 

Cytotoxicity of drugs can be indicated by the OD reader. Caco-2 cells were plated in a 96-well 

plate and exposed to physiologically relevant concentrations of butyrate (1 mM, 2 mM, 5 mM). 

After 48 hours treatment, 2 mM and 5 mM butyrate significantly induce cell death by 17.9% and 

41.2%, while 1 mM butyrate has no significant cytotoxicity on Caco-2 cells (Figure 6.1).   

 

Figure 6.1. Cytotoxicity of human colon cancer cell line Caco-2 in response to butyrate. A) 

Caco-2 cells were treated with 0 mM, 1 mM, 2 mM, 5 mM butyrate for 48 h. Cell viability was 

measured by the MTT assay. *p < 0.05, **p < 0.01. Data are mean ± SEM. 
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6.4.2 Cell apoptosis of human colon cancer cell line Caco-2 in response to butyrate 

Cysteine-aspartic proteases (Caspases) are a group of protease enzymes playing crucial roles 

in apoptosis. Caspase 3 is one of the key caspases, as it can be activated by both extrinsic and 

intrinsic pathway in apoptotic cells. Caspase 3 is initially synthesized as inactive proenzymes. 

When caspase 3 is cleaved, it can be activated. We therefore measured the protein levels of 

cleaved caspase 3. We found that 2 mM and 5 mM butyrate can significantly increase the 

expression of cleaved caspase 3 by 136% and 292% respectively, which indicating butyrate can 

induce Caco-2 cell apoptosis (Figure 6.2).  

 

 

Figure 6.2. Cell apoptosis of human colon cancer cell line Caco-2 in response to butyrate. A) 

Representative Western blots and relative quantification of cleaved caspase 3. Data are 

presented as the mean ± SEM. *p < 0.05, **p < 0.01. 

 

6.4.3 Wnt/b-catenin pathway activity of human colon cancer cell line Caco-2 in response 

to butyrate 

We further studied the effects of butyrate on signaling pathways involved in CRC. It is well 

known that aberrant Wnt signaling plays a crucial role in colorectal oncogenesis and 
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progression. By immunoblotting analysis, we measured the levels of phospho-GSK3β (Ser9) 

protein, the inactive form of GSK3β, and the dephosphorylated β-catenin (Ser37 or Thr41) 

protein, the active form, which are two key molecules in the Wnt pathway. As shown in Figure 

6.3B, butyrate increases the expression of phospho-GSK3β (Ser9) and active β-catenin in a 

dose dependent manner in Caco-2 cells. We further examined the mRNA expression of Wnt 

pathway downstream oncogenes, c-Jun, c-Myc, and cyclin D1. We found that the mRNA 

expressions of these downstream genes were increased in response to butyrate (Figure 6.3B). 

This observations were consistent with the previous reports (Bordonaro, Lazarova et al. 2008; 

Bordonaro, Lazarova et al. 2008).   

 

Figure 6.3. Wnt/b-catenin pathway activity of human colon cancer cell line Caco-2 in response 

to butyrate. A) Representative Western blots and relative quantification of GSK-3β Ser9 

phosphorylation and active β-catenin in response to butyrate. B) mRNA expression of Wnt 

pathway downstream genes in response to butyrate. Data are presented as the mean ± SEM. 

*p < 0.05, **p < 0.01. 
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6.4.4 FFAR2 knockdown mitigates anticancer effects of butyrate by dysregulation Wnt/β-

catenin pathway 

We first measured the mRNA expression of FFAR2 (butyrate receptor) and MCT1 (butyrate 

transporter). As shown in Figure 6.4A, we found that butyrate dose dependently increased the 

mRNA expression of FFAR2 and MCT1. We then tested whether butyrate induced Caco-2 cell 

death and activation of Wnt/β-catenin pathway were through the FFAR2. As shown in Figure 

6.4B, knocking down FFAR2 by siRNA decreased the expression of cleaved caspase 3 and the 

expression of phospho-GSK3β (Ser9) and active β-catenin in Caco-2 cells. We further 

examined the mRNA expression of Wnt pathway downstream oncogenes, c-Jun, c-Myc, and 

cyclin D1. We found that the mRNA expressions of these downstream genes were decreased in 

FFAR2 knock down Caco-2 cells (Figure 6.4C). As shown in Figure 6.4D, knocking down 

FFAR2 by siRNA mitigated the anticancer effects of butyrate. Based on these results, we 

conclude that FFAR2 is required for the cytotoxicity effects of butyrate and regulation of Wnt 

pathway.  
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Figure 6.4. Effect of FFAR2 knock down on the Caco-2 cell apoptosis and the activation of 

Wnt/β-catenin pathway. A) mRNA expression of FFAR2 and MCT1. B) Western blotting. C). 

mRNA expression of c-Jun, c-Myc, cyclin D1. D). Cell viability. Data are presented as the mean 

± SEM. *p < 0.05. 

 

 

6.5 Discussion 

Colorectal cancer (CRC) is the third leading cause of cancer death in the United States in both 

men and women. In 2018, it is estimated that ≈ 64 640 women and 75 610 men in the United 

States were diagnosed with CRC and 23 240 women and 27 390 men died from CRC. 
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Therefore, it is necessary and urgent to design efficient and economic strategies to prevent 

CRC. 

 

Substantial epidemiologic and experimental studies have shown that higher intake of dietary 

fiber is associated with a lower risk of CRC (Levi, Pasche et al. 2001; Aune, Chan et al. 2011; 

Kunzmann, Coleman et al. 2015). Colonic bacterial fermentation of dietary fiber can produce 

butyrate, a short chain fatty acid. One of the explanations of CRC prevention effect of butyrate is 

that bacterial fermentation converts resistant starch to SCFA (Song, Garrett et al. 2015). Among 

SCFA, butyrate plays a pivotal role in the prevention/inhibition of colon carcinogenesis (Manning 

and Gibson 2004). Butyrate can induce colon cancer cell differentiation and apoptosis, and 

inhibit colon cancer cell differentiation (Goncalves, Araujo et al. 2011). Similarly, several animal 

studies also suggested a protective effect of butyrate on CRC carcinogenesis (D'Argenio, 

Cosenza et al. 1996; Kameue, Tsukahara et al. 2004; Lu, Nakanishi et al. 2013). Human studies 

also found an inverse relationship between the levels of butyrate in the human colon and the 

incidence of CRC (Bingham, Day et al. 2003). The risk of developing tumors are higher in the 

distal colon where the concentration of butyrate is lower, implicating butyrate has CRC 

prevention effect (Mortensen, Holtug et al. 1988). In consistent with these studies, we found that 

butyrate (5 mM) significantly induce Caco-2 cell death by 41.2% and increased expression of 

cleaved caspase 3. 

 

Butyrate can support growth of normal colonocytes, interestingly it exerts a drastic inhibitory 

effect on CRC (Bergman 1990). The possible explanation of this controversy might lie in the 

Warburg effect which is observed in various cancer cells (Bates 2012). Normal colonocytes use 

aerobic respiration to meet energy requirements, while colon cancer cells prefer anaerobic 
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glycolysis even when there is plenty of oxygen. In colon cancer cells, because of excessive 

anaerobic glycolysis, fatty acid oxidation is inhibited. Therefore, butyrate, a short chain fatty 

acid, is not used as an energy resource and subsequently accumulate in the colon cancer cells. 

The elevated level of butyrate can act as an HDACi and induce cancer cell apoptosis 

(Encarnacao, Abrantes et al. 2015; Bultman 2016).  

 

Besides butyrate can act as an HDACi, butyrate might exert anti-proliferative and pro-apoptotic 

effects through manipulating several signal pathways in cancer cells. For example, sodium 

butyrate (2.5 mM and 5 mM) increases the mRNA and protein expression of SMAD3 and 

potentiates TGF-b signaling and its tumor suppressor activity in rat intestinal epithelial (RIE-1) 

cells (Nguyen, Cao et al. 2006). Butyrate (5 mM) pretreatment followed by TGF-b treatment 

increased DNA fragmentation and apoptosis in RIE-1 cells. Interestingly, without butyrate 

pretreatment, TGF-b treatment alone cannot induce apoptosis and DNA fragmentation (Cao, 

Gao et al. 2011). Butyrate (5 mM) can also arrest the RIE-1 cells in the G2/M phase of the cell 

cycle.  

 

Wnt signaling is crucial for intestinal crypts homeostasis and maintenance of intestinal stem 

cells (Flanagan, Austin et al. 2018). It is well known that hyperactivation of Wnt pathway is 

present in almost all CRC. Wnt signaling plays a pivotal role in CRC incidence and is the basis 

for CRC tumorigenesis in patients with familial adenomatous polyposis and in Apc mutant mice 

model. Loss of APC function is the main driver of CRC carcinogenesis. However, we found that 

butyrate increased the expression of phospho-GSK3β (Ser9) and active β-catenin in a dose 

dependent manner in Caco-2 cells. It is suggested that an optimal but not excessive activation 

of Wnt/β-catenin pathway are favorable for cancer cell growth (Leedham, Rodenas-Cuadrado et 



91 
 

al. 2013). Therefore, butyrate (5 mM) might activate Wnt/β-catenin pathway which surpass the 

optimal level in Caco-2 cells. 

 

Free fatty acid receptor 2 (FFAR2) is a G-protein coupled receptor for SCFAs (acetate, 

propionate, and butyrate). Previous studies have shown that loss of FFAR2 might promote 

colon cancer by epigenetic dysregulation of inflammation suppressors (Pan, Oshima et al. 

2018). Our finding from this study demonstrated that knocking down FFAR2 by siRNA 

decreased the expression of cleaved caspase 3 and the activity of Wnt/β-catenin pathway. In 

addition, knocking down FFAR2 by siRNA mitigated the anticancer effects of butyrate. ‘ 

 

6.6 Conclusions 

Based on these results, we conclude that FFAR2 is required for the cytotoxicity effects of 

butyrate and regulation of Wnt pathway. Our findings warrant further studies to explore the 

molecular mechanisms by which butyrate induces colon cancer death. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 
 

 
CRC has a high incidence rate, and an unhealthy diet and life style is an important risk factor.  

The prevalence of obesity was 39.8% among US adults population and obesity can also 

increase the risk of CRC. Therefore, many research have conducted to study the role of obesity 

in the CRC risk and the mechanisms by which obesity increase the incidence of CRC. However, 

the detailed molecular mechanisms need to be further addressed. 

 

In our study, we utilized genetic approach and dietary strategies to study the prevention of diet 

induced obesity associated CRC and determine the underlying molecular pathways that render 

the CRC prevention effects. 

  

We found that loss of TNF-α decreased obesity associated intestinal tumorigenesis by 

decreasing the inflammation, and manipulating the β-catenin pathway and NF-kB signaling. In 

addition, IKK, component of the NF-kB signaling, was involved in the regulation of β-catenin 

pathway. The administration of Vitamin D (VD), at 5000 IU level, exerted an anti-inflammatory 

property, and leaded to suppressed intestinal Wnt-signaling and tumorigenesis in obese mice. 

The molecular function of sulforaphane on a high dose of VD supplementation, although 

displayed on the inhibition of HDAC and the activation of autophagy, needs further investigation. 

Butyrate can increase the activity of Wnt/β-catenin pathway. Knocking down FFAR2 by siRNA 

decreased the expression of cleaved caspase 3 and the expression of phospho-GSK3β (Ser9) 

and active β-catenin in Caco-2 cells, subsequently mitigated the anticancer effect of butyrate. 
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In conclusion, we found that genetic approach and dietary strategies might be an effective 

method to prevent CRC incidence and development. 
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APPENDIX A 

 

TABLE OF COMPOSITIONS OF THE EXPERIMENTS DIETS 
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APPENDIX B 

TABLE  OF PRIMERS USED FOR REAL-TIME PCR ANALYSIS 

 

 

Gene Forward Primer Reverse Primer 
Cyclin D1 5'-GCGTACCCTGACACCAATCTC-3' 5'-ACTTGAAGTAAGATACGGAGGGC-3' 
c-Myc 5'-ATGCCCCTCAACGTGAACTTC-3' 5'-GTCGCAGATGAAATAGGGCTG-3' 
c-Jun 5'-TTCCTCCAGTCCGAGAGCG-3' 5'-TGAGAAGGTCCGAGTTCTTGG-3' 
Axin2 5'- ATGAGTAGCGCCGTGTTAGTG-3' 5'- GGGCATAGGTTTGGTGGACT-3' 

 
*Thermal Cycling Conditions: UDG activation 50°C 2mins, Dual-Lock DNA polymerase 95°C 2mins. Denature 
95°C 1s, Anneal/extend 60°C 30s, 40 Cycles. 
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