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ABSTRACT 

METABOLIC COST AND STABILITY OF LOCOMOTION IN PEOPLE 

WITH LOWER LIMB AMPUTATION 

 

MAY 2019 

RYAN DOUGLAS WEDGE, B.S., QUINNIPIAC UNIVERSITY 

M.P.T., QUINNIPIAC UNIVERSITY 

Ph.D., UNIVERSITY OF MASSAHUSETTS AMHERST 

Directed by: Brian R. Umberger 

 

It is generally accepted that metabolic energy expenditure and gait stability are 

key factors that influence the selection of able-bodied locomotor patterns.  It is unclear 

how energy expenditure and gait stability are prioritized during walking in people with 

lower limb amputation.  People with lower limb amputation generally have greater 

metabolic energy expenditure during walking and increased incidence of falls.  People 

with unilateral lower limb amputation spend more time on the intact limb compared with 

the prosthetic limb, while able-bodied individuals generally walk with symmetrical 

timing between limbs.  Restoring symmetry is often a goal of rehabilitation and assistive 

devices, yet the gait differences for people with unilateral amputation relative to able-

bodied walkers could in fact be optimal for metabolic energy expenditure and stability.  

The purpose of this dissertation was to determine how metabolic energy expenditure and 
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gait stability are affected by inter-limb gait asymmetry in people with and without 

unilateral transtibial amputation.  To the best of my knowledge, this is the first set of 

studies to have people with amputation walk with preferred (i.e., asymmetrical) and non-

preferred (i.e., symmetrical and greater asymmetry) inter-limb stance timing in order to 

understand how metabolic energy expenditure and gait stability are affected by 

asymmetry.  Results from the first study found that subjects with amputation walked with 

more time on intact side compared with the prosthetic side, while able-bodied subjects 

walked with near symmetry (<1% difference between limbs) on average.  Although the 

study may not have been adequately powered, the asymmetries predicted to yield the 

minimum-cost of transport for both groups were in the same direction (i.e., greater 

asymmetry for subjects with amputation compared with able-bodied subjects) as the 

preferred asymmetries.  Results from the second study found that all stability metrics 

exhibited minima within the experimental range, expect for medial-lateral margin of 

stability, for which linear trends were found.  These results indicate that during preferred 

conditions, subjects may minimize stability while walking with preferred inter-limb 

stance timing, and therefore many of the stability metrics had their lowest values near the 

preferred conditions.  Even though we need to be cautious about some of the 

interpretations, these findings warrant further investigation into how preferred patterns 

emerge in people with amputation.  Understanding why preferred patterns are 

asymmetrical in people with unilateral transtibial amputation may provide insights for 

rehabilitation and assistive device design, and also show that an asymmetric gait may be 

the best result after some injuries and do not represent a problem that should be fixed. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction 

Humans optimize locomotion.  It is generally accepted that metabolic cost and 

stability are optimized with able-bodied self-selected locomotor patterns, but it is unclear 

if people with lower limb amputation do the same.  People with lower limb amputation 

usually have greater metabolic cost of locomotion (Waters & Mulroy, 1999; Waters et al., 

1976) and higher rates of falling (Miller et al., 2001(b); Kulkarni et al., 1996) compared 

with able-bodied individuals.  Even though gait patterns of people with lower limb 

amputation have been studied since World War II, the causes for greater metabolic cost 

and decreased stability have not been fully determined.  People with unilateral 

amputations typically have asymmetries between the prosthetic and intact sides for 

temporal-spatial, kinematic, and kinetic stride measures.  For people with lower limb 

amputation, the impacts of inter-limb asymmetries on metabolic cost and stability have 

been addressed by few studies.  Gait asymmetries in people who use a passive prosthesis 

unilaterally may simply result from the altered anatomy of the residual limb and a passive 

prosthesis not functioning like a biological limb.  The gait differences relative to able-

bodied walkers could in fact be optimal for metabolic cost and stability, but this is 

presently unknown.  Therefore, the focus of this dissertation is to determine how 

metabolic cost and gait stability are affected by inter-limb gait asymmetry in people with 

unilateral below knee amputation. 
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1.2 Motivation 

 The number of people with amputation was estimated to be 1.6 million in 2005, 

and is expected to reach 3.6 million by 2050, with approximately two thirds being of the 

lower limb (Ziegler-Graham et al., 2008).  The number of people with amputation 

continues to increase from both traumatic causes (e.g., blast injury) and impaired 

vasculature (e.g., diabetes), with the economic cost of lower limb amputation due to 

impaired vasculature alone estimated at $4.6 billion in 1996 (Dillingham, 2005). People 

with lower limb amputation have decreased mobility and subsequently decreased quality 

of life (Pell et al., 1993), even though after receiving a prosthesis they are expected to 

regain mobility and return to activities of daily living.  Two potential reasons why they 

may not return to previous levels of functional mobility are greater metabolic cost and 

decreased stability during locomotion.  People with lower limb amputation consistently 

have greater metabolic cost (Waters & Mulroy, 1999) and decreased stability (Hak et al., 

2013) compared with able-bodied people.  The altered residual limb anatomy and passive 

prosthesis does not mimic the biomechanics of a biological limb. When using prostheses 

that inject power into the gait cycle (i.e., active prostheses), metabolic cost is lower 

compared with the use of passive prostheses (Herr & Grabowski, 2012), but active 

prostheses are less prevalent than passive prostheses.  Even though passive prostheses 

have improved dramatically (Norton 2007), it might be reasonable to expect that there 

will be inter-limb stride asymmetries due to the asymmetrical morphology.  From this 

perspective, asymmetrical gait patterns might represent the new optimal form of 

locomotion for people with lower limb amputation; however, the effects of inter-limb 

asymmetry on metabolic cost and stability have not yet been established. 
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 Inter-limb asymmetries have been consistently observed in unilateral lower limb 

amputees with temporal-spatial (i.e., stride and stance time) (Isakov et al., 2000; Sadeghi 

et al., 2001; Sanderson & Martin, 1997), kinematic (Sanderson & Martin, 1997), and 

kinetic (Sadeghi et al., 2001; Sanderson & Martin, 1997; Silverman et al., 2008; Winter 

& Sienko, 1988) gait characteristics.  When able-bodied individuals walk with varying 

degrees of stride asymmetry, metabolic cost increases (Ellis et al., 2013) and gait stability 

decreases (Ducharme & van Emmerik, 2016) directly with the degree of gait asymmetry.  

Surprisingly, few studies (Dingwell et al., 1996; Davis et al., 2004) have trained people 

with lower limb amputation to walk with symmetrical stride characteristics in a research 

setting.  Only one of these studies included measures of metabolic cost (Davis et al., 

2004), and none have included measures of stability.  Dingwell et al. (1996) 

demonstrated that people with lower limb amputation can improve stride (i.e., stance plus 

swing on one side) time and push-off force symmetry with real time visual feedback.  

Davis et al. (2004) found decreased metabolic cost while walking without real time 

feedback after training for push off force symmetry, but not after stride time training; 

however, their study had a small, non-homogenous sample so there is a need to confirm 

the generality of their initial findings.  There have been efforts to match mass and inertial 

properties of the prosthetic limb to the intact limb, removing the inertial asymmetry 

(Mattes et al., 2000), but doing so actually resulted in greater temporal-spatial asymmetry 

and metabolic cost.  A computer simulation and modeling approach was used with an 

amputee musculoskeletal model that emulated able-bodied walking kinematic and ground 

reaction force data (Zmitrewicz et al., 2007) to determine prosthetic foot and individual 

muscle contributions for forward propulsion.  The prosthetic-side hip muscles and intact-
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side hip and ankle muscles had increased mechanical energy contribution to maintain 

forward propulsion compared to a non-amputee musculoskeletal model.  This result 

would imply greater mechanical demand, and probably greater metabolic cost, for a 

person with unilateral limb loss to walk symmetrically.  Therefore, the effect of inter-

limb stride asymmetry on metabolic cost and stability is not fully known. 

 Although biological organisms are believed to find an optimal locomotor pattern, 

subject to constraints that act upon the system (Sparrow & Newell, 1998), people with 

lower limb amputation have greater metabolic cost (Waters & Mulroy, 1999; Waters et 

al., 1976) and a higher incidence of falls (Miller et al., 2001(a); Kulkarni et al., 1996) 

compared with able-bodied individuals.  They walk subject to different constraints due to 

altered residual limb anatomy and a prosthesis’s design and function, and may have an 

optimal locomotor pattern characterized by inter-limb asymmetries.  Having people with 

unilateral lower limb amputation walk with varying degrees of stride asymmetry, 

including a symmetrical condition, while measuring metabolic cost and gait stability 

could provide insights on the adaptations that are made to walk effectively with a 

prosthesis. 
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1.3 Concepts and Background 

 People with lower limb amputation have altered morphology and must rely on a 

(usually) passive (i.e., no external power injected into device from an actuator) prosthesis 

in place of the missing anatomy.  Depending on the cause of the amputation, there may 

be more deficits affecting overall health, especially with people who have an amputation 

due to dysvascular causes (Roberts et al., 2006).  No matter the reason for amputation, 

there is altered proprioception (Liao & Skinner, 1995) and muscle function (Huang & 

Ferris, 2012) in the residual limb.  The sensory feedback from an intact foot and ankle is 

lost, and muscles that were used to generate most of the ground reaction force in late 

stance (Anderson & Pandy, 2003) have been removed or wrapped around the distal end 

of the residual limb.  Due to the altered anatomy and reliance on a prosthesis, the person 

will adapt their gait pattern in order to walk.  Based on the anatomical and device 

constraints, an asymmetrical gait may work within the new system and be the new 

optimal for metabolic cost and stability, but this has not been clearly established in the 

literature.  

People with unilateral transtibial amputation demonstrate increased stance time on 

the intact side compared to the prosthetic side (Isakov et al., 2000; Sadeghi et al., 2001; 

Sanderson and Martin, 1997), though the stance time asymmetry decreases as walking 

speed increases above preferred speed (Nolan et al., 2003).  In able-bodied subjects, Ellis 

et al. (2013) found greater metabolic cost with inter-limb stride time asymmetry, with 

metabolic cost increasing proportionally with the degree of asymmetry.  They proposed 

that in the case of people with pathologically asymmetrical gait, the asymmetries may be 

more favorable metabolically.  Two experimental studies (Davis et al., 2004; Dingwell et 
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al., 1996) and one computer simulation study (Zmitrewicz et al., 2007) have constrained 

people with lower limb amputation to walk with inter-limb temporal symmetry.  Davis et 

al. (2004) found decreased metabolic cost after training for stride time symmetry, but 

they had a small, non-homogenous, sample size.  The subjects had a mix of lower limb 

amputations, including above- and below-knee, as well as different causes of amputation, 

traumatic and dysvascular.  Even though this was a promising finding, general 

conclusions about metabolic cost and gait asymmetry cannot be made because of the 

varied subject sample.  Therefore, the difference in metabolic cost between symmetrical 

and asymmetrical stride patterns is not fully understood for people with unilateral lower 

limb amputations.  

 People with an amputation as a result of trauma (e.g., blast injury, car accident) 

generally have a lower metabolic cost of walking compared with people who have lost a 

limb from vascular (i.e., diabetes) causes (Waters et al., 1976).  Also, it has been shown 

that metabolic cost at preferred walking speed is greater with increasing level of 

amputation, and preferred walking speed is lower for people with vascular compared with 

traumatic amputations (Waters et al., 1976).  In the case of highly-functioning military 

service members with unilateral below knee amputation using an elastic storage and 

return prosthetic foot, one study showed no significant difference in metabolic cost 

compared to able-bodied people (Esposito et al., 2014).  

 One way to link energy expenditure at different speeds is cost of transport (energy 

expended per unit distance traveled).  The cost of transport curve for people with lower 

limb amputation looks like the characteristic U-shape as seen in able-bodied walkers, but 

the minimum cost is greater with increasing level of amputation and the speed at the 
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minimum decreases with increasing amputation level (Genin et al., 2008).  When a 

powered robotic ankle that can provide external energy is used, the preferred walking 

speed and cost of transport curves were similar between people with transtibial 

amputation from trauma using the powered ankle compared with matched non-amputees 

(Herr & Grabowski, 2012).  This result is exciting, and holds considerable promise, but 

the majority of people with a lower limb amputation will continue to use a passive 

prosthesis for the foreseeable future due to the financial cost of actuated prostheses. 

People with lower limb amputation of all levels have an increased incidence of 

falls, more commonly for people with above knee amputation than below knee (Miller et 

al., 2001(a); Kulkarni et al., 1996).  Due to an increased incidence of falls, there is an 

increased fear of falling (Miller et al., 2001(a); Kulkarni et al., 1996), which may 

contribute to decreased mobility.  With decreased mobility and overall physical activity, 

people are at greater risk for many other pathologies, such as heart disease and diabetes 

(Booth et al., 2012).  Measures used to compare fallers and non-faller, include local 

measures that focus on a single segment or joint (e.g., horizontal trunk acceleration and 

global measures that account for stability of the whole body center of mass (Bruijn et al., 

2013).  One global measure of stability is margin of stability (MoS), which has been used 

in people with unilateral transtibial amputation (Hak et al., 2013).  When compared to 

able-bodied individuals, people with lower limb amputation have increased stability 

when perturbed, as evident by showing a larger margin of stability (Beltran et al., 2014; 

Hak et al., 2013).  Traditional measures of stability, such as step width and step width 

variability have also been used, demonstrating a larger step width and greater variability 

in people with amputation compared with able-bodied individuals (Hak et al., 2013; 
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Beurskens et al., 2014). People with lower limb amputation consistently demonstrate 

poor stability compared with able-bodied individuals, yet how gait stability is affected by 

temporal-spatial asymmetry is largely unknown.  In a recent study, it was found that 

when able-bodied individuals walk with asymmetry, local stability, that is the system’s 

resistance to very small perturbations across strides (Dingwell et al., 2001), decreases 

(Ducharme & van Emmerik, 2016).  People with lower limb amputation consistently 

demonstrate inter-limb asymmetries, and the asymmetries may occur to improve stability 

(Hak et al., 2014), but this has not been determined. 

The gait patterns people with lower limb amputation choose may be optimized for 

metabolic cost, stability or a combination of the two.  Monsch et al. (2012) theorized 

there is a trade-off between metabolic cost and stability depending on task goals.  When 

their able-bodied subjects walked at a set speed with a more conservative, stable pattern, 

it led to greater metabolic cost, while walking with a more risky, less stable pattern led to 

less metabolic cost (Monsch et al., 2012).  Different gait parameters have previously been 

linked to optimizing metabolic cost, such as speed (Ralston, 1958), stride rate (Zarrugh & 

Radcliffe, 1978), and mechanical power and efficiency (Umberger & Martin, 2007).  

People with lower limb amputation consistently demonstrate stride asymmetries, unlike 

able-bodied individuals who walk and run symmetrically (Hamill et al., 1983; Hannah et 

al., 1984).  If able-bodied individuals optimize gait for metabolic cost and stability, the 

asymmetrical gait patterns may represent the conditions that optimize metabolic cost and 

stability for people with lower limb amputation.  Alternatively, there may be inherent 

trade-offs involved in walking with a prosthesis, such as maintaining gait stability at the 

expense of greater metabolic cost.  
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1.4 Problem Statement and Purpose 

 People with unilateral transtibial amputation have greater metabolic cost and 

decreased stability in locomotion, while demonstrating inter-limb differences with 

temporal-spatial parameters (i.e., stride and stance time), kinematics, and kinetics.  The 

effects of these inter-limb asymmetries on metabolic cost and stability remain largely 

undetermined.  When able-bodied individuals voluntarily walk with asymmetrical strides, 

metabolic cost increases as the amount of asymmetry increases (Ellis et al., 2013).  When 

able-bodied individuals deviate from preferred stride characteristics, local stability 

decreases (Ducharme & van Emmerik, 2016) but the effects on global stability, that is the 

system’s ability to accommodate larger perturbations (Dingwell et al., 2001), are 

unknown.  The effect of inter-limb asymmetry on the trade-offs between metabolic cost 

and gait stability for people with lower limb amputation remains unclear, and 

understanding this relationship will provide insight on how people with lower limb 

amputation regulate their locomotion.  

The purpose of the dissertation is to determine the effects of inter-limb asymmetry 

on metabolic cost and stability in people with unilateral transtibial amputation.  In study 

one, whole body energy expenditure will be measured in people with unilateral transtibial 

amputation and able-bodied subjects.  Each group will walk using their self-selected 

stride characteristics, and then will be constrained to walk with symmetry and varying 

degrees of asymmetry.  The subjects will receive real time visual feedback of a stance 

time symmetry index.  In study two, stability will be measured with global and traditional 

measures under the same conditions as study one.  These two studies will provide 
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important information on how people with lower limb amputation self-select stride 

characteristics in light of metabolic cost and gait stability.  
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1.5 Significance of this Dissertation 

 The studies within this dissertation are significant because they will help answer 

the question of whether self-selected locomotor patterns used by people with unilateral 

transtibial amputation are optimal for metabolic cost, stability or of some combination 

thereof.  Inter-limb temporal-spatial stride asymmetries might be optimal for unilateral 

amputees because of altered residual limb anatomy and the dynamics of the prosthesis, 

which is considerably lighter than the intact limb and restricts push-off against the 

ground.  If able-bodied individuals choose symmetrical gait patterns, while potentially 

optimizing metabolic cost and stability, then why people with lower limb amputation 

choose inter-limb asymmetry remains of interest.  

 Knowledge of the impact of stride symmetry on metabolic cost and stability could 

influence future rehabilitation paradigms and the design of assistive devices.  Improving 

rehabilitation should lead to increased mobility and subsequently quality of life for 

people with lower limb amputation.  Also, the trend with prosthesis design is to mimic 

biological characteristics with respect to kinetic output.  Yet, if inter-limb asymmetry is 

optimal because of altered anatomy and device constraints, future devices should not be 

designed in an effort to force a symmetrical gait.  Results from this dissertation will help 

drive rehabilitation and device design, and ultimately may improve the quality of life for 

people with lower limb amputation. 
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1.6 Proposed Experimental Designs 

1.6.1 Study One – Stride Symmetry and Metabolic Cost of Locomotion in People 

with Unilateral Transtibial Amputation  

 People with unilateral transtibial amputation generally have greater metabolic cost 

compared with able-bodied individuals (Waters & Mulroy, 1999; Waters et al., 1976) and 

consistently demonstrate temporal-spatial inter-limb stance asymmetry (Isakov et al., 

2000; Sadeghi et al., 2001; Sanderson & Martin, 1997), whereas able-bodied individuals 

tend to walk symmetrically (Gundersen et al., 1989; Hamill et al., 1983; Hannah et al., 

1984).  Ellis et al. (2013) found greater metabolic cost when able-bodied participants 

voluntarily walked with inter-limb stride time asymmetry and speculated that 

pathological asymmetry may lead to less metabolic cost in some populations, such as 

people with an amputation.  Few studies have evaluated the effects of gait asymmetry on 

the cost of walking in people with unilateral transtibial amputation.  The difference in 

metabolic cost between symmetrical and asymmetrical stride conditions may help explain 

why people with lower limb amputations self-select asymmetrical gait patterns.  

 The first aim of this study is to confirm previously shown greater stance time on 

the intact side versus the prosthetic side for people with unilateral lower limb amputation, 

and equal inter-limb stance time for able-bodied.  After evaluating preferred 

characteristics, the second aim is to determine the effect of temporal asymmetry on 

metabolical energy expenditure in both groups.  Real time visual feedback of inter-limb 

stance symmetry while walking on a treadmill will be provided to the subjects while 

whole body energy expenditure is determined via pulmonary gas exchange.  

 I will test the following hypotheses related to purpose one: 
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Hypothesis 1.1: The subjects with unilateral transtibial amputation will exhibit greater 

stance time on the intact side compared with the prosthetic side with their preferred gait 

pattern. 

Hypothesis 1.2: Able-bodied subjects will exhibit symmetrical stance times with their 

preferred gait pattern. 

I will test the following hypotheses related to purpose two: 

Hypothesis 1.3: Metabolic cost versus inter-limb asymmetry will demonstrate a U-

shaped curve for both groups. 

Hypothesis 1.4: Metabolic cost will be the lowest at the preferred stride characteristics 

for both groups. 

A direct consequence of hypotheses 1.1-1.3 is that subjects with unilateral lower limb 

amputation are predicted to have an elevated cost of walking when required to walk 

symmetrically, compared with the cost for walking for their preferred, asymmetrical gait 

pattern. 
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1.6.2 Study Two – Stride Symmetry and Global Stability of Locomotion in People 

with Unilateral Transtibial Amputation  

 People with lower limb amputation have higher rates of falls compared with able-

bodied individuals (Miller et al., 2001(a); Kulkarni et al., 1996), as well decreased global 

stability when perturbed (Beltran et al., 2014; Hak et al., 2013).  One consistent 

difference between people with unilateral amputation and able-bodied individuals is 

asymmetrical inter-limb stance time, with greater stance time on the intact side (Isakov et 

al., 2000; Sadeghi et al., 2001; Sanderson & Martin, 1997).  Asymmetries, such as 

asymmetrical stride characteristics, are often viewed as a negative consequence of disease 

or injury that should be reduced through therapeutic interventions.  However, another 

possibility is that inter-limb stride asymmetry, such as in people with unilateral lower 

limb amputation, may be an adaptation that serves to increase gait stability and avoid 

falling (Hak et al., 2014).  Unfortunately, the relative lack of research on the effects of 

asymmetry on gait stability in people with unilateral amputation precludes drawing firm 

conclusions.  In able-body participants, some measures of local stability have been shown 

to decrease with increasing gait asymmetry (Ducharme & van Emmerik, 2016), but the 

effects on global gait stability measures are unknown.  

 The protocol will be identical to that of study one.  Global gait stability will be 

evaluated using the backwards and medial-lateral margin of stability measures because 

they relate whole body center of mass kinematics to individual limb strides.  Global 

measures, like margin of stability, may be more closely related to falls than local 

measures that evaluate single marker, segment or joint characteristics in the time domain.  

Traditional stability metrics will also be quantified; specifically stride length variability, 
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stride time variability, step width and step width variability, to permit comparisons with 

the literature.  The purpose of this study is to determine the effect of temporal asymmetry 

on gait stability in both groups.  In evaluating that purpose, it will be determined if gait 

stability is greatest during walking using preferred stride characteristics. Whole body 

kinematics will be collected during treadmill walking while subjects receive real time 

visual feedback about inter-limb stance time symmetry to evaluate gait stability 

 I will test the following hypothesis: 

Hypothesis 2.1: Gait stability, measured by backwards and medial-lateral margin of 

stability, step width and step width variability, versus inter-limb asymmetry will 

demonstrate an inverted U-shaped curve. 

Hypothesis 2.2: Gait stability, measured by backwards and medial-lateral margin of 

stability, step width and step width variability, will be the greatest at the preferred 

stride characteristics for both groups. 

Similar to Study One, this hypothesis implies that subjects with unilateral lower limb 

amputation are most stable walking with their preferred, asymmetrical gait patterns, and 

being required to walk symmetrically will reduce measures of gait stability.  
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CHAPTER 2 

REVIEW OF LITERATURE 

 The number of people with lower limb amputation continues to rise (Ziegler-

Graham et al., 2008), most commonly from traumatic and vascular causes (Owings & 

Kozak, 1998).  People with lower limb amputation usually have greater metabolic cost of 

locomotion (Waters & Mulroy, 1999; Waters et al., 1976) and higher rates of falling 

(Miller et al., 2001(a); Kulkarni et al., 1996) compared with able-bodied individuals.  

Even though gait patterns of people with lower limb amputation have been studied since 

World War II, the causes for greater metabolic cost and decreased stability have not been 

fully determined.  People with unilateral amputations typically have asymmetries 

between the prosthetic and intact sides for temporal-spatial, kinematic, and kinetic stride 

measures.  For people with lower limb amputation, the impacts of inter-limb asymmetries 

on metabolic cost and stability have been addressed by few studies.  The gait differences 

relative to able-bodied walkers could in fact be optimal for metabolic cost and stability, 

but this is presently unknown. 
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2.1 Limb Loss 

2.1.1 Number of people with an amputation 

The number of people with a lower limb amputation was estimated at 1.6 million 

in 2005 and is expected to rise to 3.6 million by 2050 (Ziegler-Graham et al., 2008).  

There are an estimated 185,000 amputations in the United States every year (Owings & 

Kozak, 1998).  The two most common causes of amputation are trauma (e.g., blast injury, 

car accident) and vascular problems (e.g., diabetes) (Owings & Kozak, 1998).  The third 

primary cause of amputation is cancer but accounts for less than 2% of amputations 

(Owings & Kozak, 1998).  From 1988 to 1996, trauma was the cause of 82% of 

amputations, and over that same time period, there was a 27% increase in the amount of 

vascular amputations, with black people more likely to have a vascular amputation than 

non-black (Dillingham et al., 2002).  Coincidentally during that time period, the 

prevalence of diabetes rose sharply in the United States, and is more common in black 

compared to non-black people (Geiss et al., 2014).  One common problem with people 

who have an amputation due to poor vasculature is re-occurrence of amputation.  In an 

analysis of people with lower limb amputation in 1996, 26% of people had another 

amputation within 12 months of the initial amputation.  Reoccurrence of amputation is a 

major concern because higher amputation level leads to greater metabolic cost (Waters et 

al., 1977) and higher incidence of falls (Gauthier-Gagnon et al., 1999).  Dillingham et al. 

(2002) evaluated the number of amputations from 1988 to 1996, and found that there 

were 953,367 in the United States.  Of the 953,367 lower limb amputations, 31.5% were 

of the toe, 10.5% of the foot, 0.8% through the ankle, 27.6% below the knee, 0.4% 
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through the knee, 25.8% above the knee, 0.4% hip disarticulations, and 0.1% pelvic 

amputations. 

 

2.1.2 Mobility post amputation 

Even though people are given a prosthesis after an amputation, the amount of 

usage varies across populations, and many use an assistive device in addition to a 

prosthesis for mobility.  People with unilateral transtibial amputation progress more 

quickly compared with transfemoral, and walk more at the end of rehabilitation, as well 

as after one year and two years post-amputation (Holden & Fernie, 1987). Even though 

people with transtibial amputation progress walking ability more quickly, there are high 

amounts of sedentary time for people with transtibial amputation from vascular causes 

(Samuelsen et al., 2016).  Providing an initial prosthetic dressing and fitting is supposed 

to encourage early mobility, but people who have an amputation from vascular causes 

may have other physical disabilities that limit mobility and lead to prosthesis disuse 

(Bilodeau et al., 2000). 

Most people (nearly 95%) with a trauma-related lower limb amputation wear a 

prosthesis 80 hours per week, even though only 43% reported being satisfied with 

prosthesis comfort (Dillingham et al., 2001). 85% of people with unilateral transtibial and 

transfemoral amputation use a prosthesis, with 53% using one for locomotion indoors and 

64% using one for locomotion outdoors (Gauthier-Gagnon et al., 1999).  Age is a 

significant factor in determining usage of a prosthesis (Burger et al., 1997), as well as 

possession of a wheelchair (Bilodeau et al., 2000).  Elderly people with above and 

through knee amputation choose to use a wheelchair, and 9% decide to stop using their 
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prosthesis entirely after being prescribed one (Beekman & Axtell, 1987).  It is surprising 

how frequent prosthesis disuse is considering most bouts of activity for people with 

amputation are short.  Most activities are 1-2 minutes long and at a low intensity of 17 

steps/minutes.  Activities that last more than 15 minutes are rare for people with lower 

limb amputation (Klute et al., 2006).  People with lower limb amputation who limit 

physical activity have worse physical function and satisfaction with participation in social 

roles compared to able-bodied (Amtmann et al., 2015).  The reasons for decreasing 

physical function may be because of the greater metabolic cost, higher incidence of falls 

or because of other disabilities that commonly occur after amputation. 

 

2.1.3 Other disabilities related to amputation 

 Even among people who use a prosthesis 80 hours per week, only 43% reported 

being satisfied with prosthesis comfort (Dillingham et al., 2001).  There are problems 

with socket fit in 59% of people with transtibial amputation and 78% with transfemoral 

amputation, leading to skin irritations in 41% and 22%, respectively (Chatterjee et al., 

2016).  Aside from skin irritations, ulcers, cysts and calluses are the most common skin 

problems for prosthesis users (Dudek et al., 2006).  95% of people with lower limb 

amputation reported amputation-related pain, with the most common being phantom limb 

(79.9%), residual limb (67.7%), and back (62.3%) pains (Ephraim et al., 2005).  The high 

prevalence of back pain has been associated with moderate to severe disability, and 

further limits overall function aside from the amputation (Hammarlund et al., 2011).  

There is a decreased knee moment on the prosthetic side (Sanderson & Martin, 1997), 

potentially due to residual limb pain, and the intact side knee has higher loads (Fey & 
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Neptune, 2012; Sadeghi et al., 2001) to compensate for decreased prosthetic side loading.  

The asymmetric loading is one reason to explain the occurrence of significantly more 

knee osteoarthritis on the intact side and osteoporosis on the amputated side (Burke et al., 

1978). 

 

2.1.4 Economic costs due to amputation 

 Acute and post-acute medical care costs associated with care for people with 

lower limb amputation from dysvascular causes exceeded $4.3 billion in 1996 

(Dillingham et al., 2005).  Veterans that underwent lower limb amputation from 2001 to 

2008 had a mean cost per year of $14,700 and $18,700 for unilateral and bilateral 

amputation, respectively (Bhatnagar et al., 2015).  In that same time, people with both 

unilateral and bilateral amputation had costs double 3-5 post-amputation.  
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2.2 Gait 

2.2.1 Able-bodied 

Locomotion has been of interest for many years, but how and why humans 

organize locomotion the way they do is not fully understood.  The gait cycle is a series of 

strides with one stride of the gait cycle typically defined as heel strike to heel strike of the 

same foot (Gage, 1990).  The gait cycle is divided into two main phases, stance and 

swing phases, comprising 60% and 40% of a full gait cycle, respectively (Gage, 1990).  

The stance phase is when the foot is in contact with the ground, and the swing phase is 

when the foot is in the air and ends when the next stance phase begins at heel strike.  The 

stance phase is typically further divided into double support phase and single support 

phase.  The double support phase is when both feet are in contact with the ground, and 

single support is when only one foot is in contact with the ground.  The double support 

phase is during the first 10% (0-10%) of a stride and then the last 10% (50-60% of a 

stride) of stance. 

The gait cycle is typically further divided into other sections to make it possible to 

reference bodily actions in smaller periods of time (Gage, 1990).  Stance phase is divided 

into 5 sub-phases, initial contact (0%), loading response (0-10%), mid-stance (10-30%), 

terminal stance (30-50%) and pre-swing (50-60%).  Swing phase is divided into 3 sub-

phases, early swing (60-70%), mid-swing (70-85%) and terminal swing (85-100%).  

Initial contact is when the foot first strikes the ground.  

Able-bodied individuals generally choose symmetrical walking patterns with both 

kinematics and kinetics.  The hip (Hannah et al., 1984), knee (Gundersen et al., 1989; 

Hannah et al., 1984) and ankle (Gundersen et al., 1989; Hannah et al., 1984) joint 



 

22 

 

kinematics demonstrate high levels of kinematic symmetry in the sagittal plane, as well 

as in the transverse and frontal plan at the hip (Hannah et al., 1984).  The ground reaction 

forces between the right and left limbs have been described as both symmetrical (Hamill 

et al., 1983; Seeley et al., 2008) and asymmetrical (Herzog et al., 1989).  Seeley et al. 

(2008) found that the vertical and propulsive impulses were symmetrical at slow and 

preferred speeds, but the propulsive impulse was asymmetrical at a fast speed.  In the 

case of asymmetrical ground reaction forces, Herzog et al. (1989) noted that the amount 

of asymmetry was variable specific.  As an example, the combined positive and negative 

impulses in the anterior-posterior direction are near zero, and small differences between 

limbs could indicate a large asymmetry even though the actual value differences are 

small.  Muscle activity of the soleus and rectus femoris measured with electromyography 

(EMG) in healthy subjects showed high correlations between limbs and nearly identical 

shapes (Arsenault et al., 1986).  

 

2.2.2 People with lower limb amputation-symmetry and asymmetry 

People with lower limb amputation have the same gait cycle as able-bodied, but 

there are many inter-limb asymmetries in temporal-spatial, kinematic and kinetic 

variables.  People with lower limb amputation no longer have an intact biological limb 

and must rely on a prosthesis to walk without any other assistive device aside from the 

prosthesis.  The residual limb tissues were not designed to bear loads of the socket-

residual limb interaction.  The residual limb has altered proprioception, and is missing 

joints distal to the amputation that are designed to provide kinesthetic awareness, 

requiring increased reliance on the remaining joints proprioception (Eakin et al., 1992; 
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Liao & Skinner, 1995).  Preferred walking speed is slower for people with amputation 

when using a passive prosthesis (Genin et al., 2008, Hak et al., 2013; Herr & Grabowski, 

2012; Waters et al., 1976) compared with able-bodied people, and is lower for people 

with an amputation from vascular causes compared with traumatic causes (Waters et al., 

1976).  Preferred walking speed decreases as amputation level increases (Figure 1) 

(Waters & Mulroy, 1999).    

 

Figure 2.1: Metabolic cost and PWS by Amputation Level. The figure from Waters & 

Mulroy (1999) depicts O2 cost of walking and preferred walking speed for people with 

different levels of unilateral amputation. Speed decreases and O2 cost of walking 

increases as amputation level increases. HP = hemipelvectomy, HD = hip disarticulation, 

TF = transfemoral, TK = amputation at knee, TT = transtibial. 

 

People with unilateral transtibial amputation demonstrate stance time asymmetries 

at slower and preferred speeds.  Increased stance time on the intact side compared to the 

prosthetic side is commonly found (Isakov et al., 2000; Sadeghi et al., 2001; Sanderson & 

Martin, 1997).  The degree of inter-limb stance time asymmetry decreases with increased 

walking speed at the expense of increasing loading on the intact limb (Nolan et al., 2003).  
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Even though there is less asymmetry with increasing gait speed, people with lower limb 

amputation have a slower preferred walking speed compared to able-bodied people.  The 

temporal-spatial asymmetries may be the result of the prosthetic ankle not having the 

same power capability as a biological ankle (Sanderson & Martin, 1997; Winter & 

Sienko, 1988; Zelik et al., 2011) and not being able to accelerate the center of mass at 

push-off as well as the intact limb (Hak et al., 2014).  

The ankle is a large contributor to center of mass acceleration during late stance, 

and a decrease in force capability could be a reason for the subsequent asymmetries at 

other joints and in the time domain.  A simple dynamic walking model (two rigid 

pendula-like legs with curved feet) with decreased push off work similar to a transtibial 

amputee predicted asymmetries (Adamczyk & Kuo, 2015).  Beyond the predictions from 

a simple walking model, decreased ankle work led to inter-limb asymmetry and can result 

in greater metabolic cost (Collins & Kuo, 2010).  Caputo and Collins (2014) used an 

ankle emulator with able-bodied people to simulate increased ankle push off work, 

similar to a powered robotic ankle for a person with an amputation, and found a reduced 

metabolic rate (Caputo & Collins, 2014).  People with unilateral transtibial amputation 

who use a traditional flex foot, which is a carbon composite foot designed for energy 

storage at heel strike and return at push off, demonstrate decreased power (Zelik et al., 

2011) and moment (Winter & Sienko, 1988) at push off across increasing speeds.  The 

prosthetic ankle produces less mechanical work during stance than the intact limb, and 

able-bodied limbs (Silverman et al., 2008).  Zelik et al. (2011) manipulated prosthetic 

foot stiffness to determine the optimal stiffness for minimizing metabolic cost, and found 

that maximizing push off work did not optimize metabolic cost.  The deficit in ankle 
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power can be eliminated with a powered robotic device that delivers external positive 

power to the ankle.  Ferris et al. (2012) found that even when ankle power from the 

device is slightly greater than a normal biological limb, asymmetries at hip and knee 

joints persist.  The capacity to produce power at the ankle is limited by the prosthetic 

device being utilized, and may be the main contributing factor to inter-limb asymmetries 

between the intact and prosthetic sides.  Yet, even when the prosthetic and intact limbs 

have similar capabilities, there are compensations made by people with lower limb 

amputation.  

During level walking, able-bodied individuals typically have a knee extensor 

moment at initial contact as part of loading response with a slightly flexed knee (Gage, 

1990).  People with unilateral transtibial amputation consistently demonstrate a decreased 

knee extensor moment at initial contact across walking speeds (Fey & Neptune, 2012; 

Sanderson & Martin, 1996; Silverman et al., 2008; Winter & Sienko, 1988).  People with 

transtibial amputation may decrease the knee extensor moment to limit the loading at the 

residual limb-socket interface because the tissues are not designed to bear the contact 

loads.  Due to the altered loading on the prosthetic side, the intact side knee moment is 

typically larger than the prosthetic side (Fey & Neptune, 2012; Sadeghi et al., 2001).  An 

increased intact side sagittal plane knee moment has been linked to the prevalence of 

knee osteoarthritis on the intact side for unilateral transtibial amputees (Norvell et al., 

2005).  The peak internal abduction moment, which is commonly associated with knee 

pathology, is 46% and 17% greater on the intact side compared to the prosthetic side and 

able-bodied controls, respectively (Royer & Wasilewski, 2006).  The knee abductor 

moment on the intact side is lowered when using a powered prosthesis compared to a 
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passive prosthesis (Royer & Wasilewski, 2006).  The consistent presence of an increased 

knee moment on the intact side is supported by the finding of higher quadriceps muscle 

activation on the intact side compared to the prosthetic side during braking (Fey et al., 

2010) and may contribute to the higher energetic cost of locomotion for people with 

lower limb amputation.  

The hip joint demonstrates the largest kinetic compensations for people with 

unilateral transtibial amputation.  They produce a larger hip flexor moment (Winter & 

Sienko, 1988) and power (Sadeghi et al., 2001) at push off on the prosthetic side 

compared to the intact side to compensate for the decreased capability of the ankle to 

produce mechanical power.  Across speeds, people with unilateral transtibial amputation 

produce more positive sagittal plane work on both prosthetic and intact sides compared to 

able-bodied controls (Silverman et al., 2008).  The greater work and power being 

performed at the hip in the sagittal plane to compensate for prosthetic limitations may be 

a large factor in the greater metabolic energy expenditure for people with lower limb 

amputation.  Asymmetries in frontal plane hip moment are exhibited by a larger moment 

on the intact side compared to the prosthetic side and able-bodied controls (Royer & 

Wasilewski, 2006).  The larger frontal plane moment may be necessary to improve 

stability during gait.    

 

2.2.3 Organismal Symmetry  

Evolution has predisposed more than 1.5 million species, from fruit flies to 

humans, with bilateral structural symmetry (Collins & Valentine, 2001).  Bilateral 

symmetry is when the body is divided into two symmetrically opposed parts on opposite 
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sides of an axis (Brusca et al., 2016).  As organisms have developed through evolution, a 

third germ layer emerged (mesoderm) and perhaps simultaneously, bilateral symmetry 

(Brusca et al., 2016).  The mesoderm gives rise to human musculature and the circulatory 

system.  Fossils dating back 600-630 million years show the first signs of bilateral 

symmetry in Ediacarans.  Human’s symmetrical morphology is the result of evolution, 

and may be the basis for why humans walk and run symmetrically.  Even though humans 

have evolved to be symmetrical and restoring symmetry is a goal of rehabilitation for 

people with lower limb amputation, it may be unrealistic because of differences between 

biological limbs and prosthetic devices.  
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2.3 Metabolic Cost of Walking 

2.3.1 Able-bodied 

Metabolic energy expenditure can be calculated with exhaled carbon dioxide and 

inhaled oxygen via indirect calorimetry (Weir, 1949; Brockway et al., 1987).  Metabolic 

energy expenditure increases directly with walking speed, but if you normalize the 

energy expended to distance covered, there is an energetically optimal speed.  The 

energetically optimal speed relative to energy cost per unit distance is known as the cost 

of transport (Ralston, 1958).  The most energetically optimal speed is between 1.2 and 

1.3 m s-1 (Ralston, 1958; Zarrugh et al., 1974).  At slower and faster walking speeds, cost 

of transport increases, and human’s preferred walking typically falls in this range of 

economical speeds (Finley & Cody, 1970; Ralston, 1958).  

Walking speed is the end result of a chosen stride length and stride frequency.  

Given that humans choose a preferred walking speed that is optimized for cost of 

transport, humans also demonstrate a preferred stride frequency that is coincident with 

minimized metabolic energy expenditure (Molen et al., 1972; Zarrugh & Radcliffe, 

1978).  Metabolic energy expenditure increases when stride frequency increases or 

decreases away from preferred and speed is held constant (Cotes and Meade, 1960; 

Minetti et al., 1995; Zarrugh & Radcliffe, 1978).  The minimization of mechanical power 

usually occurs below (i.e., long slow steps) the preferred stride frequency (Cavagna & 

Franzetti, 1986; Minetti et al., 1995).  The net mechanical efficiency is optimal at higher 

stride frequency (i.e., short fast steps) (Umberger & Martin, 2007). 
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2.3.2 Locomotion across species  

 All animals expend energy during locomotion.  Animals swim through water, fly 

through the air, and run on land.  Even though these forms of locomotion are very 

different, different species with these forms of locomotion can be compared when 

expressing metabolic energy expenditure over a unit distance (cost of transport) relative 

to body weight (Schmidt-Nielsen, 1972).  Running, flying and swimming demonstrate a 

similar relationship across species sizes, with a lesser net cost of transport for larger 

animals than smaller animals (Schmidt-Nielsen, 1972).  Running has a greater cost of 

transport than flying (Tucker, 1970), and flying has a greater cost than swimming when 

comparing similarly sized animals (Schmidt-Nielsen, 1972).  Even though it is not the 

focus of this dissertation, being able to compare the energy expenditure of insects to 

elephants is of great interest.  

 

2.3.3 People with Lower Limb Amputation 

People with unilateral transtibial and transfemoral amputation have greater net 

energy expenditure rate than able-bodied people while walking at various walking speeds 

(Figure 2) (Genin et al., 2008; Waters et al., 1976).  
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Figure 2.2: Cost of Transport with walking speed. The figure from Genin et al. (2008) 

represents cost of transport (Net Cost (J kg-1 m-1) versus walking speed (m s-1) for able-

bodied participants (open upward triangles), people with unilateral transtibial amputation 

(filled upward triangles) and people with unilateral transfemoral amputation (filled 

downward triangles). The figure depicts increased cost of transport for the two groups of 

people with amputations compared with the able-bodied across walking speeds, and a 

slower predicted optimal walking speed for people with amputation as well, with the 

people with transfemoral amputation having the slowest optimal walking speed and 

greatest cost of transport.  

 

Net energy expenditure increases directly with increasing amputation level (Waters et al., 

1976; Waters & Mulroy, 1999).  Net energy expenditure is also influenced by the cause 

of amputation (Waters et al., 1976; Waters & Mulroy, 1999).  A person with an 

amputation due to trauma (e.g., improvised explosive device (IED), car accident) 

frequently has a lesser metabolic cost of walking compared to a person with an 

amputation from vascular (e.g., diabetes) causes (Waters et al., 1976).  The cost of 

transport curve for people with lower limb amputation looks like the characteristic U-

shape but the minimum cost has been shown to increase with increasing level of 
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amputation and the speed at the minimum decreases with increasing amputation level 

(Genin et al., 2008). 

 In one recent study, Esposito et al. (2014) showed no significant differences in 

metabolic cost between people with unilateral transtibial amputation and able-bodied.  

One potential reason why this study showed no differences in metabolic cost between 

groups is the sample of people with amputation were young and fit service men who 

underwent amputation due to trauma.  The sample studied is not representative of typical 

people with lower limb amputation who are studied, both in age and fitness.  Thus, while 

highly-active and fit people with lower limb amputation might not exhibit an elevated 

cost of transport in walking, this is the exception rather than the rule. 

There are many variables that could potentially explain the greater metabolic 

energy expenditure for people with lower limb amputation, one such being muscle 

activity.  Muscle activation accounts for the metabolic cost of locomotion, and if there is 

increased muscle activity and co-contraction, then there will be higher energy 

expenditure.  People with transtibial amputation have higher quadriceps muscle activity 

on the intact side during braking (Fey et al., 2010) and because of the quadriceps’ 

relatively large muscle volume, it is more energetically costly.  Aside from the intact 

side, people with amputation demonstrate increased co-contraction of prosthetic side 

thigh muscles (Fey et al., 2010; Isakov et al., 2000; Seyedali et al., 2012) and shank 

residual limb muscles (Seyedali et al., 2012) during the first half of stance.  These 

differences in muscle activity potentially account for the greater metabolic cost, but there 

are other variables that could explain the difference.  
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The cost of generating work hypothesis states the mechanical work done by the 

muscles can account for the metabolic cost of locomotion (Donelan et al., 2002; 

Umberger & Martin, 2007).  A simplistic model for human walking is comparing 

walking to two coupled pendula, with the stance leg being an inverted pendulum over the 

fixed foot and the swing leg like a pendulum about the hip (Kuo et al., 2005).  During 

single support, gravitational and potential energy fluctuates equally with the inverted 

pendulum but during double support mechanical work is needed to re-direct the center of 

mass and therefore is purported to be a major determinant of metabolic energy 

expenditure (Kuo et al., 2005). Houdijk et al., (2009) examined the mechanical work of 

the step-to-step transition for people with unilateral transtibial amputation at preferred 

walking speed and a fixed walking speed.  At the fixed speed (1.3 m/s), the metabolic 

energy consumption was significantly higher in people with amputation compared to 

controls, but at the preferred walking speed there was no difference.  When the intact 

limb was the leading limb, negative work at the fixed walking speed was significantly 

higher for the people with amputation compared to the controls, and was highly 

correlated to higher metabolic energy consumption (Houdijk et al., 2009).  The cost of 

generating work hypothesis may explain the increased metabolic cost for people with 

lower limb amputation, but it has not been used to analyze multiple stride frequencies or 

even a symmetrical pattern with locomotion. 

A prosthesis has different mass and inertial properties than a biological limb, and 

those differences may contribute to the inter-limb asymmetries.  Mattes et al. (2000) had 

people with unilateral transtibial amputation walk without an added load, with a 50% 

match of intact limb inertial properties and then a 100% match of inertial properties.  
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When intact limb inertial properties were matched, metabolic energy expenditure was 6-

7% greater compared to walking without any additional load.  Aside from greater 

metabolic energy expenditure, step length, swing time and stance time became more 

asymmetrical when intact limb inertial properties were matched.  The results of this study 

show that matching mass and inertial properties alone has negative impact on metabolic 

energy expenditure, and the most likely reason is adding non-force generating mass.  The 

mass of the biological limb that is lost with amputation produces force, but the mass 

added in this study did not.  A prosthetic foot has decreased force capacity and inability 

to accelerate the center of mass, and adding mass to match inertial properties further 

hinders the prosthetic foot’s capacity.   

 

2.3.4 Effect of asymmetry on metabolic cost with able-bodied gait 

Ellis et al. (2013) showed the effect of step and stride asymmetry in their study 

that constrained able-bodied subjects to walk with varying levels of stride asymmetry.  

As the amount of asymmetry increased, metabolic power and positive mechanical power 

production increased directly.  The lowest net metabolic power was with the preferred 

stride characteristics which happened to be symmetrical.  The positive mechanical power 

values showed a similar relationship as metabolic power, with increasing power as stride 

asymmetry increased.  The effect of inter-limb asymmetry on metabolic cost has not been 

shown as clearly for people with lower limb amputation and other populations.  
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2.3.5 Gait training  

A common goal of gait training in rehabilitation is to improve inter-limb 

symmetry.  Restoring symmetry is the goal for various ailments afflicting people, from a 

young athlete with an anterior cruciate ligament reconstruction or an older person who 

experienced a cerebral vascular accident (stroke).  The effect of improving symmetry has 

been investigated in many populations and with different goal parameters (e.g., stride 

time, stride length, ground reaction forces), yet there have been only been a few studies 

interested in people with lower limb amputation walking symmetrically (Davis et al., 

2004, Dingwell et al., 1996; Zmitrewicz et al., 2007).  

Two experimental studies (Davis et al., 2004; Dingwell et al., 1996) and one 

computer simulation study (Zmitrewicz et al., 2007) have constrained people with lower 

limb amputation to walk with inter-limb temporal symmetry.  Both experimental studies 

provided real time visual feedback about stance and swing percentage of the stride cycle 

for each limb, as well as the amount of push off force in the vertical and anterior-

posterior directions. Dingwell et al. (1996) compared the prosthetic and intact limbs of 6 

people with unilateral transtibial amputation who received real time visual feedback 

while walking on a force treadmill.  The subjects received various forms of feedback 

(e.g., push off force, stance-swing percentage) and then walked without feedback.  The 

subjects had significant improvements in symmetry after training.  These results showed 

people with lower limb amputation are able to improve stride asymmetry, but the effect 

on metabolic energy expenditure was not measured.  

Davis et al. (2004) found lesser metabolic cost after training for push off force 

symmetry, but not after stance-swing percentage of stride training.  The subjects had a 
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mix of lower limb amputations, between above-knee (3) and below-knee (8), as well as 

different causes of amputation, traumatic (8, 3 above-knee and 5 below-knee) and 

dysvascular (3 below-knee).  Even though this was a promising finding, general 

conclusions about metabolic cost and gait asymmetry cannot be made because of the 

varied subject sample.  

In a modeling study, Zmitrewicz et al. (2007) used a computer modeling and 

simulation approach to understand the contribution of individual muscles and a prosthetic 

foot to symmetrical walking.  They used a musculoskeletal model that had lower leg 

muscles removed from one side and an elastic storage and return (ESAR) prosthetic foot 

instead of a biological foot and ankle.  The intent of the model was to mimic a person 

with a unilateral lower transtibial amputation by accounting for the available force-

producing structures.  The ESAR foot was not able to contribute to forward trunk 

progression as much as a biological limb.  The model predicted that the intact limb’s 

gastrocnemius and soleus needed to increase energy contribution, as well as each limb’s 

iliopsoas, to maintain forward trunk progression.  The modeling study provided insight 

into potential compensations that are necessary to achieve symmetrical gait for a person 

with a unilateral transtibial amputation, but this has not been verified experimentally.  

Therefore, the difference in metabolic cost between symmetrical and asymmetrical stride 

patterns is not fully known for people with unilateral lower limb amputations.  

Rehabilitation programs for people after a cerebral vascular accident are designed 

to improve functional mobility by increasing utilization of the hemiparetic lower 

extremity.  Awad et al. (2015) had people with chronic hemiparesis (>6 months since 

stroke) perform 12 weeks of walking rehabilitation with 3 sessions per week.  There were 
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3 groups, one group trained with a self-paced walk, another group did a walk as fast as 

they could maintain for 4 minutes, and the final group trained to walk as fast they could 

with functional electrical stimulation.  They found that people who could walk faster and 

more symmetrically at the end of the training had the greatest improvement in metabolic 

energy expenditure.  People that either improved symmetry or could walk faster did not 

lead to as great of an improvement as the combination of the two.  

After a cerebral vascular accident there are many gait asymmetries, and what 

parameter a training program targets will be the one that improves.  Reisman et al. (2013) 

utilized a split-belt for 12 training sessions to reduce step length asymmetry.  Temporal 

variables such as stance time were not targeted, and after training there was decreased 

stride length asymmetry but no improvements in stance time asymmetry.  In a case series 

of two people post-stroke, they received 18 sessions over 6 weeks of gait training with 

visual and proprioceptive feedback in an immersive virtual environment with dual belt 

treadmill (Lewek et al., 2012).  Both subjects improved gait speed, but they received 

different forms of feedback based on their respective asymmetry.  The person who 

received step-length feedback had decreased step length asymmetry at the end of training 

but did not improve stance time asymmetry.  The other subject received stance time 

feedback and improved symmetry by the end of the sessions.  

Real time feedback has been used in other populations that have an intact 

neurological system, such as people post total hip arthroplasty.  White and Lifeso (2005) 

had people at least 2 months after hip surgery walk for 15 minutes on a treadmill, 3 times 

a week for 8 weeks, either with or without feedback.  The feedback group received 

feedback about step-to-step ground reaction forces.  After 24 sessions, the loading rate 
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and impulse equalized for the feedback group, but the loading rate also equalized for the 

non-feedback group.  In the case of this study, the prolonged walking on treadmill alone 

improved symmetry with one parameter.  

2.4 Gait Stability  

2.4.1 Falls-People with lower limb amputation  

People with lower limb amputation of all levels have an increased incidence of 

falls, more commonly for people with transfemoral amputation than transtibial 

amputation (Gauthier-Gagnon et al., 1999; Kulkarni et al., 1996; Miller et al., 2001(a)).  

Due to an increased incidence of falls, there is an increased fear of falling (Miller et al., 

2001(a); Kulkarni et al., 1996), that may contribute to decreased mobility.  Even in young 

people with lower limb amputation, both transtibial and transfemoral, falls occurred in 

87.5% of a sample within the first 6 months of amputation (Felcher et al., 2015).  After 

the first 6 months, 50% of people with lower limb amputation fall at least once per year 

(Miller et al., 2001(a); Miller et al., 2001(b)).  As a result of falling, 40.4% resulted in an 

injury and 19.3% of those injuries resulted in medical attention (Miller et al., 2001(a); 

Miller et al., 2001(b)).  In the case of people with amputation due to vascular causes, 

which is more common than traumatic causes, a fall could result in a worse medical 

outcome (Seth & Lamberg, 2017).  The increased incidence and fear of falling has an 

effect on willingness to be physically active and overall quality of life.  With decreased 

mobility and overall physical activity, people are at greater risk for other pathologies, 

such as heart disease and diabetes (Booth et al., 2012).  Preventing falls for people with 

lower limb amputation should be one of the primary goals with rehabilitation.  In order to 



 

38 

 

prevent falls, gait stability needs to be assessed for people with lower limb amputation 

wihile walking and when perturbed. 

2.4.2 Global stability 

Global stability can be defined as a person’s ability to resist external perturbations 

(e.g., trips and slips) (Dingwell et al., 2000).  In the case of gait, a person can remain 

upright and continue walking, or they fall over when perturbed.  Remaining upright and 

continuing to walk can be described as the attractor state in a dynamical system 

perspective, and the system remains stable if it remains directed towards the attractor 

(Kaplan & Glass, 1995; Strogatz, 1994).  If a person remains upright and continues 

walking after being perturbed, then the gait pattern is stable. 

2.4.3 Margin of stability 

During gait, the center of mass and base of support are continuously moving, and 

where the center of mass is relative to the base of support can determine the stability of a 

gait pattern.  The center of mass position-velocity limits relating to the center of mass 

staying within the base of support during stable standing had been established earlier (Pai 

& Patton, 1997). Hof et al. (2005) later developed a measure that relates center of mass 

motion to the base of support during walking based on an inverted pendulum model.  The 

instantaneous velocity of the center of mass is also taken into account, and when 

combined with the position at that instant, the extrapolated center of mass (xCoM) is 

determined.  The pendulum’s eigen frequency is accounted for by scaling the xCoM by 

the length of the segment (l) and gravity (g).  The equation for the extrapolated center of 

mass according to Hak et al. (2012): 
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𝒙𝑪𝒐𝑴 =  𝑷𝑪𝒐𝑴 +  𝒗𝑪𝒐𝑴 ×  √𝒍/𝒈 

The PCoM is the instantaneous position of the center of mass and the VCoM is the 

instantaneous velocity of the center of mass.  The margin of stability (MoS) refers to the 

distance between the xCoM and the base of support (BoS) (i.e., border of the foot) 

(Figure 3) (Hof et al., 2005; Hof et al., 2007; Hak et al., 2012), and is represented by this 

equation: 

𝑀𝑜𝑆 = 𝐵𝑜𝑆 − 𝑥𝐶𝑜𝑀 

The two directions that the margins of stability are typically calculated are the backwards 

and medial-lateral directions (Hak et al., 2012).  The backwards margin of stability is 

relevant because it relates to a person’s ability to avoid falling forward and taking 

recovery steps, as well maintaining forward progression of the center of mass.  The 

backwards margin of stability is typically calculated at terminal stance and initial contact 

when a fall backwards or not progressing forward is most likely to occur.  The medial-

lateral margin of stability is relevant because it represents a person’s ability to resist a fall 

off to the side.  The medial-lateral margin of stability is calculated throughout stance 

phase, with the timing during the gait cycle and magnitude of the minimum value being 

of greatest interest.  
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Figure 2.3: Backwards margin of stability representation. The figure from Hak et al. 

(2014) represents the concept of backwards margin of stability (MoS) as the extrapolated 

center of mass (xCoM) position relative to the base of support (BoS).  The extrapolated 

center of mass is determined from the center of mass position plus the velocity of the 

center of mass (vCoM) times the square root of leg length divided by gravity (√𝑙/𝑔 ).  

SL = step length, TP = trunk progression, FFP = forward foot placement 

 

2.4.4 Margin of stability: Able-bodied 

 Margin of stability has been quantified for overground and treadmill walking 

without perturbation, but more commonly has been done with a perturbation.  A 

perturbation while walking is done to examine the stability of walking with various 

environmental conditions, and determine how resilient the system is in avoiding a fall.  

When healthy subjects walk on a treadmill and experience random medial-lateral 

perturbations, they do not change walking speed, but take shorter, faster, and wider steps.  

As a result, they increase the backwards and medial-lateral margin of stability in response 

to these perturbations (Hak et al., 2012).  The authors proposed that changing the step 

length, rate and width are strategies utilized by healthy people to decrease the risk of 
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falling.  In a follow-up study by Hak et al. (2013), they manipulated stride length, stride 

frequency and walking speed independently to see the effects on margin of stability for 

healthy subjects.  Medial-lateral margin of stability improved with increased stride 

frequency.  Also, backwards margin of stability was inversely related to step length, and 

directly related to the walking speed.  In other words, as step length decreased and 

walking speed increased, the backwards margin of stability increased.  They concluded 

that focusing gait training on different stepping strategies may enhance stability and 

decrease the risk of falls.  McAndrew Young et al. (2012) looked at backwards and 

medial-lateral margin of stability with healthy subjects who underwent platform and 

visual perturbations.  The subjects had larger mean medial-lateral margin of stability in 

the perturbed conditions compared to un-perturbed.  The authors noted that understanding 

how people control stability may be more related to how they changed margin of stability 

across steps by altering foot placement rather than the mean margin of stability.  As 

people adapt to a task, stability may change and the ability of the system to resist a fall 

may increase. 

 

2.4.5 Margin of stability: People with lower limb amputation 

Margin of stability has been used to evaluate global stability of people with 

unilateral transtibial and transfemoral amputation.  It may be an especially relevant 

measurement of stability for this population because a prosthetic foot produces less push 

off power than a biological limb, and therefore there is a decreased ability to accelerate 

the center of mass (Neptune et al., 2001).  Hof et al. (2007) showed that people with 

transfemoral amputation utilized a larger step width and therefore had a larger medial-
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lateral margin of stability with the prosthetic side compared to the intact side and the 

controls across multiple speeds.  Step width did decrease on the prosthetic side with 

increasing speed and therefore the margin of stability decreased.  Also across all speeds, 

the intact side more closely resembled the able-bodied control limbs than the prosthetic 

side. 

Most of the research that has been done on the margin of stability for people with 

lower limb amputation has been with different perturbations while walking.  The reason 

to perturb a person while walking is to test the global stability of the system and find how 

much of a perturbation it can tolerate and still remain on task.  In a study comparing 

people with unilateral transtibial amputation to able-bodied while walking on a treadmill 

with medial-lateral perturbation and without, the people with amputation walked slower, 

with a lower step frequency and wider steps in the unperturbed condition.  This resulted 

in a larger medial-lateral margin of stability but a smaller backwards margin of stability.  

During the perturbation trials, the people with amputation increased medial-lateral and 

backwards margin of stability by decreasing step length and increasing step width, 

respectively (Hak et al., 2013).  In a follow-up study of people with unilateral transtibial 

amputation, Hak et al. (2014) investigated backwards margin of stability and step length 

between limbs.  The intact side had a shorter step length and therefore a larger backwards 

margin of stability compared to the prosthetic side.  They concluded that inter-limb 

asymmetries may be a functional consequence to improve stability and deal with 

decreased prosthetic side push-off capacity. 

The mean value of the margin of stability does not represent the progression or 

variability of stability, and therefore it does not fully represent progression of a task.  
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Gates et al. (2013) found that people with unilateral transtibial amputation had higher 

variability of margin of stability when walking over a loose rock surface, indicating 

larger step-to-step corrective responses that led to similar results as able-bodied controls 

doing the same task.  The prosthetic side had decreased margin of stability compared to 

the intact side for the task.  Beltran et al. (2014) compared people with unilateral 

transtibial amputation versus able-bodied when walking on a treadmill while 

experiencing medial-lateral platform and visual perturbations.  The people with unilateral 

transtibial amputation exhibited significantly greater mean and variability of medial-

lateral margin of stability compared to the able-bodied.  The two groups responded in a 

similar way with unperturbed and visually perturbed walking, but people with amputation 

were most affected by the platform perturbations.  

 

2.4.6 Effect of asymmetry on able-bodied gait stability 

The effect of inter-limb asymmetry on stability has been demonstrated with 

people with amputation in regards to global stability (Hak et al., 2013; Hak et al., 2014).  

A major limitation of those studies was not determining the amount of global stability for 

people with the lower limb amputation when walking symmetrically.  The effect of inter-

limb asymmetry on global stability has not been shown with able-bodied people either, 

but there has been recent work on the effect of asymmetry on local stability.  Local 

stability is the human’s capacity to resist very small perturbations that occur with tasks 

such as walking (Kang & Dingwell, 2008(a); Kang & Dingwell, 2008(b)).  Ducharme & 

van Emmerik (2016) showed that anterior-posterior and medial-lateral local dynamic 

stability, as measured by the maximal finite-time Lyapunov exponent, decreased with 
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increasing gait asymmetry.  Interestingly, after repeated trials, vertical and medial-lateral 

local stability was regained but decreased local stability persisted in the anterior-posterior 

direction.  (Ducharme & van Emmerik, 2016).  These results are promising for future 

investigation into global gait stability with asymmetry. 
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CHAPTER 3 

PROPOSED METHODS 

 The principle objective of this dissertation is to better understand how people with 

unilateral below-knee amputation regulate their locomotion, with a specific focus on 

stride asymmetries, metabolic cost and gait stability.  People with unilateral amputations 

generally have prosthetic and intact side asymmetries in temporal-spatial (Isakov et al., 

2000; Sadeghi et al., 2001; Sanderson & Martin, 1997), kinematic (Sanderson & Martin, 

1997), and kinetic (Sadeghi et al., 2001; Sanderson & Martin, 1997; Silverman et al., 

2008; Winter & Sienko, 1988) stride measures, while people without amputation 

generally do not (Hamill et al., 1984).  For people with unilateral lower limb amputation, 

the impacts of inter-limb asymmetry on metabolic cost and stability have not been 

established in the literature.  Few studies have had people with lower limb amputation 

walk with symmetrical temporal stride characteristics using real time visual feedback 

(Dingwell et al., 1996; Davis et al., 2004), with assessing metabolic cost being the focus 

of only one study (Davis et al., 2004), and none assessing gait stability.  To better 

understand the effects of temporal asymmetry on metabolic cost and gait stability, 

subjects will be constrained to walk with symmetrical stance times and varying degrees 

of asymmetry, while metabolic cost and global stability are measured. 
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3.1. Study 1- Stance Symmetry and Metabolic Cost of Locomotion in People with 

Unilateral Transtibial Amputation 

 

3.1.1 General Introduction 

 The focus of study one will be to determine the effects of inter-limb stance time 

asymmetry on metabolic energy expenditure in people with unilateral transtibial 

amputation and those without.  The two subject populations will walk at their preferred 

speed with preferred stride characteristics as a reference and then will be constrained to 

walk with symmetric stance times and varying degrees of asymmetry using real time 

visual feedback.  The aim of this study is to compare metabolic energy expenditure for 

people with unilateral transtibial amputation versus those without, as well as the 

differences between preferred and constrained asymmetry conditions within each subject.  

The results of this study will show how metabolic energy expenditure is affected by 

stance time asymmetry for people with and without unilateral transtibial amputation.  I 

hypothesize that metabolic cost versus inter-limb asymmetry will demonstrate a U-

shaped curve with the lowest metabolic cost occurring with preferred stride 

characteristics for both groups. 
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3.1.2 Participants 

The study will consist of 20 subjects, 10 subjects with a unilateral below-knee 

amputation and 10 able-bodied controls, as determined by a sample size estimation for a 

global effects MANOVA with α = 0.05 using G*Power 3.1 (Faul et al., 2009) (Table 1).  

The reason for amputation can be due to trauma, cancer, or congenital defect, and the 

person must be designated at a K3 or K4 level (i.e., the person has the ability or potential 

for ambulation with variable cadence).  The subjects will be matched for sex, age, and 

BMI as best as possible.  All subjects will be between the ages of 18-50 and free of other 

factors (aside from the amputation) that limits walking ability (e.g., neurological and 

cardiovascular disorders).  The subjects with amputation will be at least 1 year post-

amputation.  Subjects who have had a musculoskeletal injury or surgery that effects 

walking in the previous 12 months, will be excluded from this study.  All subjects will be 

asked for fall history within the last 2 years.  

Table 3.1: Sample size estimation. 

Study Dependent Variable Effect Size Sample Size 

Estimation 

Dingwell 1996 Symmetry index % stance 

time 

2.550 8 

Ellis 2013 Metabolic cost 4.417 6 

Davis 2004 Metabolic cost 0.573 26 

Hak 2013 Backward MoS 1.264 14 

Hak 2013 Medial-lateral MoS 1.621 12 

Hak 2013 Step width 1.550 12 

Sample size estimation based on studies with similar independent and dependent 

variables using G*Power 3.1 for a global effects MANOVA with α = 0.05. 
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3.1.3 Protocol 

Data collection will occur over two days (Figures 3.1 and 3.2) so subjects can 

receive familiarization with real time visual feedback for symmetry and varying levels of 

asymmetry.  

 

 

Figure 3.1: Protocol for Day 1. The protocol for data collection on day one.  All 

walking trials will be in randomized order except for preferred stride pattern (bottom 

row).  Subjects with amputation will not perform the -15% condition.  3 minute rest 

periods between conditions not pictured. 

 

Figure 3.2: Protocol for Day 2. The protocol for data collection on day two.  All 

walking trials will be in randomized order except for preferred stride pattern (bottom 

row).  Subjects with amputation will not perform the -15% condition.  3 minute rest 

periods between conditions not pictured. 
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The subjects will be doing a familiarization day in which they will explore the asymmetry 

space without metabolic cost measurement so that they can focus on learning the 

different asymmetry patterns.  On both days, the subjects will walk with their preferred 

stride characteristics, then be constrained to walk symmetrically (0%), followed by 

randomly order stance time asymmetry at -15%, -10%, -5%, 5%, 10%, and 15% 

conditions using real time visual feedback.  The real time visual feedback will be a 

graphical display of a two stride stance time symmetry index.  Positive values indicate 

greater stance time on the intact limb for people with lower limb amputation, and the 

dominant limb for able-bodied subjects.  Negative values indicate greater stance time on 

the prosthetic limb and non-dominant side, respectively, and will be limited to -10% 

because of potential demands of time for the subjects and avoiding effects of fatigue.  To 

further avoid the effects of fatigue, subjects will be given 3 minutes of seated rest after 

each walking trial (not pictured in figure).  The subject’s pain, level of fatigue and 

perceived exertion will be assessed at the end of each condition.  To assess pain, subjects 

will be asked to report pain level from 0-10, with 0 being no pain and 10 being extreme 

pain.  To assess fatigue, subjects will mark a 10 centimeter visual analog scale with 0 

being no fatigue and 10 being extremely exhausted.  To assess perceived exertion, 

subjects will rate between 1-10, with 1 being at rest and 10 being extremely difficult.  
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3.1.4 Metabolic Energy Expenditure and Cost of Transport  

Metabolic energy expenditure will be determined from pulmonary gas exchange 

via open-circuit spirometry (Parvo Medics, Sandy, UT).  The gross rate of metabolic 

energy expenditure will be estimated from the approach developed by Brockway (1987) 

that is based on the amount of oxygen consumed and the amount of carbon dioxide 

produced.  The equation for energy expenditure developed by Brockway (1987) is: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 (𝑘𝐽) = 16.58 𝑂2 + 4.51 𝐶𝑂2  (Eqn. 1) 

𝑂2 and 𝐶𝑂2 are the volumes of oxygen and carbon dioxide involved in respiratory 

exchange.  The breath-by-breath relative rate of oxygen (�̇�𝑂2) (ml•kg-1•min-1) 

consumption and relative rate of carbon dioxide (�̇�𝐶𝑂2) (ml/kg/min) production will be 

averaged every 5 seconds for 5 minutes, with the last 2 minutes being averaged if steady 

state is attained (Ellis et al., 2013).  Steady state will be defined as when the variability 

in �̇�𝑂2 is <2.0 mL/kg/min (Taylor et al., 1955).  If steady state is not attained by the third 

minute, an additional minute will be added to the trial.  Each trial will be 5 minutes in 

length unless steady state is not achieved, and after each walking trial, subjects will rest 

for 3 minutes.  If subjects cannot achieve steady state by the fourth minute, he or she will 

rest and move on to the next condition.  Subjects will be given 5 minutes of quiet sitting 

after initially donning the metabolic equipment to become accustomed to the set-up and 

then resting �̇�𝑂2 will be collected during 5 minutes of quiet standing before the walking 

trials.  Net metabolic energy expenditure will be derived by subtracting the energy 

expenditure during quiet standing from the gross energy expenditure during the walking 

trials.  
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Cost of transport is the amount of energy expended per unit distance traveled 

(Ralston, 1958).  Net cost of transport will be calculated by dividing the rate of metabolic 

energy expenditure by walking speed (m•s-1) and body mass (kg) (Ralston, 1958).  

Because the measure takes into account the speed of each subject, it normalizes data for 

subjects with different preferred walking speeds.  This is especially important for people 

with lower limb amputation who typically have a slower preferred walking speed 

compared with able-bodied (Skinner & Effeny, 1985).  The net cost of transport will be 

calculated for each walking condition for each subject. 

 

3.1.5 Preferred Walking Speed 

Preferred walking speed will be determined with an overground 400 meter walk 

test.  Subjects will complete twenty 20 meter lengths consecutively after being instructed 

to walk at a “comfortable walking speed” and a six meter segment of each length will be 

timed.  Preferred overground walking speed instead of preferred treadmill walking speed 

will be used as the treadmill speed to avoid the potential for higher oxygen cost with a 

treadmill-determined preferred walking speed (Dal et al. 2010). 

 

3.1.6 Stance Asymmetry 

Stance time will be determined from insole foot switches (B&L Engineering, 

Santa Ana, CA) and a custom MATLAB (Math Works, Natick, MA) program.  The 

amount of asymmetry between limb stance times will be calculated using an asymmetry 

index (Dingwell et al. 1996): 
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𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐴𝑀𝑃 =  
𝐼𝑛𝑡𝑎𝑐𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒− 𝑃𝑟𝑜𝑠𝑡ℎ𝑒𝑡𝑖𝑐 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒

𝐼𝑛𝑡𝑎𝑐𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒+𝑃𝑟𝑜𝑠𝑡ℎ𝑒𝑡𝑖𝑐 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒
 × 100%  (Eqn. 2) 

 

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐶𝑂𝑁𝑇𝑅𝑂𝐿 =  
𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒−𝑛𝑜𝑛𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒

𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒+𝑛𝑜𝑛𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒
 × 100% (Eqn. 3) 

 

AsymmetryAMP is the asymmetry index for the subjects with an amputation, and 

AsymmetryCONTROL is the asymmetry index for the able-bodied controls.  Equation 1 will 

be used to calculate the amount of stance time asymmetry for people with amputation, 

and equation 2 will be used to calculate the same metric for able-bodied subjects.  The 

subjects will walk on a treadmill with preferred stride characteristics and the stance 

asymmetry in the fifth and final minute will be considered the preferred stance time 

pattern.  After the preferred trial, a graphical display of a two-stride moving average of 

the symmetry index will be displayed on a screen in front of the treadmill.  The subjects 

will be instructed to attain symmetry or various levels of asymmetry through the real time 

visual feedback display (see protocol).  The subjects will experience the different 

conditions on day 1 without metabolic energy expenditure collection.  

 

3.1.7 Statistical Analyses 

The overall effects of stance time asymmetry on cost of transport between the two 

groups will be tested with a 2 (group) x 6 (asymmetry condition) MANOVA.  A 

MANOVA will be used instead of multiple ANOVAs to analyze all possible interactions 

between groups and conditions.  The false discovery rate procedure (Benjamini & 
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Hochberg, 1995) will be used for post-hoc multiple comparison testing in the event of 

significant main effects of asymmetry.  Polynomial regression analysis will be performed 

to find the statistical minimum net cost of transport for each group, and polynomial 

contrast analysis (Keppel, 1991) will be performed to determine the mathematical 

relationship of net cost of transport to amount of asymmetry within each group.  The net 

cost of transport at the preferred stance time asymmetry for each group will be compared 

with a paired t-test.  Alpha level will be set at 0.05 for all statistical tests.  Statistical 

analyses will be performed using R-Studio version 3.0.2 (R-Studio Inc., Boston, MA). 
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3.2 Study 2 – Stance Symmetry and Global Stability of Locomotion in People with 

Unilateral Transtibial Amputation  

 

3.2.1 General Introduction  

The focus of study two will be to determine the effect of inter-limb stance time 

asymmetry on global gait stability.  The two subject populations will walk with preferred 

stride characteristics as a reference and then will be constrained to walk with symmetric 

stance times and varying degrees of asymmetry using real time visual feedback.  The aim 

of this study is to compare gait stability for people with unilateral transtibial amputation 

versus those without, as well as the differences between preferred and constrained 

asymmetry conditions within each subject.  The results of this study will show how gait 

stability is affected by stance time asymmetry for people with and without unilateral 

transtibial amputation.  I hypothesize that gait stability versus inter-limb asymmetry will 

demonstrate an inverted U-shaped curve with the greatest stability occurring at the 

preferred stride characteristics for both groups. 
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3.2.2 Participants 

Study 2 will be using the same subjects as study 1.The study will consist of 20 

subjects, 10 subjects with a unilateral below-knee amputation and 10 able-bodied 

controls, as determined by a power analysis based on similar studies (Table 1).  The 

reason for amputation can be due to trauma, cancer, or congenital defect, and the person 

must be designated at a K3 or K4 level (i.e., the person has the ability or potential for 

ambulation with variable cadence).  The subjects will be matched for sex, age, and BMI 

as best as possible.  All subjects will be between the ages of 18-50 and free of other 

factors (aside from the amputation) that limits walking ability (e.g., neurological and 

cardiovascular disorders).  The subjects with amputation will be at least 1 year post-

amputation.  Subjects who have had a musculoskeletal injury or surgery that effects 

walking in the previous 12 months, will be excluded from this study.  All subjects will be 

asked for fall history within the last 2 years. 

 

3.2.3 Protocol 

 The protocol utilized in study one will be the same for study two (Figures 3.1 and  

 

3.2.4 Stability Variables 

The stability variables of interest are step length variability, step width variability, 

step time variability, medial-lateral margin of stability, and backwards margin of 

stability.  Step length, width and time variability will be determined from the standard 
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deviation of all steps in the final two minutes of each five minute trial.  Step length, step 

time and step width represent the end kinematic result (i.e., foot placement) for the entire 

lower extremity movement.  The amount of variability in step length, step time and step 

width represent the kinematic consistency, and with increased variability there may be a 

higher probability of a fall (Bruijn et al., 2013).  The medial-lateral and backwards 

margin of stability represent control of the whole body center of mass during gait based 

on inverted pendulum dynamics (Hof, 2007).  The margin of stability is based on 

extrapolation of the center of mass position relative to the base of support and may 

indicate when the body needs to adapt its motion away from inverted pendulum-like 

dynamics to avoid a fall (Hof, 2007; Bruijn et al., 2013). 

 

3.2.5 Kinematic Model 

Kinematics will be collected with a full body marker set at a rate of 240 Hz, and 

then processed using Qualisys Track Manager software (QTM, Göteborg, Sweden).  The 

kinematics will be collected at the same time as metabolic energy expenditure (see Study 

1).  The kinematic model will consist of 12 segments: 2 feet, 2 shanks, 2 thighs, 2 upper 

arms, 2 forearm plus hands, pelvis and head-trunk segments.  Markers will be placed over 

the following landmarks: head, C7 and T12 spinous processes, sternal notch, xiphoid 

process, sacrum, bilateral acromium processes, lateral humeral epicondyles, radial 

styloids, anterior superior iliac spines, iliac crests, posterior superior iliac spines, greater 

trochanters, lateral femoral epicondyles, medial femoral epicondyles, lateral malleoli, 

medial malleoli, fifth metatarsal heads, first metatarsal heads, tips of second toes.  Marker 
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clusters will be placed on bilateral heels, shanks and thighs.  The kinematic model will be 

used to calculate the center of mass for each subject.  

3.2.6 Calculating Margin of Stability 

Margin of stability will be calculated with kinematic marker data, similar to Hak 

et al. (2012), which is an adaptation of the original method from Hof et al. (2005).  Hof et 

al. (2005) utilized a force plate to determine center of mass kinematics (position and 

velocity) relative to the base of support (center of pressure).  Hak et al. (2012) utilized 

pelvis markers to calculate center of mass kinematics and foot markers to determine base 

of support location.  The center of mass position and velocity throughout the stance phase 

for each foot will be determined in Visual 3D (Germantown, MD) and used to calculate 

the extrapolated center of mass.  The equation for the extrapolated center of mass 

according to Hak et al. (2012) is: 

𝒙𝑪𝒐𝑴 =  𝑷𝑪𝒐𝑴 +  𝒗𝑪𝒐𝑴 ×  √𝒍/𝒈 

The PCoM is the instantaneous position of the center of mass and the VCoM is the 

instantaneous velocity of the center of mass.  The velocity will be scaled by the 

pendulum’s eigenfrequency (i.e., √(
𝑔𝑟𝑎𝑣𝑖𝑡𝑦

𝑙𝑒𝑔 𝑙𝑒𝑛𝑔𝑡ℎ
)).  The base of support will be determined 

from the lateral marker on the heel cluster for the backwards margin of stability, and the 

5th metatarsal marker for the medial-lateral base of support.  The general equation for 

calculating margin of stability (Hof et al., 2005; Hof et al., 2007; Hak et al., 2012) is: 

𝑀𝑜𝑆 = 𝐵𝑜𝑆 − 𝑥𝐶𝑜𝑀 
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The extrapolated center of mass relative (xCoM) to the base of support (BoS) in the 

medial-lateral and backwards directions (i.e., margin of stability) will be calculated 

throughout stance phase for each leg. 

3.2.7 Stance Symmetry and Asymmetry 

Stance time will be determined from insole foot switches (B&L Engineering, 

Santa Ana, CA) and a custom MATLAB (Math Works, Natick, MA) program.  The 

amount of asymmetry between limb stance times will be calculated using an asymmetry 

index (Dingwell et al. 1996): 

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐴𝑀𝑃 =  
𝐼𝑛𝑡𝑎𝑐𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒− 𝑃𝑟𝑜𝑠𝑡ℎ𝑒𝑡𝑖𝑐 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒

𝐼𝑛𝑡𝑎𝑐𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒+𝑃𝑟𝑜𝑠𝑡ℎ𝑒𝑡𝑖𝑐 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒
 × 100%  (Eqn. 2) 

 

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐶𝑂𝑁𝑇𝑅𝑂𝐿 =  
𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒−𝑛𝑜𝑛𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒

𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒+𝑛𝑜𝑛𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒
 × 100% (Eqn. 3) 

 

AsymmetryAMP is the asymmetry index for the subjects with an amputation, and 

AsymmetryCONTROL is the asymmetry index for the able-bodied controls.  Equation 1 will 

be used to calculate the amount of stance time asymmetry for people with amputation, 

and equation 2 will be used to calculate the same metric for able-bodied subjects.  The 

subjects will walk on a treadmill with preferred stride characteristics and the stance 

asymmetry in the fifth and final minute will be considered the preferred stance time 

pattern.  After the preferred trial, a graphical display of a two-stride moving average of 

the symmetry index will be displayed on a screen in front of the treadmill.  The subjects 

will be instructed to attain symmetry or various levels of asymmetry through the real time 
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visual feedback display (see protocol).  The subjects will experience the different 

conditions on day 1 with kinematic marker collection.  

 

3.2.8 Statistical Analyses 

The overall effects of stance time asymmetry on gait stability between the two 

groups will be tested with a 2 (group) x 6 (asymmetry condition) MANOVA.  Gait 

stability measures include backward margin of stability at heel strike, minimum medial-

lateral margin of stability during stance, step width and step width variability.  The false 

discovery rate procedure (Benjamini & Hochberg, 1995) will be used for post-hoc 

multiple comparison testing in the event of significant main effects of asymmetry.  

Polynomial regression analysis will be performed to find the statistical maximum margin 

of stability for each group, and polynomial contrast analysis (Keppel, 1991) will be 

performed to determine the mathematical relationship of margin of stability to amount of 

asymmetry within each group.  The backwards margin of stability at heel strike, 

minimum medial-lateral margin of stability during stance, step width and step width 

variability at the preferred stance time asymmetry will be compared between groups with 

a paired t-test.  Alpha level will be set at 0.05 for all statistical tests.  Statistical analyses 

will be performed using R-Studio version 3.0.2 (R-Studio Inc., Boston, MA). 
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CHAPTER 4 

AMMENDMENTS TO THE PROPOSED EXPERIMENTS 

 This chapter describes the changes made between the proposed studies and the 

subsequent chapters.  The studies have maintained nearly all of the originally proposed 

outlines.  For both studies, the subject age range was changed from 18-50 years old to 16-

50 years old due to recruitment issues.  People between 16-17 years old demonstrate 

similar gait mechanics compared with people who are 18-50 years old, therefore the 

change in age, should have not effected the results of these studies.  Also due to 

recruitment issues, 2 subjects participated in this study at a second site (Quinnipiac 

University (North Haven, CT)).  Every effort was made to minimize differences between 

collection sites. 

 For study 1, metabolic energy expenditure was determined from the final minute 

of each condition to ensure that the subjects had attained steady state.  Most subjects 

achieved steady state by the third minute of each condition, but in the case of the more 

extreme asymmetry conditions, steady state was attained in the middle of the fourth 

minute.   

For study 2, I had initially hypothesized that all stability metrics would exhibit an 

inverted U-shape for the gait stability-asymmetry relationship, with the greatest stability 

occurring with the preferred condition.  After further discussions, I realized that 

variability measures should be hypothesized to have a U-shaped relationship, with the 

least variability during the preferred conditions, because greater variability has been 

correlated to greater fall risk, and when subjects are walking with preferred patterns, fall 

risk should be low.  I originally proposed that I would calculate the stability measures for 
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the final 2 minutes of walking, but instead I calculated the stability measures for 20 

strides during the last minute of each collection, when the subjects were walking at 

steady state metabolically.  I initially proposed I would do a 2 (group) x 6 (condition) 

MANOVA for each study, but instead I performed a one-way ANOVA for study 1 and 

multiple two-way ANOVAs to compare limbs for study 2 across conditions.  Also, once I 

calculated the asymmetries that corresponded to the optima of each stability metric for 

each subject, I performed an ANOVA for each stability measure to compare limbs.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

62 

 

CHAPTER 5 

STANCE SYMMETRY AND METABOLIC COST OF LOCOMOTION IN 

PEOPLE WITH UNILATERAL TRANSTIBIAL AMPUTATION 

5.1 Abstract 

 It is generally accepted that metabolic energy expenditure is one of the key factors 

that influences the selection of able-bodied gait patterns, but it is unclear how energy 

expenditure is prioritized relative to other factors (e.g., stability, smoothness) during 

walking in people with lower limb amputation.  People with lower limb amputation 

generally have greater metabolic energy expenditure during walking compared with able-

bodied individuals.  People with unilateral amputation consistently demonstrate inter-

limb asymmetries, most visibly, spending more time on the intact limb compared with the 

prosthetic limb, while able-bodied individuals, generally, walk with symmetrical stance 

timing.  The purpose of this study was to determine the effects of stance symmetry and 

asymmetry on the metabolic cost of transport.  We hypothesized that for preferred gait 

patterns the subjects with unilateral transtibial amputation would exhibit greater stance 

time on the intact side compared with the prosthetic side, while able-bodied subjects 

would exhibit symmetrical stance times.  Further, we hypothesized that the cost of 

transport versus inter-limb asymmetry would demonstrate a U-shaped curve for both 

groups, and the cost of transport would be least at preferred stride characteristics for both 

groups.  Cost of transport was determined for 7 subjects with unilateral transtibial 

amputation and 7 able-bodied controls while walking with preferred and non-preferred (± 

15% in 5% increments of relative stance time between limbs) stance time conditions at 

preferred speed on a treadmill.  Subjects with amputation had a significantly greater 
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stance time asymmetry (4.34 ± 1.09%) compared with able-bodied subjects (0.94 ± 

2.44%) during the preferred walking condition with a very large effect size (p = 0.008, d 

= 1.93).  A quadratic trend best explained the relationship between cost of transport and 

stance time asymmetry for both groups (p < 0.001).  The asymmetries corresponding to 

minimum-cost of transport were not significantly different than the preferred 

asymmetries for both groups.  If asymmetrical patterns naturally emerge in people with 

many years of prosthesis use, perhaps some degree of gait asymmetry should be expected 

and should be a goal for rehabilitation and devices.  Given the sample size and the focus 

on only one potentially important factor, metabolic cost, our results should be interpreted 

cautiously.  Nevertheless, they raise the possibility that asymmetrical patterns may be the 

best result after some injuries and do not represent a problem that should be fixed.  
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5.2. Introduction 

It is generally accepted that metabolic energy expenditure is one of the key factors 

that influences the selection of able-bodied locomotor patterns, along with other likely 

factors such as stability, smoothness and joint loading.  It is unclear how energy 

expenditure is prioritized relative to other factors during walking in people with lower 

limb amputation.  People with lower limb amputation generally have greater metabolic 

energy expenditure during walking (Waters & Mulroy, 1999; Waters et al., 1976) 

compared with able-bodied individuals.  Greater metabolic energy expenditure while 

walking can negatively impact function and quality of life (Pell et al., 1993).  An 

objective of gait research should be to understand why metabolic energy expenditure is 

usually greater during walking in people with lower limb amputation, which will allow 

interventions to be created that can be tailored to reduce energy expenditure.  

People with unilateral amputation commonly demonstrate inter-limb asymmetry 

when walking, while able-bodied individuals, on average, walk nearly symmetrically.  

People with unilateral amputations typically have asymmetries between the prosthetic 

and intact sides for temporal-spatial (i.e., stride time and length) (Isakov et al., 2000; 

Sadeghi et al., 2001; Sanderson & Martin, 1997), kinematic (Sanderson & Martin, 1997), 

and kinetic (Sadeghi et al., 2001; Sanderson & Martin, 1997; Silverman et al., 2008; 

Winter & Sienko, 1988) stride measures.  A consistent finding is that people with 

unilateral amputations spend more time on the intact side compared with the prosthetic 

side during stance.  While there are some exceptions in the literature (e.g., Gunderson et 

al., 1989), able-bodied people typically demonstrate nearly symmetrical inter-limb stride 

kinematics (Forczek & Staszkiewicz, 2012; Hannah et al., 1984) and kinetics (Eng & 
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Winter, 1995; Hamill et al., 1984; Seeley et al., 2008) for preferred walking conditions.  

When inter-limb stride differences are reported for able-bodied people they are not 

always statistically significant, nor as bilaterally consistent as the asymmetries people 

with unilateral amputation exhibit.  The connections between gait asymmetry in people 

with unilateral lower limb amputation and metabolic cost are unclear.  Since energy 

expenditure is an important criterion for self-selected gait patterns, people with lower 

limb amputation may be minimizing metabolic cost by using an asymmetrical gait 

pattern.  Conversely, it could be that promoting symmetric gait could reduce metabolic 

energy expenditure for people with lower limb amputation.  Understanding these issues is 

important for effective rehabilitation strategies. 

Restoring inter-limb symmetry is often a clinical goal with rehabilitation and 

assistive devices (e.g., lower limb exoskeletons).  People walk with asymmetrical 

characteristics (e.g., antalgic pattern, or “a limp”) after an acute musculoskeletal injury 

(e.g., ankle sprain) (Punt et al., 2015) and surgery (e.g., amputation, total joint 

arthroplasty) (Sanderson & Martin, 1997; Alnahdi et al., 2011).  In the case of less severe 

injuries such as a sprain, symmetry is restored with time and rehabilitation; however, a 

return to gait symmetry may not be a realistic goal for more severe injuries or surgeries.  

People with lower limb amputation have altered morphology and usually must rely on a 

passive (i.e., no powered actuators) prosthesis in place of the missing anatomy.  

Depending on the cause of the amputation, there may be comorbidities affecting overall 

health, especially with people who have an amputation due to vascular causes such as 

diabetes (Roberts et al., 2006).  No matter the reason for amputation, there is altered 

proprioception (Liao & Skinner, 1995) and muscle function (Huang & Ferris, 2012) in 
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the residual limb.  The sensory feedback from an intact foot and ankle is lost, and 

muscles that were used to generate most of the ground reaction force in late stance 

(Anderson & Pandy, 2003) have been removed or are wrapped around the distal end of 

the residual limb.  The person will adapt their gait pattern due to the altered anatomy and 

reliance on a prosthesis.  An asymmetrical gait pattern may be effective, given the 

asymmetric anatomy and device constraints.  It may be that an asymmetrical gait is also 

optimal for metabolic energy expenditure for people with unilateral lower limb 

amputation, but this has not been clearly established in the literature.  

Metabolic energy expenditure increases directly with the amount of asymmetry 

when able-bodied individuals walk with varying amounts of stride asymmetry (Ellis et 

al., 2013).  Surprisingly, few studies (Dingwell et al., 1996; Davis et al., 2004) have 

trained people with unilateral lower limb amputation to walk with symmetrical stride 

characteristics in a research setting.  In one study (Dingwell et al., 1996), people with 

lower limb amputation were found to improve stride (i.e., stance plus swing on one side) 

time and push-off force symmetry with real time visual feedback training, but metabolic 

energy expenditure was not measured.  In another real time visual feedback study (Davis 

et al., 2004) in a small, heterogeneous sample (i.e., cause of amputation and amputation 

level), metabolic energy expenditure while walking was found to be reduced after 

training push-off force symmetry, but not after training stride time symmetry.  It is 

difficult to draw firm conclusions based on existing data and more research is needed 

with a homogenous sample.  

People with an amputation due to trauma (e.g., blast injury, car accident) 

generally have a lower metabolic cost of walking (Waters et al., 1976) and less stride 
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asymmetry (Sanderson & Martin, 1997) compared with people who have lost a limb from 

vascular causes, while still typically being greater than able-bodied individuals 

(Sanderson & Martin, 1997).  Also, it has been shown that preferred walking speed is 

greater for people with amputation due to trauma compared with people with amputation 

due to vascular causes, while still being slower than able-bodied individuals (Waters et 

al., 1976).  The majority of amputations are related to vascular diseases (Zieglar-Graham 

et al., 2008) but because of other associated comorbidities (e.g., impaired sensation, 

osteoarthritis), the causes of asymmetrical gait in this population is harder to decipher due 

to other potential gait impairments.  With the exception of one study in highly-

functioning military personnel where metabolic cost and preferred speeds were 

equivalent to able-bodied subjects (Esposito et al., 2014), healthy young adults with 

unilateral transtibial amputation from non-vascular causes typically exhibit elevated cost 

of walking and asymmetrical gait, while generally being free from comorbidities.  As 

such, this is an ideal population to start with, before moving on to study the larger 

population with amputations resulting from diabetes and related disorders.   

 Insights about the adaptations that are made to walk effectively with a prosthesis 

can be gathered by having people with unilateral transtibial amputation walk with varying 

degrees of stance time asymmetry, including a symmetrical condition, while determining 

the metabolic cost of transport (Ralston, 1958).  Cost of transport, where metabolic cost 

is expressed per unit distance (i.e., J‧kg-1‧m-1), allows for a comparison between people 

with amputation and able-bodied individuals because of differences in preferred walking 

speed between these groups.  The purpose of this study was to determine the effects of 

stance symmetry and asymmetry on the metabolic cost of transport.  Based on previous 
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literature regarding stride symmetry in people with and without amputation, we 

hypothesized that for preferred gait patterns the subjects with unilateral transtibial 

amputation would exhibit greater stance time on the intact side compared with the 

prosthetic side, while able-bodied subjects would exhibit symmetrical stance times.  

Further, we hypothesized that the cost of transport versus inter-limb asymmetry would 

demonstrate a U-shaped curve for both groups, and the cost of transport would be least at 

preferred stride characteristics for both groups.  A direct consequence of these hypotheses 

was that subjects with unilateral transtibial amputation were predicted to have an elevated 

cost of transport when required to walk symmetrically, compared with the cost of 

transport for their preferred, asymmetrical gait pattern.  Thus, we predicted that people 

with unilateral lower limb amputation walk asymmetrically, at least in part, to reduce the 

cost of walking. 
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5.3. Methods 

5.3.1 Participants 

Seven participants with unilateral transtibial amputation and seven able-bodied 

subjects participated in this study (Table 1).  The subjects with unilateral transtibial 

amputation were between 16-48 years old, rated a Medicare activity classification of K3 

or K4, had the amputation more than one year ago due to non-vascular causes (e.g., 

trauma, cancer, congenital), and use a passive prosthesis.  Further details about the 

subjects with amputation are provided in Table 2.  People with an activity level rating of 

K3 or K4 are prescribed an energy storage with elastic return prosthetic foot and ankle 

because they are active and can walk with variable cadences.  Participants were excluded 

from the study if they had any condition, other than amputation, that affected their ability 

to walk (e.g., chronic pain, neurological or cardiovascular disorders), if they had lower 

limb surgery in the last year, were not between 16-50 years old and were rated at a K0, 

K1, or K2 activity level.  The able-bodied subjects were age, sex, height and mass 

matched as closely as possible.  This study was approved by the University of 

Massachusetts and Quinnipiac University Institutional Review Boards.  All subjects read 

and signed an informed consent document prior to participation.   
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Table 5.1: Subject characteristics 

Group Females/ 

males (#) 

Age 

(yrs) 

Height 

(m) 

Mass 

(kg) 

Side: 

amp or dom 

Years 

since amp 

AMP 2/5 36.6 ± 

12.5 

1.80 ± 

0.08 

83.9 ± 

18.9 

5 right/ 

2 left 

16.5 ± 

11.7 

CNTL 2/5 28.7 ±  

5.4 

1.63 ± 

0.37 

85.4 ± 

20.4 

7 right/ 

0 left 

- 

p-value - 0.194 0.334 0.585 - - 

Effect size - 0.883 0.756 0.076 - - 

Characteristics of the subjects with amputation (AMP) and able-bodied subjects (CNTL).  

Values are mean ± 1 SD.  AMP = people with amputation, amp = amputation, dom = 

dominant. 

 

Table 5.2: Subjects with amputation characteristics 

Subject 
Amputation 

cause 

Years since 

amputation 

Prosthesis 

ankle 

Suspension 

type 

S01 Congenital 28 Ossur Vari-Flex End-bearing 

S02 Congenital 24 OssurVari-Flex End-bearing 

S03 Trauma 4.4 Ossur Pro-Flex Pin 

S04 Trauma 3 Ottobock Sprinter Suction 

S05 Trauma 25 Ossur Cheetah Xplore Suction 

S06 Trauma 2 Freedom Innovations Kinterra Pin 

S07 Cancer 29 Ossur Vari-Flex Suction 

 

5.3.2 Protocol 

 The subjects attended two sessions, 12 subjects (5 with amputation and 7 able-

bodied) participated at the Biomechanics Laboratory at the University of Massachusetts 

Amherst (Amherst, MA) and 2 subjects with amputation participated at the Motion 

Analysis Laboratory at Quinnipiac University (North Haven, CT).  During these sessions, 

the subjects walked on a treadmill (Treadmetrix, Park City, UT at UMass, and Woodway, 

Waukesha, WI at Quinnipiac) at their preferred overground walking speed while 

receiving real time visual feedback about inter-limb stance time asymmetry.  In the first 

session, preferred overground walking speed was determined, followed by training with 
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the real-time visual feedback conditions without metabolic measurement.  In the second 

session, the real-time visual feedback conditions were repeated on the treadmill while 

metabolic data were collected.  Each walking trial was five minutes long.  The 

asymmetry feedback conditions were -15% to 15% in 5% increments, with 0% 

representing symmetric stance time between limbs.  Positive values indicated greater 

stance time on the intact limb for subjects with lower limb amputation, and the dominant 

limb for able-bodied subjects.  Negative values indicated greater stance time on the 

prosthetic limb and non-dominant limb, respectively.  Subjects with an amputation did 

not perform the -15% condition because this extreme condition was not attainable during 

pilot testing.  To avoid the effects of fatigue, subjects were given five minutes of seated 

rest after each walking trial.  Subjects reported their perceived exertion on a scale from 1-

10 (i.e., 1 was resting and 10 was extremely difficult) during each condition.  

 

5.3.3 Stance time asymmetry 

Stance time was determined from insole foot switches (B&L Engineering, Santa 

Ana, CA) and a custom MATLAB (Math Works, Natick, MA) program.  The amount of 

asymmetry between limb stance times was calculated using an asymmetry index 

(Dingwell et al. 1996): 

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐴 =  
𝐼𝑛𝑡𝑎𝑐𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒− 𝑃𝑟𝑜𝑠𝑡ℎ𝑒𝑡𝑖𝑐 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒

𝐼𝑛𝑡𝑎𝑐𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒+𝑃𝑟𝑜𝑠𝑡ℎ𝑒𝑡𝑖𝑐 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒
 × 100%  (Eqn. 1) 

 

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐶 =  
𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒−𝑛𝑜𝑛𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒

𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒+𝑛𝑜𝑛𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒
 × 100% (Eqn. 2) 
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AsymmetryA is the asymmetry index for the subjects with an amputation, and AsymmetryC 

is the asymmetry index for the able-body subjects.  The real-time visual feedback was 

provided via a graphical display of a two-stride moving average of the stance time 

symmetry index.  During pilot testing, we found that a two-stride moving average 

permitted subjects to make consistent adaptations to meet the asymmetry goal without 

having differences from stride-to-stride displayed that were too large (i.e., no averaging) 

or too small (i.e., three to four stride average). 

5.3.4 Preferred walking speed 

Preferred walking speed was determined with an overground 400 meter walk that 

consisted of twenty consecutive 20-meter lengths. A six-meter segment of each length 

was timed with photogates.  The subjects were instructed to walk at a “comfortable 

walking speed.”  A 400 meter test was used rather than a shorter test because each 

individual treadmill trial was five minutes long and the length of a walking test may 

affect preferred walking speed determination.  Overground speed was used because it 

matches habitual speed more closely (Malatesta et al., 2017). 

5.3.5 Cost of transport 

Metabolic energy expenditure was determined from pulmonary gas exchange via 

open-circuit spirometry (Parvo Medics, Sandy, UT).  The gross rate of metabolic energy 

expenditure was estimated from the approach developed by Brockway (1987) that is 

based on the amount of oxygen consumed and the amount of carbon dioxide produced.  

The breath-by-breath relative rate of oxygen (�̇�𝑂2) (ml‧kg-1‧min-1) consumption and 

relative rate of carbon dioxide (�̇�𝐶𝑂2) (ml‧kg-1‧min-1) production was averaged every 

five seconds for the five-minute trials, with data from the last minute being averaged after 
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steady state was attained (Ellis et al., 2013).  Steady state was defined as the variability 

in �̇�𝑂2 being <2.0 ml‧kg-1‧min-1 (Taylor et al., 1955).  Subjects sat quietly for five 

minutes after donning the metabolic equipment to become accustomed to the set-up.  

After the five minutes of sitting, quiet standing pulmonary gases were collected for five 

minutes to determine the metabolic cost of standing.  Net metabolic energy expenditure 

during walking was derived by subtracting the energy expenditure during quiet standing 

from the gross energy expenditure during the walking trials.  Net cost of transport relative 

to body size was calculated by dividing the rate of metabolic energy expenditure by 

walking speed (m‧s-1) and body mass (kg) (Ralston, 1958).  

 

5.3.6 Statistical analysis 

Preferred stance time asymmetry was compared between groups with an unpaired 

t-test.  The relationship between stance time asymmetry and cost of transport was 

analyzed with a one-way ANOVA.  Orthogonal polynomial contrast analyses (Keppel, 

1991) were performed to determine the mathematical trends describing net cost of 

transport versus the amount of asymmetry for each group.  The highest-order statistically 

significant trend (e.g., linear, quadratic, cubic) was then used to estimate the degree of 

asymmetry corresponding to minimum metabolic cost within each group.  A goodness of 

fit between the experimental values and trend line was determined with an r-squared 

value.  The preferred asymmetry and predicted minimum cost asymmetry within each 

group was compared with a paired t-test.  We also calculated effect sizes (Cohen, 1988) 

and defined the size of the effects based on the expanded ranges  defined by Sawilowsky 

(2009), with: d = 0.1 being a very small, d = 0.2 a being small, d = 0.5 being a medium, d 
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= 0.8 being a large, d = 1.2 being a very large, and d = 2.0 being a huge effect size.  The 

relationship between stance time asymmetry and rating of perceived exertion was 

analyzed with a 2 (group) x 6 (asymmetry condition) MANOVA.  Statistical analyses 

were performed using R-Studio version 3.2.2 (R-Studio Inc., Boston, MA). 
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5.4 Results 

Subjects with amputation had a significantly greater stance time asymmetry (4.34 

± 1.09%) compared with able-bodied subjects (0.94 ± 2.44%) during the preferred 

walking condition with a very large effect size (p = 0.008, d = 1.93) (Figure 5.1, Table 

5.1).  This finding indicates that people with unilateral transtibial amputation spend more 

time on the intact side than the prosthetic side, and the inter-limb difference is greater in 

people with amputation than able-bodied subjects.  A quadratic trend best explained the 

relationship between cost of transport and stance time asymmetry for both groups 

(R2
amputee = 0.837, R2

control = 0.964) (Figure 5.1).  The predicted minimum-cost 

asymmetry (3.23 ± 2.90%) and the preferred asymmetry (4.34 ± 1.09%) for subjects with 

amputation were not significantly different, with a medium effect size (p = 0.365, d = 

0.557).  The predicted minimum-cost asymmetry (1.81 ± 2.18%) and the preferred 

asymmetry (0.94 ± 2.44%) for able-bodied subjects was not significantly different, with a 

small effect size (p = 0.513, d = 0.378).  The asymmetry predicted to yield minimum cost 

for subjects with amputation (3.23 ± 2.90%) and able-bodied subjects (1.81 ± 2.18%) was 

not significantly different, with a medium effect size (p = 0.323, d = 0.556).   

There was a significant main effect of group (p = 0.047) for the cost of transport-

asymmetry relationship.  There was not a significant main effect of group (p = 0.192) for 

the rating of perceived exertion-asymmetry relationship.  A quadratic trend best 

explained the relationship between rating of perceived exertion and stance time 

asymmetry for both groups (R2
amputee = 0.969, R2

control = 0.889) (Figure 5.2). 
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Figure 5.1: Net Cost of Transport: Net cost of transport for people with (black) and 

without (red) amputation across real time visual feedback conditions (vertical error bars + 

1SD), and when walking with preferred patterns (horizontal error bars +/- 1 SD percent 

asymmetry).  Quadratic trend lines for people with (black) and without (red) amputation 

across asymmetry conditions.  Predicted asymmetry yielded by the minimum net cost of 

transport with the downward facing arrows.  Preferred and predicted stance time 

asymmetry was greater (significantly greater for preferred) for people with amputation.  

 

Table 5.3: Preferred and predicted asymmetries based on minimum-cost of 

transport 

Group Pref Speed (m‧s-1) Pref Asymmetry (%) Pred Asymmetry (%) 

AMP 1.13 ± 0.22 4.34 ± 1.09 3.23 ± 2.90 

CNTL 1.42 ± 0.12 0.94 ± 2.44 1.81 ± 2.18 

p-value 0.021 0.008 0.323 

d 1.71 1.93 0.556 

Preferred (Pref) walking speed, preferred asymmetry and predicted (Pred) asymmetry of 

the people with amputation (AMP) and able-bodied subjects (CNTL).  Values are mean ± 

1 SD.  
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Figure 5.2: Rating of Perceived Exertion. Rating of perceived exertion for people with 

(black) and without (red) amputation across real time visual feedback conditions (vertical 

error bars + 1SD), and when walking with preferred patterns (horizontal error bars +/- 1 

SD percent asymmetry).  Quadratic trend lines for people with (black) and without (red) 

amputation across asymmetry conditions.   
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5.5 Discussion 

The purpose of this study was to determine the effects of gait asymmetry on the 

metabolic cost of transport in people with and without unilateral lower limb amputation. 

Our hypotheses about stance time asymmetry, the cost of transport across asymmetry 

conditions, and the asymmetry conditions corresponding to the lowest cost of transport 

between groups were generally supported.  Subjects with amputation had greater stance 

time asymmetry (i.e., more time on intact compared with prosthetic side) compared with 

able-bodied subjects.  A quadratic, U-shaped, trend best explained the relationship 

between cost of transport and stance time asymmetry for both groups.  Also, for both 

groups, the asymmetry predicted to yield the minimum cost of transport was not 

significantly different from preferred asymmetry.  However, this latter result should be 

viewed cautiously, as this study may not have been adequately powered to detect such 

differences due to the small sample size.  It is also the case that the predicted minimum-

cost asymmetry for people with amputation was not significantly greater than in the able-

bodied subjects, as had been the case for preferred asymmetry, though there was a 

moderate effect size for the minimum-cost asymmetry comparison. 

Similar to previous literature, subjects with unilateral amputation chose to walk 

with more time on the intact limb compared with prosthetic limb (Isakov et al., 2000; 

Sadeghi et al., 2001; Sanderson & Martin, 1997), and able-bodied subjects preferred 

more time on the dominant limb versus non-dominant limb (Vanden-Abeele, 1980), 

though the degree of asymmetry was less than 1% for the able-bodied subjects.  The 

stance time asymmetries that yielded the minimum cost of transport predict greater stance 
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time asymmetry for subjects with amputation, which agrees with the preferred 

asymmetries for our subjects and with previous literature.    

Previous studies have consistently found greater time spent on the intact limb 

compared with the prosthetic limb (Skinner & Effeney, 1985; Sanderson & Martin, 1997) 

but in the case of able-bodied individuals, there is not a consistent trend of more time on 

one limb compared with the other (e.g., dominant versus non-dominant).  Laterality (i.e., 

limb dominance) has been shown to have a significant effect on biomechanics in one 

study (Vanden-Abeele, 1980), but in another study, inter-limb asymmetry was found but 

could not be accounted for by laterality (Gunderson et al., 1989).  The effect of laterality 

on preferred patterns with people after amputation has not been investigated recently, and 

laterality may stay the same or change after accommodating to a prosthesis.  One study in 

people with amputation found that people with a left leg amputation recovered more 

quickly than people with a right leg amputation (Kerstein et al., 1977), indicating a 

potential difference in the role of right and left limbs, but the study did not indicate which 

limb was dominant prior to amputation.  People with unilateral amputation may choose 

asymmetrical gait patterns because of altered anatomy and using a prosthesis, while able-

bodied individuals choose near symmetrical gait patterns because of near symmetrical 

anatomy between limbs. 

Similar to the findings of Ellis et al. (2013), there was a significant quadratic 

trend, with the minimum cost of transport near the preferred asymmetry (near symmetry) 

for able-bodied subjects.  Cost of transport was lowest for our subjects with amputation 

when walking with asymmetrical stance timing (Figure 5.1).  Since there are no other 

studies that have had people walk with varying degrees of inter-limb asymmetry while 
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measuring cost of transport, there are no direct comparisons.  One similar comparison 

that can be made is the relationship between cost of transport and walking speed.  In the 

relationship between cost of transport and walking speed, people with amputation (Genin 

at al., 2008; Herr & Grabowski, 2012) and able-bodied individuals (Ralston, 1958) 

demonstrate a similar U-shaped trend, with greater cost of transport when walking with 

non-preferred walking speeds.   

The process of predicting asymmetries from minimum-cost of transport is not 

perfect, and there are some inconclusive results (e.g., non-significant p-values with 

medium effect sizes).  However, the lowest cost of transport experimental feedback 

condition was at the +5% condition for subjects with amputation, which is closest to the 

preferred cost of transport experimental value.  The lowest cost of transport experimental 

feedback condition was at the symmetrical (i.e., 0%) condition for able-bodied subjects, 

which is closest to the preferred cost of transport experimental value.  Subjects with 

amputation had a 49% increase in cost of transport from the 5% to -10% conditions, with 

54% of that increase occurring from the 0 to -5% conditions, and 58% increase from 5 to 

15% conditions, with 64% of that increase occurring from the 10 to 15% conditions.  

Able-bodied subjects had a 82% increase in cost of transport from the 0 to -15% 

conditions, with 37% of that increase occurring from the -10 to -15% conditions, and 

62% increase from 0 to 15% conditions, with near equal increments in cost per 5% 

increase in asymmetry.  One study found ~20% increase in cost of transport when 

increasing and decreasing speed by 0.5 m·s-1 away from preferred speed (Herr & 

Grabowski, 2012).  The extremes of stance time asymmetry away from near-preferred 

experimental conditions were energetically challenging for subjects with and without 
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amputation, which is potentially a reason why preferred patterns are not that 

asymmetrical for either group.   

The subjects with amputation subjectively reported that the negative (i.e., more 

time on prosthetic limb) conditions were harder because they felt very different from 

usual walking.  The passive energy storage and return prosthesis may be a limiting factor 

(Zmitrewicz et al., 2006) that could be improved with active assistance (Herr & 

Grabowski, 2012), but using a powered prosthesis does not always reduce metabolic 

energy expenditure (Quesada et al., 2016).  Spending more time on the prosthesis may 

not feel as stable and therefore to improve stability, compensations are made that 

consume more metabolic energy. 

Subjects with amputation perceived that spending more time on the prosthetic 

side was harder than more time on the intact side while able-bodied subjects perceived 

spending more time on either limb the same (Figure 5.2).  The subjects with amputation 

informally reported that the conditions with more time on the prosthetic limb compared 

with intact limb were difficult, and the rating of perceived exertion agrees with those 

statements.  Rating of perceived exertion is a subjective measure and because people with 

amputation have adapted to spend more time on the intact limb, walking with more time 

on the prosthetic limb may be perceived as harder because they are not as accustomed to 

it.  To the best of the author’s knowledge, there is no previous literature about the effect 

of asymmetry on the rating of perceived exertion in people with and without lower limb 

amputation.   

A previous study (Esposito et al., 2014) found that people with a unilateral 

transtibial amputation who were still in the military, did not have a statistically different 
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metabolic cost compared with able-bodied subjects when walking with preferred 

characteristics.  Our results for the preferred walking conditions support that finding 

(Figure 1).  Even though our population was not in the military, it was a group of active 

people who had an amputation from non-vascular causes.  It is not surprising that people 

who are relatively active and use a high-level (i.e., energy storage and return) passive 

prosthesis demonstrate small differences in walking cost of transport compared with able-

bodied subjects.  Even when there is a significant difference of metabolic energy 

expenditure between people with and without unilateral transtibial amputation, 

prosthesis-users with unilateral transtibial amputation have the closest energy expenditure 

to able-bodied individuals when compared to people with higher levels (e.g., 

transfemoral, hip disarticulation) of amputation (Waters & Mulroy, 1999).  Even with 

similar costs of transport, people with unilateral amputation utilize greater inter-limb 

asymmetry.   

   The number of subjects in this study was a limitation.  It was difficult to recruit 

willing subjects who met the inclusion criteria.  This is not surprising considering less 

than 20% of lower limb amputations are due to non-vascular causes (Zieglar-Graham et 

al., 2008) and our age range was limited to people between 16-50 years old for this study.  

While the sample size was limited, the group was homogenous, representing relative 

active subjects rated at a K3 or K4 activity level, making it possible to directly compare 

the effect of amputation on the cost of transport-asymmetry relationship without 

confounding factors such as advanced age or comorbidities.  Even with a small sample 

size, there were several medium effect sizes (e.g., between the preferred asymmetry and 

predicted minimum-cost asymmetry for subjects with amputation), which indicates there 



 

83 

 

might be a meaningful difference, and supports conducting further research to help better 

understand how cost of transport relates to gait asymmetry in people with amputation.  

There was an age disparity between groups (Table 1).  The age disparity should not have 

had a large effect on findings because significant changes with gait usually do not occur 

until later in life (Judge et al., 1996).   

Another limitation with the data collection was the use of two different treadmills.  

The treadmills had different belt composition and subjective stiffness levels (i.e., 

Treadmetrix was stiffer than Woodway), but since subjects were walking, not running, 

there should not have been a large effect on metabolic energy expenditure (Smith et al., 

2017), and if there were any effects, they should be minimal for within subject 

comparisons.  Since the treadmills could not determine force and timing for individual 

strides, insole footswitches were used to determine stance timing for the real time visual 

feedback.  The insoles were different than usual shoe insoles and were connected to a 

computer via a box worn by the subjects at the mid-back level.  Subjects subjectively 

reported that the insoles and box did not alter their movement, and additionally, subjects 

spent over 30 minutes walking with the set-up on day 1, allowing for accommodation to 

the system. 

A common objective of rehabilitation is to restore inter-limb symmetry after an 

injury (e.g., joint arthroplasty, amputation), yet after anatomical structures have been 

altered, symmetrical function may not be optimal.  Subjects with amputation in our study 

preferred more time on the intact limb compared with the prosthetic limb, and able-

bodied subjects preferred walking almost symmetrically, with slightly more time on the 

dominant limb compared with the non-dominant limb.  In both cases, preferred 
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asymmetry coinciding closely with the lowest cost of transport.  However, minimizing 

cost is likely not the only factor driving the selection of gait patterns.  Further 

investigation is needed regarding how asymmetry affects joint loading, smoothness, and 

stability to better understand how preferred gait patterns emerge after an injury.  If 

asymmetrical patterns naturally emerge in people with many years of prosthesis use, 

perhaps some degree of gait asymmetry should be expected and should be a goal for 

rehabilitation and devices.  Given the sample size and the focus on only one potentially 

important factor, metabolic cost, our results should be interpreted cautiously.  

Nevertheless, they raise the possibility that asymmetrical patterns may be the best result 

after some injuries and do not represent a problem that should be fixed. 
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CHAPTER 6 

STANCE SYMMETRY AND STABILITY OF LOCOMOTION IN PEOPLE 

WITH UNILATERAL TRANSTIBIAL AMPUTATION 

6.1 Abstract 

A main objective of walking is to achieve a specific displacement of the body 

while not falling.  People with lower limb amputation of all levels have an increased 

incidence of falls, creating an economic and psychological burden.  People with a 

unilateral amputation walk differently than people without amputation; most notably, 

they walk with more time on the intact compared with the prosthetic limb.  People with 

unilateral transtibial amputation can walk symmetrically while using a prosthesis, yet 

they typically choose to walk with inter-limb asymmetries, possibly to improve gait 

stability.  The purpose of this study was to determine the effects of inter-limb asymmetry 

on gait stability in people with and without unilateral transtibial amputation.  We 

hypothesized that subjects with unilateral transtibial amputation would exhibit greater 

stance time on the intact side compared with the prosthetic side, while able-bodied 

subjects would exhibit symmetrical stance times when walking with preferred patterns.  

We hypothesized that gait stability, when quantified with margin of stability, versus inter-

limb asymmetry would demonstrate an inverted U-shaped curve with the greatest 

stability at the preferred stride characteristics for both groups.  In the case of step width, 

step length and stance time variability as a measure of stability, we hypothesized that gait 

stability versus inter-limb asymmetry would demonstrate a U-shaped curve, with the least 

variability (i.e., more stable) at the preferred stride characteristics for both groups.  Gait 

stability was calculated from the motion data for 7 subjects with unilateral transtibial 
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amputation and 7 able-bodied controls while walking with preferred and non-preferred 

stance time conditions at preferred speed on a treadmill.  Subjects with amputation spent 

more time on the intact limb with a significantly greater stance time asymmetry (4.34 ± 

1.09%) compared with able-bodied subjects (0.94 ± 2.44%) during the preferred walking 

condition with a very large effect size (p = 0.008, d = 1.93).  Rather than finding 

maximum gait stability at the preferred asymmetry conditions for the margin of stability 

measures, all stability metrics actually exhibited minima, except for medial-lateral margin 

of stability and step width variability, for which linear trends were found.  Several of the 

predicted minima for the stability metrics were not significantly different than the 

preferred asymmetry values; however, these results should be viewed cautiously due to 

potentially too little statistical power.  Gait stability may be one of the factors that 

determine preferred gait patterns, but other measures such as metabolic energy 

expenditure and joint loading may influence how preferred patterns emerge.  The 

preferred walking patterns were asymmetrical, and asymmetrical patterns were predicted 

for most measures, so maybe inter-limb asymmetry should not be viewed negatively 

when rehabilitating from an injury. 
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6.2 Introduction 

A main objective of walking is to achieve a specific displacement of the body 

while not falling.  Maintaining balance while walking is more challenging for people with 

lower limb amputation compared with able-bodied individuals.  People with lower limb 

amputation of all levels have an increased incidence of falls (Miller et al., 2001a; 

Kulkarni et al., 1996).  Over 87% of people fall within the first six months after an 

amputation (Felcher et al., 2015).  A secondary injury, such as a fracture, occurs in over 

40% of people with amputation (Miller at al., 2001).  Falls are more than a personal 

burden, falls also take an economic toll.  Falls resulting in hospitalization were reported 

to cost $25,652 on average in the six months after falling in a small sample of people 

with transfemoral amputation (Mundell et al., 2017).  Beyond economic effects, fear of 

falling is common amongst people with amputation (Miller et al., 2001a; Kulkarni et al., 

1996), which may lead to gait adaptations to improve stability and avoid falling. 

People with a unilateral amputation walk differently than people without 

amputation; most notably, they walk with multiple inter-limb asymmetries (Isakov et al., 

2000; Sadeghi et al., 2001; Sanderson & Martin, 1997).  People with unilateral 

amputation spend more time on the intact side compared with the prosthetic side, and the 

time difference between limbs is greater with higher (i.e., more proximal) levels of 

amputation (Jaegers et al., 1995).  Inter-limb asymmetry is consistently observed in 

people with unilateral lower limb amputation.  A common goal of rehabilitation and 

assistive devices (e.g., prostheses and exoskeletons) is to improve balance and function 

by reducing asymmetry.  However, due to altered anatomy and reliance on a prosthesis, 

an asymmetrical gait may actually be a functional adaptation (Hak et al., 2014) to 
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decrease fall risk, and may not simply be the result of prosthesis limitations such as 

decreased push off power (Zmitrewicz et al., 2006).  People with unilateral transtibial 

amputation can walk with symmetrical stride and push-off characteristics when provided 

real time visual feedback (Dingwell et al., 1996; Davis et al., 2004).  Thus, while people 

with unilateral amputation can walk symmetrically while using a prosthesis, they 

typically choose to walk with inter-limb asymmetries.  A possible reason is that people 

with unilateral lower limb amputation may adopt asymmetrical gait characteristics to 

improve stability.  

Gait stability, that is not falling while walking even when perturbed (Bruijn et al., 

2013), has been quantified with many measures in an attempt to predict falls (Hamacher 

et al., 2011).  Gait stability in people with lower limb amputation has been quantified 

while perturbed with surface perturbations (Beurskens et al., 2014; Hak et al., 2013), 

visual perturbations (Beurskens et al., 2014) and walking on rocky surfaces (Gates et al., 

2013).  No study up until this point has quantified how asymmetrical patterns, aside from 

preferred inter-limb asymmetry, effect gait stability in people with unilateral lower limb 

amputation.  One recent study examined how fractality changes with inter-limb 

asymmetry in able-bodied individuals, finding that walking with asymmetry leads to 

multifractility, that is the need to perform intermittent corrections, and is different than 

preferred walking which is monofractal (Ducharme et al., 2018).  The study utilized just 

one asymmetry condition that was evoked while walking on a split-belt treadmill, with 

one belt moving at preferred walking speed and the other belt moving at half-preferred 

speed.  Fractality is a measure of local stability, which is the system’s ability to respond 

to small perturbations, and requires a long series of strides (i.e., 150 strides) to quantify 
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stability.  Global stability measures (i.e., system’s ability to respond to large 

perturbations), such as margin of stability (Hof et al., 2005), can be calculated for 

individual strides.  Being able to quantify stability for individual strides is relevant 

because most bouts of gait are less than 40 strides in duration (Orendurff et al., 2008).  

How inter-limb asymmetry effects global stability in people with and without unilateral 

amputation, has not been established by previous literature  

Margin of stability represents the distance between an extrapolated center of mass 

position (i.e., instantaneous center of mass position plus velocity) and the boundary of the 

base of support (Hof et al., 2005), and may indicate when the body will need to adapt its 

motion away from inverted pendulum-like dynamics to avoid a fall (Hof, 2007; Bruijn et 

al., 2013).  Margin of stability is greater in people with unilateral transtibial amputation 

compared with able-bodied individuals when gait is perturbed (Beltran et al., 2014; Hak 

et al., 2013), demonstrating that people with amputation maintain a greater margin of 

safety than people without amputation in response to a perturbation.   

Traditional measures of stability, such as step width variability (i.e., standard 

deviation), have been correlated with fall risk (Maki, 1997; Hausdorff et al., 2001).  

People with lower limb amputation have demonstrated greater variability compared with 

able-bodied individuals (Hak et al., 2013; Beurskens et al., 2014), potentially indicating 

less kinematic consistency and therefore greater fall risk.  People with lower limb 

amputation utilize different stability patterns compared with able-bodied individuals, but 

why these differences occur and how they are related to preferred inter-limb asymmetry 

is unknown.  The effects of inter-limb asymmetry on gait stability have not been 
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evaluated in people with amputation, and may provide information about how self-

selected walking patterns emerge. 

Insights about the adaptations that are made to walk safely with a prosthesis can 

be understood by having people with unilateral transtibial amputation walk with varying 

degrees of stance time asymmetry, including a symmetrical condition, while quantifying 

gait stability.  The purpose of this study was to determine the effects of inter-limb 

asymmetry on gait stability in people with and without unilateral transtibial amputation.  

Based on previous literature regarding stride symmetry, we hypothesized that subjects 

with unilateral transtibial amputation would exhibit greater stance time on the intact side 

compared with the prosthetic side, while able-bodied subjects would exhibit symmetrical 

stance times when walking with preferred patterns.  We hypothesized that gait stability, 

when quantified with margin of stability, versus inter-limb asymmetry would 

demonstrate an inverted U-shaped curve with the greatest margin of stability at the 

preferred stride characteristics for both groups.  In the case of variability as a measure of 

stability, we hypothesized that gait stability versus inter-limb asymmetry would 

demonstrate a U-shaped curve, with the least variability (i.e., most stable) at the preferred 

stride characteristics for both groups.  The implication of these hypotheses is that we 

predicted subjects with unilateral lower limb amputation are most stable when walking 

with their preferred, asymmetrical gait pattern, and being required to walk symmetrically 

will reduce gait stability.  
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6.3 Methods 

6.3.1 Subjects  

Seven people with unilateral transtibial amputation due to non-vascular causes 

(e.g., trauma, cancer, congenital) that occurred over one year ago, and seven able-bodied 

individuals participated in this study (Table 6.1).  The participants with unilateral 

transtibial amputation were between 16-48 years old, rated at a Medicare activity 

classification of K3 or K4 (i.e., able to perform variable cadences while walking), and use 

a passive prosthesis.  People were excluded from the study if they had any condition, 

other than amputation, that effected their ability to walk (e.g., chronic pain, neurological 

or cardiovascular disorders) or had lower limb surgery in the last year.  Further details 

about the subjects with amputation are provided in Table 6.2.  The study was approved 

by the University of Massachusetts and Quinnipiac University Institutional Review 

Boards.  All participants read and signed an informed consent document prior to 

participation.   

Table 6.1: Subject characteristics 

Group 
Females/ 

males (#) 

Age 

(years) 

Height 

(m) 

Mass 

(kg) 

Amp or 

Dom 

Pref Speed 

(m·s-1) 

AMP 2/5 36.6 ± 12.5 1.80 ± 0.08 83.9 ± 18.9 5 R/2 L 1.13 ± 0.22 

CNTL 2/5 28.7 ± 5.4 1.63 ± 0.37 85.4 ± 20.4 7 R/0 L 1.42 ± 0.12 

p-value - 0.194 0.334 0.585 - 0.021 

Characteristics of the subjects with amputation (AMP) and able-bodied subjects (CNTL).  

Values are mean ± 1 SD.  
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Table 6.2: Subjects with amputation characteristics 

Subject 
Amputation 

cause 

Years since 

amputation 

Prosthesis 

ankle 

Suspension 

type 

S01 Congenital 28 Ossur Vari-Flex End-bearing 

S02 Congenital 24 OssurVari-Flex End-bearing 

S03 Trauma 4.4 Ossur Pro-Flex Pin 

S04 Trauma 3 Ottobock Sprinter Suction 

S05 Trauma 25 Ossur Cheetah Xplore Suction 

S06 Trauma 2 Freedom Innovations Kinterra Pin 

S07 Cancer 29 Ossur Vari-Flex Suction 

 

 

6.3.2 Protocol 

 The subjects attended two sessions, 12 subjects (5 with amputation and 7 able-

bodied) participated at the Biomechanics Laboratory at the University of Massachusetts 

Amherst (Amherst, MA) and 2 subjects with amputation participated at the Motion 

Analysis Laboratory at Quinnipiac University (North Haven, CT).  During these sessions, 

the subjects walked on a treadmill at their preferred overground walking speed while 

receiving real time visual feedback about inter-limb stance time asymmetry.  Preferred 

overground walking speed was determined with a 400 m walk test.  A 400 m walk test 

was used rather than a shorter test, to best represent an individual’s preferred walking 

speed for a longer bout of walking (Graham et al., 2008).  In the first session, subjects 

walked on a treadmill while receiving real-time visual feedback to become familiar with 

the experimental protocol.  In the second session, the real-time visual feedback conditions 

were repeated on the treadmill while motion data were collected.  Each walking trial was 

five minutes long.  The asymmetry feedback conditions were -15% to 15% in 5% 

increments, with 0% representing symmetric stance time between limbs.  Negative values 

indicated greater stance time on the prosthetic limb for subjects with lower limb 
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amputation, and indicated greater stance time on the non-dominant side for able-bodied 

subjects.  Positive values indicated greater stance time on the intact limb, and the 

dominant limb, respectively.  Subjects with an amputation did not perform the -15% 

condition because this extreme condition was not attainable during pilot testing.  Subjects 

were given five minutes of seated rest after each walking trial to avoid the effects of 

fatigue.    

6.3.3 Stance time asymmetry 

Stance time was determined from insole foot switches (B&L Engineering, Santa 

Ana, CA) and a custom MATLAB (Math Works, Natick, MA) program.  The amount of 

asymmetry between limb stance times was calculated using an asymmetry index 

(Dingwell et al. 1996): 

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐴 =  
𝐼𝑛𝑡𝑎𝑐𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒− 𝑃𝑟𝑜𝑠𝑡ℎ𝑒𝑡𝑖𝑐 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒

𝐼𝑛𝑡𝑎𝑐𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒+𝑃𝑟𝑜𝑠𝑡ℎ𝑒𝑡𝑖𝑐 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒
 × 100%  (Eqn. 1) 

 

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐶 =  
𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒−𝑛𝑜𝑛𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒

𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒+𝑛𝑜𝑛𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒
 × 100% (Eqn. 2) 

 

AsymmetryA is the asymmetry index for the participants with an amputation, and 

AsymmetryC is the asymmetry index for the able-bodied participants.  The real-time 

visual feedback was provided via a graphical display on a monitor at eye-level at the 

front of the treadmill.  A two-stride moving average of the stance time symmetry index 

was displayed to the subjects.  During pilot testing, we found that a two-stride moving 

average permitted subjects to make consistent adaptations to meet the asymmetry goal 
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without having differences from stride-to-stride displayed that were too large (i.e., no 

averaging) or too small (i.e., three to four stride average). 

6.3.4 Kinematic model 

Marker data were collected at a rate of 240 Hz with a Qualisys system (Qualisys, 

Göteborg, Sweden) at the University of Massachusetts and with a Motion Analysis 

system (Motion Analysis, Rohnert Park, CA) at Quinnipiac University.  The data was 

post-processed using Qualisys Track Manager and Cortex software at the two sites, 

respectively.  The kinematic model consisted of three segments: pelvis and two feet.  

Markers were placed over the following landmarks: sacrum, bilateral anterior superior 

iliac spines, iliac crests, posterior superior iliac spines, lateral malleoli, medial malleoli, 

fifth metatarsal heads, first metatarsal heads, tips of second toes.  Marker clusters were 

placed on bilateral heels.  

6.3.5 Stability measures 

The stability variables of interest were medial-lateral margin of stability, 

backwards margin of stability, and the variability of step width, step length, and stance 

time.  Individual strides were determined using a previously described toe marker 

velocity method for walking on a treadmill (Zeni et al., 2008).  The margin of stability is 

based on the extrapolated position of the center of mass relative to the base of support 

(Figure 1) and may indicate when the body will need to adapt its motion away from 

inverted pendulum-like dynamics to avoid a fall (Hof, 2007; Bruijn et al., 2013).  

 

 



 

95 

 

 

 

 

 

 

 

 

Figure 6.1: Margin of stability representation. Adapted from Hak et al. (2013) 

showing the relationship of center of mass position (o), velocity of the center of mass 

represented by arrow coming from the o, the extrapolated center of mass position at the 

tip of that arrow projected onto on the floor (●), and the difference between extrapolated 

center of mass and base of support (margin of stability) in the backwards direction (left 

panel) and medial-lateral direction (right panel).  

 

Margin of stability was calculated with kinematic marker data, similar to Hak et al. 

(2012), which was an adaptation of the original method from Hof et al. (2005) to allow 

quantification in cases where individual-stride ground reaction force data were not 

available.  Hof et al. (2005) utilized a force plate to determine center of mass kinematics 

(position and velocity) relative to the base of support (center of pressure).  Hak et al. 

(2012) utilized pelvis markers to calculate center of mass kinematics and foot markers to 

determine base of support location.  The center of mass position was determined with 

post-processed motion capture data, and velocity was determined with the central 

difference method within a custom MATLAB (Math Works, Natick, MA) program 

throughout the stance phase.  The extrapolated center of mass was calculated within 

MATLAB using the following equation (Hak et al. 2012): 
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𝒙𝑪𝒐𝑴 =  𝑷𝑪𝒐𝑴 +  𝒗𝑪𝒐𝑴 × √𝒍/𝒈   (Eqn. 3) 

where PCoM is the instantaneous position of the center of mass and VCoM is the 

instantaneous velocity of the center of mass.  The velocity was scaled by the 

eigenfrequency of the inverted pendulum representation of the body (i.e., √(
𝑙𝑒𝑔 𝑙𝑒𝑛𝑡ℎ

𝑔𝑟𝑎𝑣𝑖𝑡𝑦
)).  

The base of support was determined from the lateral marker on the heel cluster for the 

backwards margin of stability, and the fifth metatarsal marker for the medial-lateral base 

of support.  The general equation for calculating margin of stability (Hof et al., 2005; Hof 

et al., 2007) is: 

𝑀𝐿 𝑀𝑜𝑆 = 𝐵𝑜𝑆 − 𝑥𝐶𝑜𝑀 (Eqn. 4) 

𝐵𝑊 𝑀𝑜𝑆 = 𝑥𝐶𝑂𝑀 − 𝐵𝑜𝑆 (Eqn. 5) 

The extrapolated center of mass (𝑥𝐶𝑜𝑀) relative to the base of support (𝐵𝑜𝑆) in the 

medial-lateral and backwards directions (i.e., margin of stability) was calculated 

throughout the stance phase for each leg.  The margin of stability in the backwards 

direction was calculated by subtracting the base of support from the extrapolated center 

of mass position, similar to Hak et al. (2014).  The minimum value of medial-lateral 

margin of stability during stance was determined for each stride, and the value of 

backwards margin of stability at heel strike was determined for each stride.  The 

variability of step length, step width and stance time were determined from the standard 

deviation of 20 strides in the final minute of each five minute trial.  The variability of step 

length, step width and stance time were also determined by the coefficient of variation to 

take into account the means of each measure.  The standard deviations are presented in 
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the results section and then interpreted in the discussion section, and the coefficients of 

variation are presented and interpreted in appendix A.   

6.3.6 Statistical analysis 

The overall effects of stance time asymmetry on gait stability between the two 

limbs for each of the two groups were tested with two-way ANOVAs for each gait 

stability metric.  Orthogonal polynomial contrast analysis (Keppel, 1991) was performed 

to determine the mathematical dependence of gait stability on the amount of asymmetry 

for each limb.  The highest-order statistically significant trend (e.g., linear, quadratic, 

cubic) was then used to estimate the degree of asymmetry corresponding to the minimum 

value for each stability metric (e.g., backwards MoS, step width variability) for each 

limb.  The stability measures for each subject were fit with the highest-order statistically 

significant polynomial from the contrast analysis, and if there was a significant trend of 

second or higher order, we predicted the asymmetry value yielding the minimum value 

for each stability metric.  The goodness of fit between the experimental values and trend 

line was determined with an r-squared value.  The preferred asymmetry and the 

asymmetry corresponding to the predicted minimum stability values within each limb 

were compared with a paired t-test.  We also calculated effect sizes (Cohen, 1988) and 

defined the size of the effects based on the expanded ranges defined by Sawilowsky 

(2009), with: d = 0.1 being a very small, d = 0.2 being a small, d = 0.5 being a medium, d 

= 0.8 being a large, d = 1.2 being a very large, and d = 2.0 being a huge effect size.  After 

estimating the asymmetries that corresponded to optimal (i.e., minima or maxima) gait 

stability for each measure, an ANOVA of those predicted asymmetries was used to 

compare the estimated asymmetries among the four limbs (i.e., prosthetic, intact, 
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dominant and non-dominant limbs).  Alpha level was set at 0.05 for all statistical tests.  

Statistical analyses were performed using R-Studio version 3.2.2 (R-Studio Inc., Boston, 

MA).  
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6.4 Results 

6.4.1 Preferred asymmetry 

Subjects with amputation spent more time on the intact limb with a significantly 

greater stance time asymmetry (4.34 ± 1.09%) compared with able-bodied subjects (0.94 

± 2.44%) during the preferred walking condition with a very large effect size (p = 0.008, 

d = 1.93) (Table 6.2).  Every subject with an amputation spent more time on the intact 

limb during the preferred condition.  While the absolute asymmetries for able-bodied 

subjects where small in magnitude, the results between dominant and non-dominant limb 

were mixed, with some subjects spending more time on the dominant limb, and others on 

the non-dominant limb. 

6.4.2 Medial-lateral margin of stability 

There was a significant effect of limb (p < 0.001) for medial-lateral margin of 

stability.  A linear trend best explained the relationship between medial-lateral margin of 

stability and stance time asymmetry (R2
pros = 0.067, R2

int = 0.027, R2
dom = 0.643, R2

ndom = 

0.899) (Figure 6.2).   



 

100 

 

 

Figure 6.2: Medial-lateral margin of stability versus asymmetry. Medial-lateral 

margin of stability (MoS) between subjects with amputation (black) and able-bodied 

subjects (red).  Triangles are mean values with an error bar that is 1 standard deviation.  

Triangles that have horizontal error bars are the preferred conditions.  Intact and 

dominant limbs are represented by solid lines, prosthetic and non-dominant limbs are 

represented by dashed lines.  A linear trend best explained the relationship between 

medial-lateral MoS and asymmetry.   

 

Table 6.3: Preferred and predicted asymmetries 

Group P Asym (%) BW MoS (m) SL SD (m) ST SD (s) 

PROS 4.34 ± 1.09 - 4.2 ± 7.3 4.2 ± 9.3 

INT - 3.8 ± 7.8 2.5 ± 8.8 4.6 ± 5.8 

DOM 0.94 ± 2.44 1.3 ± 11.1 1.4 ± 6.0 1.1 ± 5.7 

NDOM - 2.6 ± 7.6 -0.7 ± 6.7 -0.1 ± 2.2 

p-value 0.008 0.507 0.732 0.870 

Preferred (P) asymmetry (Asym) for subjects with amputation (PROS and INT) and able-

bodied subjects (DOM and NDOM).  Asymmetries yielded by stability minima for 

backwards (BW) MoS, step length (SL) variability, and stance time (ST) variability for 

the prosthetic (AMP), intact (INT), dominant (DOM), and non-dominant (NDOM) limbs.  

Values are mean ± 1 SD. There is a dash for pros BW MoS because the quadratic fit led 

to a linear trend line, therefore no optima was predicted. 
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6.4.3 Backwards margin of stability 

There was a significant effect of limb (p < 0.001) for backwards margin of 

stability.  A U-shaped quadratic trend best explained the relationship between backwards 

margin of stability and stance time asymmetry (R2
pros = 0.817, R2

int = 0.836, R2
dom = 

0.501, R2
ndom = 0.816) (Figure 6.3).  The asymmetry values yielding minima for 

backwards margin of stability are listed in Table 6.3.  The preferred asymmetry for 

subjects with amputation was not significantly different than the asymmetry at the 

minimum backwards margin of stability for the intact limb, with a small effect size (p = 

0.719, d = 0.354).  The preferred asymmetry for able-bodied subjects was not 

significantly different than the asymmetry at the minimum backwards margin of stability 

for the dominant limb, with a very small effect size (p = 0.953, d = 0.061) and the non-

dominant limb, with a very small effect size (p = 0.990, d = 0.018).  The ANOVA 

comparing predicted asymmetries did not have a significant effect of limb (p = 0.507).   
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Figure 6.3: Backwards margin of stability versus asymmetry. Backwards margin of 

stability (MoS) between subjects with amputation (black) and able-bodied subjects (red).  

Triangles are mean values with an error bar that is 1 standard deviation.  Intact and 

dominant limbs are represented by solid lines, prosthetic and non-dominant limbs are 

represented by dashed lines.  Downward facing arrows at the x-axis represent the 

predicted asymmetries corresponding to minima backwards MoS.  A quadratic trend best 

explained the relationship between backwards MoS and asymmetry.  The preferred 

asymmetry for subjects with amputation (upward facing triangles with horizontal error 

bars) was not significantly different than asymmetries corresponding to minima for 

backwards MoS for the prosthetic and intact limbs.  The preferred asymmetry for able-

bodied subjects (downward facing triangles with horizontal error bars) was not 

significantly different than asymmetries corresponding to minima for backwards MoS for 

the dominant and non-dominant limbs.   

 

6.4.4 Step width variability 

There was a significant effect of limb (p < 0.001) for step width variability.  A 

linear trend best explained the relationship between step width variability and asymmetry 

(R2
pros = 0.248, R2

int = 0.167, R2
dom = 0.012, R2

ndom = 0.511) (Figure 6.4).   
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Figure 6.4: Step width variability versus asymmetry. Step width variability between 

subjects with amputation (black) and able-bodied subjects (red).  Triangles are mean 

values with an error bar that is 1 standard deviation.  Intact and dominant limbs are 

represented by solid lines, prosthetic and non-dominant limbs are represented by dashed 

lines.  A linear trend best explained the relationship between step width variability and 

asymmetry.     

 

6.4.5 Step length variability 

There was a significant effect of limb (p = 0.002) for step length variability.  A U-

shaped quadratic trend best explained the relationship between step length variability and 

asymmetry (R2
pros = 0.879, R2

int = 0.925, R2
dom = 0.667, R2

ndom = 0.480) (Figure 6.5).  

The asymmetry values yielding minima for step width variability are listed in Table 6.3.  

The preferred asymmetry for subjects with amputation was not significantly different 

than the asymmetry at the minimum step length variability for the prosthetic limb, with a 

very small effect size (p = 0.8691, d = 0.153) and the intact limb, with a very small effect 

size (p = 0.872, d = 0.144).  The preferred asymmetry for able-bodied subjects was not 
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significantly different than the asymmetry at the minimum step length variability for the 

dominant limb, with a medium effect size (p = 0.615, d = 0.652) and for the non-

dominant limb, with a small effect size (p = 0.682, d = 0.448).  The ANOVA comparing 

predicted asymmetries did not have a significant effect of limb (p = 0.732).   

 

Figure 6.5: Step length variability versus asymmetry. Step length variability between 

subjects with amputation (black) and able-bodied subjects (red).  Triangles are mean 

values with an error bar that is 1 standard deviation.  Intact and dominant limbs are 

represented by solid lines, prosthetic and non-dominant limbs are represented by dashed 

lines.  Downward facing arrows at the x-axis represent the predicted asymmetries 

corresponding to minima step length variability.  A cubic trend best explained the 

relationship between step length variability and asymmetry.  The preferred asymmetry for 

subjects with amputation (upward facing triangles with horizontal error bars) was not 

significantly different than asymmetries corresponding to minima for step length 

variability for the prosthetic and intact limbs.  The preferred asymmetry for able-bodied 

subjects (downward facing triangles with horizontal error bars) was not significantly 

different than asymmetries corresponding to minima for step length variability for the 

dominant and non-dominant limbs. 
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6.4.6 Stance time variability 

There was a significant effect of limb (p < 0.001) for stance time variability.  A 

U-shaped quadratic trend best explained the relationship between stance time variability 

and asymmetry (R2
pros = 0.974, R2

int = 0.968, R2
dom = 0.976, R2

ndom = 0.943) (Figure 6.6).  

The asymmetry values yielding minima for stance time variability are listed in Table 6.3.  

The preferred asymmetry for subjects with amputation was not significantly different 

than the asymmetry at the minimum stance time variability for the prosthetic limb 

asymmetry, with a small effect size (p = 0.581, d = 0.489) and the intact limb, with a 

medium effect size (p = 0.458, d = 0.746).  The preferred asymmetry for able-bodied 

subjects was not significantly different than the asymmetry at the minimum stance time 

variability for the dominant limb, with a huge effect size (p = 0.517, d = 2.363) and the 

non-dominant limb, with a very large effect size (p = 0.712, d = 1.860).  The ANOVA 

comparing predicted asymmetries did not have a significant effect of limb (p = 0.870).   
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Figure 6.6: Stance time variability versus asymmetry. Stance time variability between 

subjects with amputation (black) and able-bodied subjects (red).  Triangles are mean 

values with an error bar that is 1 standard deviation.  Intact and dominant limbs are 

represented by solid lines, prosthetic and non-dominant limbs are represented by dashed 

lines.  Downward facing arrows at the x-axis represent the predicted asymmetries 

corresponding to minima stance time variability.  A cubic trend best explained the 

relationship between stance time variability and asymmetry.  The preferred asymmetry 

for subjects with amputation (upward facing triangles with horizontal error bars) was not 

significantly different than asymmetries corresponding to minima for stance variability 

for the prosthetic and intact limbs.  The preferred asymmetry for able-bodied subjects 

(downward facing triangles with horizontal error bars) was not significantly different 

than asymmetries corresponding to minima for minima for stance variability for the 

dominant and non-dominant limbs. 
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6.5 Discussion 

The purpose of this study was to determine the effect of inter-limb asymmetry on 

gait stability in people with and without unilateral lower limb amputation.  Our 

hypothesis about stance time asymmetry for each group was supported, but our 

hypotheses about gait stability across asymmetry conditions, and the asymmetry 

conditions corresponding to the greatest stability between limbs were not supported for 

the margin of stability and step width variability measures but were supported for the step 

length and stance time variability measures.  Subjects with amputation had greater stance 

time asymmetry (i.e., more time on intact limb relative to the prosthetic limb) compared 

with able-bodied subjects, as predicted.  However, rather than finding maximum gait 

stability at the preferred asymmetry conditions for the margin of stability measures, all 

stability metrics actually exhibited minima within the experimental range, expect for 

medial-lateral margin of stability, for which linear trends were found.  Several of the 

predicted minima for the stability metrics were not significantly different than the 

preferred asymmetry values; however, these results should be viewed cautiously.  Given 

the small sample size, combined with the presence of some medium to very large effect 

sizes, it is possible this study did not have adequate statistical power to detect some 

significant differences.     

Subjects with unilateral amputation chose to walk with more time on the intact 

limb compared with prosthetic limb, which agrees with previous literature (Isakov et al., 

2000; Sadeghi et al., 2001; Sanderson & Martin, 1997).  Able-bodied subjects preferred 

more time on the dominant limb versus non-dominant limb, on average (Vanden-Abeele, 

1980), but the degree of asymmetry was less than 1% for the able-bodied subjects.  Some 
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able-bodied subjects preferred more time on the non-dominant limb compared with the 

dominant limb, therefore did not demonstrate a consistent asymmetry direction like 

people with amputation.  

 A U-shaped quadratic trend best explained the relationship of gait stability and 

asymmetry for all stability measures except for the medial-lateral margin of stability and 

step width variability.  The linear trend for the medial-lateral margin of stability and step 

width variability may be due to a consistent step width across conditions for each limb 

(Appendix A).  A consistent step width may regulate the margin of stability, particularly 

for subjects with amputation, to have set margin of safety for limb.  The medial margin of 

stability being greater for the prosthetic limb compared with the other limbs, may be the 

result of a prosthesis’s limitations in the medial-lateral direction.  The predicted 

asymmetries corresponding to minima of the gait stability metrics are, with some 

exceptions (e.g., backwards margin of stability for the prosthetic limb), generally close 

approximations of the actual preferred stance time asymmetries for both groups.  We 

originally predicted maxima of stability to occur with preferred walking for the margin of 

stability measures because we thought people would have the greatest resistance to 

perturbation, and therefore, the safest gait pattern.  It may be the case that preferred 

walking is perceived by the individual as the gait pattern with the least likelihood of 

falling, and therefore a minimum margin of stability is utilized in the backwards 

direction.  Therefore the stance time asymmetries corresponding to the minima are near 

the preferred asymmetries.  Furthermore, if subjects walk with non-preferred inter-limb 

stance timing, perceived safety may decrease directly with the amount asymmetry away 

from preferred and subjects utilize greater margins of stability to avoid a fall.  While the 
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individual statistical comparisons of preferred and predicted asymmetry from minimum-

stability must be viewed cautiously, for most variables, the magnitude of asymmetry for 

subjects with amputation appear greater than for the able-bodied subjects, meaning 

subjects with amputation might optimize stability by utilizing inter-limb asymmetry. 

There are no direct comparisons between our findings and how stance time 

asymmetry effects gait stability in previous literature, because we are the first to examine 

this across preferred and non-preferred asymmetries.  We cannot compare our non-

preferred conditions but can compare our preferred conditions with previous literature.  

Our findings at the preferred condition are in agreement with previous literature that 

found greater medial-lateral margin of stability for subjects with unilateral transtibial 

amputation compared with able-bodied subjects (Gates et al., 2013; Hak et al., 2013).  

We found significantly greater medial-lateral margin of stability on the prosthetic limb 

compared with the intact limb, while another study found greater medial-lateral margin of 

stability on the intact limb compared with the prosthetic limb (Gates et al., 2013).  Our 

findings at the preferred condition do not agree with previous literature for the backwards 

margin of stability.  We found greater backwards margin of stability for subjects with 

amputation compared with able-bodied subjects, but another study found greater 

backwards margin of stability for able-bodied individuals compared with subjects with 

amputation (Hak et al., 2013).  The difference in findings between our study and others 

may be due to the step length differences between groups, with greater step lengths for 

able-bodied subjects compared with subjects with amputation (Appendix A).  Greater 

step length can lower the margin of stability and therefore the lower values for able-

bodied subjects in our findings.  Aside from step length, gait speed can affect backwards 
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margin of stability.  Backwards margin of stability in people with unilateral transtibial 

amputation has been shown to be lesser at slower speeds (Wedge et al., 2017), while 

medial-lateral margin of stability does not change with speed (Hak et al., 2012).  Some 

studies have controlled gait speed between groups (Gates et al., 2013), while others have 

not (Hak at al., 2013).  People with amputation usually walk slower than people without 

amputation, which is what we found for our subjects, and therefore can affect the 

backwards margin of stability.  To compensate for effect of slower walking speed on 

backwards margin of stability, people with amputation may take shorter strides to 

increase the margin of stability.  Gait variability has been shown to be minimized at 

preferred walking speed (Jordan et al., 2007).  The difference in findings between our 

study and others could also be the result of inter-subject variability for people with 

amputation, due to each person having different residual limbs and prostheses.  

The predicted asymmetries occurring at minima for the backwards margin of 

stability measure, rather than maxima, may indicate that stability is balanced with other 

objectives such as metabolic energy expenditure.  If preferred asymmetries occurred at 

maximum stability, there could be a greater metabolic energy expenditure, leading to a 

stable yet metabolic costly gait.  Previous work has theorized there is a trade-off between 

metabolic energy expenditure and stability depending on task goals (Monsch et al., 

2012).  In that study, when able-bodied subjects walked at a set speed with a more 

conservative, stable pattern, it led to greater metabolic cost, while walking with a more 

risky, less stable pattern, led to less metabolic energy expenditure.  Preferred walking 

patterns for people with and without amputation may feel safer than walking with non-

preferred patterns.  Therefore when constrained to walk with non-preferred patterns, 
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people utilize greater stability than preferred patterns by increasing the margin of safety 

and may also have greater metabolic energy expenditure compared with preferred.  

Further investigation is warranted in people with and without amputation to understand 

how gait stability, metabolic energy expenditure, and other factors such as joint loading 

and smoothness, are balanced when walking with preferred and non-preferred gait 

patterns. 

Subjects with and without amputation had the least magnitude of step width, step 

length and stance time variability when walking during the preferred condition compared 

with the non-preferred experimental conditions (Figures 6.4-6).  Similar to the backwards 

margin of stability findings, subjects may have felt safest (i.e., least chance of falling) 

when walking with preferred gait patterns and therefore demonstrated lesser variability 

than non-preferred patterns.  Greater variability with these measures has been correlated 

to greater fall risk (Maki, 1997; Hausdorff et al., 2001), but the subjects in this study did 

not have a history of falls, so this same correlation cannot be made.  Even without this 

correlation, there may be different stability strategies used by people with amputation 

compared with able-bodied individuals, and warrants further investigation in future 

studies. 

 A limitation of this study was the sample size.  Even with a small sample size, 

subjects with amputation demonstrated more time on the intact limb than the prosthetic 

limb, which is in agreement with previous literature.  Most of the stability measures 

demonstrated curvilinear trends with minima, not maxima, that corresponded to 

asymmetries that are near the preferred asymmetries.  We cannot definitively state that 

subjects are selecting preferred patterns to minimize any of these stability measures 
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because of potential statistical power issues, and possibly, people do not select patterns 

that would minimize these measures.  However, the results overall, with predicted 

minima at positive asymmetry, and being greater for subjects with amputation compared 

able-bodied subjects, suggests people may select patterns that minimize these measures.  

Another limitation in this study was that 2 subjects were collected at a different site.  An 

effort was made to ensure consistency between sites and the 2 subjects that were 

collected at a different site, showed the same trends as the other subjects. 

The purpose of this study was to understand the effects of inter-limb asymmetry 

on gait stability.  Medial-lateral and backwards margin of stability were quantified 

because they represent the control of the center of mass motion relative to foot 

placement, which may be critical for gait stability (Bruijn & van Dieėn, 2018).  Step 

length, step width and stance time variabilities represent kinematic consistency, and there 

may be a higher probability of falls with greater variability, but this conclusion cannot be 

made from our findings.  Gait stability may be one of the factors that determine preferred 

gait patterns, but other measures such metabolic energy expenditure, smoothness and 

joint loading may influence how preferred patterns emerge.  The preferred walking 

patterns were asymmetrical, and asymmetrical patterns were predicted for most measures, 

so maybe inter-limb asymmetry should not be viewed negatively when rehabilitating 

from an injury.   

 

 

 



 

113 

 

CHAPTER 7 

GENERAL DISCUSSION 

7.1 Introduction 

The purpose of this dissertation was to determine how metabolic energy 

expenditure and gait stability are affected by inter-limb gait asymmetry in people with 

and without unilateral transtibial amputation.  People with amputation generally have 

greater metabolic energy expenditure compared with able-bodied individuals, as well as 

increased fall incidence.  People with unilateral amputations typically have asymmetries 

between the prosthetic and intact limbs for temporal-spatial, kinematic, and kinetic stride 

measures, while able-bodied individuals generally demonstrate inter-limb symmetry for 

the same measures.  One of the most consistent findings in the literature is that people 

with unilateral lower limb amputation spend more time on the intact limb compared with 

the prosthetic limb, even when prescribed a high-function, energy-storage-and-energy-

return passive prosthesis.  Gait asymmetries in people who use a passive prosthesis 

unilaterally may simply result from the altered anatomy of the residual limb and a passive 

prosthesis not functioning like a biological limb.  Restoring symmetry is often a goal of 

rehabilitation and assistive devices, yet the gait differences for people with unilateral 

amputation relative to able-bodied walkers could in fact be optimal for metabolic energy 

expenditure and stability.  How preferred patterns emerge after an injury is of interest 

because of the potential effects on rehabilitation and rehabilitative devices. 
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7.2 Role of cost of transport and preferred gait patterns 

The aim of study 1 (chapter 5) was to understand the effects of inter-limb stance 

time asymmetry on net cost of transport in people with and without unilateral transtibial 

amputation.  A goal of study 1 was to estimate the stance time asymmetry resulting in 

minimum net cost of transport and compare it to the preferred asymmetry in order to 

understand the influence of metabolic energy expenditure on preferred gait patterns.  We 

recruited 7 relatively fit and young adults with unilateral transtibial amputation that 

resulted from non-vascular causes, and 7 able-bodied subjects that matched height, mass 

and age as best as possible.  The subjects walked at their preferred overground walking 

speed on a treadmill while using preferred and non-preferred stance time asymmetries 

during 2 sessions, and metabolic energy expenditure was determined from pulmonary gas 

exchange during the second session.  Subjects with amputation had greater stance time 

asymmetry (4.3% more time on intact compared with prosthetic limb, on average) 

compared with able-bodied subjects (<1% more time on dominant limb compared with 

non-dominant limb).  This finding for subjects with amputation is in agreement with 

previous literature that has consistently shown people with amputation prefer more time 

on the intact compared with prosthetic limb.  Able-bodied subjects spending slightly 

more time on the dominant compared with the non-dominant limb on average has been 

shown previously, but limb dominance does not consistently explain inter-limb stance 

timing in able-bodied subjects.  For both groups, the asymmetry predicted to yield the 

minimum-cost of transport was not significantly different from preferred asymmetry.  

However, this last result should be viewed cautiously, as this study may not have been 

adequately powered to detect such differences due to the small sample size.  Although the 
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study may not have been adequately powered, the asymmetries predicted to yield the 

minimum-cost of transport for both groups were in the same direction (i.e., greater 

asymmetry for subjects with amputation compared with able-bodied subjects) as the 

preferred asymmetries.  This was the first study that evaluated cost of transport in people 

with amputation walking with symmetrical stance timing, as well as other non-preferred 

asymmetrical patterns.  Since cost of transport was least with preferred walking for both 

groups, it may play a role in how preferred patterns emerge in people with and without 

amputation, and thus walking asymmetrically may be optimal for people with lower limb 

amputation, and walking symmetrically may be optimal for able-bodied individuals.   

7.3 Role of gait stability and preferred gait patterns 

The aim of study 2 (chapter 6) was to determine the effects of inter-limb 

asymmetry on gait stability in people with and without unilateral lower limb amputation.  

A goal of study 2 was to estimate the stance time asymmetries corresponding to the 

optima for several measures of gait stability and compare them to the preferred 

asymmetry in order to understand the influence of gait stability on preferred gait patterns.  

It was hypothesized that subjects would be most stable at preferred stance time 

asymmetry.  The same subjects from study 1 performed the same conditions as study 1 

while motion capture was used to determine the movement of the pelvis and both feet.  

The motion data was used to quantify gait stability, represented by the medial-lateral and 

backwards margin of stability, step width variability, step length variability and stance 

time variability.  Most of the stability metrics exhibited minima within the experimental 

range, expect for medial-lateral margin of stability and step width variability, for which 

linear trends were found.  These results indicate that during preferred conditions, subjects 
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may minimize stability while walking with preferred inter-limb stance timing, and 

therefore many of the stability metrics had their lowest values near the preferred 

conditions.  It may be that the gait changes associated with increasing stability when 

walking with non-preferred asymmetry lead to greater metabolic cost, making those gait 

patterns undesirable unless they are necessary to prevent a fall.  Several of the predicted 

minima for the stability metrics were not significantly different than the preferred 

asymmetry values; however, these results should be viewed cautiously.  Given the small 

sample size, combined with the presence of some medium to very large effect sizes, it is 

possible this study did not have adequate statistical power to detect some significant 

differences. 

7.4 Role of cost of transport and gait stability with preferred gait patterns 

 It is generally accepted that metabolic energy expenditure (i.e., cost or effort) and 

not falling while moving forward (i.e., maintaining stability) are two main performance 

criteria for walking that lead to self-selected locomotor patterns.  It is unclear how 

metabolic energy expenditure and gait stability are prioritized relative other factors such 

as smoothness and joint loading when walking in people with unilateral lower limb 

amputation.  Subjects with amputation preferred more time on the intact limb compared 

with the prosthetic limb, while able-bodied subjects had nearly symmetric stance times 

(slightly more time on the dominant limb compared with the non-dominant limb).  The 

asymmetries predicted to optimize cost of transport and gait stability were generally not 

significantly different than the preferred asymmetries for both groups, but this should be 

viewed cautiously because of limited sample size and medium to large effect sizes for 

some comparisons.  It is possible these studies did not have adequate statistical power to 
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detect some significant differences.  However, the results overall, with predicted minima 

at positive asymmetry, and being greater for subjects with amputation compared to able-

bodied subjects, suggest people may select patterns that minimize these metabolic cost 

and gait stability.  The initial findings from both studies indicate that cost of transport and 

gait stability may play a role with how preferred patterns emerge after unilateral 

transtibial amputation.  Gait stability may be able to be minimized, except in the medial-

direction, to allow for lesser metabolic energy expenditure, while medial-lateral stability 

remains elevated in people with amputation because of a higher likelihood of a lateral fall 

due to prosthesis limitation.  Preferred gait patterns may also be influenced by other 

factors such as smoothness and joint loading.  These are the first studies to examine the 

effect of inter-limb gait asymmetry on metabolic cost and gait stability in people with 

amputation.  Even though we need to be cautious about some of the interpretations, these 

findings warrant further investigation into how preferred patterns emerge in people with 

amputation.  Understanding why preferred patterns are asymmetrical in people with 

unilateral transtibial amputation may provide insights for rehabilitation and assistive 

device design, and also show that an asymmetric gait may be the best result after some 

injuries and do not represent a problem that should be fixed.   

   

7.5 Future directions 

 The subjects with amputation in these studies represent the minority of people 

with amputation.  They were younger, more active and had an amputation from non-

vascular causes.  Most amputations occur because of vascular issues (e.g., diabetes) in 

older people.  The subjects also had a unilateral transtibial amputation, which is the most 
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common level of amputation, but it does not account for transfemoral amputations, which 

are the next most common level, and people with bilateral lower limb amputations.  

Future studies should aim to more generally understand how people with amputation 

determine preferred gait characteristics.  Comparisons need to be made of younger and 

older groups, non-vascular amputation versus vascular amputation, and between different 

levels of amputation.  Even though there are greater mobility challenges for people with 

vascular amputations, there is a greater potential public health impact.  Small changes in 

rehabilitation and devices could lead to greater mobility, better management of other 

comorbidities (e.g., obesity) and could improve quality of life.  This same paradigm of 

understanding the effect of gait asymmetry on metabolic energy expenditure and gait 

stability could be applied to other populations such as total joint arthroplasty and people 

with stroke.  Other factors that influence how preferred patterns emerge, such as joint 

loading and smoothness, should be included in future studies alongside metabolic energy 

expenditure and gait stability.  Understanding why people move differently after an 

injury could lead to more efficient rehabilitation and better overall outcomes.  
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APPENDIX A 

ADDITIONAL FIGURES FOR STUDY 2 

 The variability of step width, step length and stance time are represented as the 

coefficient of variation in the next three figures.  The coefficient of variation accounts for 

the mean of the data and can be a better representation of how variable the data are.  

Standard deviation is most commonly reported in the literature, but may not the best 

representation of data’s variability.  The step width, step length and stance time 

coefficients of variation were similar to the step width, step length, and stance time 

standard deviation.  The prosthetic and intact limbs have closer magnitudes between 

limbs and also closer to the limbs for the subjects without amputation.  The coefficients 

of variation indicate that the prosthetic and intact limbs are less variable than presented 

by standard deviation.  The data can be interpreted as less variable, but the focus of this 

dissertation was to find the predicted asymmetry from the minimum of the measure.  The 

asymmetries that correspond to the minimums for the step length and stance time 

coefficient of variations are similar to the asymmetries predicted from the standard 

deviation.  Therefore, the standard deviation was presented in the main results and 

discussion section. 
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Figure A.1: Step width coefficient of variation. Step width variability, represented by 

coefficient of variation, between subjects with amputation (black) and able-bodied 

subjects (red).  Triangles are mean values with an error bar that is 1 standard deviation.  

Intact and dominant limbs are represented by solid lines, prosthetic and non-dominant 

limbs are represented by dashed lines.  A linear trend best explained the relationship 

between step width variability and asymmetry.     
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Figure A.2: Step length coefficient of variation. Step length variability, represented by 

coefficient of variation, between subjects with amputation (black) and able-bodied 

subjects (red).  Triangles are mean values with an error bar that is 1 standard deviation.  

Intact and dominant limbs are represented by solid lines, prosthetic and non-dominant 

limbs are represented by dashed lines.  Downward facing arrows at the x-axis represent 

the predicted asymmetries corresponding to minima step length variability.  A quadratic 

trend best explained the relationship between step length variability and asymmetry.   
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Figure A.3: Stance time coefficient of variation. Stance time variability, represented by 

coefficient of variation, between subjects with amputation (black) and able-bodied 

subjects (red).  Triangles are mean values with an error bar that is 1 standard deviation.  

Intact and dominant limbs are represented by solid lines, prosthetic and non-dominant 

limbs are represented by dashed lines.  Downward facing arrows at the x-axis represent 

the predicted asymmetries corresponding to minima stance time variability.  A quadratic 

trend best explained the relationship between stance time variability and asymmetry.   
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Figure A.4: Step width. Step width between subjects with amputation (black) and able-

bodied subjects (red).  Triangles are mean values with an error bar that is 1 standard 

deviation.  The step width was consistent across conditions for each limb. 
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Figure A.5: Step length. Step length between subjects with amputation (black) and able-

bodied subjects (red).  Triangles are mean values with an error bar that is 1 standard 

deviation.  The step length was lesser for subjects with amputation than able-bodied 

subjects across conditions, which may be accounted for by the slower preferred walking 

speed for people with amputation compared with the able-bodied subjects.  

 

 

 

 

 

 

 



 

126 

 

APPENDIX B 

INFORMED CONSENT DOCUMENT PEOPLE WITH AMPTUTATION 

Consent Form for Participation in a Research Study – Primary 

Participant 

University of Massachusetts Amherst 
 

 

Principal Investigator:   Professor Brian Umberger  

Student Researcher:   Ryan D. Wedge 

Study Title: Metabolic cost and stability of locomotion in people 

with lower limb amputation 

 

 

1. WHAT IS THIS FORM? 

This form is called a Consent Form. It will give you information about the study so you can make 

an informed decision about participation in this research study. 

 

2. WHO IS ELIGIBLE TO PARTICIPATE? 

 

Inclusion criteria  

 

 Healthy people with a unilateral transtibial (i.e., below knee and above ankle) amputation 

that is more than a year old 

 Rated by Medicare guidelines at a K3 or K4 level (i.e., able to walk with variable 

cadences)  

 Between 16 and 50 years old  

 

 

Exclusion criteria  

 Younger than 16 years old or older than 50 years old 
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 Lower limb amputation within the last year 

 Medicare classification of K0, K1 or K2 level  (i.e. non-prosthesis user, household 

walker, low-level community walker, respectively) 

 Chronic pain, arthritis, and other ailments that affect ability to walk, aside from 

amputation. 

 Dysvascular disease (e.g., peripheral arterial disease, diabetes)  

 Confounding medical condition that would place participant at risk (e.g., heart condition) 

 Surgery in the last year or other condition that affects ability to walk  

 

3. WHAT IS THE PURPOSE OF THIS STUDY? 

You are being asked to participate in this research study to help understand the relative 

importance of minimizing energy (effort) and maintaining stability (staying upright) during 

walking in people with and without a unilateral lower limb amputation. The benefits of this 

experiment would be to help with rehabilitation for people with lower limb amputation and 

potentially influence the design of future prosthetic devices. 

 

4. WHERE WILL THE STUDY TAKE PLACE AND HOW LONG WILL IT LAST? 

The study will be conducted at the University of Massachusetts, Amherst in the Biomechanics 

Laboratory located in the Totman building.  The study will take place over two sessions of 

approximately two hours per session. 

 

5. WHAT WILL I BE ASKED TO DO? 

If you agree to take part in this study, you will be asked to walk overground for 400 m and on a 

treadmill for approximately 1 hour on 2 different days. The 2 sessions will be 6-14 days apart. 

Before walking on day 1, you will have your leg lengths measured with a calibrated ruler. While 

walking on the treadmill, you will wear reflective markers at designated locations on the torso, 

arms and legs on both days. The marker locations are: top of the head with a headband, both 

shoulders, both elbows, both wrists, base of the neck, middle of the back, top of the chest bone, 

tops of both hips, front of both hips, low back, outside of both hips, outer portion of the intact 

knee, outer portion of the upper prosthesis aligned with outer intact knee, inner portion of the 

intact knee, inner portion of the upper prosthesis aligned with the inner intact knee, outer portion 

of the intact side ankle and outer portion of the prosthesis ankle aligned with outer intact side, 

inner portion of the intact side ankle and inner portion of the prosthesis ankle aligned with the 

inner intact side, outer portion of both shoes, inner portion of both shoes and tips of both shoes, 4 

markers on a plastic plate placed on both thighs and the intact side lower leg, 4 markers placed on 

the outer portion of the prosthesis socket, and 3 markers on a plastic plate placed on the back of 

both shoes. The reflective markers help capture the motion of your body segments using high-

speed cameras. The markers are secured in place through the use of medical adhesives and 

athletic tape. In addition to the markers, you will wear a thin, low-profile, device inside both of 

your shoes (like an insole) that will be used to provide real time feedback of your walking. On the 

second day, you will also wear head gear that has a mouth piece and tubing attached to it. The 
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oxygen you breathe in and the carbon dioxide you breathe out will be collected from the mouth 

piece and used to determine the amount of energy you are expending. To determine how much 

energy you expend while resting, you will wear the headgear with the mouthpiece and tubing 

during 5 minutes of quiet sitting and 5 minutes of quiet standing. After the sitting and standing 

periods, you will begin the walking trials. When on the treadmill, you will be asked to walk the 

way you prefer and with non-preferred walking patterns. To perform the non-preferred walking 

patterns, you will receive real time visual feedback about the timing of your feet hitting the 

ground and asked to match your walking to a target on the screen. All of the non-preferred 

walking patterns are slightly different timing patterns compared with how you normally walk, 

similar to what you do when walking over uneven ground. We expect that you should be able to 

walk with all of the timing patterns, but any of the conditions can be skipped if you do not feel 

that you can do them. The data collected will not identify you personally. The video footage only 

tracks the motion of the markers on your body and does not record images of you. Photographs 

will be taken of the marker placement on your body, however they will be neck down and will 

not include your face.  Each walking condition will be 5 minutes long followed by 5 minutes of 

seated rest. You will be asked to walk for approximately 35 minutes in total: Preferred walking 

plus 6 non-preferred conditions at 5 minutes each, with 5 minute seated rest after each condition. 

Between the 2 test days, you will be asked to wear an activity monitor (similar to a pedometer) 

for 3 weekdays and 1 weekend day over your dominant leg that is attached to belt worn around 

your waist. You will need to wear the monitor each day during waking hours. The activity 

monitor is small and should not obstruct movement or clothing throughout the day. In addition to 

the monitor, we will ask you to keep a log of when you put the monitor on and when you take it 

off each day.  

 

6. WHAT ARE MY BENEFITS OF BEING IN THIS STUDY?  

You may not directly benefit from this research; however, we hope that your participation in the 

study will help in the development of new rehabilitation procedures and future designs of 

prosthetic devices that will improve the quality of life for people with lower limb amputation. 

 

7.  WHAT ARE MY RISKS OF BEING IN THIS STUDY?  

Any study involving physical activity involves some degree of risk, but we believe that the risks 

associated with this experiment are minimal. You will only be asked to perform movements that 

are part of normal, everyday life. The non-preferred walking patterns are not substantially 

different than your preferred walking patterns as they only represent modest differences in the 

timing of movements between your two legs, such as you might use when walking over uneven 

ground. If you would like to stop walking during a trial, you can grab the handrail located at the 

front of the treadmill and step off the treadmill belt. You will be required to stand and walk 

during the experiment, but breaks will be given between trials, during which you will be allowed 

to sit down. The activity monitor being worn between sessions is small and should not obstruct or 

alter movement throughout the day.  
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While we believe the risks associated with this research study are minimal, a possible 

inconvenience may be the time it takes to complete the study. Another possible risk of the study 

is the potential for skin irritation due to the adhesive used to place the markers on the body. While 

the intensity of the walking tasks will be low and adequate rest between trials will be provided, 

another possible risk is moderate fatigue after completing the sessions. There is a minimal risk for 

a breach of confidentiality. We keep this risk low by storing the information and data you are 

providing in a secure location. Also, the video system used to record the motion of your body 

does not capture personally identifiable features. The video footage only tracks motion of the 

markers on the body and does not record images that could reveal your identity. 

 

8.  WILL I BE COMPENSATED FOR MY TIME SPENT?  

You will be provided monetary compensation of $20.00 total per session, for your participation in 

the study which will take approximately two hours per session for two sessions. If you are 

uncomfortable for any reason and decide to withdraw from the study after the session has begun, 

you will be paid at a rate of $10/hour, rounded to the nearest dollar.  

 

9. HOW WILL MY PERSONAL INFORMATION BE PROTECTED?  

The following procedures will be used to protect the confidentiality of your study records.  The 

researchers will keep all study records (including any codes linked to your data) in a locking file 

cabinet in the Biomechanics Laboratory.   Research records will be labeled with a code.  

Informed consent documents and a master key that links names and codes will be maintained in a 

separate and secure location.  All electronic files (e.g., database, spreadsheet, etc.) containing 

identifiable information will be password protected.  Any computer hosting such files will also 

have password protection to prevent access by unauthorized users.  Only the members of the 

research staff will have access to the passwords.  Upon conclusion of this study, the researchers 

may publish their findings.  Information will be presented in summary format and you will not be 

identified in any publications or presentations without your expressed written consent. 

 

10. WHAT IF I HAVE QUESTIONS? 

Take as long as you like before you make a decision. We will be happy to answer any question 

you have about this study. If you have further questions about this project or if you have a 

research-related problem, you may contact the principal investigator, Professor Brian Umberger 

at the University of Massachusetts Amherst Biomechanics Laboratory (413) 545-1436 or the 

student researcher Ryan Wedge at (860) 581-0055.  If you have any questions concerning your 

rights as a research subject, you may contact the University of Massachusetts, Amherst, Human 

Research Protection Office (HRPO) at (413) 545-3428 or humansubjects@ora.umass.edu. 
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11. CAN I STOP BEING IN THE STUDY? 

You do not have to be in this study if you do not want to.  If you agree to be in the study, but later 

change your mind, you may drop out at any time.  There are no penalties or consequences of any 

kind if you decide that you do not want to participate. 

 

12. WHAT IF I AM INJURED? 

The University of Massachusetts does not have a program for compensating subjects for injury or 

complications related to human subject research, but the study personnel will assist you in getting 

treatment. 

 

13. VIDEO AND PHOTOGRAPHY CONSENT 

I give permission to be photographed and/or videotaped during the study, with the understanding 

that my identity will be decoupled from data, meaning that my face and any identifiable markings 

will be blurred. Audio will not be recorded if videotaped during the study. 

□ Agree 

□ Do not agree  

14. OPTIONAL CONSENT FOR USE OF PARTICIPANT INFORMATION 

□  Check here to give permission to be contacted for potential participation in future studies. 

Your contact information (e-mail and/or phone number) will be kept in either a locked cabinet or 

encrypted computer file accessible only to the study personnel.  

15. SUBJECT STATEMENT OF VOLUNTARY CONSENT 

I have read this form and decided that I will participate in the project described above.  The 

general purposes and particulars of the study as well as possible hazards and inconveniences have 

been explained to my satisfaction.  I understand that I can withdraw at any time.   

________________________  ____________________  __________ 

Participant Signature:   Print Name:    Date: 

 

By signing below I indicate that the participant has read and, to the best of my knowledge, 

understands the details contained in this document and has been given a copy. 

 

_________________________    ____________________  __________ 

Signature of Person   Print Name:    Date: 

Obtaining Consent 
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APPENDIX C 

INFORMED CONSENT DOCUMENT ABLE-BODIED INDIVIDUALS 

Consent Form for Participation in a Research Study – Primary 

Participant 

University of Massachusetts Amherst 
 

 

Principal Investigator:   Professor Brian Umberger  

Student Researcher:   Ryan D. Wedge 

Study Title: Metabolic cost and stability of locomotion in people 

with lower limb amputation 

 

 

1. WHAT IS THIS FORM? 

This form is called a Consent Form. It will give you information about the study so you can make 

an informed decision about participation in this research study. 

 

2. WHO IS ELIGIBLE TO PARTICIPATE? 

 

Inclusion criteria  

 

 Healthy people without amputation 

 Between 16 and 50 years old  

 

Exclusion criteria  

 Younger than 16 years old or older than 50 years old 

 Chronic pain, arthritis, and other ailments that affect ability to walk 

 Dysvascular disease (e.g., peripheral arterial disease, diabetes)  

 Confounding medical condition that would place participant at risk (e.g., heart condition) 

 Surgery in the last year or other condition that affects ability to walk  
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3. WHAT IS THE PURPOSE OF THIS STUDY? 

You are being asked to participate in this research study to help understand the relative 

importance of minimizing energy (effort) and maintaining stability (staying upright) during 

walking in people with and without a unilateral lower limb amputation. The benefits of this 

experiment would be to help with rehabilitation for people with lower limb amputation and 

potentially influence the design of future prosthetic devices. 

 

4. WHERE WILL THE STUDY TAKE PLACE AND HOW LONG WILL IT LAST? 

The study will be conducted at the University of Massachusetts, Amherst in the Biomechanics 

Laboratory located in the Totman building.  The study will take place over two sessions of 

approximately two hours per session. 

 

5. WHAT WILL I BE ASKED TO DO? 

If you agree to take part in this study, you will be asked to walk overground for 400 m and on a 

treadmill for approximately 1 hour on 2 different days. The 2 sessions will be 6-14 days apart. 

Before walking on day 1, you will have your leg lengths measured with a calibrated ruler. While 

walking on the treadmill, you will wear reflective markers at designated locations on the torso, 

arms and legs on both days. While walking on the treadmill, you will wear reflective markers at 

designated locations on the torso, arms and legs on both days. The marker locations are: top of 

the head with a headband, both shoulders, both elbows, both wrists, base of the neck, middle of 

the back, top of the chest bone, tops of both hips, front of both hips, low back, outside of both 

hips, outer portion of the both knees, inner portion of both knees,  outer portion of both ankles, 

inner portion of both ankles, outer portion of both shoes, inner portion of both shoes and tips of 

both shoes, 4 markers on a plastic plate placed on both thighs and lower legs, and 3 markers on a 

plastic plate placed on the back of both shoes. The reflective markers help capture the motion of 

your body segments using high-speed cameras. The markers are secured in place through the use 

of medical adhesives and athletic tape. In addition to the markers, you will wear a thin, low-

profile, device inside both of your shoes (like an insole) that will be used to provide real time 

feedback of your walking. On the second day, you will also wear head gear that has a mouth 

piece and tubing attached to it. The oxygen you breathe in and the carbon dioxide you breathe out 

will be collected from the mouth piece and used to determine the amount of energy you are 

expending. To determine how much energy you expend while resting, you will wear the headgear 

with the mouthpiece and tubing during 5 minutes of quiet sitting and 5 minutes of quiet standing. 

After the sitting and standing periods, you will begin the walking trials. When on the treadmill, 

you will be asked to walk the way you prefer and with non-preferred walking patterns. To 

perform the non-preferred walking patterns, you will receive real time visual feedback about the 

timing of your feet hitting the ground and asked to match your walking to a target on the screen. 

All of the non-preferred walking patterns are slightly different timing patterns compared with 

how you normally walk, similar to what you do when walking over uneven ground. We expect 

that you should be able to walk with all of the timing patterns, but any of the conditions can be 

skipped if you do not feel that you can do them. The data collected will not identify you 
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personally. The video footage only tracks the motion of the markers on your body and does not 

record images of you. Photographs will be taken of the marker placement on your body, however 

they will be neck down and will not include your face.  Each walking condition will be 5 minutes 

long followed by 5 minutes of seated rest. You will be asked to walk for approximately 40 

minutes in total: Preferred walking plus 7 non-preferred conditions at 5 minutes each, with 5 

minute seated rest after each condition. Between the 2 test days, you will be asked to wear an 

activity monitor (similar to a pedometer) for 3 weekdays and 1 weekend day over your dominant 

leg that is attached to belt worn around your waist. You will need to wear the monitor each day 

during waking hours. The activity monitor is small and should not obstruct movement or clothing 

throughout the day. In addition to the monitor, we will ask you to keep a log of when you put the 

monitor on and when you take it off each day.  

 

6. WHAT ARE MY BENEFITS OF BEING IN THIS STUDY?  

You may not directly benefit from this research; however, we hope that your participation in the 

study will help in the development of new rehabilitation procedures and future designs of 

prosthetic devices that will improve the quality of life for people with lower limb amputation. 

 

7.  WHAT ARE MY RISKS OF BEING IN THIS STUDY?  

Any study involving physical activity involves some degree of risk, but we believe that the risks 

associated with this experiment are minimal. You will only be asked to perform movements that 

are part of normal, everyday life. The non-preferred walking patterns are not substantially 

different than your preferred walking patterns as they only represent modest differences in the 

timing of movements between your two legs, such as you might use when walking over uneven 

ground. If you would like to stop walking during a trial, you can grab the handrail located at the 

front of the treadmill and step off the treadmill belt. You will be required to stand and walk 

during the experiment, but breaks will be given between trials, during which you will be allowed 

to sit down. The activity monitor being worn between sessions is small and should not obstruct or 

alter movement throughout the day.  

  

While we believe the risks associated with this research study are minimal, a possible 

inconvenience may be the time it takes to complete the study. Another possible risk of the study 

is the potential for skin irritation due to the adhesive used to place the markers on the body. While 

the intensity of the walking tasks will be low and adequate rest between trials will be provided, 

another possible risk is moderate fatigue after completing the sessions. There is a minimal risk for 

a breach of confidentiality. We keep this risk low by storing the information and data you are 

providing in a secure location. Also, the video system used to record the motion of your body 

does not capture personally identifiable features. The video footage only tracks motion of the 

markers on the body and does not record images that could reveal your identity. 
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8.  WILL I BE COMPENSATED FOR MY TIME SPENT?  

You will be provided monetary compensation of $20.00 total per session, for your participation in 

the study which will take approximately two hours per session for two sessions. If you are 

uncomfortable for any reason and decide to withdraw from the study after the session has begun, 

you will be paid at a rate of $10/hour, rounded to the nearest dollar.  

 

9. HOW WILL MY PERSONAL INFORMATION BE PROTECTED?  

The following procedures will be used to protect the confidentiality of your study records.  The 

researchers will keep all study records (including any codes linked to your data) in a locking file 

cabinet in the Biomechanics Laboratory.   Research records will be labeled with a code.  

Informed consent documents and a master key that links names and codes will be maintained in a 

separate and secure location.  All electronic files (e.g., database, spreadsheet, etc.) containing 

identifiable information will be password protected.  Any computer hosting such files will also 

have password protection to prevent access by unauthorized users.  Only the members of the 

research staff will have access to the passwords.  Upon conclusion of this study, the researchers 

may publish their findings.  Information will be presented in summary format and you will not be 

identified in any publications or presentations without your expressed written consent. 

 

10. WHAT IF I HAVE QUESTIONS? 

Take as long as you like before you make a decision. We will be happy to answer any question 

you have about this study. If you have further questions about this project or if you have a 

research-related problem, you may contact the principal investigator, Professor Brian Umberger 

at the University of Massachusetts Amherst Biomechanics Laboratory (413) 545-1436 or the 

student researcher Ryan Wedge at (860) 581-0055.  If you have any questions concerning your 

rights as a research subject, you may contact the University of Massachusetts, Amherst, Human 

Research Protection Office (HRPO) at (413) 545-3428 or humansubjects@ora.umass.edu. 

 

11. CAN I STOP BEING IN THE STUDY? 

You do not have to be in this study if you do not want to.  If you agree to be in the study, but later 

change your mind, you may drop out at any time.  There are no penalties or consequences of any 

kind if you decide that you do not want to participate. 

 

12. WHAT IF I AM INJURED? 

The University of Massachusetts does not have a program for compensating subjects for injury or 

complications related to human subject research, but the study personnel will assist you in getting 

treatment. 
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13. VIDEO AND PHOTOGRAPHY CONSENT 

I give permission to be photographed and/or videotaped during the study, with the understanding 

that my identity will be decoupled from data, meaning that my face and any identifiable markings 

will be blurred. Audio will not be recorded if videotaped during the study. 

□ Agree 

□ Do not agree  

14. OPTIONAL CONSENT FOR USE OF PARTICIPANT INFORMATION 

□  Check here to give permission to be contacted for potential participation in future studies. 

Your contact information (e-mail and/or phone number) will be kept in either a locked cabinet or 

encrypted computer file accessible only to the study personnel.  

15. SUBJECT STATEMENT OF VOLUNTARY CONSENT 

I have read this form and decided that I will participate in the project described above.  The 

general purposes and particulars of the study as well as possible hazards and inconveniences have 

been explained to my satisfaction.  I understand that I can withdraw at any time.   

________________________  ____________________  __________ 

Participant Signature:   Print Name:    Date: 

By signing below I indicate that the participant has read and, to the best of my knowledge, 

understands the details contained in this document and has been given a copy. 

 

_________________________    ____________________  __________ 

Signature of Person   Print Name:    Date: 

Obtaining Consent 
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APPENDIX D 

ASSENT DOCUMENT 

Assent Form for 16-17 Year Olds 

 

Project Title: Metabolic cost and stability of locomotion in people with lower limb 

amputation 

Principle Investigators: Brian Umberger and Ryan Wedge 

 

What is a research study? 

A research study is a way to find out new information about something. You do not need 

to be in a research study if you do not want to.  

 

Why are you being asked to be part of this research study? 

You are being asked to take part in this research study because we are trying to 

understand more about how people with amputation walk. We are inviting you to be in 

this study because people at 16 years and older, walk in a similar way. About 20 

participants will be in this study. 

 

If you join the study what will you be asked to do? 

If you agree to join this study, we will have you come to the lab for 2 sessions so you can 

walk overground and on a treadmill. The first session will be approximately 90 minutes 

and the second session will be approximately 120 minutes. During both sessions, you will 

be wearing reflective dots, like the ones used to make video games, on your trunk, arms 

and legs so we find out how your body moves when walking. You will also be wearing 

thin inserts for your shoes so we know the time it takes for each step you take. During the 

second session, we will be collecting the air you breathe in and out with a mouthpiece, so 

we can determine how much energy (e.g., calories) you are using. In between the 

sessions, you will wear a small activity tracker each day when awake, so we can measure 

how active you are over one week. 

 

How will being in this study affect me? 

You may get a little tired and sore from walking after each session, but you will be given 

rest between each walking trial to avoid these effects. The markers are attached with tape 

and may irritate your skin. The data we get from this study will be confidential. We will 

never tell anyone your name or that you were part of this study. 
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This study might find out things that will help other people someday. We will use our 

data to write up our results in research papers and share what we learn with other people 

who study walking in people with amputation.  

 

Do your parents know about this study? 

This study was explained to your parents and they said that we could ask you if you want 

to be in it. You can talk this over with them before you decide. If you want to be in the 

study, your parents will need to sign a form too.  

 

Who will see the information collected about you? 

 The information collected about you during this study will be kept safely locked 

up. Nobody will know it except the people doing the research. 

 The study information about you will not be given to your parents. The researches 

will not tell your friends. 

 

What do you get for being in the study? 

You will get $20 for each session (total of $40 for the 2 sessions).  

 

Do you have to be in the study? 

You do not have to be in the study. No one will be upset if you don’t want to do this 

study. If you don’t want to be in this study, you just have to tell us. It’s up to you. You 

can also take more time to think about being in the study.  

 

What if you have any questions? 

You can ask any questions that you may have about the study. If you have a question 

later that you didn’t think of now, you can call Ryan Wedge at (860)-581-0055 or Brian 

Umberger at (413)-545-1436. 

 

You can also take more time to think about being in the study and also talk some more 

with your parents about being in the study.  

 

If you have any concerns about your rights as a research subject, you may contact the 

University of Massachusetts Amherst Human Research Protection Office (HRPO) at 

(413)-545-3428. 

 

Other information about the study: 

If you decide to be in the study, please write your name below. 

 

You can change your mind and stop being part of it at any time. All you have to do is tell 

the person in charge. It’s okay. 
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You will be given a copy of this paper to keep. 

 

If you want to be in this study, please sign your name below. 

 

Signature__________________________________________

 Date___________________ 

 

Participant Name____________________________________

 Date___________________ 

 

Name of Person obtaining consent_______________________

 Date___________________ 
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APPENDIX E 

PARENT PERMISSION FORM-PEOPLE WITH AMPUTATION 

University of Massachusetts Amherst 

 

PARENT PERMISSION FOR MINOR TO PARTICIPATE IN RESEARCH 

 

METABOLIC COST AND STABILITY OF LOCOMOTION IN PEOPLE WITH LOWER 

LIMB AMPUTATION 

 

Professor Brian Umberger PhD (principal investigator) and Ryan Wedge MPT (student 

researcher) from the Department of Kinesiology at the University of Massachusetts Amherst 

(UMass Amherst) are conducting a research study. 

 

Your child was selected as a possible participant in this study because we are trying to understand 

more about how people with amputation walk. We are inviting your child to be in this study 

because people at 16 years and older, walk in a similar way.  Your child’s participation in this 

research study is voluntary.   

 

Why is this study being done? 

 

Your child is being asked to participate in this research study to help understand the relative 

importance of minimizing energy (effort) and maintaining stability (staying upright) during 

walking in people with and without a one-sided below knee amputation. The benefits of this 

experiment would be to help with rehabilitation for people with lower limb amputation and 

potentially influence the design of future prosthetic devices. 

 

 

What will happen if my child takes part in this research study? 
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If you agree to allow your child to participate in this study, we would ask him/her to: 

 

 Walk overground for 400 m 

 Walk on a treadmill for approximately 1 hour on 2 different days 

 Have your leg lengths measured with a calibrated ruler 

 While walking on the treadmill, you will wear reflective markers at designated 

locations on the torso, arms and legs on both days. The reflective markers help 

capture the motion of your body segments using high-speed cameras. The 

markers are secured in place through the use of medical adhesives and athletic 

tape. The marker locations are:  

o Top of the head with a headband 

o Both shoulders 

o Both elbows 

o Both wrists 

o Base of the neck 

o Middle of the back 

o Top of the chest bone 

o Tops of both hips 

o Front of both hips 

o Low back 

o Outside of  both hips 

o Outer portion of the intact knee 

o Outer portion of the upper prosthesis aligned with outer intact knee 

o Inner portion of the intact knee 

o Inner portion of the upper prosthesis aligned with the inner intact knee 

o Outer portion of the intact side ankle 

o Outer portion of the prosthesis ankle aligned with outer intact side 

o Inner portion of the intact side ankle 

o Inner portion of the prosthesis ankle aligned with the inner intact side 

o Outer portion of both shoes 

o Inner portion of both shoes 

o Tips of both shoes 

o 4 markers on a plastic plate placed on both thighs 

o 4 markers on a plastic plate placed on the intact side lower leg 

o 4 markers placed on the outer portion of the prosthesis socket 

o 3 markers on a plastic plate placed on the back of both shoes 

 

  In addition to the markers, you will wear a thin, low-profile, device inside both 

of your shoes (like an insole) that will be used to provide real time feedback of 

your walking.  

 On the second day, you will also wear head gear that has a mouth piece and 

tubing attached to it. The oxygen you breathe in and the carbon dioxide you 

breathe out will be collected from the mouth piece and used to determine the 

amount of energy you are expending. 
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 To determine how much energy you expend while resting, you will wear the 

headgear with the mouthpiece and tubing during 5 minutes of quiet sitting and 5 

minutes of quiet standing. After the sitting and standing periods, you will begin 

the walking trials.  

 When on the treadmill, you will be asked to walk the way you prefer and with 

non-preferred walking patterns. To perform the non-preferred walking patterns, 

you will receive real time visual feedback about the timing of your feet hitting 

the ground and asked to match your walking to a target on the screen. All of the 

non-preferred walking patterns are slightly different timing patterns compared 

with how you normally walk, similar to what you do when walking over uneven 

ground. We expect that you should be able to walk with all of the timing 

patterns, but any of the conditions can be skipped if you do not feel that you can 

do them. 

 The data collected will not identify you personally. The video footage only 

tracks the motion of the markers on your body and does not record images of 

you.  

 Photographs will be taken of the marker placement on your body, however they 

will be neck down and will not include your face.  

 Each walking condition will be 5 minutes long followed by 5 minutes of seated 

rest. You will be asked to walk for approximately 35 minutes in total: Preferred 

walking plus 6 non-preferred conditions at 5 minutes each, with 5 minute seated 

rest after each condition.  

 Between the 2 test days, you will be asked to wear an activity monitor (similar 

to a pedometer) for 3 weekdays and 1 weekend day over your dominant leg that 

is attached to a belt worn around your waist. You will need to wear the monitor 

each day during waking hours. The activity monitor is small and should not 

obstruct movement or clothing throughout the day.  

 In addition to the monitor, we will ask you to keep a log of when you put the 

monitor on and when you take it off each day. 
 

How long will my child be in the research study? 

 

Participation will take a total of about 4 hours over the course of 2 sessions of approximately 2 

hours per session. The sessions will be 6-14 days apart.  

 

Are there any potential risks or discomforts that my child might experience from 

participating in this study? 

 

Any study involving physical activity involves some degree of risk, but we believe that the 

risks associated with this experiment are minimal. Your child will only be asked to perform 
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movements that are part of normal, everyday life.  The non-preferred walking patterns are not 

substantially different than preferred walking patterns as they only represent modest differences 

in the timing of movements between your two legs, such as when walking over uneven ground. 

If your child would like to stop walking during a trial, they can grab the handrail located in the 

front of the treadmill and step off the treadmill belt. Your child will be required to stand and 

walk during the experiment, but breaks will be given between trials, during which they will be 

allowed to sit down. The activity monitor being worn between sessions is small and should not 

obstruct or alter movement throughout the day. 

 

While we believe the risks associated with this research study are minimal, a possible 

inconvenience may be the time it takes to complete the study. Another possible risk of the study 

is the potential for skin irritation due to the adhesive used to place the markers on the body. 

While the intensity of the walking tasks will be low and adequate rest between trials will be 

provided, another possible risk is moderate fatigue after completing the sessions. There is a 

minimal risk for a breach of confidentiality. We keep this risk low by storing the information 

and data you are providing in a secure location. Also, the video system used to record the 

motion of your child’s body does not capture personally identifiable features. The video footage 

only tracks motion of the markers on the body and does not record images that could reveal 

their identity. 

 

Will my child receive compensation for participating?  

 

Your child will receive monetary compensation of $20.00 total per session for two sessions. If 

your child is uncomfortable for any reason and decides to withdraw from the study after the 

session has begun, they will be paid at a rate of $10/hour, rounded to the nearest dollar. 

 

How will information about my child’s participation be kept confidential? 

 

Any information that is obtained in connection with this study and that can identify your child 

will remain confidential. It will be disclosed only with your permission or as required by law. 

Confidentiality will be maintained by means of keeping all study records (including any codes 

linked to your data) in a locking file cabinet in the Biomechanics Laboratory. Research records 

will be labeled with a code. Parental consent and minor assent documents and a master key that 

links names and codes will be maintained in a separate and secure location.  All electronic files 

(e.g., database, spreadsheet, etc.) containing identifiable information will be password protected.  

Any computer hosting such files will also have password protection to prevent access by 

unauthorized users.  Only the members of the research staff will have access to the passwords. 
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Upon conclusion of this study, the researchers may publish their findings.  Information will be 

presented in summary format and you will not be identified in any publications or presentations 

without your expressed written consent. 

 

What are my and my child’s rights if he or she takes part in this study? 

 

 You can choose whether or not you want your child to be in this study, and you may 

withdraw your permission and discontinue your child’s participation at any time. 

 Whatever decision you make, there will be no penalty to you or your child, and no loss of 

benefits to which you or your child were otherwise entitled.   

 Your child may refuse to answer any questions that he/she does not want to answer and still 

remain in the study. 

 

Who can I contact if I have questions about this study? 

 

 The research team:   

If you have any questions, comments or concerns about the research, you can talk to the one 

of the researchers. Please contact the principal investigator, Professor Brian Umberger at the 

University of Massachusetts Amherst Biomechanics Laboratory (413) 545-1436 or the 

student researcher Ryan Wedge at (860) 581-0055. 

 

 UMass Amherst Human Research Protection Office (HRPO): 

If you have questions about your child’s rights while taking part in this study, or you 

have concerns or suggestions and you want to talk to someone other than the researchers 

about the study, please call the HRPO at (413) 545-3428 or email 

humansubjects@ora.umass.edu 

 

You will be given a copy of this information to keep for your records. 
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SIGNATURE OF PARENT OR LEGAL GUARDIAN 

 

        

Name of Child   

 

 

        

Name of Parent or Legal Guardian 

 

 
 

 

             

Signature of Parent or Legal Guardian   Date 

 

SIGNATURE OF PERSON OBTAINING CONSENT 

 

 

             

Name of Person Obtaining Consent  Contact Number 

 

             

Signature of Person Obtaining Consent  Date 
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APPENDIX F 

PARENT PERMISSION FORM-ABLE-BODIED INDIVIDUALS 

University of Massachusetts Amherst 

 

PARENT PERMISSION FOR MINOR TO PARTICIPATE IN RESEARCH 

 

METABOLIC COST AND STABILITY OF LOCOMOTION IN PEOPLE WITH LOWER 

LIMB AMPUTATION 

 

Professor Brian Umberger PhD (principal investigator) and Ryan Wedge MPT (student 

researcher) from the Department of Kinesiology at the University of Massachusetts Amherst 

(UMass Amherst) are conducting a research study. 

 

Your child was selected as a possible participant in this study because we are trying to understand 

more about how people with amputation walk. We are inviting your child to be in this study 

because people at 16 years and older, walk in a similar way.  Your child’s participation in this 

research study is voluntary.   

 

Why is this study being done? 

 

Your child is being asked to participate in this research study to help understand the relative 

importance of minimizing energy (effort) and maintaining stability (staying upright) during 

walking in people with and without a one-sided below knee amputation. The benefits of this 

experiment would be to help with rehabilitation for people with lower limb amputation and 

potentially influence the design of future prosthetic devices. 

 

 

What will happen if my child takes part in this research study? 
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If you agree to allow your child to participate in this study, we would ask him/her to: 

 

 Walk overground for 400 m 

 Walk on a treadmill for approximately 1 hour on 2 different days 

 Have your leg lengths measured with a calibrated ruler 

 While walking on the treadmill, you will wear reflective markers at designated 

locations on the torso, arms and legs on both days. The reflective markers help 

capture the motion of your body segments using high-speed cameras. The 

markers are secured in place through the use of medical adhesives and athletic 

tape. The marker locations are:  

o Top of the head with a headband 

o Both shoulders 

o Both elbows 

o Both wrists 

o Base of the neck 

o Middle of the back 

o Top of the chest bone 

o Tops of both hips 

o Front of both hips 

o Low back 

o Outside of  both hips 

o Outer portion of the intact knee 

o Outer portion of the upper prosthesis aligned with outer intact knee 

o Inner portion of the intact knee 

o Inner portion of the upper prosthesis aligned with the inner intact knee 

o Outer portion of the intact side ankle 

o Outer portion of the prosthesis ankle aligned with outer intact side 

o Inner portion of the intact side ankle 

o Inner portion of the prosthesis ankle aligned with the inner intact side 

o Outer portion of both shoes 

o Inner portion of both shoes 

o Tips of both shoes 

o 4 markers on a plastic plate placed on both thighs 

o 4 markers on a plastic plate placed on both lower legs 

o 3 markers on a plastic plate placed on the back of both shoes 

 

  In addition to the markers, you will wear a thin, low-profile, device inside both 

of your shoes (like an insole) that will be used to provide real time feedback of 

your walking.  

 On the second day, you will also wear head gear that has a mouth piece and 

tubing attached to it. The oxygen you breathe in and the carbon dioxide you 

breathe out will be collected from the mouth piece and used to determine the 

amount of energy you are expending. 



 

147 

 

 To determine how much energy you expend while resting, you will wear the 

headgear with the mouthpiece and tubing during 5 minutes of quiet sitting and 5 

minutes of quiet standing. After the sitting and standing periods, you will begin 

the walking trials.  

 When on the treadmill, you will be asked to walk the way you prefer and with 

non-preferred walking patterns. To perform the non-preferred walking patterns, 

you will receive real time visual feedback about the timing of your feet hitting 

the ground and asked to match your walking to a target on the screen. All of the 

non-preferred walking patterns are slightly different timing patterns compared 

with how you normally walk, similar to what you do when walking over uneven 

ground. We expect that you should be able to walk with all of the timing 

patterns, but any of the conditions can be skipped if you do not feel that you can 

do them. 

 The data collected will not identify you personally. The video footage only 

tracks the motion of the markers on your body and does not record images of 

you.  

 Photographs will be taken of the marker placement on your body, however they 

will be neck down and will not include your face.  

 Each walking condition will be 5 minutes long followed by 5 minutes of seated 

rest. You will be asked to walk for approximately 35 minutes in total: Preferred 

walking plus 6 non-preferred conditions at 5 minutes each, with 5 minute seated 

rest after each condition.  

 Between the 2 test days, you will be asked to wear an activity monitor (similar 

to a pedometer) for 3 weekdays and 1 weekend day over your dominant leg that 

is attached to a belt worn around your waist. You will need to wear the monitor 

each day during waking hours. The activity monitor is small and should not 

obstruct movement or clothing throughout the day.  

 In addition to the monitor, we will ask you to keep a log of when you put the 

monitor on and when you take it off each day. 
 

How long will my child be in the research study? 

 

Participation will take a total of about 4 hours over the course of 2 sessions of approximately 2 

hours per session. The sessions will be 6-14 days apart.  

 

Are there any potential risks or discomforts that my child might experience from 

participating in this study? 

 

Any study involving physical activity involves some degree of risk, but we believe that the 

risks associated with this experiment are minimal. Your child will only be asked to perform 
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movements that are part of normal, everyday life.  The non-preferred walking patterns are not 

substantially different than preferred walking patterns as they only represent modest differences 

in the timing of movements between your two legs, such as when walking over uneven ground. 

If your child would like to stop walking during a trial, they can grab the handrail located in the 

front of the treadmill and step off the treadmill belt. Your child will be required to stand and 

walk during the experiment, but breaks will be given between trials, during which they will be 

allowed to sit down. The activity monitor being worn between sessions is small and should not 

obstruct or alter movement throughout the day. 

 

While we believe the risks associated with this research study are minimal, a possible 

inconvenience may be the time it takes to complete the study. Another possible risk of the study 

is the potential for skin irritation due to the adhesive used to place the markers on the body. 

While the intensity of the walking tasks will be low and adequate rest between trials will be 

provided, another possible risk is moderate fatigue after completing the sessions. There is a 

minimal risk for a breach of confidentiality. We keep this risk low by storing the information 

and data you are providing in a secure location. Also, the video system used to record the 

motion of your child’s body does not capture personally identifiable features. The video footage 

only tracks motion of the markers on the body and does not record images that could reveal 

their identity. 

 

Will my child receive compensation for participating?  

 

Your child will receive monetary compensation of $20.00 total per session for two sessions. If 

your child is uncomfortable for any reason and decides to withdraw from the study after the 

session has begun, they will be paid at a rate of $10/hour, rounded to the nearest dollar. 

 

How will information about my child’s participation be kept confidential? 

 

Any information that is obtained in connection with this study and that can identify your child 

will remain confidential. It will be disclosed only with your permission or as required by law. 

Confidentiality will be maintained by means of keeping all study records (including any codes 

linked to your data) in a locking file cabinet in the Biomechanics Laboratory. Research records 

will be labeled with a code. Parental consent and minor assent documents and a master key that 

links names and codes will be maintained in a separate and secure location.  All electronic files 

(e.g., database, spreadsheet, etc.) containing identifiable information will be password protected.  

Any computer hosting such files will also have password protection to prevent access by 

unauthorized users.  Only the members of the research staff will have access to the passwords. 
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Upon conclusion of this study, the researchers may publish their findings.  Information will be 

presented in summary format and you will not be identified in any publications or presentations 

without your expressed written consent. 

 

What are my and my child’s rights if he or she takes part in this study? 

 

 You can choose whether or not you want your child to be in this study, and you may 

withdraw your permission and discontinue your child’s participation at any time. 

 Whatever decision you make, there will be no penalty to you or your child, and no loss of 

benefits to which you or your child were otherwise entitled.   

 Your child may refuse to answer any questions that he/she does not want to answer and still 

remain in the study. 

 

Who can I contact if I have questions about this study? 

 

 The research team:   

If you have any questions, comments or concerns about the research, you can talk to the one 

of the researchers. Please contact the principal investigator, Professor Brian Umberger at the 

University of Massachusetts Amherst Biomechanics Laboratory (413) 545-1436 or the 

student researcher Ryan Wedge at (860) 581-0055. 

 

 UMass Amherst Human Research Protection Office (HRPO): 

If you have questions about your child’s rights while taking part in this study, or you 

have concerns or suggestions and you want to talk to someone other than the researchers 

about the study, please call the HRPO at (413) 545-3428 or email 

humansubjects@ora.umass.edu 

 

You will be given a copy of this information to keep for your records. 
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SIGNATURE OF PARENT OR LEGAL GUARDIAN 

 

        

Name of Child   

 

 

        

Name of Parent or Legal Guardian 

 

 
 

 

             

Signature of Parent or Legal Guardian   Date 
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