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ABSTRACT 

MODELING FIRE OBSERVATIONS, IGNITION SOURCES, AND NOVEL FUELS TO UNDERSTAND 
HUMAN IMPACTS ON FIRE REGIMES ACROSS THE UNITED STATES 

 
MAY 2019 

 
EMILY J. FUSCO, B.A., UNIVERSITY OF NORTH CAROLINA WILMINGTON 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Bethany A. Bradley 

 
Fire is a natural, and necessary, component of many ecosystems. However, people are 

changing the spatial and temporal distribution of wildfires in the U.S. at great economic and 

ecological costs. My dissertation addresses the impacts of humans on U.S. fires both through the 

introduction of ignition sources and flammable grasses. Further, I evaluate fire datasets that are 

widely used to investigate these phenomena over large spatial and temporal scales. Finally, I 

create an aboveground carbon map that can be used to estimate the potential carbon loss 

consequences in western U.S. ecosystems most at risk to fire.    

My work shows that humans ignited more than 77% of fires in seven western U.S. 

ecoregions, and when modeling human ignited fires, I found that the importance of ignition 

proxies varied considerably among ecoregions. In 21 ecoregions across the U.S., I found that 

eight species of non-native invasive grasses increased rates of fire occurrence by 27%-230%, and 

six species increased rates of fire frequency by 24%-150%. I also quantified differences in 

commonly used satellite derived and agency recorded fire records and found they were 

disparate across the U.S., suggesting that great care should be taken when deciding which fire 

database to use when analyzing human impacts on fire regimes. Finally, the new estimates I 

provide for aboveground carbon in semi-arid western U.S. ecosystems are roughly double that 
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of previous estimates; indicating that potential carbon losses from fire in these ecosystems are 

much larger than originally thought.  

I conclude that fire ignitions from human sources, and the alteration of fuels through 

the introduction of non-native, invasive grasses, have already dramatically impacted fire regimes 

across the U.S. These impacts are presently and will continue to be compounded by climate 

change. My dissertation suggests that we must consider human impacts on ignitions, 

vegetation, and their interaction with climate to most effectively manage, predict, and live with 

fire.  
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CHAPTER 1 
 

DETECTION RATES AND BIASES OF FIRE OBSERVATIONS FROM MODIS AND AGENCY REPORTS 

IN THE CONTERMINUOUS UNITED STATES 

1.1 Abstract 

With growing concern about the impacts of fires on ecosystems and economies, satellite 

products are increasingly being used to understand fire regimes. Concurrently, where available, 

agency records of fires have also been used to assess fire regimes. Yet, it remains unclear if 

these independent datasets measure the same fires, which raises concerns about the 

interpretation and benchmarking of models derived from these products. Here, we present a 

novel product intercomparison of the MODIS burned area and active fire products across the 

conterminous United States using nearly 250,000 agency reported wildfires as reference data to 

model consistencies and inconsistencies between all three datasets. We compared agency 

reported wildfires from the Fire Program Analysis fire occurrence database to the MODIS 

products to identify which fires were detected vs. omitted by MODIS products relative to agency 

fire records, and by agency fire records relative to MODIS. We created generalized linear models 

as a function of fire attributes (e.g. size) and environmental variables (e.g. cloud cover) to 

predict MODIS detection of agency wildfires, and anthropogenic variables (e.g. agriculture) to 

predict agency detection of MODIS fires. We modeled fire detection probability separately for 

MODIS burned area and active fire products, and for the eastern and western U.S. Overall, we 

found that MODIS product detection rates ranged from 3.5% to 23.4% of all documented agency 

wildfires>1ha, and that likelihood of detection increased with fire size. Agency detection rates 

ranged from 23.5% to 48% of MODIS burned area and active fires. Under ideal conditions, the 

MODIS active fire product had a 50% probability of detecting a wildfire that grew to at least 
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10ha (eastern U.S.) – 78ha (western U.S.), while the burned area product had a 50% probability 

of detecting a wildfire that grew to at least 169ha (eastern U.S.) –234ha (western U.S.). Cloud 

cover and leaf area index were significant predictors of MODIS fire detection, while state 

boundaries were significant predictors of agency fire detection. This analysis presents an 

important assessment of the fire attributes and ground conditions that influence MODIS fire 

detection relative to extensive and increasingly used ground-based wildfire records. The large 

discrepancy in records of fire occurrence between MODIS and agency fire datasets highlights the 

need for this type of analysis into the types of fires likely to be included in each database. 

1.2 Introduction 

Current understanding of modern fire regimes relies heavily on fire data derived from 

remotely sensed satellite images. The Moderate Resolution Imaging Spectrometer (MODIS) 

active fire and burned area products are widely used to assess the interplay between fire and 

climate (e.g. Krawchuk et al.,2009; Langmann et al., 2009; Hantson et al., 2015), human land use 

(e.g. Archibald et al., 2008; Syphard et al., 2009), and ecosystems (e.g. Giglio et al., 2006; 

Archibald et al., 2010) in order to predict fire risk (Gillespie et al., 2007), and quantify emissions 

(van der Werf et al., 2010). However, estimates by different satellite fire products of fire counts 

and area burned vary by thousands of hectares (e.g. Chang and Song, 2009; Loepfe et al., 2012), 

suggesting these sensors are detecting different types of fire events, or providing different 

representations of the same events due to omission and commission errors. Attempts have 

been made to validate MODIS fire products primarily using other remotely sensed data (e.g. 

Korontzi et al., 2004; Schroeder et al., 2008; Padilla et al., 2015), however, a lack of consistent 

ground-based data has made independent assessment from ground-based fire observations 

difficult (e.g. Hawbaker et al., 2008; Boschetti et al., 2016). With wildfires increasing over large 
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portions of the conterminous U.S. (Westerling et al., 2006; Westerling, 2016), a better 

understanding of the limitations of satellite fire products is needed.  

Moderate resolution satellite data, including the MODIS burned area and active fire 

products, are typically validated using data from finer resolution sensors such as the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) or Landsat. Satellite-based 

validation is used both to compare number of fires (fire occurrence) as well as area burned. 

However, because ASTER and MODIS are on the same platform (Justice et al., 2002), they are 

both more likely to detect fire events occurring during the satellite overpass time, while possibly 

both missing fires burning at different times of day (Cardoso et al., 2005; Hawbaker et al., 2008). 

The potential for both sensors to miss fires that do not match the overpass time could inflate 

accuracy estimates (Cardoso et al., 2005). While Landsat satellites do not have the same 

overpass time as MODIS, the long interval between images (8–16days) limits Landsat detection 

to only those fires that are large enough to leave a burn scar (Hawbaker et al., 2008). Even 

validation with daily satellites (e.g. TRMM) faces similar detection limitations due to different 

overpass times (van der Werf et al., 2003). Moreover, reliance on satellite to satellite validation 

potentially introduces other unknown biases by only focusing on the subset of fires detectable 

remotely (Cardoso et al., 2005; Csiszar et al., 2006).  

Despite these limitations, satellite validation of satellite fire products remains a 

standard approach for evaluating records of fire occurrence because independent fire records 

collected on the ground are lacking. When evaluating detection rates for fire occurrence, one 

global analysis reported MODIS active fire detection rates ranging from 100% in South Africa to 

80% in Kazakhstan using Landsat reference fires> 500ha (Hantson et al., 2013). However, when 

fires as small as 10ha were included, detection rates decreased and ranged from 76% in Canada 

to 14% in South Africa (Hantson et al., 2013). In the U.S., the MODIS active fire product detected 
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82% of Landsat reference fires ranging from roughly 20 to 50,000ha (Hawbaker et al., 2008). 

While the MODIS burned area product is typically evaluated in terms of overall burned area 

agreement (e.g. Padilla et al., 2015; Zhu et al., 2017), one validation based on fire occurrence 

found detection rates ranging from 10 to 62% using Landsat reference fire perimeters across 

study sites in South Africa (Tsela et al., 2014). The wide range of detection accuracies for fire 

occurrence revealed in these studies for both MODIS products highlights the need for continued 

work to understand when, where, and what type of fires MODIS is most likely to identify. 

Validation of satellite data using ground observations is less common because ground 

validation is both time consuming and costly, particularly at extensive spatial scales (Boschetti et 

al., 2016). Notable exceptions have included MODIS active fire validation using a combination of 

agency fire data and remotely sensed observations in Portugal, Greece, Alaska, California, and 

Australia (Benali et al., 2016), passive ground observation in Brazil (Cardoso et al., 2005), and 

with national fire statistics in Europe (Loepfe et al., 2012). These studies matched satellite fire 

records to ground observations and reported MODIS detection rates that ranged from 1% 

(Cardoso et al., 2005) to 17% (Benali et al., 2016). The broad range of accuracy estimates 

reported in these studies coupled with relatively modest numbers of ground-based validation 

points underscores the additional need for large-scale comparison between satellite and 

ground-based fire data.  

Not surprisingly, given the paucity of ground-based validation of satellite fire products, 

very little is also known about the accuracy and spatial biases of ground-based fire records. One 

exception compared primarily local agency fire data from California with the MODIS active fire 

product and found that the 68% of the fires recorded by MODIS within local jurisdictions were 

not in the agency database (Butry and Thomas, 2017). Because this comparison focused on local 

lands within the state of California, it is unclear whether the lack of ground-based fire records 
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relative to MODIS is a more widespread problem. Until Short (2014, 2015a), no comprehensive 

national scale database of fire records across land agencies existed for the U.S. This database of 

agency records is the most comprehensive available for the U.S., but it is known to suffer from 

reporting biases at the state level as well as potentially missing records on local and non-federal 

lands (Short, 2014; 2015b). Given that the agency records are increasingly being used to assess 

temporal trends in fire regimes (e.g., Balch et al., 2017; Nagy et al., 2018), it is critical to 

understand potential spatial biases at a national scale.  

Here, we compared records of fire occurrence from the MODIS active fire and burned 

area products with agency fire reports in the most extensive satellite to ground intercomparison 

to date. We also provide a first model assessment encompassing the conterminous U.S. and 

assessing spatial and temporal conditions that influence fire detection probability. We identified 

positive and negative detections for the MODIS active fire and burned area products relative to 

the agency data to ask why fires identified on the ground might go undetected by MODIS. 

Conversely, we identified positive and negative detections for the agency fire data relative to 

the MODIS active fire and burned area products to ask why fires identified by MODIS might go 

undetected or unreported on the ground. We modeled positive detections for each product to 

examine how environmental factors, anthropogenic land use, and political boundaries 

contributed to geographic variability in detection efficacy. This analysis provides new insight into 

discrepancies in records of fire occurrence existing in fire data products for the conterminous 

U.S. 
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1.3 Methods 

1.3.1 Satellite Fire Data 

We used data from the Moderate Resolution Imaging Spectrometer (MODIS) active fire 

collection 5.1 (MCD14ML; Giglio et al., 2003) and burned area collection 5.1 (MCD64A1; Giglio et 

al., 2009) products from 2003 to 2013, which at the time of analysis, spanned the time period in 

which all MODIS sensors were running (Figure 1.1; Hawbaker et al., 2008) and agency fire data 

were collected. The MODIS products are derived from NASA's Aqua and Terra satellites, which 

each have twice daily overpasses (crossing the equator locally at 1:30/13:30 for Aqua and 

10:30/22:30 for Terra; Giglio et al., 2006) and therefore generate daily fire products. The MODIS 

burned area product (Giglio et al., 2009) detects burned areas using a hybrid algorithm based on 

MODIS surface reflectance changes and the MODIS active fire product (Giglio et al., 2009). The 

MODIS active fire product (Giglio et al., 2003) uses thermal anomalies to detect active fires at 

the time of satellite overpass at a 1km pixel resolution. The MCD14ML data is a point product 

that refers to the MODIS active fire hotspots. We converted these points to a gridded format 

(similar to the gridding approach by Oom et al., 2016) snapped to the MODIS MCD64 burned 

area pixels and extents such that each MCD14 active fire pixel is made up of four MCD64 pixels. 

We used all points designated as active fire regardless of the level of confidence because low 

confidence pixels tend to be grouped with high confidence pixels (Hawbaker et al., 2008), 

suggesting that adding low confidence pixels will make fire perimeters larger rather than 

increasing the number of fire events. In instances where there was more than one active fire 

hotspot within a pixel, the maximum value was taken. Based on 2007 data, 77% of pixels 

contained a single active fire detection. Active fire detections in pixels typically occurred within 

7days of one another (94% of pixels), suggesting that multiple burns should not influence our 

identification of overlapping fire events between MODIS active fire and the agency fire 
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database. The final gridded formats of the MCD64 and MCD14 products are 463m and 926m 

resolution, respectively. All analyses of MODIS product detection of agency fires were 

performed using these gridded products. 

 In contrast, correctly identifying omission of agency fires required combining the 

MODIS pixels into fire perimeters. To identify unique fire events detected by MODIS, we 

compiled daily active fire or burned area pixels into fire events based on spatial and temporal 

proximity. This type of flood-fill approach has been previously used to identify fire events (e.g. 

Archibald and Roy, 2009; Fornacca et al., 2017). Here, a MODIS burned area event is defined as a 

cluster of pixels within a 5pixel and 9day distance (Dadashi et al., 2017). The active fire 

perimeters were clustered based on a 3pixel, 9day criteria to account for the larger size of the 

active fire pixel. This spatial and temporal aggregation was found by Dadashi (2018) to create 

burned area perimeters that best matched those identified by the Monitoring Trends in Burn 

Severity (MTBS; Eidenshink et al., 2007) in the U.S. The resulting fire event perimeters were 

generated as single band raster grids where each perimeter has a unique identification number 

and a minimum and maximum Julian date associated with the first and last pixel that burned 

within the cluster (Dadashi et al., 2017). 

1.3.2 Agency Fire Data 

The Fire Program Analysis fire occurrence database (FPA fod; Short, 2015a), hereafter 

referred to as agency fire data, is the most complete record of agency reported wildfire events 

available that covers the entire U.S. (Short, 2014; 2015b). In this database, each record 

represents one fire event. The database contains records for over 800,000 wildfire events during 

the study period (2003–2013; Figure 1.1), and only includes fire events that required an agency 

response (i.e., excluding agricultural or prescribed burns). Agency fire events are derived from 
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federal (e.g., U.S. Forest Service), state (e.g., Maine Forest Service, New Mexico State Forestry), 

and interagency records that include local reports (e.g., ICS 209) and include a point location for 

the origin of each fire event that is accurate within 1.6km (one mile; Short, 2014). The record for 

each event contains attribute information such as discovery date, final fire size, and fire name, 

and roughly half of the records also list a containment date (Short, 2014). 

1.3.3 Detections 

We compared the two types of fire products (MODIS vs. agency) to identify where the 

two datasets overlap and where fires were undetected by MODIS or by the agency database. 

MODIS successfully detected an agency fire if the agency's point location was within 10km of 

any MODIS pixel and the agency's discovery date was within 7days before or after the burn date 

associated with that MODIS pixel. The agency database successfully detected a MODIS fire event 

if the fire event perimeter was within 10km of any agency point and the fire event's minimum or 

maximum burn dates were within 7days of the discovery date associated with the agency point 

(Figure 1.2). Using this method, multiple agency fire events could be matched with MODIS pixels 

within the same MODIS fire event perimeter. Similarly, multiple MODIS fire events could be 

matched with a single agency fire event. We set a large spatial window to account for potential 

discrepancies in local, state, and federal reporting of fire location as well as differences in fire 

size in the agency data (e.g. Short, 2014; 2015b). A10kmradius around the fire points 

encompasses 99.9% of agency reported fire events based on reported fire size if we assume the 

ignition point is at the center. We set a large temporal window because sensor limitations and 

cloud cover could delay satellite detection of fire events (Giglio et al., 2009). Both of these 

windows were broad to encompass as much overlap between datasets as possible. We 

identified positive and negative detections individually for each comparison. Positive detections 
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included agency fires detected by MODIS burned area, agency fires detected by MODIS active 

fire, MODIS burned area perimeters detected by agency, and MODIS active fire perimeters 

detected by agency. We identified negative detections as the fires that the MODIS product or 

agency product failed to detect. Thus, there were also four relevant negative detections (agency 

fires missed by MODIS burned area, agency fires missed by MODIS active fire, MODIS burned 

area perimeters missed by agency, and MODIS active fire perimeters missed by agency), and 

therefore four unique spatial databases of negative detections. We used these positive and 

negative detections to model what influences detection probability for the two MODIS fire 

products as well as the agency fire database. We also calculated positive detection rates for 

each of the products. A positive detection rate for a MODIS product is calculated as the number 

of fires in the agency database detected by a MODIS product divided by the total number of 

fires in the agency database. A positive detection rate for the agency database is calculated as 

the number of fire event perimeters in the MODIS database detected by the agency database 

divided by the total number of fire event perimeters in a MODIS database. 

1.3.4 Understanding limitations of MODIS fire data 

Fires that appear in the agency database may not be detected by MODIS because they 

are too small to be detected or because atmospheric or landscape conditions interfere with 

satellite detection. Therefore, our analysis of fires missed by MODIS focused on agency reported 

fire size, regional cloudiness, and land cover. Final fire size of each event is reported in the 

agency fire database. To account for potentially obstructed satellite views of ground fires due to 

canopy cover, we used the GLASS leaf area index (LAI) product which is an 8day composite at 

1km resolution (Liang and Xiao, 2012; Xiao et al., 2014). Because there is seasonal variation in 

canopy cover, we extracted LAI values based on four timesteps during 2007 using the middle 
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month of the meteorological seasons. For example, fires with a discovery date in December, 

January, or February received the LAI value associated with the January 1, 2007 time step, while 

fires in March, April, or May received the LAI value associatedwithApril7, 2007. LAI values from 

July 4thtoSeptember8thwereusedforrecordsassociatedwithsummerand fall months, 

respectively. We used 2007 values for all events because it was near the middle of our study 

period. These 2007 LAI values were highly correlated (r=0.91–0.97) with the same timesteps in 

2004 and 2011, suggesting that 2007 LAI values are representative. We used the MODIS mean 

annual cloud cover (MCD09 1–12; Wilson and Jetz, 2016) as a metric of overall cloudiness. The 

LAI and cloud cover data are both available at 1km resolution, and values were extracted to 

each agency fire record. We also included vegetation information using the LANDFIRE database 

(LANDFIRE, 2012a; Rollins, 2009). LANDFIRE is a suite of U.S. national scale data products that 

include vegetation, fuel, and disturbance information at 30m resolution. These data products 

are derived from a combination of satellite observations, field data, and decision tree analyses 

(Rollins, 2009). To determine current landcover types, we used Existing Vegetation Type 

(LANDFIRE.US_130EVT) to classify landcover at each positive and negative detection of an 

agency fire point as tree, shrub, herb, or other. 

1.3.5 Understanding limitations of agency fire data 

Fires identified by the MODIS satellites may not appear in the agency database due to a 

lack of reporting. Fires may not be reported if they are agricultural or prescribed fires (which are 

excluded from the agency database), they are detected but not reported by federal, state, or 

local agencies, or they remain undetected. Therefore, our analysis of fires missed by the agency 

database focuses on correlates based on land use, prescribed fire, land ownership, and U.S. 

political state designations, hereafter referred to as state.  
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Because the agency database should not include intentional fires from agriculture or 

prescribed burns (unless they escape and become a wildfire that requires agency action), we 

included percent agriculture and percent prescribed burn within each MODIS event perimeter. 

Percent agriculture was derived using Existing Vegetation Type (LANDFIRE.US_130EVT; EVT_LF) 

from LANDFIRE (Rollins, 2009; LANDFIRE, 2012a). Percent prescribed burn within each MODIS 

fire perimeter was derived using disturbance data from LANDFIRE (LANDFIRE.US_DIST2003–

2013; Rollins, 2009; LANDFIRE, 2012b). Agency reporting biases may also be due to differences 

in land ownership. To test for reporting inconsistencies based on land ownership, we associated 

presence of public land (federal, state, local vs. private) with each MODIS fire event based on 

the U.S. Public Areas Database (U.S. Geological Survey, 2015). 

In addition to lack of reporting, the agency database also excludes fires that were not 

detected. Fires may go undetected due to their remoteness from human activity. As a metric for 

fire remoteness, we calculated the Euclidean distance to nearest developed landcover from the 

centroid of each MODIS fire perimeter using Existing Vegetation Type (LANDFIRE.US_130EVT; 

EVT_PHYS) from LANDFIRE (Rollins, 2009; LANDFIRE, 2012a). We also calculated Euclidean 

distance to roads (TIGER/Line Shapefiles, 2016). 

1.3.6 Modeling 

We identified fires missed by each of the two MODIS fire products, but present in the 

agency fire data. We also identified fires missed by the agency fire database, but present in each 

of the two MODIS fire product. We modeled these four comparisons for both the eastern and 

western U.S. (11 westernmost states; Figure 1.1). We chose this grouping because detection by 

the MODIS active fire product may be limited by the combustion patterns characteristic of the 

surface fires most common in the central and eastern U.S. as compared to those in the western 
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U.S. which typically has more high intensity crown fires (Hawbaker et al., 2008). This regional 

split resulted in a total of eight models. We used zero inflated binomial generalized linear 

models (ZIB GLMs) to account for “false zeros” which caused overdispersion in the response 

variable (Zuur and Ieno, 2016). “False zeros” include those caused by design error, in this case 

meaning zeros recorded under conditions in which a detection would not be possible. For 

example, a satellite cannot detect an agency fire if it is too cloudy or if there was no overpass 

during the fire, and agency data do not include agricultural fires. We limited our dataset of 

agency fires to include only those fires with a final area above 1ha. A preliminary analysis 

revealed that positive detection rates for fires under 1ha were 1.7% for burned area and 9.6% 

for active fire across the U.S., suggesting that these small fires are difficult to detect. In addition, 

theoretical calculations suggest the MODIS active fire product can detect fire hotspots larger 

than 100m2 (Giglio et al., 2003), and comparisons to ASTER fire data suggest MODIS can detect 

instantaneous hotspots on the order of 2–7ha (Morisette et al., 2005; Csiszar et al., 2006; 

Schroeder et al., 2008). Therefore, a 1ha agency fire size was a plausible minimum size to 

evaluate MODIS detection rates which would also allow us to model detection across a range of 

fire sizes. Although theoretical calculations report the burned area product reliably detects fires 

over 40–120ha (Giglio et al., 2009; Giglio et al., 2013), we chose to use the 1ha threshold for the 

burned area comparisons as well for consistency across models. All modeling was conducted in 

R version 3.3.2 (R Studio Team, 2015) using the glmmTMB package (Brooks et al., 2017; 

Magnusson et al., 2017).  

We tested for variable collinearity using the correlation variation inflation factor (corvif) 

function from Zuur Highstats Library 10 (Zuur et al., 2009; Zuur and Ieno, 2016; 

http://highstat.com), and did not use any combination of variables that produced a vif value>7. 

The resulting eight ZIBs are mixture models, meaning that each consists of two logistic 
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regressions, one to represent “false zeros” (the zero inflated part), and one to represent the rest 

of the data (the conditional part). Because ZIBs are mixture models, zeros may come from either 

the zero inflated part or the conditional (binomial) part (Zuur et al., 2009; Zuur and Ieno, 2016). 

We used backward selection to determine the conditional part of each model. The same 

variables can be used to generate the zero inflated part (Zuur et al., 2009), and because each 

part only had 2 to 3 potential zero inflated covariates, we tried all possible uncorrelated 

combinations of the zero inflated covariates that allowed model convergence and used the 

Akaike Information Criterion (AIC) to select the final model (Zuur et al., 2009). Additionally, the 

data were tested for spatial autocorrelation using a semivariogram. All model visualization was 

conducted using the ggplot2 package (Wickham, 2009). Because an r2 value cannot be 

calculated for a GLM, we calculated a pseudo r2 using the residual and null deviance explained 

for each model (Zuur et al., 2009).  

We calculated the size at which an agency fire has a 50% detection likelihood by the 

MODIS burned area and active fire products in the east and the west. To do this, we created 

new data frames based on each of the four satellite detection of agency fire models. The new 

data frames are a representation of model predictions based on covariate values of interest. 

This method was necessary because the nature of the models does not allow a 50% detection 

likelihood to be calculated Fires identified by the MODIS across all observations. Instead it is 

necessary to determine scenarios of interest based on the covariates. We chose scenarios of 

interest representing two high likelihood U.S. states, and a high and low likelihood for the 

remaining non-continuous covariates based on our model visualization (Figs. S1–S6). For each 

continuous covariate (cloud cover and leaf area index) we used the mean for observations 

across the corresponding state. In combination, these covariates represent high and low 

probability detection scenarios and should provide the range of values required for a 50% 
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detection likelihood. For example, the high probability detection scenario for the active fire 

product in the west would be in Idaho, on the herb landcover type, in August of 2003. The data 

frames for these covariates also included a range of final fire sizes from the minimum to the 

maximum observed final fire size. Once the data frames were constructed, we used the predict 

function to calculate the fitted values (detection probability) in each data frame and then found 

the detection probability for fires 10ha, 100ha, and 500ha in size. We also determined what final 

fire size input was required to generate a 50% detection probability for each set of scenarios. 

1.4 Results 

1.4.1 Overall product agreement 

According to the agency fire records, there were a total of 252,274 fires over 1ha in size 

in the conterminous U.S. from 2003 to 2013, burning an estimated total of 245,333km2. Of 

these, 248,863 (98.6%) had information for all required covariates and were included in the 

modeling process. By aggregating individual MODIS pixels into fire event perimeters (Dadashi et 

al., 2017) we identified 24,497 fires associated with the burned area product (216,194km2; 

463m pixels) and 249,190 fires associated with the active fire product (552,471km2; assuming 

that each of the 926m pixels burned entirely and only once each year). Fire event size and 

duration for the MODIS fire products and agency fire product were right skewed (Figs. S7–S9). 

Fires in the agency database with positive MODIS burned area and active fire detection 

accounted for 72% and 74% of the total burned area in the agency database, respectively, while 

the total area burned in the MODIS burned area database is 88% of the total area burned in the 

agency database.  

MODIS satellite products positively detected agency fires at rates ranging from 3.5% for 

the burned area product in the eastern U.S. to 23.4% for the active fire product in the western 
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U.S. In contrast, agency records positively detected MODIS fire events at rates ranging from 

23.5% for the active fire product in the eastern U.S. to 48% for the burned area product in the 

western U.S. (Table 1.1).  

1.4.2 Satellite detection of agency fires 

In order to assess the conditions when agency fires are more likely to be detected by 

satellite, we modeled satellite detection of agency fires using fire size, landcover, state, leaf area 

index, average annual cloud cover, month, and year in the conditional model. After covariate 

selection, all of these covariates were used in each of the four models with the exception of leaf 

area index for active fire detection in the east, and average annual cloud cover for burned area 

in the east. Of the conditional model covariates used, all were highly significant (p < 0.001) with 

the exception of leaf area index which was included but not significant for burned area 

detection of agency fires in the east, and average annual cloud cover which was included but 

not significant for burned area detection of agency fires in the west (Table 1.2).  

Both average annual cloud cover and leaf area index were highly significant (p < 0.001) 

in all of the zero inflated models with the exception of cloud cover for burned area in the east 

where it was not used, and LAI for active fire in the east where it was included but not 

significant. The zero inflated part of the models accounts for conditions under which satellite 

detection of agency fires would be impossible regardless of other favorable conditions (Table 

1.2). The total deviance explained by each of the models (indicative of how well the model 

explains detection probability) ranged from 10% for active fire detection of agency fires in the 

east, to 33% for burned area detection of agency fires in the west (Table 1.2). 

Fire size was the most important predictor determining satellite detection of agency fire 

records for all four models. Not surprisingly, likelihood of satellite detection increased with fire 
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size (Figure 1.3). For state and year with the highest detection probabilities, we determined best 

and worst-case detection scenarios for benchmark fire sizes 10ha, 100ha, and 500ha and 

calculated the likelihood of satellite detection. For example, the mean probability of detection 

by the active fire product for a best-case scenario in the west (Idaho, herb, August 2003) ranged 

from 25.9% (se ± 1.3%) for 10ha fires, to 71.9% (se ± 1.3%) for 500ha fires (Table 1.3). We also 

provide estimates of fire sizes required for a mean 50% detection probability. Under best-case 

scenario conditions, MODIS active fire product had a 50% detection probability of agency fires 

with a fire size>78ha in the western U.S. (Idaho, herb, August 2003) and 10ha in the eastern U.S. 

(Kansas, tree, March 2004). For these size estimates, the 95% confidence interval for a 50% 

detection ranged from 47% to 53% and 46% to 54%, respectively. The MODIS burned area 

product had a 50% detection probability of agency fires with a fire size>234ha in the western 

U.S. (Idaho, herb, August 2012), and 169ha in the eastern U.S (Kansas, herb, March 2004). For 

these size estimates, the 95% confidence interval for a 50% detection ranged from 46% to 54% 

and 44% to 56%, respectively.  

Both conditional and zero inflated covariates with expectations of directionality (i.e., 

highest detection rates at low levels of leaf area index) acted as predicted, except for cloud 

cover which appeared to have the highest likelihood of detection at intermediate values. We 

also looked at detection rates based on year, state, month, and land cover. Monthly detection 

rates showed higher likelihood of detection for both the active fire and burned area product in 

the west during summer and fall months, while the burned area product showed better 

detection in the east during spring and fall months. In the western U.S., both the active fire and 

burned area product had a similarly high detection likelihood in tree and herb land cover types, 

while the active fire product in the east had a slightly higher detection likelihood in the tree land 

cover type. 
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1.4.3 Agency detection of satellite fires 

In order to assess the conditions under which agencies are likely to identify, record, and 

report fires observed by MODIS, we again created zero inflated binomial models. The 

conditional portion of these models included the covariates state, percent prescribed burn, 

percent agriculture, distance to road, distance to development, and presence of public land 

(Table 1.2). Distance to road or development was also significant as an interaction with public 

lands and was included when this interaction did not violate assumptions of independence and 

remained significant in the models. The models for agency detection of active fires were more 

complex and included some combination of all possible covariates, while the agency detection 

of burned area models were simpler and included fewer covariates (Table 1.2). Distance to 

development was included in all four of the models and was included as an interaction with 

presence of public land for both agency detection of active fire in the east, and agency detection 

of burned area in the west. Where the distinction between public and private land was included, 

detection likelihoods were higher on public land. The total deviance explained by each of the 

models ranged from about 8.5% for agency detection of active fire in the west, to about 23% for 

agency detection of burned area in the west (Table 1.2).  

State was the most important predictor of likelihood of detection and was highly 

significant (p < 0.001) in all models except for agency detection of burned area in the east (Table 

1.2). Individual states varied greatly in their predicted likelihood of detection (Figure 1.4). For 

example, when modeling agency detection of burned area fires in the west, Nevada and Utah 

had about a 75% detection likelihood while Washington's mean predicted detection likelihood 

was about 10% (Figure 1.4). 

The zero inflated models account for structural zeros in the data, and included the 

covariates state, percent agriculture, and percent prescribed burn. All covariates were 
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significant, with the exception of state in the eastern U.S. (Table 1.2). Both conditional and zero 

inflated covariates with expectations of directionality acted as predicted. For example, there 

was a negative relationship between likelihood of detection and percent agriculture. 

Table 1.1: The total number of fire events in each dataset >1ha that were included in the 
analysis with the percent of those fires detected by the indicated fire database. Positive 

detection rates ranged from 3.5–48%. 

Model 
(Direction and Region) 

Number 
of Fires 

Detection 
Rate (%) 

Satellite Detect Agency   

Active Fire- West 40,386 23.4 

Burned Area- West 40,386 11.1 

Active Fire- East 208,477 21.7 

Burned Area- East 208,477 3.5 

Agency Detect Satellite   
Active Fire- West 42,439 26.3 

Burned Area- West 6,036 48.0 

Active Fire- East 206,751 23.5 

Burned Area- East 18,461 25.7 
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Table 1.2: There are eight generalized linear models (GLMs) for fire detections. Each GLM 
consists of a conditional and zero inflated part which together comprise the full model. For 

each model type, we list all potential model variables for both the conditional and zero 
inflated model parts. Then for each region and product, we show the variables used, their 
significance in the model, and the total deviance explained (pseudo r2; Zuur et al., 2009). 

 

Conditional Model 
Variables 

Zero Inflated Model 
Variables 

Deviance 
Explained 

Satellite Detect Agency 
Fire Size, LC, State, LAI, 
Cloud, Month, Year 

Cloud, LAI 
potential 
variables 

Active Fire - West 

 
Fire Size***, LC ***, 
State***, LAI***, Cloud***, 
Month***, Year*** 

Cloud***, LAI*** 19.79 

Burned Area - West 
Fire Size***, LC ***, 
State***, LAI***, 
Month***, Cloud, Year*** 

Cloud***, LAI*** 32.97 

Active Fire – East 
Fire Size***, LC ***, 
State***, Cloud***, 
Month***, Year*** 

Cloud***, LAI^ 10.11 

    

Burned Area - East 
Fire Size***, LC **, 
State***, LAI, Month***, 
Year*** 

LAI*** 15.27 

Agency Detect Satellite 
Dev by Road, Road by Pub, 
Ag, Pr Burn, State 

Ag, State,  
Pr Burn 

potential 
variables 

Active Fire - West 
Dev ***, Road by Pub***, 
Ag*, Pr Burn***, State*** 

Ag***, State***,  
Pr Burn*** 

8.43 

Burned Area - West Dev by Pub***, State*** 
Ag***, State***,  
Pr Burn*** 

23.33 

Active Fire - East 
Dev by Pub ^, Road, Ag ***, 
Pr Burn***, State*** 

Ag***,  
Pr Burn*** 

12.53 

Burned Area - East Dev, Ag ***, Pub* Ag***, Pr Burn* 13.19 

Key   Significance: 

Fire Size- Log Fire Size                                                                          Road- Distance to Road Dev- Development 
p< 0.001 
‘***’ 

LC- Landcover Type Ag- Percent Agriculture  by- Interaction p<0.01 ‘**’ 

LAI- Leaf Area Index Pub- Public Land  p<0.05 ‘*’ 

Cloud- Annual Cloud Cover 
Pr Burn- Percent Prescribed 
Burn 

 p<0.1 ‘^’ 
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Table 1.3: Detection probability for fire sizes 10ha, 100ha, and 500ha as well as the fire size 
required for a 50% probability of detection were determined for each product/region based 
on the high detection scenarios. The fire size for 50% detection probability includes a 95% 

confidence interval (CI) for the detection probabilities associated with that fire size. The active 
fire performs best in the eastern U.S. where it has a 50% detection probability of wildfires 

with a final size of 10ha. 

Mean (SE) Detection Probability for Benchmark Fire Sizes  
and Size (CI) required for 50% Detection Probability  

Product / Region State / Year Month / Landcover 
Active Fire / West ID / 2003 August / Herb 

 10 ha 25.9 (1.3) 

 100 ha 53.0 (1.6) 

 500 ha 71.9 (1.3) 
50% Detection 
Probability Size Size (CI%) 78 ha (47-53) 

   
Active Fire / East KA / 2004 March / Tree 

 10 ha 49.9 (2.3) 

 100 ha 68.8 (1.9) 

 500 ha 79.0 (1.4) 
50% Detection 
Probability Size Size (CI%) 10 ha (46-54) 

   
Burned Area / West ID / 2012 August / Herb 

 10 ha 12.0 (0.8) 

 100 ha 36.9 (1.9) 

 500 ha 61.8 (2.0) 
50% Detection 
Probability Size Size (CI%) 234 ha (46-54) 

   
Burned Area / East KA / 2004 March / Herb 

 10 ha 20.0 (2.0) 

 100 ha 43.5 (3.0) 

 500 ha 62.8 (2.9) 
50% Detection 
Probability Size Size (CI%) 169 ha (44-56) 
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Figure 1.1: There are clear spatial disparities between A) the MODIS burned area product, B) 
the MODIS active fire product, and C) the agency fire records>1 ha. Agency fire product points 
and MODIS burned and active fire product pixels from 2003 to 2013 are shown in gray and a 

black line separates the eastern and western U.S. states. All agency fire point locations are the 
same size regardless of final fire size. Maps are in an Albers equal area conic projection. 
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Figure 1.2: An illustration of the 2007 Zaca fire as seen by MODIS burned area (above) and 
active fire (below) products. Included are points associated with all fires>1ha near the Zaca 

fire as recorded by the agency database. Each point location for an agency fire is named, with 
the Julian date of discovery below the fire point. For example, the agency record of the Zaca 
fire is located in the northwest corner and was discovered on Julian day 185. The Zaca fire is 
counted as “detected” by both MODIS products because they are within 10km and±7days of 
at least one burned area and one active fire pixel. The Sedgewick fire, which burned on Julian 
day 294 is counted as detected because of the nearby MODIS pixels outside the range of the 

Zaca fire perimeter (burn dates outside Julian dates 180–245 have pixels shown in black). The 
Rancho fire, while within 10km of the overall perimeter, is not considered detected because 

its discovery date was not within±7days of the MODIS pixels within 10km. 
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Figure 1.3: The ability of MODIS products to detect agency fire records was strongly 
dependent on fire size. As expected, likelihood of detected increased with fire size for each of 
the products and regions (such that the top left plot is for active fire in the west). Under best-

case scenarios, the active fire product detected 50% of agency fires if fire size was >78ha in the 
west and 10ha in the east. The burned area product detected 50% of agency fires under best-

case scenarios if fire size was >234ha in the west, and 169ha in the east. 

 

Figure 1.4: Agency fire data has the highest percent detection in the western U.S. for the 
MODIS burned area product. However, the likelihood that agency fire records correctly 

identified fire perimeters from the MODIS burned area product in the western U.S. varied 
markedly by state. For example, agency records from Washington were least likely to detect 

MODIS burned area events, whereas agency records from Nevada and Utah had a>75% 
likelihood of detection. 
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1.5 Discussion 

1.5.1 Overall product agreement 

With ongoing alteration of fire regimes (Balch et al., 2017) and increasing area burned 

(Westerling et al., 2006; Dennison et al., 2014; Westerling, 2016; Abatzoglou et al., 2017), 

documenting the spatial and temporal patterns of fire events is critical for understanding fire 

risk. Yet, our analysis shows that commonly used MODIS based satellite products and 

government records used to identify fire events and model fire regimes are reporting vastly 

different records of fire occurrence. Overall, satellite and agency fire records tend to overlap for 

only about a quarter of all events (Table 1.1). MODIS active fire and burned area products are 

likely to detect 50% of agency wildfires only when fire size reaches tens to hundreds of hectares, 

respectively, which is considerably larger than previously reported under theoretical conditions 

(Giglio et al.,2003; Giglio et al., 2009).Agency fire records show strong heterogeneity in 

reporting rates between states, suggesting that apparent spatial and temporal trends in fire are 

inconsistent across political boundaries(Short, 2014; 2015b),which could lead to questionable 

results of trends using agency data in these regions. This analysis highlights the need for more 

careful consideration of the limitations of underlying fire records in scientific analyses.  

1.5.2 Satellite detection of agency fires 

Satellite detection of agency fire records was relatively low, ranging from 3.5–23.4% of 

all fires>1ha. These values are consistent with satellite detection rates based on ground records 

estimated in the state of Georgia, U.S. (12%; Hu et al., 2016), Brazil (1%; Cardoso et al., 2005), 

and multiple regions (17%; Benali et al., 2016). However, detection rates are considerably lower 

than estimates using satellite to satellite comparisons, which can be as high as 86% within the 

conterminous U.S. when using fires>15ha in size (Hawbaker et al., 2008). The current use of 
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satellites for satellite fire data validation is useful for determining agreement in overall burned 

area when a fire event is detected by both satellite sources (e.g. Padilla et al., 2015; Zhu et al., 

2017). However, this method does not fully evaluate a satellite's ability to detect a fire because 

remotely sensed products have many similar limitations such as difficulty detecting small fires, 

satellite overpass time, and satellite view obstruction from cloud or canopy cover (Cardoso et 

al., 2005; Hawbaker et al., 2008). Similar limitations between satellites could lead to a circular 

validation process, inflating perceived detection rates.  

While previous studies have selected large reference fires to assess satellite detection 

rates (e.g. Hawbaker et al., 2008), this approach could inflate overall detection rates of the 

MODIS products (Hawbaker et al., 2008). By including all fires reported of at least 1ha, we were 

able to directly assess detection rates across a range of fire sizes. The overall detection rates 

reported here would be lower if we included fires smaller than 1ha reported in the agency 

database. The overall detection rates reported here would also be lower if we reduced our 

search window used to pair agency points with MODIS pixels to<10 km. We used the larger 

search window to encompass the extents of all agency fires, but it is likely overly generous for 

the smaller fires in the database. Thus, reported detection rates would be lower if we used a 

more stringent criterion to identify overlapping events. Finally, while the agency database 

preferentially retains records of individual fire events rather than fire complexes (Short, 2014), 

in cases where the agency database retains only one point record of many non-contiguous 

events as a complex, our method could underestimate detections of these events. 

Our models provide new estimates for the final wildfire sizes for reliable detection 

(≥50% probability of detection) by the active fire and burned area products. Previous validations 

of the MODIS active fire product based on fires detected by ASTER suggest that MODIS is 

capable of detecting instantaneous hotspots between 2 and 7ha (Morisette et al., 2005; Csiszar 
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et al., 2006; Schroeder et al., 2008), while calculations for the burned area product suggest 

minimum detection sizes of 40–120ha under ideal conditions (Giglio et al., 2009; Giglio et al., 

2013). Based on our analyses, it is evident that these ideal conditions are relatively rare for 

detecting U.S. wildfires. In our analysis, for the MODIS active fire product to reach a 50% 

detection probability, wildfire sizes had to reach 10ha in the east and 78ha in the west (Figure 

1.3; Table 1.3). This estimate of detection likelihood differs from previous satellite-based 

estimates in that it is based on the final fire size, rather than the instantaneous area of the 

hotspots at the time of observation (Morisette et al., 2005; Csiszar et al., 2006; Schroeder et al., 

2008). Although the MODIS active fire product detects hotspots, it is likely that fires with larger 

final fire sizes have a higher likelihood of detection because as fires continue to burn and 

increase in size, MODIS has more detection opportunities. Thus, this analysis provides a useful 

metric for estimating counts and size distributions of fires missed by MODIS products. 

For the MODIS burned area product to reach a 50% detection probability, wildfire sizes 

had to reach 169ha in the east and 234ha in the west (Figure 1.3; Table 1.3). These estimates 

suggest that MODIS burned area is effective for detecting large fire events. However, analyses 

derived from products that preferentially detect large fires can be problematic because 

relatively small fires define fire regimes in some regions (Fornacca et al., 2017; Nagy et al., 

2018). In the overall agency database, 91.5% of reported fires were <10ha, suggesting that small 

fires are an important component of fire regimes in the U.S. 

Although final fire size was the most important predictor of MODIS' ability to detect fire, 

our results are consistent with previous work that suggests satellite detection of fires is also 

influenced by cloud cover, canopy cover, land cover, and seasonality (e.g. Giglio et al., 2009; 

Hantson et al., 2013; Hu et al., 2016). For example, our models suggest that MODIS has a slightly 

higher likelihood of detection on tree and herb land cover types compared to shrub land cover. 
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Our results are consistent with previous work that shows low detection on shrubs and higher 

detection on trees (Hantson et al., 2013). Our models were also consistent with previous work 

that showed a low likelihood of detection with high levels of cloudiness and leaf area index 

(Giglio et al., 2009; Hu et al., 2016). However, our models also suggest the highest levels of 

detection in places with intermediate levels of average annual cloud cover. High detection rates 

at intermediate levels of average annual cloud cover may be an artifact of the associated 

precipitation and fuels associated with intermediate cloud cover rather than cloud obstruction 

of satellite detections. This is supported by the intermediate fire-productivity hypothesis (van 

der Werf et al., 2008; Pausas and Ribeiro, 2013) which suggests high fire activity in areas of 

intermediate productivity and aridity. However, future work could improve these analyses using 

temporally explicit cloud cover indices. 

While several covariates were significant predictors of MODIS' ability to detect agency 

fires (Table 1.2), the overall deviance explained by the satellite detection of agency fire models 

ranged from 10 to 32%. This relatively low explanatory power suggests that there may be other 

spatial or temporal conditions that limit MODIS fire detections. Time of day, fire duration, and 

fire radiative power can also impact satellite fire detection as longer, hotter fires that coincide 

with satellite overpass are more detectable (Cardoso et al., 2005; Hantson et al., 2013; Hu et al., 

2016) but this information was not available for our analyses. Future work that examines these 

potential covariates, and future data collection that includes these covariates would be helpful 

in furthering our understanding of satellite fire detection limitations. The low predictive power 

of our models suggests that the spatial and temporal conditions under which MODIS has poor 

detection remain challenging to identify. 
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1.5.3 Agency detection of satellite fires 

Our models suggest that variable reporting between U.S. states strongly limits the 

likelihood that fires will be present in the agency fire database. Although state variability is a 

recognized issue in the agency database (Short, 2014; 2015b), our results reveal marked 

discrepancies in detection likelihood. The likelihood that the agency database reported a fire 

detected by the MODIS burned area product ranged from as low as 10% for the state of 

Washington to higher than 75% for Nevada and Utah (Figure 1.4). Similarly, the likelihood that 

the agency database reported a fire detected by the MODIS active fire product ranged from 

<15% for the state of Massachusetts to >60% for the state of Nevada. These detection rates are 

likely overestimates. The large spatial search window (10km) used to determine fire event 

detection may have led to an overestimate in detection rates. Similarly, using broader spatial 

criteria to cluster fire events would lead to higher detection estimates because it would 

decrease the total number of events (by over clustering) while the number of detected events 

would remain the same. However, our results are consistent with analysis that suggests agency 

fire reports in California only include a fraction of fires detected by the MODIS active fire 

product (Butry and Thomas, 2017). These state differences suggest substantial inconsistencies in 

reporting rates based on political boundaries, which adds uncertainty to spatial models of U.S. 

fire regimes based on these data.  

While the Department of Interior and U.S. Forest Service successfully suppress 95%–

98% of unwanted wildfires, respectively (U.S. Department of Agriculture Forest Service, 2015), 

our analysis shows that the agency reports (which include only fires that require an agency 

response) only account for 23.5% to 48% of satellite fires. Satellite fire data tend to have low 

rates of false positive detections (Cardoso et al., 2005; Giglio et al., 2009). Thus, these 

differences suggest that there may be many more fires burning in the U.S. than agencies are 
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detecting and reporting. However, it is important to note that the MODIS products may contain 

fire information from agricultural and prescribed burns that are not included in the agency 

database (Short, 2014; 2015b). For example, differences in rates of crop burning may explain the 

low detection rates in Washington and Idaho which have relatively high rates of emissions from 

agricultural burning (Pouliot et al., 2017) because MODIS may detect many agricultural burns 

that would not be in the agency database. Alternatively, Nevada and Utah have lower rates of 

agricultural burning emissions (Pouliot et al., 2017) and higher detection likelihoods. Therefore, 

fire omissions in the agency database could contain a large proportion of agricultural and 

prescribed burns. 

It is again important to note that while these factors were all significant, the total 

deviance explained by the models was low (8–23%) suggesting that there are additional reasons 

why the agency database may be missing satellite fire detections. It is possible that some 

variation is due to differences in socioeconomic status where the fires take place, as well as 

population density or number of local fire departments available to record data (Butry and 

Thomas, 2017). The agency data may also suffer from a lack of quality control at the initial 

recording level (Butry and Thomas, 2017) and inconsistencies among agencies (Short, 2015b), 

which could lead to spatial or temporal errors in the records. While our analysis emphasizes 

differences in state reporting as well as the impacts of prescribed burns and agricultural fires on 

agency fire detection rates, the low predictive power of our models suggests that additional 

biases in the agency fire records likely exist. 

1.6 Conclusion 

We compared satellite and agency fire data and demonstrated that these existing 

products have specific limitations in their scope to provide a true representation of all fire 
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occurrence in the U.S. However, they can be used in conjunction with one another to expand 

understanding of current fire regimes (e.g. Benali et al., 2016; Fusco et al., 2016). To most 

effectively use these data products, it is necessary to understand which fires each product 

represents. For example, burned area product in the western U.S. is much more likely to detect 

large fire events and performs best during the summer season on tree and herb land cover 

types. Therefore, fires in shrub land cover and in regions characterized by small fire events may 

be better represented with a ground-based agency database. In contrast, agency products in the 

western U.S. are more likely to contain fires that occurred on public lands and exclude 

agricultural and prescribed burns. Therefore, the MODIS fire products may be best for research 

that seeks to quantify overall fire emissions. Finally, the limitations of agency data based on 

political boundaries suggest that inter-state comparisons require careful interpretation and 

support the recommendation that these data are most useful for analysis over the entire U.S. 

(Short, 2015b).  

Currently, there are at least eight active fire and burned area products that utilize 

various satellite sensor platforms and detection algorithms (e.g. MODIS burned area (MCD 64; 

Giglio et al., 2009), MODIS active fire (MCD14; Giglio et al., 2006), VIIRS (Schroeder et al., 2014), 

MTBS (Eidenshink et al., 2007), BAECV (Hawbaker et al., 2017) MERIS Fire CCI (Alonso-Canas and 

Chuvieco, 2015)), with others in development. Moreover, there are multiple sources of agency 

fire reports both in the U.S. and in other national systems (e.g., FPAFOD (Short, 2015a), Incident 

Command reports (GeoMAC, 2017)). However, based on our comparison of MODIS and agency 

fires, none of these sources is likely to offer a complete picture of fire activity. In the absence of 

a single, integrated fire product, fire scientists should be aware of the pronounced differences 

between products illustrated here and the influence of these detection differences on modeled 

fire regimes. 
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CHAPTER 2 
 

QUANTIFYING THE HUMAN INFLUENCE ON FIRE IGNITION ACROSS THE WESTERN USA 

2.1 Abstract 

Humans have a profound effect on fire regimes by increasing the frequency of ignitions. 

Although ignition is an integral component of understanding and predicting fire, to date fire 

models have not been able to isolate the ignition location, leading to inconsistent use of 

anthropogenic ignition proxies. Here, we identified fire ignitions from the Moderate Resolution 

Imaging Spectrometer (MODIS) Burned Area Product (2000–2012) to create the first remotely 

sensed, consistently derived, and regionally comprehensive fire ignition data set for the western 

United States. We quantified the spatial relationships between several anthropogenic land- 

use/disturbance features and ignition for ecoregions within the study area and used hierarchical 

partitioning to test how the anthropogenic predictors of fire ignition vary among ecoregions. 

The degree to which anthropogenic features predicted ignition varied considerably by 

ecoregion, with the strongest relationships found in the Marine West Coast Forest and North 

American Desert ecoregions. Similarly, the contribution of individual anthropogenic predictors 

varied greatly among ecoregions. Railroad corridors and agricultural presence tended to be the 

most important predictors of anthropogenic ignition, while population density and roads were 

generally poor predictors. Although human population has often been used as a proxy for 

ignitions at global scales, it is less important at regional scales when more specific land uses 

(e.g., agriculture) can be identified. The variability of ignition predictors among ecoregions 

suggests that human activities have heterogeneous impacts in altering fire regimes within 

different vegetation types and geographies. 
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2.2 Introduction 

Although fire is a natural component of most ecosystems and pre- dates the evolution 

of hominids (Pyne, 1982; Bond et al., 2005; Bond and Keeley, 2005; Bowman et al., 2009), 

humans are altering fire dynamics worldwide (Stephens, 2005; Korontzi et al., 2006; Archibald et 

al., 2008; Bowman et al., 2011). Anthropogenic changes that influence the fire cycle include 

changing climate (Westerling et al., 2006; Littell et al., 2009), fire suppression (Archibald et al., 

2012), fuel alteration via the  introduction of agriculture and pasture and through the 

introduction of nonnative grasses, which increase fine fuels and  connectivity (D’Antonio and 

Vitousek, 1992), and the addition of anthropogenic ignition sources (Cardille et al., 2001). Fire is 

an important regulator of ecosystems, influencing succession and vegetation assemblages at 

local scales and the distribution of biomes at global scales (Bond and Keeley 2005, Bond et al., 

2005). Fire is also economically costly (Butry et al., 2001); the USA spends over US$1 billion per 

year in suppression costs alone (Abt et al., 2009). Because of these ecological and economic 

impacts, it is necessary to understand how humans have altered fire cycles. We use a novel 

remote sensing approach to quantify anthropogenic impact on fire ignitions in seven western US 

ecoregions.  

The western USA is an ecologically diverse region that includes many species such as 

Douglas fir forest in the Pacific Northwest, pinyon juniper in the Southwest, and ponderosa pine 

forest in the Southwest and northern Rockies (Pyne, 1982; Keane et al., 2008; Dennison et al., 

2014). Human activities are strongly altering western fire regimes. For example, increased fire 

frequency in forested systems in the last 50 years has been observed in the western USA and 

has been partially attributed to rising regional temperatures and earlier spring snowmelt 

(Westerling et al., 2006; Dennison et al., 2014). Historical land- use change also influences fire. 

Since the early 1900s, fire has been substantially reduced in many western US ecosystems via 
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fire suppression (Pyne, 1982; Moore et al., 1999; Allen et al., 2002; Schoennagel et al., 2004). 

Suppression efforts resulted in an increase of fuels in certain ecosystems (e.g., ponderosa pine 

ecosystems), as well as an initial decrease in fire occurrence (Marlon et al., 2012). Although 

these western US forested systems have species with adaptations to fire, altered frequency and 

severity of fires associated with climate and land- use change can lead to different dominant 

species and overall changes in community composition (Keane et al., 2008). In addition to 

human impacts from climate and suppression, western US fire regimes have been impacted by 

the introduction of invasive plants. Nonnative grasses, such as Bromus tectorum and Bromus 

rubens, are known to alter fire regimes by increasing fine fuels and fuel continuity (D’Antonio 

and Vitousek 1992; Lambert et al., 2010; Balch et al., 2013). As invasive grasses continue to 

spread and human settlement near wildland areas increases (Theobald and Romme, 2007), 

ecosystems across the western USA are increasingly susceptible to fire.  

Humans can alter fire ignitions intentionally or through accidental fire starts. People use 

fire intentionally for many purposes, including for land management (e.g., agriculture and 

pasture maintenance) and for ecosystem management (e.g., prescribed fires; Pyne, 1982; 

Bowman et al., 2011). Some of these intended fires may escape and start wildfires. Unintended 

fire starts associated with people include smoking, railroad sparks, equipment use, and 

powerlines (National Wildfire Coordinating Group, 2005). While some of these sources, such as 

campfire, debris burning, and arson, have obvious links to fire ignition, others are less intuitive. 

In the case of railroads, brake sparks and right of way track maintenance are known to cause fire 

ignition (Harrington and Donnelly, 1978), while extreme winds can knock down powerlines that 

may ignite fires (Tse and Fernandez- Pello, 1998).  

Despite these strong relationships between humans and fire ignition, regional- scale 

spatial analyses of anthropogenic influences on fire ignition are lacking. Previous studies 
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investigating the influence of humans on fire ignition have typically been at landscape scales 

(e.g., Vega- Garcia et al., 1995; Syphard et al., 2007; Wu et al., 2014; Argañaraz et al., 2015). 

Regional and global- scale models of fire probability and human impact on fire have not 

empirically tested patterns of fire ignitions, but instead use spatial layers, such as roads or 

human population density, as proxies for human ignition pressure (Parisien et al., 2012; 

Hawbaker et al., 2013; Knorr et al., 2014). To date, both landscape and regional scale analyses 

assume that the importance of different anthropogenic predictors of fire ignition is constant 

across space and have not tested whether human influence on fire varies between ecosystems. 

Anthropogenic ignitions can be controlled reasonably well by fire management, (Hawbaker et 

al., 2013), and therefore understanding the spatial patterns of anthropogenic fire ignitions may 

help with the prediction and mitigation of future fire risk.  

While we know that anthropogenic ignition pressure varies globally (Pechony and 

Shindell, 2009), previous studies have focused on roads and population density as proxies for 

anthropogenic ignition when predicting fire (Yang et al., 2007; Siljander 2009). It is unlikely that 

human presence alone is consistently the best predictor of fire occurrence. Thus, a better 

understanding of how specific human activities relate to fire ignitions would improve spatial 

models of fire risk.  

We use a novel remote sensing approach to distinguish anthropogenic fire ignitions 

from lightning ignitions across the western USA. We then quantify the spatial relationship 

between anthropogenic predictors and fire ignition within seven western US ecoregions to 

answer the following questions: (1) What is the relative importance of anthropogenic features 

for predicting fire ignition in seven western US ecoregions? and (2) How does the influence of 

anthropogenic features on fire ignition vary among western US ecoregions. This study presents 

the first regional- scale analysis of the spatial variability of human influence on fire ignitions. 
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2.3 Methods 

2.3.1 Fire data 

 
We used the Moderate Resolution Imaging Spectrometer (MODIS) Collection 5 Burned 

Area Product (Roy et al., 2002; 2005; 2008) to identify ignition pixels. The MODIS Burned Area 

Product (MCD45A1) uses a bidirectional reflectance model- based change detection algorithm 

(Roy et al., 2005). Burned areas are distinguished at an approximate 500- m resolution based on 

rapid changes in surface reflectance due to removal of vegetation and subsequent deposition of 

charcoal and ash (Roy et al., 2005). Although the collection 6 MODIS Burned Area Product 

(MCD64A1) demonstrates superior fire detection rates, particularly for infilling fire perimeters 

(Giglio et al., 2009), these data were not available at the time of the analysis. The locations of 

potential ignition pixels associated with the two products are likely to be similar. In addition to 

providing a spatial location for burned areas, MCD45A1 also assigns a Julian day to each burned 

pixel which signifies the date of fire detection. In areas with limited cloud cover, such as the 

western USA during summer months, MCD45A1 has higher accuracy than in areas with higher 

levels of cloud cover (Boshetti et al., 2010). These daily data span 1 January 2000–31 December 

2012 (except June 2001, when there was an error in the fire detection instrument) for the 11 

westernmost contiguous states (Figure 2.1). We only considered fires that burned from May to 

October because this time frame is considered the typical fire season in the western USA 

(Westerling et al., 2003). We retained ignitions associated with all land cover classes in the 

modeling analysis assuming that all ignitions have the potential to spread into wildland fires. We 

aimed to characterize the overall pattern of anthropogenic ignitions associated with all sources. 

2.3.2 Response variables 
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The MCD45A1 product identifies burn dates for individual (~500 m) pixels but does not identify 

unique fire perimeters. We grouped the burned pixels into unique fire perimeters based on 

spatial and temporal proximity. Pixels were considered part of the same fire event if they were 

within 2 d and two pixels of one another or within 3 d and adjacent. Temporal proximity was 

only considered when pixels burned in ascending order such that large fires that eventually 

merge would maintain unique perimeters and ignition points. In some cases where large fires 

burned for multiple weeks, these criteria were not appropriate. For these complex fires, we 

grouped pixels into a single event if burned pixels were within two pixels and there were no 

time gaps longer than 3 d during the entire event. After grouping all unique fire perimeters or 

complexes, we identified the earliest burn date. Pixels burning on the first day of multiday fires 

and all burned pixels in single date fires were identified as potential ignition pixels. Based on 

these criteria, a single fire event could have multiple potential ignition pixels. To test whether 

this biased our modeling results, we also averaged predictor variables for all ignition pixels in 

every unique fire event and repeated out analysis using only a single ignition per fire. 

 In order to isolate ignitions likely caused by anthropogenic activity, we excluded 

ignitions likely to have been caused by lightning. Cloud- to- ground lightning strikes were 

acquired from the Vaisala National Lightning Detection Network lightning density data from 

2000 to 2009 and the North American Precision Lightning Network from 2010 to 2012 to identify 

ignitions potentially attributable to lightning. These data included information on the location 

and timing of lightning strikes and have a reported median spatial accuracy of 500 m in the 

western USA (Cummins and Murphy, 2009) with over 95% of strikes having uncertainties in 

location of <4 km (Biagi et al., 2007). If an ignition pixel was within a 4- km radius and burned 

within 3 d after a lightning strike, it was considered a potential lightning ignition. We used a 3 d 

buffer as lightning ignitions can remain undetected by satellites for several days until weather 
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conditions become conducive to fire spread. All other ignitions that were not spatially or 

temporally proximal to lightning strikes were assumed to originate from an anthropogenic 

source. 

2.3.3 Validation of ignition sources 

 We used the Fire Program Analysis fire- occurrence database (FPA FOD; Short, 2015a) 

to test the relative accuracy of the in anthropogenic vs. lightning ignition classification. The FPA 

FOD is a compilation of fires reported by federal, state, and local agencies and encompasses the 

entire study period, 2000–2012 (Short, 2015a). The completeness and accuracy of these records 

varies by state and reporting abilities, and while extensive, is an incomplete record of all fire 

activity (Short, 2014). Therefore, a lack of corresponding ignition records between FPA FOD and 

MCD45A1 may be due to reporting errors in FPA FOD and not necessarily attribution errors in 

our method. Nonetheless, as the only other ignition dataset available, the comparison provides 

an important initial estimate of MCD45A1 ignition accuracy. 

 The goal of identifying lightning ignitions was to exclude them from the analysis, thus 

creating a clearer picture of anthropogenic ignition. In order to test our classification of lightning 

ignitions, we identified data points from the FPA FOD that overlapped with fire perimeters from 

the MCD45A1 data. The spatial and temporal accuracy of the FPA FOD dataset are unknown, 

and it is likely that some spatial and temporal errors exist (Short 2014). As such, we set a wide 

search window for overlap. Points and perimeters were considered overlapping if they were 

within 10- km spatially and burned within 7 d temporally. The FPA FOD fire causes listed for 

each fire were then assigned to ignition points associated with that perimeter. Fires that had 

arson, railroad, power line, smoking, children, debris burning, structure, fireworks, campfire, 
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equipment use, or miscellaneous listed as the cause were considered anthropogenic, while FPA 

FOD listed as lightning caused were considered lightning ignitions. 

2.3.4 Predictor variables 

 We chose anthropogenic features potentially associated with wildfire ignitions based 

on fire causes listed in the National Wildfire Coordinating Group Cause and Determination 

Handbook (National Wildfire Coordinating Group, 2005; Table 2.1). We used the LandFire 

Existing Vegetation Type 120 (LANDFIRE, 2008; Rollins, 2009) to determine presence or absence 

of agriculture in each 500- m ignition pixel. We chose to include ignition pixels that burned on 

agricultural land because agricultural fires are a potentially important component of 

anthropogenic ignitions across the western US region. We used the USGS SAGEMAP (Sagebrush 

and Ecosystem Map Assessment Project) Human Footprint data relating to roads, power lines, 

railroads, interstates, campgrounds, and population density (Leu et al., 2008). We calculated 

distance to roads, power lines, railroads, and interstates from the centroid of each pixel. If any 

of these features were present within the pixel, the distance value was set to zero. 

Campgrounds were treated as a binary variable denoting presence or absence in each pixel. We 

used the mean population density for each pixel to represent the population density for the 

entire pixel. Population density was log transformed to deal with outliers with large population 

sizes. 

We used the SILVIS (Spatial Analysis for Conservation and Sustainability) 2010 WUI 

(Wildland Urban Interface) stand- alone data to determine the percent of development within 

each pixel (Radeloff et al., 2005). Overall WUI development was calculated as the sum of high 

density interface, high density intermix, medium density interface, medium density intermix, 

low density interface, and low density intermix based on the WUICLASS10 designation. 
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2.3.5 Modeling 

 For each of the seven Omernik Level I Ecoregions in the western USA (Omernik, 1987; 

Figure 2.2), we first modeled the presence/absence of ignitions as a function of the predictor 

variables using generalized additive models (GAMs) in the mgcv package (Wood, 2011) in R 

version 3.1.2. Anthropogenic ignitions were treated as presence, while randomly selected 

unburned areas from 2000 to 2012 were treated as absence. Lightning ignitions and associated 

fires were excluded from analysis. We calculated the generalized variance inflation factors 

(GVIF; Fox and Monette, 1992) for predictor variables separately in each ecoregion to test for 

multicollinearity. We removed variables with GVIF values above 3 to avoid violations of 

multicollinearity. The campground predictor was removed from analysis because there were too 

few observations to create an effective model. The GAMs were used to explore the relationship 

between predictor and response variables, for variable selection and to identify type of 

relationship (e.g., linear, quadratic). Based on the predictor variables and relationships identified 

in the GAM analysis, we then used generalized linear models (GLMs) to identify the relative 

contribution of predictors within each ecoregion. If a variable was best modeled with a 

quadratic or cubic polynomial based on the relationship displayed in the ecoregion GAM, we 

kept all lower order forms (linear, or quadratic and linear, respectively) of that variable in the 

GLM analysis. This resulted in first, second, and third order polynomials in the construction of 

ecoregion GLMs. We performed backward stepwise selection for each ecoregion model until 

there were 12 (the maximum allowable in the hier.part package) or fewer variables and selected 

the GLMs with the lowest Akaike’s information criteria (AIC) value.  

We tested the relative importance of each anthropogenic predictor, using hierarchical 

partitioning (Chevan and Sutherland, 1991) to determine the independent model contribution 

for each variable included in the GLM. Hierarchical partitioning was done in R using the hier.part 
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package (Walsh and MacNally, 2013). To find the independent model contribution of each 

variable, we summed the percent model contribution of each term containing the variable. A 

variable with a quadratic and linear term would count as two terms in the 12 term limit. We 

assessed each model fit by calculating the deviance explained by the model. We tested the 

direction of the relationship for the top two predictors with anthropogenic ignition in each 

ecoregion using both a linear regression and loess smoother. We also tested the direction and 

strength of the relationship for the top two predictors using only anthropogenic ignitions 

confirmed by the FPA FOD data. 

2.4 Results 

We identified 47,495 unique fire events in the western USA from 2000 to 2012, with a total 

of 129,332 potential ignition pixels (fire events often had multiple pixels burning on the first 

day). Of these ignition pixels, the vast majority (90%) occurred in the May– October time frame 

and were included in this analysis (Figure 1.2). 26,402 ignitions (23%) were identified as 

potentially caused by lightning based on the 3 d and 4 km criteria, leaving a total of 90,278 

ignition pixels likely attributable to anthropogenic sources. Pixels that burned exclusively on 

agricultural land made up a minimal (<2%) number of ignition pixels in all ecoregions except in 

the Marine West Coast Forest, where they made up 6.6%. The total number of anthropogenic 

and lightning ignitions varied among ecoregions. The most anthropogenic ignitions occurred in 

the North American Desert and Mediterranean California ecoregions, and the fewest occurred in 

the Southern Semiarid Highlands and Temperate Sierra ecoregions (Table 2.2).  

Of the 116,680 total potential ignition sources in the May–October time frame, a total of 

13,170 aligned with the FPA FOD fire database when ignitions with unknown sources were 

excluded from analysis. This low overlap rate could reflect differences in fire size and detection 
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likelihood. The FPA FOD fire database identifies all fires that were treated (and often 

extinguished) by government agencies, while MCD45A1 identifies burned area detectable within 

at least one 500- m pixel, likely including fires not reported in agency databases (e.g., 

agricultural fires that did not require agency response). Of the ignitions in the overlapping 

subset, we identified 4,093 as lightning, 83% of which were confirmed by the FPA FOD. Of the 

remaining ignitions, 4,372 (48%) were confirmed by the FPA FOD as anthropogenic (Figure 2.3, 

Table 2.3).  

These confirmation rates match our initial goal of including all anthropogenic and potentially 

anthropogenic ignitions in our dataset. However, we repeated our modeling analyses using only 

the confirmed anthropogenic ignitions and found very similar results, suggesting that our 

analysis is robust to the potential inclusion of some percentage of lighting ignitions.  

There was substantial variability in the deviance explained by each ecoregion model. The 

ecoregion GLMs used for hierarchical partitioning are less flexible and therefore explain less 

than ecoregion GAMs, however, they still perform comparably for the majority of ecoregions 

(Table 2.4). The best model GLMs based on deviance explained were in the Marine West Coast 

Forest (69.2%) and North American Desert (28.6%), whereas anthropogenic predictors only 

explained 5.4% of the spatial pattern of ignition in the Great Plains (Table 2.4). For most 

ecoregions, the GLMs performed similarly to the GAMs in terms of overall deviance explained, 

suggesting that relationships between anthropogenic predictors and ignition are reasonably well 

explained with linear, quadratic, or cubic functions.  

After using model selection criterion, all predictor variables were retained in all ecoregion 

GLMs except for the Southern Semiarid Highlands and Temperate Sierras where powerlines, and 

powerlines/agriculture, respectively were excluded (Table 2.5). The polynomial term used to 

include predictors varied among ecoregions but was most commonly linear or quadratic. The 12 
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variable maximum allowed in the hier.part package only affected the GLM created for the Great 

Plains ecoregion.  

Model contribution from each predictor varied substantially among ecoregions. Proximity to 

railroads was the most consistently important predictor, with the highest or second highest 

model contribution in all ecoregions except for in the Great Plains and Mediterranean California. 

Agricultural presence had the highest model contribution in the Marine West Coast Forest (45%) 

and Northwest Forested Mountains (41%). Presence of wildland urban interface had the highest 

model contribution in the Southern Semiarid Highlands (39%) and Mediterranean California 

(36%). The most important predictor of anthropogenic ignition was different for the remaining 

three ecoregions with distance to railroad in the North American Desert (36%), distance to road 

in the Temperate Sierras (57%), and distance to interstate in the Great Plains (35%; Figure 2.4). 

Relative contributions of predictor variables for models run with a single ignition per fire event 

were largely the same in each ecoregion.  

If anthropogenic features are indeed influencing fire ignitions, we expect their relationships 

to have a predictable directionality. For example, anthropogenic ignition should decrease with 

distance to roads, resulting in a negative relationship. In contrast, anthropogenic ignition should 

increase with higher wildland urban interface (i.e., more urban areas within wildlands), resulting 

in a positive relationship. This is the case for the top predictors in the regions with the highest 

explanatory power: Marine West Coast Forest, North American Desert, Northwest Forested 

Mountains, and Mediterranean California ecoregions (Figure 2.5a–d). However, the expected 

relationships are not evident in the regions with the lowest explanatory power (Temperate 

Sierras, Southern Semiarid Highlands, and Great Plains; Figure 2.5e–g). 
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Table 2.1: Predictor data layers used in this analysis are associated with one or more of the 
wildfire causes listed in the National wildfire coordinating group origin and cause 

determination handbook. 

Data Layer Data Source 
National Wildfire Coordinating 
Group Ignition Cause Category 

Lightning Vaisala NLDN Lightning 

Roads/ Interstates SAGEMAP (Leu et. al., 2008) Smoking, Arson, Equipment Use 

Powerlines SAGEMAP (Leu et. al., 2008) Powerlines 

Railroads SAGEMAP (Leu et. al., 2008) Railroads, Arson, Equipment Use 

Campgrounds SAGEMAP (Leu et. al., 2008) Campfire 

*WUI/ 

Population 

SILVIS/ SAGEMAP (Radeloff 
et al.,2005; Leu et al, 2008) 

Smoking, Arson, Children, Fireworks, 
Cutting, Welding 

Vegetation Type LANDFIRE Agriculture 

 

Table 2.2: The total number of lightning and anthropogenic ignitions in each of the seven 
western US ecoregions. Ecoregion 

Ecoregion Lightning Anthropogenic Total Ignitions 
Anthropogenic 
Ignitions/km2 

Great Plains 36% 64% 9283 0.01 

Marine West Coast 
Forest 17% 83% 10620 0.11 

Mediterranean 
California 7% 93% 18582 0.10 

North American 
Desert 26% 74% 60660 0.03 

Northwestern 
Forested Mountain 20% 80% 14977 0.01 

Southern Semiarid 
Highlands 20% 80% 776 0.01 

Temperate Sierras 42% 58% 1782 0.01 

All Ecoregions 23% 77% 116680 0.03 

Ignitions Not Analyzed     12652  
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Table 2.3: MODIS Burned Area Product (MCD445A1) ignitions that overlapped with the Fire 
Program Analysis fire- occurrence database (FPA FOD) data set were used to validate 

attribution of lightning as an ignition source. 

  MCD45A1   

  Anthropogenic Lightning  

FPA 
FOD 

Anthropogenic 4372 703 5075 

 Lightning 4705 3390 8095 

  9077 4093 
13170 Total 

Overlap 

  48% confirmed 
anthropogenic 

83% confirmed 
lightning 

 

 

Table 2.4: The deviance explained by the best generalized linear model (GLM) varied by 
ecoregion but was comparable to the deviance explained by the general additive model 

(GAM) with the same variables for each region. 

Ecoregion 
Deviance 
Explained (GLM) 

Deviance 
Explained (GAM) 

Marine West Coast Forest 69.2% 74.0% 

North American Desert 28.6% 30.2% 

Northwest Forested Mountains 17.0% 20.1% 

Mediterranean California 15.8% 18.5% 

Temperate Sierras 8.2% 16.7% 

Southern Semiarid Highlands 8.2% 10.5% 

Great Plains 5.4% 6.8% 
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Table 2.5: After testing for multicollinearity, the remaining predictor variables were used to 
create ecoregion GLMs. 

  Predictor Variables Modeled by Ecoregion 

Ecoregion Road Interstate Powerline Railroad WUI 
Log 
Pop 

Agriculture 

Southern 
Semiarid 
Highlands 

2 1   1 1 1 1 

Temperate 
Sierras 

3 2   3 1 1   

Mediterranean 
California 

2 2 2 2 1 2 1 

Marine West 
Coast Forest 

1 2 2 1 1 2 1 

Northwest 
Forested 

Mountains 
2 2 2 3 1 1 1 

Great Plains 2 3 2 1 1 2 1 

North American  
1 2 1 3 1 2 1 

Desert 
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Figure 2.1: The study area is composed of the eleven westernmost contiguous US states. (a) 
Burned and (b) ignition pixels were determined using the MODIS Burned Area Product 

(MCD45A1). 

Figure 2.2: Fire ignitions are distributed throughout the western USA. For all ignitions that 
occurred from May to October 2000– 2012, we determined whether the ignition had an (a) 
anthropogenic or (b) lightning source using data from Vaisala National Lightning Detection 
Network. (c) The distribution of anthropogenic ignitions varied between ecoregions. The 

ecoregions are abbreviated as follows: MWF, Marine West Coast Forest; NAD, North American 
Desert; MC, Mediterranean California; TS, Temperate Sierras; SSH, Southern Semiarid 

Highlands; GP, Great Plains; NFM, Northwest Forested Mountains. 
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Figure 2.3: The percent of MODIS (MCD45A1) lightning ignitions that were confirmed by the 
Fire Program Analysis fire- occurrence database (FPA FOD) data varied among ecoregions, but 
averaged 83%. The average number of confirmed anthropogenic ignitions per region was 48%. 

We correctly identified lightning ignitions above a rate of 75% for five out of the seven 
ecoregions, with the lowest accuracy in the Marine West Coast Forest and Mediterranean 

California. 
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Figure 2.4: The top anthropogenic predictors of anthropogenic ignition varied widely between 
ecoregions. Pie charts show the independent model contribution of each predictor variable for 

the best ecoregion model. Negative values show that the variable acts as a suppressor of 
other model variables, meaning that it is not a great predictor itself, but suppresses the 

residual error of the model. 
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Figure 2.5: The relationship of the two best model predictors and anthropogenic ignition are 
shown for each ecoregion. These relationships are in (a–d) the expected direction in the four 
ecoregions with the highest explanatory power, but (e–g) are counter intuitive in the three 
ecoregions with poor explanatory power. The black line denotes a linear relationship, while 

the gray line shows the loess smoother. 
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2.5 Discussion 

Our analysis reveals strong spatial variability in the relationship between human land- use 

and anthropogenic fire ignitions. This variability in anthropogenic influence suggests that 

humans impact ignition differently across ecoregions due to interactions with climate and land 

cover, and spatial variation in human land- use across regions (Archibald et al., 2008; Littell et 

al., 2009; Marlon et al., 2012). For example, environments with wetter, larger fuels and humid 

weather would be less likely to carry a spark that results in ignition than those with dry, fine 

fuels and frequent fire weather. They would also be more fire- limited as a consequence of 

shorter- lived fire potential through the season. In addition, human impact on the landscape 

varies among ecoregions (Leu et al., 2008). The results of this study underscore the complexity 

of the interplay between humans, climate, and fuels and their relationship with fire ignition 

across the western USA. Given the considerable variation in the relationship between 

anthropogenic influence and fire ignitions across broad ecoregions, it is likely that the similar 

variance will also be evident at landscape scales.  

In the Marine West Coast Forest, agricultural presence was the best predictor of 

anthropogenic fire with an independent model contribution of 45%, suggesting that human 

agricultural practices in this region are strongly linked to fire ignition. While many regions 

contain agricultural areas, variation in crop types and agricultural burn calendars impact the 

patterns of agricultural influence on the landscape (Korontzi et al., 2006). For example, the 

Marine West Coast Forest consists largely of the Willamette Valley region, which has a long 

history of grass seed production beginning with rye grass and turf grass in 1935 (Conklin and 

Fisher, 1973). In order to prevent the spread of disease and to remove agricultural residue 

which can inhibit future growth, fire is used as a regular management tool (Conklin and Fisher, 
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1973; Hardison, 1980). It is likely that the heavy use of fire to manage these grass crop systems 

contributes to the high influence of agriculture on fire ignition in the Marine West Coast Forest. 

Although the practice of agriculture burning is not restricted to Willamette Valley (McCarty 

et al., 2009), agricultural presence did not have a high model contribution in any of the 

remaining ecoregions except for the Northwest Forested Mountains, where post- harvest 

burning of wheat crops may be responsible. This may be due to the unique climate in the 

Marine West Coast Forest, which is one of the wettest in North America (Commission for 

Environmental Cooperation, 1997). In this wet area, it may be necessary to have a hotter and 

more intentional ignition source, such as crop residue burning, for successful ignition. However, 

in more arid regions, less powerful sources of ignition may be enough to ignite fuels. For 

example, cigarette butts require relative humidity levels below 22% for fire ignition (National 

Wildfire Coordinating Group, 2005) and would be more likely to start a fire in arid regions such 

as the North American Desert where distance to interstate (and associated cigarettes and 

automotive sparks) is an important predictor of ignitions. 

Another important predictor in the North American Desert, characterized in part by a desert 

steppe climate (Commission for Environmental Cooperation, 1997), is distance to railroad, with 

a total model contribution of 39%. The dry climate in this region likely encourages fire spread 

from railroad ignitions attributed to brake sparks and track maintenance (Harrington and 

Donnelly, 1978; National Wildfire Coordinating Group, 2005), whereas these sparks would be 

less likely to ignite larger, wetter fuel sources. Another potential reason why railroads are such a 

strong predictor of fire ignition in this ecoregion is because of their association with cheatgrass 

(B. tectorum), which was originally introduced in the west via railroad lines (Knapp, 1996). 

Cheatgrass is a fire prone invasive species (D’Antonio and Vitousek, 1992) that has been shown 

to increase the fire activity in invaded areas (Balch et al., 2013). Although cheatgrass is 
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widespread in the west, it is most dominant in the Great Basin region, covering 40,000 km2 

(Bradley and Mustard, 2005), which makes up a large portion of the North American Desert 

ecoregion. In this region, the distinctive combination of arid climate and fire prone fine fuels in 

close proximity to an ignition source likely contribute to the unique contribution of railroads to 

overall anthropogenic ignition in the North American Desert.  

Although population density is often used as a proxy for human ignition (Cardille et al., 

2001; Syphard et al., 2007; Hawbaker et al., 2013), in our western US study, it was a poor 

predictor. (The only notable influence was in Mediterranean California.) At global scales, spatial 

population density is more widely available and likely provides a reasonable proxy for other 

anthropogenic land- use features. However, the low contribution of population density in most 

western US ecoregion models suggests that human use of the landscape has a greater impact on 

fire ignition than just the number of people per square kilometer. This understanding will 

enhance our ability to include human variables in predictive fire models.  

In Mediterranean California, where population density was an important predictor of 

ignition, it showed a negative monotonic relationship with anthropogenic fire ignition (e.g., 

Figure 2.5d). In contrast, previous work suggests fire density is highest at intermediate levels of 

population density (Syphard et al., 2007; Archibald et al., 2008). An association with 

intermediate population densities could be due to increased levels of fire detection and 

suppression, as well as more fuel breaks in highly populated areas, and a lack of anthropogenic 

ignition sources in sparsely populated areas (Guyette et al., 2002; Syphard et al., 2007). 

However, fire frequency has also been found to have a negative relationship with population 

density regionally, for example in the Missouri Ozarks (Guyette et al., 2002), and globally (Knorr 

et al., 2014). Our results for the Mediterranean California ecoregion model are consistent with 

Guyette et al. (2002) and Knorr et al. (2014). It is likely that fires throughout the heavily 
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populated Mediterranean California are quickly suppressed, before becoming detectable by 

MODIS, because they pose a threat to people and infrastructure.  

Human impact (Sanderson et al., 2002) and ignition pressure (Pechony and Shindell, 2009) 

are not homogenous across the globe. Therefore, how anthropogenic ignitions vary must be 

accounted for when predicting fires. Currently, predictive fire models typically rely on 

population density as a proxy for anthropogenic ignition (Yang et al., 2007; Pechony and 

Shindell, 2009; Siljander 2009) and do not consider regional differences in ignition pressure. We 

suggest that regional differences in fire ignition should be taken into account when creating 

regional and global fire models. For example, more specific measures of human activity, such as 

railroads and interstates, should be tested where available when determining the best proxy for 

anthropogenic ignition in fire models. However, population density is included in each ecoregion 

model despite its generally low overall model contribution. Therefore, it may be used to 

improve predictive fire models when more specific spatial information is unavailable.  

The variation in anthropogenic influence on fire ignition across ecoregions shown in this 

study emphasizes that human presence alone is not the best predictor of ignitions. Rather, 

human use of the landscape, likely combined with flammability of surrounding vegetation, 

influences regional patterns of fire ignition. This is the first study to address how human drivers 

of ignition vary by ecoregion using a remote sensing approach. By better understanding how 

humans influence ignition and how humans interact with regionally varying climate and fuels, 

we can more accurately include anthropogenic variables in predictive fire models. 
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CHAPTER 3 
 

INVASIVE GRASSES INCREASE FIRE OCCURRENCE AND FREQUENCY ACROSS U.S. ECOREGIONS 

3.1 Abstract 

Fire prone invasive grasses create novel threats to ecosystems by increasing fuel load and 

continuity, which can alter fire regimes. While the existence of an invasive grass-fire cycle is well 

known, evidence of altered fire regimes is typically based on local scale studies or expert 

knowledge. Here, we quantify the effects of twelve non-native, invasive grasses on fire 

occurrence, fire size, and fire frequency across twenty-nine U.S. ecoregions. We combined both 

agency and satellite fire records with spatial records of abundant grass invasion to test for 

differences in fire regimes between invaded and nearby ‘uninvaded’ habitat. Additionally, we 

assessed whether invasive grass presence is a significant predictor of altered fire by modeling 

fire occurrence, size, and frequency as a function of grass invasion as well as anthropogenic and 

ecological variables relevant to fire. Eight of the twelve target species showed significantly 

higher rates of fire occurrence, with fire occurrence more than twice as likely for four grasses. 

Two species showed significantly larger mean fire size. Six species demonstrated significantly 

higher mean fire frequency, with fires more than twice as frequent for two grasses. Grass 

invasion remained a significant predictor in the modeling results for fire occurrence and 

frequency, however, it was not significant in any of the fire size models. The significant 

differences in fire regimes between invaded and uninvaded areas coupled with the importance 

of grass invasion in modeling these differences, suggest that invasive grasses are altering U.S. 

fire cycles at regional scales. As concern about U.S. wildfires continues to grow, accounting for 

the interaction of these widespread fire promoting invasive grasses with climate change and 

human ignition will be imperative for effectively managing wildfires.  
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3.2 Introduction 

Non-native invasive grasses can promote fire, altering fire regimes to the detriment of 

native species. Altered fire regimes create favorable conditions for these invasive grasses, which 

recover and spread quickly post fire, resulting in a ‘grass-fire cycle’ (D’Antonio and Vitousek, 

1992). Despite the ubiquity of invasive grasses identified as fire-prone (e.g. Beatley et al., 1966; 

Greenall, 1995; Lippincott, 2000; U.S. Department of Agriculture, 2018), alteration of fire 

regimes at the regional scale has been quantified for only a single species (Bromus tectorum; 

Knapp, 1998; Balch et al., 2013; Bradley et al., 2018). Given the increasing frequency of fires in 

the U.S. (Westerling et al., 2006; Balch et al., 2017), it is critical to identify the broad-scale 

effects of the grass-fire cycle. 

Grass invasion adds novel fuels to ecosystems, altering fuel properties and promoting 

fire (D’Antonio and Vitousek, 1992; Brooks et al., 2004). For example, invasive grasses can 

increase rates of fire occurrence because they dry quickly, making them more receptive to 

ignition relative to other vegetation types (Kauffman and Uhl, 1990; D’Antonio and Vitousek, 

1992; Brooks et al., 2004). Further, invasive grasses can support a microclimate more conducive 

to fire ignition (D’Antonio and Vitousek, 1992), suggesting that fire can occur in invaded systems 

even at times when the ambient climate may not be amenable to fire ignition. The presence of 

invasive grasses can increase fire size because they alter horizontal and vertical fuel continuity, 

resulting in increased fire spread and the potential for crown fires (D’Antonio and Vitousek, 

1992; Brooks et al., 2004). Increased fuel loads from grass invasion can also lead to higher fire 

intensity (Brooks et al., 2004), and hotter fires have been documented in multiple grass species 

currently invading the U.S. (e.g. Lippincott, 2000; Platt and Gottshalk, 2001; McDonald and 

McPherson, 2013). Finally, invasive grasses can increase fire frequency because they recover 

quickly post fire, providing additional fuel sources, and potentially resulting in shortened fire 
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return intervals (e.g. Whisenant 1989; Lippincott 2000; Brooks et al., 2004; Coffman et al., 

2010). These mechanisms by which invasive grasses promote fire are likely applicable across 

large spatial scales and ecosystems, suggesting that many invasive grass species could impact 

fire at regional scales.   

In the U.S., non-native invasive grasses suspected of promoting fire are established in 

ecosystems across the country, including pine savannah in the southeast (Lippincott, 2000; Platt 

and Gottshalk, 2001), temperate deciduous forest in the mid-Atlantic (Flory et al., 2015), 

wetlands in the Great Lakes region (Gucker, 2008), deserts in the southwest (Brooks et al., 

1999), and semi-arid shrublands in the Great Basin (Knapp 1998; Balch et al., 2013; Bradley et 

al., 2018; Figure 3.1). Invasive grass alteration of fire regimes is likely to negatively affect native 

species regardless of region, from ecosystems where fire is infrequent (e.g. sagebrush systems 

in the intermountain west; Whisenant, 1989), to those that are fire dependent (e.g. pine 

savannah in Florida; Lippincott, 2000) by increasing fire frequency to a point where native 

vegetation is unable to recover. For example, increased fire intensity associated with grass 

invasion has been demonstrated to adversely affect native plants which evolved with low 

intensity fires (McDonald and McPherson, 2013), and frequent fires can negatively impact native 

species ability to resprout (Fairman et al., 2019). 

Non-native, invasive grasses are increasingly introduced and dispersed by humans 

across the U.S. (Reichard and White, 2001; Bradley et al., 2015). But, despite the prevalence of 

invasive grasses across U.S. ecoregions and the pronounced economic and ecological 

consequences of wildfires (Calkin et al., 2005; Bowman et al., 2009), the regional impacts of 

these grasses on fire regimes remains unknown. Here, we calculate differences in fire 

occurrence, fire size, and fire frequency on invaded vs uninvaded landscapes for twelve invasive 

grass species. We further model these fire regime parameters as a function of anthropogenic 
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and ecological variables to test the contribution of grass invasion on observed differences in fire 

regimes. This study is the first to document the widespread impacts of invasive grasses on 

regional fire regimes across U.S. ecosystems.  

3.3 Methods 

3.3.1 Invasive grass data 

 
We used the Invasive Plant Atlas of the United States (Invasive Plant Atlas of the United 

States, 2018) to identify invasive grass species in the U.S. For each of these species, we 

conducted a literature search on web of science (search terms: TS=(Scientific name OR common 

name) AND TS=(fire) AND TS=(increase OR promote OR cycle)) and, if available, reviewed the 

species summary on the Fire Effects Information System (FEIS; U.S. Department of Agriculture, 

2018) to determine if the species is thought to promote fire based on the scientific literature or 

expert knowledge (Table 3.1). For species with a reported or hypothesized association with fire, 

we compiled spatial occurrence data from 33 local, state, and national databases (Allen and 

Bradley, 2016; EDDMapS, 2018).  

Non-native grass invasions at very low abundance are unlikely to influence fire regimes 

(Bradley et al., 2018) and invasive plant occurrence data tend to be skewed towards low 

abundance because they are often collected for the purpose of early detection and rapid 

response (Marvin et al., 2009; Cross et al., 2017). Therefore, we focused this analysis on 

occurrence data with associated abundance information, reported as either percent cover, stem 

count, or density. We excluded points with very low abundance reported as either <1% (percent 

cover), a single plant (stem count), or as trace/ rare (density). However, data with very low 

abundance as well as data lacking abundance information (presence only) were retained to 

inform the selection of pseudo-absence points (see below). For each species, we aggregated 
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points at 500 m pixel resolution, and identified pixels as ‘invaded’ for those with any reported 

abundant infestation, and ‘present’ for pixels containing only points with very low abundance or 

unknown abundance.  

For each grass species, we determined a study region by identifying areas where each 

species was reported to have invaded, and by assessing ecoregions where the literature 

reported a fire effect. The majority of invaded pixels were typically within the geographic 

regions reported as fire prone in the literature with the exception of Arundo donax, which had 

the majority of invaded pixels in Texas but was identified as fire prone in southern California. 

Next, we used a convex hull polygon to identify each study area based on the invaded pixels that 

fell within U.S. EPA Level III Ecoregions (U.S. Environmental Protection Agency, 2013) that 

encompassed the geographic regions identified in the literature (Figure 3.1). Finally, we created 

a set of random ‘pseudo-absence’ points to represent the uninvaded landscape for each invasive 

grass species (Franklin, 2010). Pseudo-absence points, hereafter referred to as uninvaded 

points, were randomly located within the convex hull polygon study area, were not within 500 

m of a presence or invaded pixel centroid and were less than 5 km from an invaded pixel 

centroid. By restricting pseudo-absence sampling to areas within 5 km of invaded pixels, we 

increase the likelihood that these uninvaded pixels encompass similar habitats and land use 

conditions as invaded pixels (VanDerWal et al., 2009). 

3.3.2 Fire data 

 
We used U.S. fire records from the Fire Program Analysis fire occurrence database (FPA 

fod; Short, 2017) and Monitoring Trends in Burn Severity (MTBS; Eidenshink et al., 2007) from 

2000-2015 to assess relationships between grass and fire. The FPA fod is a spatial database of 

federal, state, and local wildfires, and excludes agricultural fires and prescribed burns (Short, 
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2017). The FPA fod records are point data and contain attributes such as fire year, final fire size, 

and in some cases, an identifier that links the record to the MTBS database. The MTBS database 

is a compilation U.S. fires that reached a final fire size of 404 ha in the west and 202 ha in the 

east, and includes a final perimeter of the fire event. For each point in the FPA fod database that 

could be linked to a fire in the MTBS database, the fire perimeter from the MTBS database was 

retained (1.18% of fire records, 88% of total burned area). For the remainder of fire events in 

the FPA fod database, we estimated fire perimeters as a circular buffer based on final fire size. 

The MTBS records provide the precise geography of the burned area extents, while the circular 

buffers are an approximation. The resulting yearly files were converted into 500 m rasters 

(Albers equal area conic projection to cover the extents of the contiguous U.S.) and a pixel was 

identified as burned if any part of the fire perimeter overlapped the pixel. Yearly files were 

combined over the study period to create three fire datasets: fire occurrence (whether or not a 

pixel burned), fire size (maximum fire size associated with each pixel), and fire frequency (how 

many times a pixel burned during the 16 year study period; Romme, 1980). 

3.3.3 Modeling 

 
In order to quantify the degree to which an abundant invasive grass alters fire regimes, 

we calculated the fire occurrence, fire size, and fire frequency associated with invaded vs. 

uninvaded pixels. To ensure that fire occurrence did not drive results for size and frequency, fire 

size was only compared for pixels that burned, and frequencies were only compared when at 

least 10% (and >20) of pixels burned more than once. We checked for significant differences in 

fire occurrence of invaded and uninvaded pixels using Pearson’s chi-squared test, fire size using 

a Welch’s T-test, and fire frequencies using a Mann Whitney U test.  
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For the grasses that showed a significant difference in fire occurrence, size, or 

frequency, we extracted additional ecological and anthropogenic covariates to test whether 

grass presence remained a significant predictor of the altered fire regime. Cases where grasses 

are significant predictors provide further evidence that the observed alteration in fire regime is 

due to the presence of the invasive grass rather than correlated ecological or anthropogenic 

conditions. Ecological covariates included the EPA Level III ecoregion associated with the pixel 

centroid, and the most common potential vegetation on each 500 m pixel (BPS_Veg; 140BPS; 

LANDFIRE, 2014b; Rollins, 2009).  Anthropogenic covariates included euclidean distance to road 

(Tiger lines, 2016), and percent development per pixel (EVT_PHYS; 140EVT; LANDFIRE, 2014a; 

Rollins, 2009). We created a generalized linear model (GLM) for each grass species using the 

ecological, anthropogenic, and grass invasion (invaded vs uninvaded) variables as predictors of 

fire occurrence, size, or frequency using binomial, gamma, and poisson distributions, 

respectively (R version 3.3.2). Covariates were checked for correlation using the corvif function 

(Zuur et al., 2009) and we did not use any combination of variables with a correlation variation 

inflation factor >6. We used backward selection and selected the best model for each grass and 

fire characteristic (occurrence, size, frequency) using AIC. The models were checked for spatial 

autocorrelation using a semivariogram. Cases where invaded pixels were significantly different 

from uninvaded pixels as well as significant predictors of fire in the GLM were interpreted as 

evidence that the invasive grass influences the regional fire regime. 

3.4 Results 

Based on our literature review and the availability of abundant, invaded pixels, we 

identified 12 grass species that were suitable for analysis (Table 3.1). These grasses were located 
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in 29 U.S. Level III ecoregions (Figure 3.1), and numbers of invaded pixels ranged from 35 for A. 

donax to 9,388 for B. tectorum (median invaded pixels 344; Table 3.2).  

Eight of the twelve grass species had a significantly higher proportion of fire occurrence 

on invaded pixels when compared to uninvaded pixels and increased by 27-230% (Figure 3.2A). 

Of these species, S. barbatus showed the highest rate of increase, with 5% of uninvaded pixels 

burning during the 2000-2015 time period vs. 16.5% of invaded pixels. There was no significant 

difference in fire occurrence for three species, and for P. australis fire occurrence was 

significantly lower on invaded pixels (Figure 3.2A). Pixels invaded by I. cylindrica and M. sinensis 

had significantly larger fire size, while pixels invaded by B. tectorum, P. ciliare, and T. caput-

medusae had significantly smaller fire size (Figure 3.2B). Of the six species with sufficient data, 

fire frequency was significantly higher on invaded pixels of B. tectorum, I. cylindrica, M. 

vimineum, N. reynaudiana, P. ciliare, and T. caput-medusae (Figure 3.2C). For N. reynaudiana, 

average fire frequency more than doubled on invaded pixels (0.38 vs 0.87 fires/ 16 years/ pixel). 

For the grasses with significant differences in fire regime between invaded and 

uninvaded pixels, we created GLMs to predict fire occurrence, fire size, and fire frequency as a 

function of environmental variables, anthropogenic variables, and grass invasion. Results of 

these models generally support that grass invasion increases fire. Of the nine GLMs created for 

fire occurrence, presence of invasive grass remained a significant predictor in all models with 

the exception of P. australis. The deviance explained for these models ranged from 2.3% for M. 

vimineum to 13.8% for N. reynaudiana. Similarly, grass presence remained a significant predictor 

in all six of the fire frequency models tested (Table 3.3). The total deviance explained in these 

models ranged from 3.9% in M. vimineum to 14.8% for T. caput-medusae. Grass presence was 

not an important predictor in any of the fire size models.  
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Table 3.1: Invasive grass species in the U.S. and reported impacts on fire regimes.  

*Indicates a review of the species in the FEIS (U.S. Department of Agriculture, 2018) 

Scientific Name Common 
Name 

Impact on Fire Regime Selected Supporting 
Literature 

Arundo donax giant reed high flammability, high intensity, 
increased fuel load, increased fuel 
continuity 

McWilliams, 2004*; 
Lambert et al., 2010; 
Coffman et al., 2010 

Bromus rubens red brome  increased fire frequency, increased 
fuel load, increased fire occurrence, 
persistent flammability, increased 
fire spread, low fire intensity 

Brooks, 1999; 
Simonin, 2001*;  
Brooks and Matchett, 
2006; Lambert et al., 
2010 

Bromus tectorum cheat grass/ 
downy brome  

increased fire frequency, increased 
horizontal fuel continuity, increased 
spread, increase fire frequency, 
contributor to large fires in the Great 
Basin 

Whisenant, 1989; 
Brooks, 1999; Zouhar, 
2003*; Balch et al., 
2013; Bradley et al., 
2018 

Imperata 
cylindrica 

cogon grass increase fuel loads, increase 
horizontal continuity, increase 
vertical continuity, increased fine 
fuels, increased fire intensity 

Lippincott, 2000; Platt 
and Gottschalk, 2001; 
Howard, 2005* 

Microstegium 
vimineum 

Japanese 
stiltgrass 

potential to increase fine fuel load, 
increased flame height, easily 
ignitable, particularly a hazard after 
senescence and in dry climates 

Dibble et al., 2007; 
Fryer, 2011*; Flory et 
al., 2015; Wagner and 
Fraterrigo 2015  

Miscanthus 
sinensis 

Chinese 
silvergrass 

increased fuel load, high 
flammability, particularly a hazard 
after senescence and in dry climates 

Waggy, 2011*; 
Jorgenson 2011 

Neyraudia 
reynaudiana 

silk reed, 
burma reed 

increase fuel load, increase fine fuel, 
increase vertical continuity, increase 
fire spread, increased fire severity, 
increase fire frequency 

Platt and Gottschalk, 
2001; Stone, 2010* 

Pennisetum ciliare buffelgrass increase fine fuel load, increased 
flame length, increase fire spread, 
increased fire intensity, increased fire 
frequency, creates consistent fire 
hazard 

Hauser, 2008*; 
McDonald and 
McPhereson, 2013 

Phragmites 
australis 

common reed highly flammable, increase fire 
spread, increase fuel loads 

Marks et al., 1994; 
Gucker, 2008* 

Schismus arabicus Arabian 
schismus 

increase fine fuel, increase continuity Brooks, 1999; Lambert 
et al., 2010 

Schismus barbatus Common 
Mediterranean 
grass 

increase fine fuel, increase continuity Brooks, 1999; Lambert 
et al., 2010 

Taeniatherum 
caput-medusae 

medusahead increased fire frequency, highly 
flammable, high volumes of long 
lasting dry litter, increased horizontal 
continuity 

Torrell et al., 1961; 
Archer 2001*; Davies 
and Svejcar; 2008 
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Table 3.2: Available spatial data and affected ecoregions for each grass species. The extents of 
invaded points within affected Level III Ecoregions (U.S. Environmental Protection Agency, 

2013) were used to define each study area. 

Scientific Name 

Location of 
Suspected Fire 
Impacts Level III Ecoregion(s) 

Number of 
Invaded 
Pixels 

Arundo donax southern 
California 

California Coastal /Sage Chaparral and Oak 
Woodlands (11.1.1) 

35 

Bromus rubens Mojave Desert, 
Sonoran Desert, 
California 
chapparral 

Arizona/ New Mexico Mountains (13.1.1), 
Arizona/ New Mexico Plateau (10.1.7), 
Madrean Archipelago (12.1.1), Mojave Basin 
and Range (10.2.1), Sonoran Basin and Range 
(10.2.2) 

286 

Bromus 
tectorum 

great basin, 
mojave 

Central Basin and Range (10.1.5), Columbia 
Plateau (10.1.2), Mojave Basin and Range 
(10.2.1), Northern Basin and Range (10.1.3), 
Snake River Plain (10.1.8) 

9,388 

Imperata 
cylindrica 

south eastern 
U.S.  

Southern Coastal Plain (8.5.3), Southern 
Florida Coastal Plain (15.4.1) 

2,761 

Microstegium 
vimineum 

eastern 
temperate 
forest 

Blue Ridge (8.4.4), Central Applachains (8.4.2), 
Interior Plateau (8.3.3), Interior River Valleys 
and Hills (8.3.2), Northern Piedmont (8.3.1), 
Piedmont (8.3.4), Ridge and Valley (8.4.1), 
Southwestern Applachains (8.4.9), Western 
Allegheny Plateau (8.4.3) 

1,856 

Miscanthus 
sinensis 

south eastern 
U.S.  

Blue Ridge (8.4.4), Central Applachains (8.4.2), 
Northern Piedmont (8.3.1), Piedmont (8.3.4), 
Rige and Valley (8.4.1), Southeastern Plains 
(8.3.5), Western Allegheny Plateau (8.4.3) 

86 

Neyraudia 
reynaudiana 

south Florida Southern Florida Coastal Plain (15.4.1) 295 

Pennisetum 
ciliare 

Sonoran Desert, 
Arizona 

Sonoran Basin and Range (10.2.2), Sonoran 
Desert (10.2.2) 

2,402 

Phragmites 
australis 

upper midwest 
wetlands, 
Atlantic coast 

Huron/Erie Lake Plains (8.2.2), North Cenral 
Hardwood Forests (8.1.4), Northern Lakes and 
Forests (5.2.1), Southern Michigan/Northern 
Indiana Drift Plains(8.1.6) 

3,539 

Schismus 
arabicus 

California, 
Mojave Desert 

Sonoran Basin and Range (10.2.2), Sonoran 
Desert (10.2.2) 

229 

Schismus 
barbatus 

arid shrublands 
California, 
Mojave Desert 

Sonoran Basin and Range (10.2.2), Sonoran 
Desert (10.2.2) 

236 

Taeniatherum 
caput-medusae 

Great Basin, 
western US 

Central Basin and Range (10.1.5), Northern 
Basin and Range (10.1.3), Sierra Nevada 
(6.2.12), Wasatch and Uinta Mountains 
(6.2.13) 

393 
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Table 3.3: Generalized linear models (GLMs) show significant relationships between invaded 
areas and fire occurrence and frequency. 

Grass Fire Occurrence 
Model 

Fire Size Model Fire Frequency Model 

        
B. tectorum Invaded***, Road***, 

BPS***, Ecoregion***, 
Dev*** 

BPS^, 
Ecoregion*** 

Invaded***, Road^, 
BPS***, Ecoregion***, 

Dev*** 
Deviance Explained 7.1 12 9.3 

        

I. cylindrica Invaded**, Road***, 
BPS**, Ecoregion*** 

BPS***, 
Ecoregion***, 

Dev*** 

Invaded^, Road***, 
BPS**, Ecoregion*** 

Deviance Explained 5.9 21.3 7 

        

M. sinensis Invaded*, Road** Ecoregion*** n/a 

Deviance Explained 10 39.2 n/a 

        

M. vimineum Invaded*, Road**, 
Ecoregion*** 

n/a Invaded*, Road***, 
Ecoregion*** 

Deviance Explained 2.3 n/a 3.9 

        

N. reynaudiana Invaded***, Dev*** n/a Invaded***, BPS*** 

Deviance Explained 13.8 n/a 11.3 

        

P. ciliare Invaded***, Road***, 
BPS*, Ecoregion**, 

Dev** 

Invaded, BPS, 
Ecoregion, Dev 

Invaded***, Road***, 
Ecoregion***, Dev* 

Deviance Explained 7.42 17.6 10.81,2 

        

P. australis Road**, BPS***, 
Ecoregion***, Dev^ 

n/a n/a 

Deviance Explained 9.8 n/a n/a 

        

S. barbatus Invaded*, Road**, BPS* n/a n/a 

Deviance Explained 11 n/a n/a 

        

T. caput-medusae Invaded***, 
Ecoregion***, Dev 

Ecoregion***, 
Dev** 

Invaded***, 
Ecoregion***, Dev^ 

Deviance Explained 10.1 15.8 14.8 

        

Key: Road- distance to road   BPS- biophysical setting   Ecoregion- Level III ecoregion   Dev- 
percent development, Invaded- grass invaded pixel 
^ p<0.1   *p<0.05  ** p<0.01   ***p<0.001  
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Figure 3.1: The grass species analyzed span U.S. ecoregions. A) Twenty-nine EPA level III 
ecoregions were included in the analysis. Ecoregion names are listed in Table 3.2. B) Study 
areas for the target invasive grass species based on convex hull polygons of invaded pixels 
located in fire-prone ecoregion(s). Both maps are displayed in U.S. Albers Equal Area Conic 

projection). 
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Figure 3.2: Invasive grasses are significantly related to changes in fire regimes. A) Of the 
twelve species tested, eight showed significant increases in fire occurrence, B) two showed a 
significant increase in mean fire size and C) six showed significant increases in fire frequency. 

Six species were not tested for changes in fire frequency because it was rare for invaded pixels 
to burn more than once. Significance: ***p<0.001, **p<0.01, *p<0.05, ^p<0.1. 
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3.5 Discussion 

Humans undoubtedly influence fire regimes (Bowman et al., 2009; Bowman et al., 

2011), increasing fire by providing ignition sources (e.g. Syphard et al., 2007; Fusco et al., 2016; 

Balch et al., 2017; Nagy et al., 2018), changing climate (e.g. Westerling et al., 2006; Westerling, 

2016), and altering fuels sources through the introduction of non-native, invasive species 

(D’Antonio and Vitousek, 1992; Brooks et al., 2004; Balch et al., 2013). While there has been a 

focus on national and regional scale impacts of climate and human ignition on fire, this is the 

first analysis to quantify regional impacts of twelve invasive grasses on U.S. fire regimes. Our 

results are consistent with previous work that showed regional increases in fire occurrence for 

B. tectorum in the Great Basin region (Balch et al., 2013; Bradley et al., 2018). We also 

demonstrate significant alteration to regional fire regimes for seven additional species: T. caput-

medusae in the Great Basin, P. ciliare and S. barbatus in the desert southwest, M. vimineum and 

M. sinensis in eastern temperate deciduous forests, and I. cylindrica and N. reynaudiana in 

southern pine savannah and pine rockland communities (Figure 3.1).  

Climate change is expected to increase potential for fire occurrence by 150% by the end 

of the century based on projected changes in temperature and precipitation (Liu et al., 2010). 

Here we show that eight grass species have already increased rates of fire occurrence by 27-

230% (Figure 3.2A), and six grass species increased mean fire frequency by 24-150% (Figure 

3.2C), compounding the likelihood of increased fire risk across the U.S. The observed increases 

in fire occurrence and frequency were present for grasses across the U.S., suggesting that the 

introduction of fine flammable fuels, as well as the quick recovery of invasive grasses, could 

exacerbate increased fire potential from climate change. 

Grass invasion was an important predictor of increased fire occurrence and frequency 

for eight and six invasive grass species, respectively (Table 3.3). This is not surprising given that 
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all species tested were suspected of increasing fine fuel loads (Table 3.1). Only invaded pixels of 

P. australis had significantly lower rates of fire occurrence when compared to uninvaded pixels 

(Figure 3.2A), but P. australis invasion was no longer significant when anthropogenic variables 

were included in the model, suggesting that other covariates explain this pattern (Table 3.3).  

Interestingly, both invasive grass presence and anthropogenic predictors (distance to 

road or percent development) were significant in the majority of fire occurrence and frequency 

models (Table 3.3). In the U.S., human ignitions account for 84% of wildfires (400% more than 

lightning fires; Balch et al., 2017), and invasive grasses are strongly associated with 

anthropogenic activity (Reichard and White, 2001). Our results highlight the importance of both 

anthropogenic activity and invasive grasses on the grass-fire cycle, and it is likely that humans 

are adding both the ignition sources and highly flammable fuels that drive the fires closest to us. 

While the majority of grasses tested showed regional impacts on fire occurrence and 

frequency, we found little evidence for regional impacts on fire size (Figure 3.2B). Our modeling 

results suggest that for the few species that demonstrated differences in fire size, these 

differences are a result of ecological and anthropogenic variables. For example, the significance 

of development in predicting fire size for I. cylindrica and B. tectorum (Table 3.3) could be 

because fire suppression near developed areas supersedes the importance of increased fuel 

continuity to reduce fire size in invaded landscapes. This suggests that while grass invasion may 

promote fire spread and size at the event level (e.g. Coffman et al., 2010), the multitude of small 

fires ignited and suppressed in human dominated areas make it challenging to identify a 

regional link between fire size and grass invasion.  

Wildfires are costly to both ecosystems and economies (Calkin et al., 2005; Bowman et 

al., 2009), and climate change and human ignition sources have contributed to a regional scale 

increase in U.S. wildfires (Westerling et al., 2006; Flannigan et al., 2009; Balch et al., 2017; Nagy 
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et al., 2018). Here we show that a third global change, fuel alteration from the introduction of 

non-native, invasive grasses, also increases fire at regional scales. As invasive species success 

increases (Dukes and Mooney, 1999; Diez et al., 2012), the interaction of these three global 

changes will continue to promote wildfires across the U.S. 
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CHAPTER 4 
 

ACCOUNTING FOR ABOVEGROUND CARBON STORAGE IN SHRUBLAND AND WOODLAND 

ECOSYSTEMS INCREASES TOTAL CARBON ESTIMATES IN THE GREAT BASIN REGION 

4.1 Abstract 

Improving the accuracy of carbon accounting in terrestrial ecosystems is critical for 

understanding carbon fluxes associated with land cover change, with significant implications for 

global carbon cycling and climate change. Semi-arid ecosystems account for an estimated 45% 

of global terrestrial ecosystem area and are experiencing high degrees of degradation. However, 

aboveground carbon accounting has largely focused on tropical and forested ecosystems, while 

drylands have been relatively neglected. Here, we used a combination of field estimates, 

remotely sensed data, and existing land cover maps to create a spatially explicit estimate of 

aboveground carbon storage within the Great Basin, a semi-arid region of the western U.S. 

encompassing 643,500 km2 of shrubland and woodland vegetation. We classified the region into 

seven distinct land cover categories: pinyon-juniper woodland, sagebrush steppe, salt desert 

shrub, low sagebrush, forest, non-forest, and other/excluded, each with an associated carbon 

estimate. Aboveground carbon estimates for pinyon-juniper woodland were continuous values 

based on tree canopy cover. Carbon estimates for other land cover categories were based on a 

mean value for the land cover type. The Great Basin ecosystems contain an estimated 296.9 Tg 

in aboveground carbon, which is almost double previous estimates that only accounted for 

forested ecosystems in the same area. Aboveground carbon was disproportionately stored in 

pinyon-juniper woodland (43.5% carbon, 16.9% land area), while the shrubland systems 

accounted for roughly half of the total land area (49.1%) and one third of the total carbon. Our 

results emphasize the importance of distinguishing and accounting for the distinctive 
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contributions of shrubland and woodland ecosystems when creating carbon storage estimates 

for dryland regions.  

4.2 Introduction 

Quantifying aboveground carbon stored in ecosystems is a critical component of 

understanding overall carbon storage and measuring carbon fluxes associated with land cover 

change (Houghton, 2007). While dryland ecosystems make up more than 45% of land area 

globally (Lal, 2004), aboveground carbon mapping has tended to focus on tropical and forested 

ecosystems (e.g., Baccini et al., 2008; Saatchi et al., 2011; Cartus et al., 2014) because their high 

productivity disproportionally contributes to carbon storage. However, the amount of 

aboveground carbon stored on a landscape is not constant, and semi-arid ecosystems have 

recently gained increased attention in global carbon cycling because of their role in driving the 

inter-annual variability in terrestrial carbon storage (e.g., Poulter et al., 2014; Ahlström et al., 

2015; Haverd et al., 2017). In North America, semi-arid systems account for roughly 17% of the 

total land area (Lal, 2004), but the amount of carbon stored in these woodland and shrubland 

ecosystems has not previously been quantified.    

The Great Basin is a semi-arid region of western North America with ecosystems ranging 

from sparsely vegetated salt desert shrubland (Atriplex spp.) to sagebrush steppe (Artemisia 

spp.) and pinyon-juniper woodlands (Pinus spp., Juniperus spp.). Dominant vegetation shifts 

with resource availability across elevational gradients (Blaisdell and Holmgren, 1984; Miller et 

al., 2008; Chambers et al., 2014), and ecosystems in the Great Basin are highly productive 

relative to other semi-arid systems (Brooks and Chambers, 2011). In particular, pinyon-juniper 

woodlands have the potential to contribute a significant amount of aboveground carbon storage 

(Huang et al., 2009); however, carbon storage in woodlands is directly related to tree cover and 
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can be highly variable in these ecosystems, even over short distances (Rau et al., 2012). To date, 

most carbon accounting in these woodland and shrubland systems has focused on calculating 

aboveground biomass and carbon at the organismal or plot scale (e.g. Rickard, 1985; Rau et al., 

2010). While mapping carbon storage in pinyon-juniper woodlands using remote sensing rather 

than field population estimates can provide the combined benefits of high spatial detail and 

regional scale estimates (Chojnacky et al., 2012), most remote sensing-based studies of carbon 

in the Great Basin have focused on estimating expansion rates of pinyon-juniper woodlands 

over relatively small areas (Sankey and Germino, 2008; Strand et al., 2008; Huang et al., 2009). 

As a result, regional estimates of aboveground carbon are lacking. Understanding current 

carbon storage is critical because of the numerous large-scale threats to these ecosystems, 

including invasive species (Bradley et al., 2006), wildfire (Balch et al., 2013), woody plant 

encroachment (Miller et al., 2008), and land use/land cover change (Bradley, 2010). Creating a 

spatially explicit baseline estimate of aboveground carbon storage in this region is critical for 

future carbon management.  

Methods used to develop large scale carbon maps include assigning fixed carbon values 

based on land cover designations (termed “stratify and multiply”; Goetz et al., 2009). A stratify 

and multiply approach is more appropriate in cases where canopy cover estimates and/or 

relationships between canopy cover and aboveground carbon are unknown. In forested 

systems, satellite observations can more reliably estimate continuous canopy cover, which can 

be related to aboveground carbon storage using field measurements (termed “direct remote 

sensing”; Goetz et al., 2009). Direct remote sensing has been employed globally to create 

carbon estimates for tropical and forested regions (e.g. Baccini et al., 2008; Saatchi et al., 2011; 

Cartus et al., 2014).  
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In the U.S., the National Carbon and Biomass Database leveraged ground based data 

from the USDA Forest Service Forest Inventory and Analysis (FIA) and remote sensing data from 

the Shuttle Radar Topography Mission (SRTM) and Landsat reflectance to create a continuous 

estimate of aboveground biomass and carbon at 30 m resolution (Kellndorfer et al., 2013). 

However, this database estimates carbon in forests (Kellndorfer et al., 2013), and it is currently 

unknown whether the model is effective for estimating carbon in semi-arid systems like those in 

the Great Basin region, which often has tree cover lower than the 10%-25% necessary to be 

considered for forest carbon monitoring.  

While the majority of carbon mapping in the U.S. focuses on forested systems, one 

study (Huang et al., 2009) quantified carbon storage in pinyon-juniper woodlands in the 

Colorado Plateau. Huang et al. (2009) leveraged field based measurements, and remote sensing 

images (hyperspectral AVIRIS and multispectral Landsat), to calculate pinyon-juniper canopy 

cover and aboveground carbon over a 30,000 km2 area (Huang et al., 2009). While this remains 

the most extensive, spatially explicit estimate of aboveground carbon to date in pinyon-juniper 

woodlands, it encompasses only a quarter of the Colorado Plateau and none of the Great Basin. 

Aerial photography (Strand et al., 2008) and Landsat imagery (Campbell et al., 2012) have also 

been used to map carbon in western juniper woodlands in the Pacific Northwest. There is 

potential to apply these remote sensing approaches for mapping carbon in the pinyon-juniper 

woodlands which cover more than 15% of the Great Basin. 

A comprehensive understanding of carbon stocks globally must include dryland regions 

like the Great Basin, which will require different methods than those used for temperate and 

tropical forests. Here, we leverage field based carbon measurements, remotely sensed canopy 

cover estimates, and an existing land cover database to create the first spatially explicit 

estimates of aboveground carbon stored in the Great Basin.   
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4.3 Methods 

4.3.1 Study region 

 
Our study area encompasses the Great Basin region of the western U.S. The spatial 

extents of this region were defined using a combination of the EPA ecoregions (U.S. 

Environmental Protection Agency) and LandFire existing vegetation type (LANDFIRE.US_140EVT, 

Rollins, 2009; LANDFIRE 2014a). First, we selected EPA Level III ecoregions that are present 

within the Great Basin: Blue Mountains, Central Basin and Range, Columbia Plateau, Eastern 

Cascades Slopes and Foothills, Northern Basin and Range, and Snake River Plain. Within these 

Level III ecoregions, we removed Level IV subregions that had a primary designation in LandFire 

EVT of forest, thereby focusing our analysis on subregions containing woodland and shrubland. 

The resulting study region spans six western US states and encompasses 643,500 km2 of semi-

arid ecosystems. 

4.3.2 Land cover classification 

 
Aboveground carbon is expected to vary considerably with land cover class across the 

Great Basin. In order to assess carbon, we created a spatially explicit 30 m land cover dataset for 

the study region. We classified the Great Basin into seven land cover categories: pinyon-juniper 

woodland, three shrubland categories (low sagebrush, salt desert scrub, and sagebrush steppe), 

forest/woodland, non-forest, and other/excluded based on their dominant plant functional 

groups and their possible aboveground carbon contributions. For example, pinyon-juniper is 

distinct relative to the other vegetation categories because it is the only woodland system. 

Woodland systems may contain large amounts of aboveground carbon but their contribution to 

carbon storage is dependent on tree cover which can be highly variable over short distances. 
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The three shrubland categories were based on the dominant species assemblages which are 

often determined by soil factors such as salinity, pH, and depth. These three shrub communities 

can have considerable variation in biomass and carbon storage depending on the localized 

growing conditions. For example, salt desert scrub communities are typically found on alluvial 

features adjacent to and in low lying areas with poor drainage where soils are saline such as 

playas and salt flats. The communities are typically dominated by Atriplex spp. or Sarcobatus 

spp. and the vegetation density and biomass can vary considerably (Tueller, 1989). Low 

sagebrush communities are typically found on shallow, rocky, and alkaline soils that are typically 

too dry to support big sagebrush (McArthur and Taylor, 2004). Low sagebrush communities tend 

to be lower in stature than big sagebrush but can vary significantly in density and biomass as 

well.  

Land cover classifications were based on Falkowski et al. (2017a), who identified pinyon-

juniper using object-based identification of tree crowns from aerial photos, and the LandFire 

Existing Vegetation Type 140 (LANDFIRE.US_140EVT, Rollins 2009; LANDFIRE 2014). LandFire 

EVT is a U.S. national scale land cover product that includes current vegetation information at 30 

m resolution and is created using a decision tree approach based on satellite-derived predictors 

(Rollins, 2009). 

Pixels were classified as pinyon-juniper if they had >0% cover as designated by Falkowski 

et al. 2017a, or were designated as ‘pinyon-juniper woodlands’ or ‘juniper woodland and 

savannah in the LandFire EVT group (GP_N, LANDFIRE, 2014a, Rollins 2009; Figure 4.1). 

Remaining pixels were classified using LandFire EVT groups (GP_N). EVT group designation is 

based on the National Vegetation Classification system which considers dominant and co-

dominant plant species, the plant species growth forms, and regional ecology and biogeography 

to make a general land cover classification (Federal Geographic Data Committee, 2008). We 
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combined shrubland EVT groups into salt desert shrubland, low sagebrush, and sagebrush 

steppe. These shrub classifications represent a potential gradient of aboveground biomass and 

carbon. While the shrubland categories intuitively include vegetation groups named for the 

shrubs present in them, the sagebrush steppe classification also included pixels with a 

“grassland” designation. Here, “grassland” typically included some shrub vegetation (GAP-USGS, 

2016) and comprised only 1.9% of the study area. We excluded many remaining pixels with 

categories of low carbon consequence (primarily agriculture, introduced grass, barren, 

developed, and water). The few remaining pixels were classified using the LandFire EVT life form 

(LF) and group name designations such that pixels designated as tree or had a group name 

(GP_N) of chaparral were placed into the forest/woodland category, while the remaining pixels 

designated as shrub or herb were classified as non-forest (Figure 4.1). Chaparral was grouped 

with the woodland category because of the Ceanothus spp. tendency to store large amounts of 

carbon (Gray, 1982) and grow to a treelike form (GAP-USGS 2016). For all land cover 

classifications except pinyon-juniper, we used a fixed estimate of carbon associated with that 

land cover type (‘stratify and multiply’, sensu Goetz et al., 2009; described below in Carbon 

estimation for other land cover). 

4.3.3 Pinyon-juniper percent cover product and validation 

 
Because the Great Basin has little forested area, pinyon-juniper woodlands likely 

account for the largest portion of aboveground carbon. However, canopy cover of pinyon-

juniper varies considerably across the region. Thus, a robust estimate of carbon storage in 

pinyon-juniper woodland should depend on canopy cover (Rau et al., 2012). Falkowski et al. 

(2017a) mapped tree canopy cover for the greater sage grouse (Centrocercus urophasianus) 

range, which covers much of the Great Basin. This map of tree canopy cover was based on 
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identification of individual crowns by applying spatial wavelet analysis to aerial imagery acquired 

by the National Agriculture Imagery Program (NAIP) between 2011-2013. We aggregated the 1 

m presence/absence maps of tree crowns into percent cover estimates at a 30 m resolution, 

retaining the native UTM projection of the tiled canopy cover maps. 

To validate the 30 m resolution data, we used a linear regression to compare pinyon-

juniper canopy cover estimates from 265 Sagebrush Steppe Treatment Evaluation Project 

(SageSTEP) plots (McIver et al., 2014) to the NAIP-based models of canopy cover (Falkowski et 

al., 2017a). The 265 SageSTEP plots within the modeled canopy cover area were distributed 

across 14 sites in 5 states and were surveyed in 2006-2008 within a 30 x 33 m square. Field plot 

corners were georeferenced using a Trimble Juno™ GPS unit with spatial accuracy > 4m (Trimble 

Inc., Sunnyvale, CA). Crown cover for individual trees in each plot was measured as the longest 

crown diameter and the diameter perpendicular to the longest crown. Canopy cover at each 

plot was then calculated based on an ellipsoid with these two dimensions fit to each tree. We 

retained only the untreated SageSTEP control plots for our comparison to modeled canopy 

cover, thus cover should not have changed substantively between the time of the survey and 

the aerial image collection. Although the precise center of the plots does not necessarily align 

with the mapped pixel, previous comparisons of FIA plots to forest cover data suggest that these 

small offsets do not affect the overall comparison (Zald et al., 2014). 

For areas outside the extent of the pinyon-juniper product generated by Falkowski et 

al., 2017a (56% of the study area), but designated as pinyon-juniper by LandFire, we developed 

a canopy cover estimate based on Falkowski et al. 2017b. A stratified random sample of pixels 

were obtained from the Falkowski et al. 2017a canopy cover map, and predicted tree 

crown/presence absence was visually assessed against NAIP imagery for these samples. Samples 

with an accurate representation of the tree canopy were then used to train a random forest 
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model of canopy cover based on contemporaneous Landsat imagery and topographic indices. 

Landsat 5, 7, and 8 images from the Tier 1 spectral reflectance product were masked for clouds, 

cloud shadow, and snow using the provided quality assurance band, which is based on the 

CFmask algorithm (Foga et al., 2017). Spectral reflectance of the original bands and seasonal 

medians of Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture 

Index (NDMI), Normalized Burn Ratio (NBR) were included as predictors in the random forest 

model. This model also included topographic predictors derived from the National Elevation 

Dataset including elevation, slope, and the sine and cosine of aspect. We then predicted pinyon-

juniper canopy cover for 2014 Landsat imagery using the random forest model. We used the 

resulting estimates of canopy cover to calculate aboveground biomass of pinyon-juniper 

woodlands that were outside of the extents of the high-resolution maps created by Falkowski et 

al. 2017a. 

Any pixel that had >0% pinyon-juniper cover in the Falkowski et al. 2017a product was 

designated as pinyon-juniper regardless of that LandFire classification in that pixel. Pixels that 

were designated as pinyon-juniper in LandFire EVT but were not designated as pinyon-juniper by 

Falkowski et al. (2017a or 2017b) were classified as pinyon-juniper with a percent cover 

estimate of 0. 

4.3.4 Carbon estimation for pinyon-juniper 

 
Total aboveground carbon as a function of tree canopy cover was derived using data 

from 480 (0.10 ha) field plots measured as part of the Sagebrush Steppe Treatment Evaluation 

Project (SageSTEP; McIver et al., 2014). Components in the estimate of aboveground carbon 

included tree biomass, tree litter, shrub biomass, standing herbaceous biomass, down woody 

debris, and shrub/herbaceous litter. Individual tree carbon was estimated based on crown area 
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using allometric equations derived from destructively harvesting trees from various size classes 

(see Tausch, 2009; Rau et al., 2012 for detailed methods). Individual tree estimates were 

summed to estimate tree carbon at the plot level.  

Tree litter carbon was estimated by placing three 0.25 x 0.25 m sampling frames under 6 

representative trees in each plot. Sampling frames were placed adjacent to the tree stem, 

halfway between the stem and the canopy edge, and at the canopy edge. All material inside the 

frame was cut using a handsaw, collected, dried, and weighed. The carbon content of tree litter 

was estimated by grinding sub-samples of the dry litter and analyzing for %C via combustion 

analyzer (Rau et al., 2010; 2012). The total mass of tree litter carbon per plot was estimated by 

calculating the mass of tree litter carbon per unit area collected and then extrapolating to the 

total area of litter mat within each plot based on known relationships between tree crown area 

and litter mat area (Rau et al., 2010; 2012).  

Shrub biomass was estimated by measuring the total height, longest crown diameter, 

and diameter perpendicular to the longest diameter of each shrub intersecting a 2 m wide belt 

along the 5, 15, and 25 m transects, and then applying species specific allometric equations 

derived by destructively harvesting shrubs of variable size classes within each species (Reiner et 

al., 2010). Carbon content of shrubs was estimated by collecting stem, branch, and foliage 

samples from representative species and obtaining estimates of %C by combustion analyzer 

(Rau et al., 2010; 2012).  

Herbaceous biomass, litter biomass and carbon were estimated in eight total 0.25 x 0.25 

m quadrats along two 33 m transects within each plot. Standing herbaceous biomass was 

clipped at ground level, collected, dried, weighed, and subsamples were analyzed for %C (Rau et 

al., 2010; 2012). Herbaceous and shrub litter were also collected, dried, weighed, and 

subsamples were analyzed for %C (Rau et al., 2010; 2012). Down Woody Debris (DWD) biomass 
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and C were estimated using the planar intercept method on the 5, 15, and 25 m transects, 

where all woody debris > 0.635cm was inventoried where it intersected each transect (Brown 

1974); representative DWD subsamples were analyzed for %C via combustion analyzer (Rau et 

al., 2010; 2012).  

The sum of aboveground carbon per plot was estimated as the sum of Tree C + Shrub C 

+ Standing Herbaceous C + Down Woody Debris C + Tree, Shrub, and Herbaceous Litter C. The 

mass of total aboveground carbon per plot was then regressed against tree canopy cover using 

SAS 9.4™ PROC REG (SAS Institute 2009). The best fit model (polynomial) was chosen using 

adjusted r-squared and AIC.       

4.3.5 Carbon estimation in three shrubland landcover types 

 
Total aboveground for each of the three shrubland categories we created a static carbon 

estimate and applied a stratify and multiply approach to map aboveground carbon (Goetz et al., 

2009). These estimates were calculated using data from 455 (0.10 ha) field plots measured as 

part of the SageSTEP Project (McIver et al., 2014). The vast majority (430) of these plots were 

categorized as sagebrush steppe (Figure 4.1). These plots all contained basin big sagebrush 

(Artemisia tridentata) or Wyoming sagebrush (Artemisia tridentata ssp. wyomingensis), but also 

commonly contained a mix of low sagebrush (Artemisia arbuscula), and salt desert scrub 

(Atriplex spp.; Sarcobatus spp.). In order to quantify unique communities of low sagebrush and 

salt desert shrub, we measured 25 supplemental plots (10 low sagebrush, 10 greasewood, 5 

saltbrush) adjacent or near the primary SageSTEP plots. All plots were of identical dimensions to 

the woodland plots described above (30 x 33 m), and all carbon measurements were identical 

with the exclusion of those associated with trees. The sum of aboveground carbon per plot was 

estimated as the sum of Shrub C + Standing Herbaceous C + Down Woody Debris C + Shrub and 
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Herbaceous Litter C. For each unique shrub type the mean aboveground C and standard error 

were calculated. The mean and standard error were used to create low, medium, and high 

carbon estimates for each of the three shrubland categories. 

4.3.6 Carbon estimation for forest, non-forest, and other 

 
For the other forest/woodland land cover types, we created static estimates using 

aboveground biomass data from Hudak et al., 2016. These data were created using a two step 

approach. First, a random forest regression model was created using forest inventory data and 

co-located lidar measurements to calibrate lidar estimates of aboveground biomass. Second, 

topography, climate, and Landsat derived spectral indices were used as training data in a second 

random forest model to predict the lidar-derived aboveground biomass estimates. This model 

was used to map aboveground biomass in forested land across the Pacific Northwest. Because 

these data do not cover our entire study area, we created 185 random points in forest land 

cover within overlapping areas and extracted biomass (Hudak et al., 2016) and land cover 

(LANDFIRE.US_140EVT GP_N, Rollins, 2009; LANDFIRE, 2014a). We used these values to 

calculate the average aboveground biomass associated with each LandFire vegetation 

classification. Because data from Hudak et al., 2016 only encompasses the northern half of our 

study region, we standardized these values based on the percent total area of each LandFire 

vegetation group for the entire study region. These estimates refer to total aboveground 

biomass, so we divided them by 2 to convert them to aboveground carbon (Biomass is roughly 

48-50% Carbon). This general conversion is common when converting biomass to carbon (e.g. 

Saatchi et al., 2011; Kellndorfer et al., 2013). Lastly, pixels that were designated as non-forest or 

other/excluded were assigned a carbon value of 0. 
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4.3.7 Comparison to the National Biomass and Carbon Dataset 

 
We compared our results to the National Biomass and Carbon Dataset Version 2 (NBCD; 

Kellndorfer et al., 2013) which is a national scale, 30 m resolution dataset of aboveground 

biomass for the U.S. We downloaded the tiles that make up the Great Basin region and 

mosaicked them using the maximum value in places where these tiles may overlap. We 

randomly selected 5,000 points within our study area and extracted our carbon values and the 

NBCD biomass values, which we divided by 2 to estimate carbon. We also extracted our 

classification of land cover for each point. Because both our carbon estimates and the NBCD 

carbon estimates on pinyon-juniper are continuous values, we created a linear model using just 

the randomly selected points associated with the pinyon-juniper land cover type (n=855). For 

the remaining categories with static carbon estimates, we created boxplots of the NBCD carbon 

data for each land cover type to compare our estimates. 

4.4 Results 

4.4.1 Land cover classifications in the Great Basin 

 
We classified seven types of land cover in the Great Basin (Figure 4.1). Of the land cover 

categories of interest for carbon accounting, sagebrush steppe was the most extensive, making 

up roughly 27% of our study area, followed by pinyon-juniper woodland (17%), salt desert scrub 

(12%) and low sagebrush (10%). The other forest and other non-forest categories made up 1.2% 

and 0.4%, respectively. Roughly one third (~32%) of the Great Basin was excluded from carbon 

accounting because it was classified as agricultural, introduced grass, barren, developed, or 

water, which should account for very little aboveground carbon (Figure 4.2). 
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4.4.2 Validation of the pinyon-juniper percent cover product 

 
Overall, the modeled canopy cover product values ranged from 0-92% cover 

(mean=15.3%). The 265 SageSTEP control plots encompass a large range of cover from 0-75.7% 

(mean±SE=14.9± 1.1) and are distributed across the study region. Based on the linear regression 

comparison to the 30 m tree cover estimates derived from Falkowski et al. (2017a), modeled 

pinyon-juniper cover from aerial photographs shows a reasonably strong correlation with field-

based measurements (R² = 0.62; Figure 4.3).  

There were 23 data points with a pinyon-juniper cover discrepancy of greater than 20%. 

SageSTEP field estimates were higher in 17 of these plots (SageSTEP mean±SE= 54.9±2.4; 

Canopy cover model mean±SE= 22.7±1.2), suggesting that the mapped data may have a 

tendency to underestimate total pinyon-juniper in areas of high cover. Visual inspection of the 

17 underestimated SageSTEP plots in conjunction with the original 1 m resolution data and NAIP 

imagery also suggest that some tree canopies were omitted in the modeled canopy estimates. 

The SageSTEP plots that recorded less than 2% cover difference tended to be in areas of 

relatively low pinyon-juniper cover (n= 139, mean±SE= 3.54±0.74), suggesting that our cover 

estimates are most accurate in areas of low cover. 

4.4.3 Carbon estimates for land cover classes 

 
Based on the SageSTEP field measurements of canopy cover and aboveground biomass 

C, we calculated the an equation for total aboveground carbon in pixels designated as pinyon-

juniper. The equation has high explanatory power and shows a strong positive relationship 

between percent canopy cover and total aboveground carbon (n=1148, r2=.94, p<0.001; Figure 

4.4). Although the equation has a polynomial form, the linear coefficient determines the bulk of 
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the relationship. The non-zero intercept value of 3,153 kg/ha represents carbon associated with 

shrubs and herbaceous biomass growing within woodland communities where pinyon-juniper 

canopy cover is very low or absent. 

 Mean estimates of total aboveground carbon for the three shrubland categories 

ranged from 3,056 kg/ha in salt desert scrub to 3,778 kg/ha in low sagebrush, with estimates 

much more robust in the well-sampled sagebrush steppe. Estimated values for total 

aboveground carbon for the other forest was 28,122 kg/ha based on aboveground biomass data 

from Hudak et al. 2017 (Table 4.1). The other non-forest category was assigned a value of 0 

kg/ha. 

4.4.4 Total Great Basin carbon estimates 

 
Based on our models, we estimated that there was a total of 296.9 Tg of aboveground 

carbon in the Great Basin when using mean carbon estimates for the three shrubland categories 

(Table 4.2, Figure 4.5). While the pinyon-juniper land cover type comprises only 16.9% of the 

Great Basin by total area, it accounted for 43.5% of the total aboveground carbon (Table 4.2). 

When the three shrubland categories were combined, they account for roughly half of the total 

land area (49.1%) and contribute 34.2% of the total aboveground carbon estimated for the 

study area.       

4.4.5 Comparison to the National Biomass and Carbon Dataset 

 
The relationship between our estimates of carbon in pinyon-juniper land cover vs. the 

NBCD data was significant, but weak (R2=0.14, n=855; Figure 4.6). While carbon was positively 

correlated between our estimates and the NBCD (pearson’s r= 0.38, n=855, p<0.001) the NBCD 

dataset estimated zero carbon in 20% of the pixels containing pinyon-juniper woodland. For the 
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land cover classes that had fixed, rather than continuous, carbon estimates, our carbon estimate 

was higher in all cases with the exception of the “non-forest’ and “other” classifications (Figure 

4.7). Total carbon in the Great Basin based on NBCD estimates is 161 Tg, which accounts for only 

54.2% of the total carbon in our modeled estimates. 

Table 4.1: Carbon per pixel calculated for each land cover type. pinyon-juniper is calculated as 
a function of canopy cover per pixel (x). The three shrubland categories (low sagebrush, salt 

desert, and sagebrush steppe) have a mean carbon estimate followed by a low and high 
estimate based on the standard error. 

Land cover Type Total kg Carbon/ ha 

Pinyon-juniper 1.5x2 + 564.4x + 3153  

Forest 28122 

Sagebrush Steppe 3067 (3011-3122) 

Low Sagebrush 3778 (2778-4789) 

Salt Desert Scrub 3056 (2500-3622) 

Non-Forest 0 

Excluded 0 

 

Table 4.2: Total area and teragrams (Tg) of carbon by land cover type using mean estimates 
for the shrubland categories. 

Land cover Type Total area (%) Total Carbon (Tg) 

Pinyon-Juniper 16.9 129.1 

Forest 1.2 66.5 

Sagebrush Steppe 27.9 55.0 

Low Sagebrush 9.5 23.2 

Salt Desert Shrub 11.7 23.1 

Non-Forest 0.4 0 

Excluded 32.4 0 

Total 100 296.9 
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Figure 4.1: Schematic of land cover classification. All pinyon-juniper pixels were classified first. 
The remaining pixels were reclassified based on their LandFire EVT vegetation group (LF 

EVT_GP_N) classifications. Non-woodland, non-shrubland pixels were classified based the 
dominant life form (LF EVT_LF) of that pixel. The vegetation groups within each final 

classification are listed in order of prevalence within the group, with the percent total in 
parentheses. 
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Figure 4.2: Land cover classification for the Great Basin based on a combination of woodland 
cover from Falkowski et al. 2017a,b and other land cover from LandFire (Rollins, 2009; 

LANDFIRE, 2014a). 
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Figure 4.3: Modeled pinyon-juniper canopy cover showed a strong, positive relationship (R2 = 
0.62) with SageSTEP field measurements of pinyon-juniper percent cover. Canopy cover 

estimates were aggregated to a 30 m pixel size, which corresponds to the SageSTEP plot size. 

 

Figure 4.4: Total aboveground carbon in pinyon-juniper is strongly related to canopy cover. 
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Figure 4.5: Estimated aboveground biomass carbon storage in the Great Basin (kg/ha) using 
mean estimates for the three shrubland categories. 

 

Figure 4.6: Regression of carbon estimates compared to the carbon estimates in the National 
Biomass and Carbon Dataset for the pinyon-juniper land cover type. There was a weak but 

significant positive relationship (R2=.147, p<0.01). 
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Figure 4.7: For six land cover classes, we provided static carbon estimates (stars; values in 
Table 4.1). The boxplots show a mean estimate of carbon in the NBCD dataset. Most of the 

pixels in the associated NBCD dataset for these land cover types had values of 0, with means 
ranging from 94-20,989 kg/ha. All means (denoted by a line in each boxplot) in the NBCD 
dataset were lower than the static estimates with the exception of the “other/ excluded” 

classification. The stars represent the modeled mean for each landcover type. The modeled 
mean for pinyon-juniper is 12,222 kg/ha and refers to the mean of the 855 pinyon-juniper 

designated points included in the comparison analysis. 

4.5 Discussion 

Carbon accounting is increasingly important as we aim to combat climate change by 

reducing deforestation and degradation in terrestrial ecosystems. To date, aboveground carbon 

models have largely neglected semi-arid regions and those that have estimated carbon have 

focused on plot level studies or subsets of ecoregions. Our analysis provides a first 

comprehensive estimate of aboveground carbon in the Great Basin, a spatially extensive semi-

arid region of the western U.S. Our results suggest that Great Basin woodland and shrubland 

ecosystems contain nearly twice the aboveground carbon estimated by the National Biomass 

Carbon Dataset. Given that semi-arid ecosystems account for 45% of non-frozen terrestrial lands 
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globally and are at risk for severe degradation from disturbance and exotic species invasion, this 

analysis underscores the need to better understand carbon storage in these ubiquitous 

landscapes. Here we examine factors that may impact our carbon estimates in each landcover 

type and compare our estimates with previous work in similar regions.  

4.5.1 Land cover classifications in the Great Basin 

 
The Great Basin was designated into seven distinct land cover classifications and these 

general classifications were based on dominant plant functional groups and their potential 

contributions to aboveground carbon. In the Great Basin, the most widespread of the shrub-

steppe communities is the Basin big sagebrush-steppe, and we originally hypothesized that 

these communities would have higher productivity and carbon storage than the other shrub 

types. Our results indicate that although highly variable, dependent on local conditions, the salt 

desert scrub and low sagebrush types can produce similar carbon storage estimates when 

compared to sagebrush steppe. To better characterize the variance in shrubland carbon 

estimates additional research may be needed to relate shrub canopy cover and height to 

biomass and carbon estimates. 

4.5.2 Pinyon-juniper carbon 

 
Our results comparing the remotely sensed pinyon-juniper percent cover product 

(Falkowski et al., 2017) with canopy cover estimates from SageSTEP plots (McIver et al., 2014) 

are consistent with previous validation work that suggests a tendency of underestimation in 

high cover areas (Poznanovic et al., 2014; Falkowski et al., 2017a). This was particularly 

pronounced in areas where SageSTEP plots measured >50% cover. Our estimates of pinyon-

juniper canopy cover (mean±SE= 15.1± 0.4, range=0-65.8%, n=855), are similar to remotely 
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sensed estimates of pinyon-juniper systems in the Colorado Plateau (mean=22%, range= 0-

58.9%; Huang et al., 2009) which used a multiscale approach including field measurements, 

airborne imaging, and Landsat satellite data, suggesting that our estimates are a reasonable 

representation of canopy cover at regional scales.  

Our estimate of total carbon in Great Basin pinyon-juniper systems (~11,870 kg/ha) is 

also within the range of Huang and colleagues (2009) who estimated a total of 19,240±7,400 

kg/ha in pinyon-juniper systems in the Colorado Plateau, and this variation could reflect actual 

differences in the pinyon-juniper carbon contributions in these different locations. Finally, our 

estimate of total pinyon-juniper carbon in the Great Basin may also be conservative given the 

tendency of the canopy cover map to underestimate the high cover field measurements 

obtained from the SageStep project. 

Although our canopy cover model might underestimate aboveground carbon, our land 

cover map might overestimate the extents of woodland ecosystem. This is because much of our 

pinyon-juniper classification was based on data from Falkowski et al. (2017a,b) where any pixel 

with >0% pinyon-juniper cover was designated as pinyon-juniper. These designations 

superseded cover classifications from LandFire, and therefore, our maps likely represent the 

maximum land area of pinyon-juniper ecosystems present in the Great Basin. This is illustrated 

in the high amount of pinyon-juniper area in our land cover map (16.9%) compared to the 

LANDFIRE map alone (8.2%). In addition, our land cover map estimates 19.7% pinyon-juniper 

cover compared to 14.6% in the same geographic area in previous work (Bradley and Mustard, 

2008.) This overestimation, however, should little impact on the overall carbon estimate in the 

Great Basin because areas of low pinyon-juniper cover have carbon estimates similar to those in 

shrubland ecosystems. While classifying all pixels with any pinyon-juniper vegetation as pinyon-

juniper is useful for carbon estimates because they are the most significant contributor to 
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carbon on this landscape, this approach could be problematic if used for mapping habitat for 

pinyon-juniper specialist species. 

4.5.3 Carbon in other land cover  

 
Each of the remaining six land cover classes in the Great Basin was given a static carbon 

estimate based on field sampling (shrubland) or remotely sensed products (forest). Estimates of 

aboveground carbon for the low sagebrush and sagebrush steppe shrubland categories are 

similar to estimates of aboveground biomass for these shrubland ecosystems in previous work 

(Rickard et al., 1985; Bradley et al., 2006), and salt desert is slightly higher (Driese and Reiners, 

1997; Bradley et al., 2006). Because of the high variability in the low sagebrush and salt desert 

scrub ecosystems partially due to low sample size, we also calculated aboveground carbon 

estimates using a range of shrubland carbon values. Overall aboveground carbon estimates 

ranged from 279 Tg to 302 Tg when calculating totals based on low and high shrubland carbon 

estimates, suggesting that errors in the shrub estimates have minimal effect on the estimate of 

overall carbon in the Great Basin.  

The forest land classification was assigned carbon values using remotely sensed 

aboveground biomass data (Hudak et al., 2017.), and our estimate for forest aboveground 

carbon is similar to previous estimates of forest carbon (Kellndorfer et al., 2013; Figure 4.7). 

While the non-forest land cover category likely has more carbon than the assigned 0 value, it is 

defined largely by grassland and only accounts for 0.4% of the total study area, suggesting that 

this land cover category does not have a big impact on the overall carbon storage within the 

Great Basin region. 

While the excluded land cover category made up roughly one third of the Great Basin, 

we do not expect that this will significantly impact the overall aboveground carbon storage 
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estimates. Our excluded category included primarily agriculture, introduced grass, development, 

and water. These vegetation types typically store small amounts of aboveground carbon. For 

example, in the Great Basin, introduced grassland is primarily cheatgrass which has 

aboveground carbon typically below 1,000 kgC/ha (Bradley et al., 2006; Diamond et al., 2012; 

Kessler et al., 2015). While on average, agriculture systems in the U.S. store some carbon, it is 

typically harvested, resulting in little aboveground carbon storage. 

4.5.4 Total Great Basin carbon estimates 

 
Previous work by Kellndorfer et al. 2013 estimated aboveground carbon storage in the 

Great Basin at 161 Tg, but our regional estimate of carbon is nearly double this amount (296.9 

Tg). This is most likely because our estimates include shrubland and woodland aboveground 

carbon, which collectively make up 66% of the land area (230.4 Tg C) in the Great Basin, while 

Kellndorfer and colleagues only account for carbon in forest designated pixels of the same 

region. In addition, Kellndorfer and colleagues reported a strong correlation between modeled 

carbon and carbon measured in forested FIA plots in the areas included in our Great Basin study 

map (r=0.44-0.86), however, the relationship we show to aboveground carbon in pinyon-juniper 

woodland plots is weaker (r=0.38). In fact, 20% of our randomly selected pinyon-juniper pixels 

were identified as containing 0 kgC by Kellndorfer et al. 2013. As a result, it is likely that national 

and global scale carbon accounting products focused on forest carbon are poorly suited for 

estimating carbon in semi-arid ecosystems.       

4.5.5 Product applications and management implications 

 
The Great Basin is a region undergoing a high level of land cover change. Aboveground 

carbon storage in ecosystems is increasingly threatened by fire and conversion to non-native 
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annual grasslands (Bradley et al., 2006; Balch et al., 2013) and has a history of large-scale 

alteration of ecosystems due to grazing (Branson, 1953; Hickey, 1961; Mack and Thompson, 

1982; Young et al., 1997). Additionally, expansion of woody vegetation, including pinyon-juniper 

woodland, is common (Miller et al., 2008; Wang et al., 2018). By creating a robust, spatially 

explicit estimate of aboveground carbon storage in Great Basin ecosystems, this analysis 

provides an important first step towards measuring and accounting for carbon changes through 

degradation of this extensive semi-arid region. 
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