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ABSTRACT 

MULTISCALE SIMULATIONS OF INTRINSICALLY DISORDERED 

PROTEINS 

 

MAY 2019 

 

XIAORONG LIU 

 

B.S., WUHAN UNIVERSITY, CHINA 

 

M.S., WUHAN UNIVERSITY, CHINA 

 

M.A., UNIVERSITY OF DELAWARE 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Jianhan Chen 

 

 

Intrinsically disordered proteins (IDPs) lack stable secondary and/or tertiary structures 

under physiological conditions. The have now been recognized to play important roles in 

numerous biological processes, particularly cellular signaling and regulation. Mutation of 

IDPs are frequently associated with human diseases, such as cancers and neuron 

degenerative diseases. Therefore, it is important to understand the structure, dynamics, and 

interactions of IDPs, so as to establish the mechanistic basis of how intrinsic disorder 

mediates versatile functions and how such mechanisms may fail in human diseases. 

However, the heterogeneous structural ensembles of IDPs are not amenable to high 

resolution characterization solely through experimental measurements, and molecular 

modelling and simulation are required to study IDP structures, dynamics, and interactions 

at the atomistic levels. 

Here, we first applied the state-of-the-art explicit solvent atomistic simulations to an anti-

apoptotic protein Bcl-xL and demonstrated how inherent structural disorder may provide a 
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physical basis of protein regulated unfolding in signaling transduction. We have also 

constructed a series of efficient coarse-grained models to directly simulate the interactions 

between IDPs and unveiled how the preexisting structural elements accelerate binding of 

ACTR to NCBD by promoting efficient folding upon encounter. These studies shed 

important light on how IDPs perform functions in the cellular regulatory network, but also 

reveal the necessity of new sampling techniques for more efficient simulations of IDPs. 

We have thus developed a novel sampling technique, called multiscale enhanced sampling 

(MSES). MSES couples the atomistic model with coarse-grained ones, to accelerate the 

sampling of atomistic conformational space. Bias from coupling to a coarse-grained model 

can be removed using Hamiltonian replica exchange. To achieve the best possible 

efficiency of MSES simulations, we have developed a new hybrid resolution protein model 

that could capture the essential features of IDP structures, so as to generate local and long-

range fluctuations that are largely consistent with those at the atomistic level. We have also 

developed an advanced replica exchange protocol, to allow the fast conformational 

transitions observed in the coupled conditions to be rapidly exchanged to the unbiased 

limit. Application of these strategies to characterize the structural ensembles of a few non-

trivial IDPs shows that faster convergence rate can be achieved, demonstrating the great 

potential of MSES for atomistic simulations of larger and more complex IDPs. 
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 1 

CHAPTER 1  

INTRODUCTION 

1.1 Intrinsically disordered proteins: structure, dynamics, and interaction 

Intrinsically disordered proteins (IDPs) lack well-defined three-dimensional (3D) 

structures under physiological conditions[1-7]. Although traditional protein structure-

function paradigm suggests that proteins could perform functions due to their specific 3D 

structure, the discovery of IDP deviates from this notion and unveils the critical role of 

intrinsic disorder in mediating protein functions. The presence of functional disordered 

proteins, like the polypeptide hormone glucagon[8], was realized several decades ago, but 

the prevalence and versatile functions of IDPs were recognized only recently due to the 

availability of large amounts of gene sequence data, which enables us to perform gene-

based functional analysis and to predict intrinsically disordered segments[9, 10]. Compared 

with folded proteins, IDPs are enriched in polar and charged residues, and deficient in 

bulky hydrophobic residues[11, 12]. By capturing such features of IDPs, sequence analysis 

have shown that about one third of eukaryotic proteins contain substantial disordered 

regions, and such disorder appears to be further enriched in proteins involved in cellular 

signaling and regulation[13]. The prevalence of IDPs suggests that many proteins rely on 

intrinsic disorder to perform functions. Also, mutation of IDPs is often associated with 

human diseases, such as cancer, diabetes, neuron degenerative disease, and cardiovascular 

disease[14]. Therefore, there is a great need to understand how intrinsic disorder mediate 

functions and how such mechanism may fail in human diseases. 



 

 2 

1.1.1 Key properties and functional advantages of IDPs 

It has been suggested that intrinsic disorder provides several unique advantages for the 

functional roles of IDPs. For example, intrinsic disorder provides a robust, thermodynamic 

basis for optimized allosteric coupling[15]. Unlike folded proteins, IDP structures are 

marginally stable and heterogeneous. Such disordered structural ensemble is poised to 

respond sensitively to input signals, allowing rapid redistribution among various 

conformational states, thus performing versatile functions[16]. Also, IDPs could often 

undergo disorder-to-order transitions upon specific binding to their targets to carry out 

functions, and such process is called “coupled binding and folding” of IDPs. Due to the 

malleable nature of IDPs, they could specifically interact with many targets by adopting 

different conformations[17]. Therefore, IDPs frequently work as signaling hub in the 

complex protein-protein interaction network and are rich in sites for posttranslational 

modifications[18, 19]. Moreover, intrinsic disorder provides a robust mechanism to 

decouple specificity from binding affinity, i.e., to allow for specific interaction without 

tight binding[20]. Such weak binding (and fast dissociation rate)[20] appeared to be 

particularly important for signaling transduction, such that signals could rapidly switch 

upon ligand binding, post-translational modification, or changes in cellular environment 

[21]. Also, it has been newly recognized that due to the weak, multivalent interactions of 

IDPs, they often play important roles in liquid-liquid phase separation, such as the 

formation of membrane-less organelles or biomolecular condensates[22]. Such 

macromolecular assemblies could function as reserves of signaling components[21, 23]. 
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1.1.2 Experimental methods towards characterizing IDP structures 

One focus of IDP studies is to understand how the structural and dynamic properties of 

unbound IDPs impact their interactions and functions. As mentioned above, theoretical 

studies have predicted that intrinsic disorder provides a robust, thermodynamic basis for 

optimized allosteric regulation[15]. It has also been suggested that conformational 

flexibility of IDPs is advantageous for efficient molecular recognition, since it may allow 

IDPs to weakly interact with their targets at a larger distance[24]. In contrast, evidence also 

exists that pre-formed structural elements in the unbound ensemble of IDPs facilitate their 

coupled binding and folding, probably by providing initial binding interface[25, 26]. 

Furthermore, the structural and dynamic properties of IDPs can be modulated by 

posttranslational modifications[18] and changes in cellular environment[27], like 

temperature, pH, or ionic strength, thus altering their interaction and function. To gain 

better understanding of the underlying mechanisms, one of the most important 

requirements is detailed characterization IDP unbound ensembles. Experimentally, nuclear 

magnetic resonance (NMR)[28, 29], circular dichroism (CD)[30, 31], single-molecule 

Förster resonance energy transfer (sm-FRET)[32, 33], small angle X-ray (or neutron) 

scattering (SAXS or SANS)[34-37] have been widely used to characterize the structural 

properties of IDPs. For instance, NMR chemical shift and CD spectrometry are particularly 

useful to quantify the level of secondary structure in IDPs; NMR paramagnetic resonance 

enhancement and sm-FRET could provide distance information between different residues; 

SAXS and SANS are powerful tools in determining the overall dimension of IDPs; NMR 

nuclear Overhauser effect and relaxation studies are commonly used to study IDP 

dynamics. Many IDPs have been characterized using these techniques, such as p53[38-40], 
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α-synuclein[41-43], prions[33] and Aβ[44-47]. Many important structural features have 

been observed for IDPs, including less compactness compared with molten globule 

proteins, the presence of some residual secondary structure, and possible transient long-

range contact formation. 

1.1.3 Experimental methods for studying IDP interactions 

Apart from characterizing structure and dynamics of unbound IDPs, direct mechanistic 

study of IDPs interactions is equally important for elucidating the molecular mechanisms 

of how IDPs perform functions. As mentioned earlier, IDPs could often fold into stable 3D 

structure upon specific binding to their physiological partners, and in many cases, such 

coupled binding and folding processes are associated with their activity and can be 

modulated by a lot of cellular events[48]. However, it’s under debate whether the baseline 

mechanism is induced folding (i.e., binding occurs before folding) or conformational 

selection (i.e., folding occurs before binding). Also, it remains unclear how pre-formed 

structural element in the unbound ensemble of IDPs modulates the pathways of coupled 

binding and folding. More intricately, polymorphism and dynamics of the bound state has 

recently been observed[49-51], which offers another toolbox for regulation. But the driving 

forces of such dynamic recognition are yet to be understood. To gain mechanistic insights 

of how IDPs achieve both fidelity and efficiency in molecular recognition, many 

experimental techniques could be utilized to characterize IDP interactions, like NMR 

relaxation dispersion[52] and stop-flow fluorescence measurement[31]. Fitting of 

relaxation dispersion data to appropriate multiple-state models could unveil the presence 

possible intermediate states, and directly yield exchange rates between these states[53]. 

Stop-flow fluorescence measurement provides a means to obtain association and 
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dissociation rate constants. Thus, binding affinity could also be derived from the 

measurement. In combination of mutagenesis, these kinetic and thermodynamic 

information can be further analyzed through ϕ-value analysis and linear free energy 

relationship[54]. By calculating the ratio of activation free energy difference to binding 

free energy difference due to single-site mutation, ϕ-value analysis is a valuable tool to 

determine if a specific interaction is formed before or after transition state. In a similar 

spirit, linear free energy relationship could report the overall mechanism of IDP coupled 

and binding by analyzing the changes in activation free energy and binding free energy for 

a series of mutants. 

1.1.4 Challenges in experimental studies of IDPs 

Although a lot of important insights have been gained from existing studies, it’s also well-

recognized that formidable challenges exist for obtaining atomistic details of IDP structure, 

dynamics and interactions solely from experimental measurements. In many cases, only 

ensemble averaged quantities can be obtained from experimental studies, and how to 

recover the underlying distribution from ensemble averages is a severely under-determined 

problem[53]. Such heterogeneous nature of IDP ensembles could also complicate many 

analyses. For instance, the NMR relaxation dispersion data can only be practically fitted to 

two- or three-state models, and ambiguity in interpreting the derived kinetic parameters 

may arise if a complex IDP interaction involves additional intermediate states[53]. 

Similarly, reliable interpretation of ϕ-value analysis may not be feasible if non-native 

interactions are present in unbound state or transition state, or if there is any intermediate 

state during interaction. Although sm-FRET could provide time series of information 

instead of just ensemble averages, a key challenge is the need of covalent labelling using 
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fluorescent dyes, which may generate artifacts and limit the minimal detecting distance to 

at least 2 nm[55]. Besides the structural heterogeneity of IDPs, timescales of 

conformational fluctuations may further impose difficulties in analyzing experimental 

measurements. For example, NMR relaxation dispersion analysis can only be applied to 

slow exchange between conformational states (i.e., in microsecond to millisecond 

timescale). Therefore, alternative methods are required to complement and extend the 

understanding gained from experimental studies. 

1.2 Molecule modeling and simulations in studying IDPs 

These experimental challenges likely represent opportunities for molecular 

modelling and simulation to make unique and critical contributions to studying 

IDPs. Recent advances in computing hardware, force field and enhanced sampling 

methods have made it possible to reliably simulate IDP conformations. In principle, 

molecular dynamics (MD) simulations using the physics-based atomistic force fields 

could directly provide high-resolution spatial and temporal information about IDP 

structure and dynamics. Also, the design of powerful computer hardware, including 

distributed computing (e.g., Folding@home[56, 57]), graphics processing unit 

(GPU) and special-purpose computers (e.g., Anton[58]), have dramatically 

increased the simulation speed and allowed for much longer timescale of atomistic 

simulations. Moreover, many enhanced sampling methods have been developed 

such that less computation is required in order to generate converged ensembles. 
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1.2.1 Computational studies of IDP structure and dynamics 

Molecular modelling and simulations have provided many important insights for 

deeper understanding of IDP structural and dynamical properties which are not 

amenable to experimental characterization. Among many atomistic approaches, the 

implicit solvent force fields, especially the GBSW model[59] and ABSINTH[60], 

have been successfully applied to detailed studies of many IDPs in their unbound 

state. Such implicit treatment of solvent could provide an appropriate balance 

between efficiency and accuracy. By careful optimization, the GBSW model has 

properly balanced solvation and intramolecular interactions[59]. But compared with 

explicit solvent simulations, GBSW simulations of small proteins are ~30 times 

faster, which makes it possible to extensively explore the vast conformational space 

available to IDPs. A particularly interesting example is the atomistic simulations of 

the kinase-inducible domain (KID) of transcription factor CREB using GBSW[61]. 

By comparing the structural ensembles of KID, its phosphorylated form (pKID) and 

a mutant S133E, it has been found that phosphorylation of S133 not only provides 

an interaction site for binding to its partner, the KIX domain of coactivator CBP 

(CREB-binding protein), but also reduces the entropic cost of KID folding upon 

binding[61]. Similar approaches have also been used to study another IDP, the 

transactivation domain (TAD) of tumor suppressor p53 and a few cancer-associated 

mutants[62]. These cancer mutations could modulate both local and long-range 

conformational properties of p53-TAD, which may further affect its binding to 

various regulatory proteins, thus altering the function. In parallel, the ABSINTH 

force field has been widely used to study the relationship between amino acid 



 

 8 

sequence and polymeric properties of IDPs. For example, a series of arginine-rich 

protamines have been simulated using the ABSINTH model, which demonstrates 

that increasing net charge per residue could induce transitions of IDPs from compact 

globules to swollen coils[63]. Also, by studying 30 variants of (EK)25 peptides, it 

has been found that the charge distribution of polyampholytic IDPs could modulate 

their conformational preference. Well-mixed sequences usually behave like random 

coils while segregation of opposite charges leads to hairpin-like compact 

conformations[64]. 

1.2.2 Computational studies of IDP interactions 

There have been much less atomistic simulations to study the molecular mechanisms 

of IDP coupled binding and folding compared with studies of unbound IDPs, mainly 

because of the computational cost. A noteworthy example is the calculation of free 

energy profiles for the C-terminus of p53 binding to S100B(ββ) using atomistic 

simulations[65]. Implicit solvent model GBSW was used in combination with 

enhanced sampling methods including both temperature-replica exchange and 

umbrella sampling. This study reveals that p53 binds to S100B(ββ) in an unfolded 

state and then folds rapidly, i.e., following an induced folding mechanism. Many 

other studies use coarse-grained models to study IDP interactions, in order to reach 

the biological timescale of such processes (i.e., microseconds to milliseconds), and 

to obtain statistically meaningful observations by sampling numerous reversible 

binding/folding transitions. For instance, topology-based Gō or Gō-like models[66] 

are simple but very successful in studying the mechanisms of coupled binding and 

folding of IDPs. These models are based on the minimal frustration theory of protein 
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folding, which predicts that native interactions largely shape the funnel-like energy 

landscape[67, 68]. Therefore, given the topology of a folded protein, one could 

construct effective energy functions based on the native contacts to capture the key 

features of true energy landscape. In an example of a cell cycle regulator p27Kip1 

(p27) interacting with cyclin A, Gō model simulations have shown that long-range 

electrostatic interactions could not only increase the encounter rate, but also promote 

efficient folding upon encounter[69]. Similar approaches have been used to 

investigate the coupled binding and folding of pKID interacting with KIX[70]. 

Increasing the amount of residual structure in unbound pKID was found to 

decelerate KIX binding, suggesting that intrinsic disorder of IDPs is advantageous 

for target recognition. 

1.2.3 Limitations in computational approaches 

However, limitations still exist in previous simulations of IDP structure and 

interactions. For instance, the implicit solvent force fields assume that the highly 

dynamic solvent molecules can be treated as a continuum medium, which is 

problematic if non-bulk waters play important roles in interactions. Also, the GBSW 

model is inherently limited by its inaccurate description of protein-water boundaries. 

In coarse-grained approaches, atomistic details of IDP structures are lost. 

Specifically, the Gō models are inadequate to describe the heterogeneous structures 

of unbound IDPs, and difficult to examine the role of non-native interactions in IDP 

coupled binding and folding. Hence, there is a great need to develop more accurate 

force fields and more efficient algorithms to further improve the reliability and 

extend the applicability of computational simulations in studying IDPs. 
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1.3 Advances and challenges in simulating IDPs 

1.3.1 Advances in force field development 

Reasonable description of numerous sub-states available to IDPs and free energy 

barriers between them pushes the limit of force field accuracy. Previous generation 

of force fields were usually optimized using the native state of folded proteins, and 

often appeared to generate overly compact conformations for many IDPs[71]. 

Therefore, there have been extensive efforts towards improving the quality of 

protein force fields. As discussed above, implicit solvent force fields provide 

optimal balance between physical accuracy and computational cost, but the accuracy 

of GBSW model is limited by its inaccurate description of protein-water boundaries. 

A more appropriate dielectric boundary can lead to improved accuracy, just like in 

the generalized Born with molecular volume model (GBMV2). GBMV2 model 

recently has been optimized[72], which could capture the structure and stability of 

both α-helical and β-hairpin model peptides. Also, the simulated ensemble of several 

IDPs with various lengths are highly consistent with experimental observables. 

Explicit solvent all-atom force fields arguably offer more accurate representation of 

proteins, although careful optimization requires demanding computational resources 

to achieve sufficient sampling. Many exciting advancements have been made 

recently. For example, CHARMM36m[73] has been validated using a set of 15 

peptides and 20 proteins. Improved accuracy of backbone conformations was 

observed for both folded proteins and IDPs, while overly compact structures were 

still found for larger IDPs. Force field a99SB-disp[71] represents another significant 

improvement in force field development, which has been benchmarked by a series 
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of peptides and proteins with various lengths and stabilities. This model could 

accurately describe folded proteins, secondary structure and overall dimension of 

disordered proteins. Many other force fields aiming at better description of IDPs can 

also be found, such as ABSINTH[60], ff99SB-ILDN[74, 75] with TIP4P-D water 

model[76] and ff03ws[77]. 

1.3.2 Development of enhanced sampling methods 

To visit the vast conformational space available to IDPs also pushes the sampling 

capacity in MD simulations. One of the most popular enhanced sampling methods 

is temperature replica exchange (T-RE)[78], where multiple replicas of the same 

system are simulated under different temperatures, with their temperatures 

exchanged periodically according to the Metropolis criterion. The essence of T-RE 

is that higher temperature is effective in accelerating enthalpy-limited processes, 

thus facilitating the escape from local energy minima, speeding up conformational 

transitions and enhancing sampling. T-RE has been very successful in studying 

biomolecules including IDPs[61, 79-82]. However, it’s also relatively well known 

that limitations exist in studying large-scale conformational transitions. For 

example, replicas are often trapped in conformational space, and different replicas 

tend to sample different conformations[83]. Such segregation in conformational 

space may hinder the random walk of replicas in temperature space and lead to 

exchange bottlenecks near the melting temperature where large transitions occur. 

Many strategies have been explored in order to alleviate these problems. For 

example, to obtain uniform exchange acceptance probability has been suggested to 

be important for enhanced sampling, which can be achieved through concentrating 
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replicas near the temperatures of exchange bottleneck[84]. However, only 

considering exchange probability may not necessarily guarantee improved sampling 

efficiency. A more sophisticated approach is to optimize the flow of replicas in 

temperature space, such as maximizing  the rate of replica round trips between the 

lowest and highest temperatures by adaptively adjusting the distribution of 

simulation temperatures[84, 85] or by using biasing potentials[86, 87], and steadily 

increasing or decreasing the temperature of a replica to help it escape from the 

trapped state[88]. Nevertheless, if the system needs to undergo slow, cooperative 

conformational transitions, like protein folding, where the activation free energy is 

entropically dominated, tempering likely becomes ineffective in driving such 

transitions. 

Besides T-RE and its variants, many other enhanced sampling methods have also 

been developed to study protein conformations. Accelerated molecular dynamics 

method[89] enhances sampling by adding non-negative bias potential to the system 

where system potential is lower than a given value while keeping other regions, like 

transition states, unchanged. Similarly, if the location of a system during the 

simulation can be described by a few collective variables (CVs), metadynamics[90] 

can be used by continuously adding Gaussian potentials centered on the previously 

visited points in the CV space. The accumulation of such Gaussian bias potentials 

will flatten the free energy landscape and push the system to explore the whole 

conformational space. Moreover, instead of using Gaussian potentials, variational 

approach can be utilized to determine bias potential, such that the system can sample 

an arbitrary probability distribution in the CV space[91]. Another unique approach 
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is orthogonal space sampling[92], where sampling is enhanced in both the order 

parameter space and its generalized force space. The basic idea is that the 

generalized force is a robust order parameter to describe the direction along which 

hidden barriers exist. Therefore, this approach could accelerate random walking 

along the selected order parameter as well as its environmental response, thus 

enhancing conformational transitions. 

The efficacy of these enhanced sampling methods in studying IDPs remains to be 

carefully examined. Since conformational transitions of IDPs between numerous 

sub-states cannot be easily described by a few CVs, it may complicate the evaluation 

of sampling efficiency of many approaches that depends critically on choosing 

appropriate CVs. Moreover, the free energy barriers of large conformational 

transitions, like protein folding, are usually dominated by the entropic 

component[93], which makes tempering ineffective in driving such transitions. In 

this dissertation, strategies towards alleviating such problems will be discussed. 

1.4 Dissertation Outline 

The structure, dynamics and interaction of IDPs is of great scientific interest due to 

their biological significance. This dissertation will include application of multiscale 

modelling and simulations to understand how intrinsic disorder mediates protein 

functions, as well as development of new enhanced sampling methods for more 

efficient simulation of IDPs. Specifically, in chapters 2[94] and 3[95], atomistic 

simulations were performed to study how an anti-apoptotic protein Bcl-xl use 

intrinsic disorder to mediate regulated unfolding in cell apoptosis. Chapter 4[96] is 
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focused on interaction between two IDPs, activation domain of the activator for 

thyroid hormone and retinoid receptors (ACTR) and the nuclear coactivator binding 

domain (NCBD) of CBP. A series of coarse-grained models were constructed to 

investigate the molecular mechanisms of how residual structure in ACTR 

accelerates binding with NCBD. These studies help us better understand how IDPs 

perform versatile functions, but again, suggest that new sampling techniques are 

needed for more efficient atomistic simulations of IDPs. Therefore, the next two 

chapters will be focused on strategies to improve a novel enhanced sampling 

technique, called multiscale enhanced sampling (MSES) where coarse-grained 

models are coupled with all-atom ones to accelerate sampling of atomistic energy 

landscape. The bias from coupling to a coarse-grained model could be removed by 

replica exchange, thus allowing us to benefit simultaneously from the high accuracy 

of atomistic models and faster dynamics of coarse-grained models. In particular, 

chapter 5[97] presents the development of a better coarse-grained model for IDPs, 

which could generate fluctuations largely consistent with those at the atomistic 

levels, thus leading to better synergy between atomistic and coarse-grained models 

and accelerating atomistic structural transitions. Chapter 6 shows the development 

of advanced replica exchange protocols for MSES, which allows for better control 

of how the coupled conditions are exchanged to unbiased limit. Finally, a brief 

summary of findings and directions for further research are discussed in chapter 7. 
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CHAPTER 2  

DYNAMICS OF THE BH3-ONLY PROTEIN BINDING INTERFACE OF BCL-

XL 

The balance and interplay between pro-death and pro-survival members of the B-

cell lymphoma-2 (Bcl-2) family proteins play key roles in regulation of the 

mitochondrial pathway of programed cell death. Recent NMR and biochemical 

studies have revealed that binding of the pro-apoptotic BH3-only protein PUMA 

induces significant unfolding of anti-apoptotic Bcl-xL at the interface, which in turn 

disrupts the Bcl-xL/p53 interaction to activate apoptosis. However, the molecular 

mechanism of such regulated unfolding of Bcl-xL is not fully understood. Analysis 

of the existing PDB structures of Bcl-xL in both bound and unbound states reveal 

substantial intrinsic heterogeneity at its BH3-only protein binding interface. Large-

scale atomistic simulations were performed in explicit solvent for six representative 

structures to further investigate the intrinsic conformational dynamics of Bcl-xL. 

The results support that the BH3-only protein binding interface of Bcl-xL is much 

more dynamic compared to the rest of the protein, both unbound and when bound to 

various BH3-only proteins. Such intrinsic interfacial conformational dynamics 

likely provides a physical basis that allows Bcl-xL to respond sensitively to detailed 

biophysical properties of the ligand. The ability of Bcl-xL to retain or even enhance 

dynamics at the interface in bound states could further facilitate the regulation of its 

                                                 
 Liu X, Beugelsdijk A, and Chen J (2015). "Dynamics of the BH3-Only Protein Binding 

Interface of Bcl-xL." Biophysical Journal 109(5): 1049-1057. 
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interactions with various BH3-only proteins such as through post-translational 

modifications. 

2.1 Introduction 

Intrinsically disordered proteins (IDPs) frequently play crucial roles in cell signaling 

and regulation and are associated with numerous human diseases [2, 3, 15, 17, 48, 

53, 98]. Intrinsic conformational disorder of IDPs may offer many potential 

functional advantages, such as larger binding surface areas, inducibility by 

posttranslational modifications, and structural plasticity for binding multiple 

partners [3, 53]. Attesting to the fundamental importance of intrinsic disorder in 

biology, sequence analysis has revealed that over one-third of eukaryotic proteins 

contain long disordered segments or domains [99]. Intensive efforts have been 

focused on characterizing the conformational properties of unbound IDPs and 

understanding how these properties may support facile and robust binding to specific 

targets [100, 101]. The ability of many regulatory IDPs to undergo coupled binding 

and folding transitions upon specific binding, in particular, has attracted much 

attention [100, 102]. It is also increasingly recognized that substantial 

conformational heterogeneity, and sometimes full disorder of the entire binding 

domain, may persist in the bound states of IDPs [103-106]. Furthermore, examples 

have started to emerge in recent years where cellular signaling and regulation are 

achieved via regulated unfolding of proteins [107]. Regulated unfolding could be 

local or global, and may be driven by a wide range of signaling stimuli, including 

post-translational modifications [108], ligand or protein binding [109-111], changes 
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in environmental conditions such as pH [112, 113], and mechanical stress [114, 

115]. Together, these examples illustrate a fascinatingly broad and versatile 

utilization of protein conformational disorder in cellular signaling and regulation.  

A particularly intriguing example of regulated unfolding involves the binding of 

intrinsically disordered PUMA to protein Bcl-xL [109]. Bcl-xL is an anti-apoptotic 

member of the Bcl-2 family proteins, which are critical regulators of the 

mitochondrial pathway of programmed cell death [116]. Interactions and balance 

between pro-apoptotic and anti-apoptotic members of the Bcl-2 family proteins 

underlie the regulatory network that controls the switch between life and death of 

the cell. Mis-regulation of the Bcl-2 family proteins is frequently involved in cancers 

[117]. Bcl-xL inhibits the pro-apoptotic function of cytoplasmic tumor suppressor 

p53 by sequestering it into inactive complexes [118, 119]. It also protects cells from 

programmed death by interactions with numerous pro-apoptotic BH3-only Bcl-2 

family proteins, including BID, BIM, BAD, PUMA, BIK, HRK, BMF and NOXA 

[120-122]. All BH3-only Bcl-2 family proteins except BID are IDPs [123]. Upon 

binding to Bcl-xL, the BH3 domain of PUMA folds into a single helix [109] (Figure 

2.1B). Intriguingly, PUMA binding also leads to local unfolding of Bcl-xL [109], 

mainly in the α2 and α3 segments near the BH3-only protein binding interface (see 

Figure 2.1B),  which in turn disrupts the interactions with cytosolic p53 and releases 

the inhibition of p53’s pro-apoptotic function. The apparently unique ability of 

PUMA binding to drive drastic local unfolding of Bcl-xL appears consistent with 

the fact that PUMA is the only BH3-only protein that can efficiently release p53 
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from the inactive complex with Bcl-xL [124]. However, the molecular basis of 

regulated unfolding in the Bcl-xL/PUMA interaction is not fully understood.  

 

Figure 2.1 Representative experimental structures of the BH3-only protein binding 

interface of Bcl-xL. Bcl-xL is colored in gray except for residues 98-120, which are 

colored in red. The BH3-only protein binding partners (PUMA, BIM and BAD) are 

shown in blue. Additional details of these PDBs are provided in Table 2.2. The 

cluster IDs are shown in parenthesis (see Table 2.3 for details). 

 

 

PUMA contains a unique Tryptophan at position 71 among BH3-only proteins. 

Importantly, its π-stacking interaction with Bcl-xL His113 has been shown to be 

necessary for the observed regulated unfolding of Bcl-xL [109] (Figure 2.1B). 

Mutation of PUMA Trp71 to Ala largely suppresses Bcl-xL partial unfolding in the 

bound state, and further abolishes the ability of PUMA binding to release cytosolic 

p53 from Bcl-xL inhibition [109]. These observations have led to the conclusion that 

the π-stacking interaction between PUMA Trp71 and Bcl-xL His113 drives local 

unfolding in the adjacent α2 and α3 segments of Bcl-xL. However, the π-stacking 

interaction itself does not appear to be thermodynamically important, because the 

W71A mutant and wild-type PUMA BH3 domain bind to Bcl-xL with similar high 
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affinities [109]. It appears unusual that a single specific interaction between Bcl-xL 

His113 and PUMA Trp71, located on the edge of the binding interface, could fully 

account for the dramatic conformational changes observed for Bcl-xL. Curiously, 

the BH3 domain of BAD also contains a Tryptophan at position 70 (PUMA 

numbering), which is in position to potentially make similar π-stacking interaction 

with Bcl-xL His113 (Figure 2.1F), but it does not lead to similar local unfolding 

upon binding [109] (we note that α3 does become sufficiently distorted in PDB:1G5J 

such that it is not fully assigned to the helical state in the secondary structure 

analysis; see Figure 2.1F and Figure 2.2). In this work, we analyze all existing 

Protein Data Bank structures of Bcl-xL both in the apo form and in complex with 

various small molecule and peptide ligands, and perform extensive molecular 

dynamics (MD) simulations for six selected Bcl-xL apo structures and complexes to 

characterize the inherent conformational dynamics of Bcl-xL. The results together 

demonstrate that that the BH3-only protein binding interface of Bcl-xL is much more 

dynamic than currently recognized. Such intrinsic interfacial conformational 

dynamics could provide a physical basis that enables Bcl-xL to respond sensitively 

to the nature of the bound ligand and/or environmental conditions, thus allowing 

facile unfolding upon specific binding of appropriate ligands such as PUMA. 

2.2 Methods 

A total of 45 PDB entries were identified that contain either unbound Bcl-xL 

monomer or its complex with small molecule or peptide ligands (as of September 

2014) [109, 119, 125-145]. Four domain swapped dimers of Bcl-xL, namely, 3FDL, 
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2YQ6, 2YQ7 and 4A1U, are also included, where α1 is involved in intermolecular 

interactions and adopts a very different configuration (e.g., Figure 2.9).  Information 

about all PDB entries included in the current analysis is provided in Table 2.2. For 

structural analysis, all entries were preprocessed to remove extra atoms that do not 

belong to Bcl-xL or its primary ligand (if present). The residue numbering of Bcl-

xL was modified in all PDB entries to match the one used in 2M04 (Bcl-xL/PUMA) 

for convenience of comparison. For PDB entries containing multiple models/chains, 

only chain A of model 1 was included the analysis. Clustering analysis was 

performed using the fixed radius clustering algorithm as implemented in the 

MMTSB/cluster.pl tool (with -kclust option) [146]. 

Atomistic MD simulations in explicit solvent were performed to further characterize 

the structure and dynamics of Bcl-xL in both bound and unbound states. These 

simulations were initiated from six representative PDB structures. Two were based 

on the NMR and X-ray structures of unbound Bcl-xL, namely, 2M03 [109] and 

1R2D [127]. The other four simulations were based on the complex structures of 

Bcl-xL with various BH3-only protein ligands, including 1BXL for Bcl-xL/BAK 

[134], 1G5J for Bcl-xL/BAD [147], 2M04 for Bcl-xL/PUMA [109], and 3FDL for 

Bcl-xL/BIM [148]. We note that the long and presumably disordered loop between 

α1 and α2 is absent in all original PDB structures noted above. To our best 

knowledge, this loop is not involved in the complex formation between BH3-only 

peptides and Bcl-xL, and thus omitted in the current simulations. A caveat is that 

the potential impacts of the disordered loop on the structure and dynamics of the rest 

of the protein will not be captured. All structures were solvated using TIP3P water 
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molecules, with proper counter ions added to neutralize the whole system. The final 

solvated systems are illustrated in Figure 2.10. They consist of 40,740 to 97,371 

atoms with cubic box dimensions ranging from ~73 to 98 Å. Table 2.1 provides a 

summary of the residue ranges, total atom numbers, box sizes, and total simulation 

times of all simulations.  

Each solvated system was energy minimized using steepest descent and adopted 

basis Newton-Raphson methods, followed by a short equilibration simulation of 100 

ps using CHARMM [149, 150] with a small harmonic restraint imposed on protein 

heavy atoms to slowly relax the system. After that, unrestrained molecular dynamics 

production simulations were performed using NAMD [151]. CHARMM36/CMAP 

force field was used to model proteins, water and ions [152-154]. These simulations 

were carried out under constant temperature (298 K) and constant pressure (1 bar), 

and periodic boundary conditions were imposed. Non-bonded interactions were 

truncated at the distance of 13 Å, with a smooth switching function starting from 12 

Å. The pair list was updated every 10 steps with a pair list distance of 15 Å. Long-

range electrostatic interactions were treated with Particle Mesh Ewald (PME) 

method [155] with a grid spacing of ~1 Å. Lengths of all hydrogen-related bonds 

were kept constant using SHAKE algorithm [156], and a time step of 2 fs was used 

to integrate the equations of motion. The total production simulation lengths range 

from 310 ns (for 1BXL) to 730 ns (for 1R2D) (see Table 2.1). All analysis was 

performed using CHARMM and in-house scripts, and molecular illustrations were 

prepared using the visual molecular dynamics (VMD) software [157]. 
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Table 2.1 Summary of all six simulations 

PDB Proteins 
Bcl-xL 

Residues a 

Water 

No. 

Na+ 

No. 

Total Atom 

No. 

Initial Box 

Size (Å) 

Simulation 

Time (ns) 

1R2D Bcl-xL 1-27, 82-196 12824 6 40740 73.0 730 

2M03 Bcl-xL 1-44, 85-200 13660 12 43498 74.8 570 

2M04 Bcl-xL/PUMA 1-44, 85-200 18237 14 57654 82.4 460 

1G5J Bcl-xL/BAD 1-44, 85-211 14233 10 45836 76.5 580 

3FDL Bcl-xL/BIM 1-26, 83-194 17922 5 56421 81.6 450 

1BXL Bcl-xL/BAK 1-44, 85-217 31439 12 97371 98.1 310 
a Residue numbering is based on that of 2M04 

2.3 Results and Discussion 

2.3.1 Analysis of existing PDB structures of Bcl-xL  

We first analyzed existing PDB structures of Bcl-xL in both bound and unbound 

states to examine the conformational flexibility of the BH3-only protein binding 

interface of Bcl-xL. Bcl-xL structure consists of eight helices (α1-8) connected by 

loops of different lengths (Figure 2.1A). As summarized in Figure 2.2, most helices 

are consistently present in all PDB structures except α3. Interestingly, PUMA does 

not appear to be the only ligand that can drive partial unfolding in the α2/α3 region 

of Bcl-xL. Instead, α3 appears to be unfolded in many complexes, such as 3ZK6, 

3ZLN, 3ZLO, 2O2N, 1YSG, 1YSI, 1BXL, 1G5J, 3PL7 and 4A1U. These complexes 

involve both small molecule and peptide ligands, none of them contains analogous 

π-stacking interactions to the one between PUMA Trp71 and Bcl-xL His113 that 

has been postulated to be critical in driving partial unfolding in Bcl-xL (except 

potentially for 1G5J; see Figure 2.1F). Even for the structures where α3 is not fully 

unfolded, the length and position of α3 can vary significantly among different PDB 

entries. For example, in 2LPC, α3 consists of 10 residues (residues 102-111), while 
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in 1PQ1, α3 is only composed of 4 residues (residues 108-111). Other regions near 

the BH3-only protein binding interface, including both C-terminus of α2 and N-

terminus of α4, also display substantial variance among different PDB structures. In 

particular, the C-terminus of α2 becomes disordered in two apo structures of Bcl-xL 

(1LXL and 2ME9), similar to what was observed in the Bcl-xL/PUMA complex 

(2M04).  

 

Figure 2.2 Secondary structures of Bcl-xL in 49 PDB entries in 2M04 numbering 

scheme. Helical residues are colored in red and disordered/loop residues in gray. 

White regions mark residues absent in the PDB structure. The PDB entries are 

ordered and colored based on the nature of the bound ligands: p53 (green), an α-β-

foldamer homologues of the BIM BH3 domain (magenta), BH3-only 

peptides/proteins (blue), small molecules (red), and unbound (black). Note that some 

structures contain single or double mutations in Bcl-xL (see Table 2.2 for details). 
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Variations in the Bcl-xL PDB structures can be quantified by calculating the root-

mean-square-fluctuation (RMSF) profiles. RMSF quantifies the magnitude of 

atomic positional fluctuation around the mean, and has been shown to correlate 

strongly with order parameters derived from NMR relaxation analysis [158]. For 

this, all structures were first aligned using Cα atoms in the core region, which was 

identified as regions with minimal secondary and tertiary structure variations and 

included residues 85-98, 123-127, 140-156 and 162-175. We note that RMSF 

profiles calculated with structures aligned using the whole protein are not 

qualitatively different (e.g., see Figure 2.11). Bcl-xL in domain swapped-dimers 

contains a dramatically different pose of α1 (see Figure 2.9). Inclusion of the four 

domain-swapped dimer PDBs thus leads to artificially high RMSF values in α1 

(Figure 2.11 black trace). Excluding these four PDBs yields a RMSF profile that 

more accurately reflects the structural variations within the Bcl-xL monomer in 

bound and unbound states (Figure 2.11 red trace). Clearly, the BH3-only protein 

binding interface of Bcl-xL is highly variant. The RMSF values exceed 3.5 Å in 

regions near α3, and are much higher than most loops except the long one between 

α1 and α2 (which is disordered and not resolved in most structures). Importantly, 

these variations among PDB structures seem to reflect the intrinsic conformational 

dynamics of Bcl-xL. For example, the RMSF profile converted from the B-factors 

of a representative X-ray crystal structure of unbound Bcl-xL (1R2G), shown as the 

green trace in  Figure 2.3, is highly consistent with that derived from all PDBs (red 

trace), which also suggest that regions near α3 is much more dynamic than the rest 

of the protein. Similar observations can be made on the RMSF profile calculated 
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from the 20-member NMR ensemble of 2M04 (Figure 2.12). The notion that the 

BH3-only protein binding interface of Bcl-xL is intrinsically more dynamic is 

further supported by sequence analysis by PrDOS [159], which predicts elevated 

disorder propensities near α3/4 compared the other helical regions (Figure 2.13).  

 

Figure 2.3 RMSF profiles calculated using all 49 Bcl-xL PDB structures (black 

trace) or 45 Bcl-xL PDB structures excluding 2YQ6, 2YQ7, 3FDL and 4A1U (red 

trace). The four PDBs excluded form domain-swapped dimers with distinct α1 

configurations (see Figure 2.9). The green trace is converted from the B-factors of 

one representative PDB structure (1R2G). Only Cα atoms of residue 4-23 and 85-

194 were used to calculate RMSF since these residues are present in all PDB entries. 

All structures were aligned using Cα atoms in the core region (residues 85-98, 123-

127, 140-156 and 162-175) prior to RMSF calculation. 

 

Clustering analysis was performed to analyze the conformational distribution of the 

BH3-only protein binding interface of Bcl-xL. For this, all structures were also first 

aligned using the highly conserved and minimally varying core region, and then 

clustered based on mutual Cα RMSD of residues 98-120. The clustering led to many 

small clusters with a cutoff radius of 2.0 Å, confirming the significant level of 

conformational heterogeneity at the interface. A total of 7 clusters were obtained 

when the clustering cutoff was set to 3.0 Å. The results are summarized in Table 2.3 

and Figure 2.14. Most unbound structures of Bcl-xL were assigned to the same 
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cluster (cluster 1), whereas structures in complexes populate the other six clusters. 

The six PDB structures selected for MD simulations are representative of the four 

most populated clusters, with 2M04 representing the case with the most dramatic 

local unfolding of Bcl-xL.  

2.3.2 Stability and fluctuation of simulation trajectories 

Molecular dynamics simulations were performed in explicit solvent to further 

investigate the conformational dynamics of Bcl-xL in both unbound and bound 

states. For this, we focus on two representative structures of unbound Bcl-xL, 

namely 1R2D (by X-ray crystallography) [127] and 2M03 (by NMR) [109], and four 

Bcl-xL complexes that involve various BH3-only protein ligands as summarized in 

Table 2.2. The complexes were selected based on the varying degrees of Bcl-xL 

structural disorder observed at the binding interface (see Figs. 1 and 2). For example, 

Bcl-xL undergoes substantial unfolding in both α2 and α3 upon PUMA binding 

(2M04), but remains similarly structured when bound with BIM (3FDL). The helical 

structures in α3 appear to be sufficiently distorted both Bcl-xL/BAD (1G5J) and 

Bcl-xL/BAK (1BXL) complexes to be assigned as “coil” using the standard DSSP 

classification [160]. Interestingly, α2 of Bcl-xL is extended by an extra turn upon 

BAK binding (Figure 2.1C). The Bcl-xL/BIM complex (3FDL) was simulated 

without its domain-swapped partner for the sake of computational efficiency. 

All six structures were stable during the simulations that lasted 310 to 730 ns. As 

shown in Figure 2.4, the core region (see Figure 2.3 caption for definition) deviated 

no greater than ~2 Å from their corresponding initial conformations in all 

simulations. Without its domain-swapped partner, packing of α1 is very unstable 
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during the initial stages of the Bcl-xL/BIM simulation (the 3FDL trace), leading to 

large fluctuations in the overall RMSD (Figure 2.4A). During the simulation, α1 

moves quickly towards the rest of the protein within the first 20 ns, and undergo 

additional major conformational transitions around 170 ns and 250 ns (see Figure 

2.12 and Figure 2.13). However, the final configuration of α1 in the 3FDL 

simulation remains quite different from the typical configuration observed in Bcl-

xL monomer structures (see Figure 2.17), which likely reflects limitations in 

conformational sampling with the 450 ns production run in explicit solvent. 

Moderate overall RMSD values of the 2M04 and 1R2D trajectories mainly arise 

from the unfolded BH3-only protein binding interface and fluctuations in the 

packing of α1, respectively. The structures of the bound BH3-only peptides were 

also very stable, except that PUMA helix becomes unfolded at the C-terminus (see 

Figure 2.17 and Figure 2.18). Interestingly, PUMA C-terminal spontaneous 

unfolding has also been implicated when bound to another Bcl-2 protein Mcl-1 and 

was shown to facilitates its dissociation from Mcl-1 [161]. 

Once establishing the stabilities of all PDB structures during the simulations, we 

quantify the conformational dynamics of Bcl-xL by performing RMSF analysis. For 

this, all conformations in each trajectory were first aligned using Cα atoms in the 

core region. The resulting RMSF profiles, shown in Figure 2.5, are highly similar to 

those extracted from existing PDB strutures (Figure 2.3). The implication is that 

variations among PDB structures indeed reflect the intrinsic conformational 

dynamics of Bcl-xL. The BH3-only protein binding interface (e.g., residues 98-120) 

is the most flexible region in all simulations, except that the α1 segment is artificially 
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more dynamic in the 3FDL trajectory due to the absence of the domain-swapped 

partner. We note that the α3 region shows significantly larger flluctations compared 

with other helices even for structures with well-formed α3 helix (e.g., 2M03, blue 

trace). Interestingly, binding of various BH3-only peptides do not appear to suppress 

the interfacial dynamics in general. Instead, the interface tends to become even more 

dynamic upon binding, e.g., comparing 1BXL (black trace) and 1G5J (red trace) 

versus 1R2D (green trace). Enhancement in interfacial dynamics is particularly 

dramatic in the case of Bcl-xL/PUMA complex due to complete local unfolding 

(cyan trace).   

 

Figure 2.4 Evolution of Bcl-xL backbone heavy atom RMSD for A) the whole 

protein and B) core region during six simulations initiated from various PDB 

structures. See Figure 2.3 caption for the definition of the core region. 
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Figure 2.5 RMSF of Bcl-xL derived from all six simulations. Only Cα residues 1-26 

and 85-194 are shown since this is the common region among all simulation systems. 

The core region is marked with ×. RMSF profiles are consecutively shifted by 1.0 Å 

along the y-axis for clarity. 

 

2.3.3 Conformational dyanamics of the BH3-only Protein Binding Interface 

To further examine the details of conformational fluctuation at the BH3-only protein 

binding interface of Bcl-xL, we first focus on the stability and fluctuation at the 

secondary structure level. The results, summarized in Figure 2.6 and Figure 2.19, 

reveal that the α3 segment can undergo spontaneous helix-coil changes in both 

bound and unbound states. For example, for the Bcl-xL/PUMA complex, α3 is 

completely unfolded in the original PDB structure (2M04), but starts to sample short 

helical structures after about 300 ns of simulations. The average residue helicity in 

the α3 segment calculated from the second half of the 2M04 simulation trajectory 

reach ~0.3 (Figure 2.7). Similar observation can be also made in simulations 

initiated from the 1G5J and 1BXL structures, except that the reformation of short 

helixes in the α3 segment occurred much earlier during the simulations. The 

neighboring region of α3, including both the N-terminus of α4 and C-terminus of α2, 

is dynamic as well. For example, α4 N-terminus of the unbound Bcl-xL became 
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unfolded after about 350 ns in the trajectory initiated from 2M03, but was extended 

after 75 ns in the trajectory initiated from 2M04. The averaged residue helicity 

profiles calculated from these trajectories, shown in Figure 2.7 and Figure 2.20, 

again illustrate the intrinsic dynamics and conformational heterogeneity of the BH3-

only protein binding interface of Bcl-xL.  

 

Figure 2.6 Evolution of secondary structures near the BH3-only protein binding 

interface of Bcl-xL during six sets of simulations. The coloring scheme is the same as 

in Figure 2. See Figure 2.19 for the results for all Bcl-xL residues. 

 

 

Figure 2.7 Average residue helicity profiles of Bcl-xL calculated from the second 

half of the simulation trajectories. Only residues 85-135 were shown here for clarity. 

See Figure 2.20 for the full residue helicity profiles. 
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Conformations of the BH3-only protein binding interface sampled during the 

atomistic simulations can be further visualized using the principal component 

analysis (PCA). For this, all snapshots from both the PDB set and six simulation 

trajectories were first aligned using the core region (see Figure 2.3 caption for 

definition), and the Cα positions of residues 98-120 were then analyzed. The first 

two major components derived from the set of 49 PDB structures were used to 

project all PDB structures and MD snapshots. The results, summarized in Figure 

2.8, show that PDB structures assigned to different clusters nicely segregate on the 

2D projection as expected. All six atomistic simulations appear to mainly sample 

local conformational spaces centered around their corresponding initial 

conformations. The only exception is the 2M04 trajectory. With a completely 

unfolded α3, the interfacial structure of 2M04 quickly deviates from the initial 

conformation (marked by the blue ⊗ in Figure 2.8B), and mainly sample a 

moderately large space projected to overlap with clusters 3 and 4 (orange and purple 

x’s). We note that the 2MO4 ensemble is quite heterogeneous but most of its 

members (particularly model 1 used to initiate the simulation) do not overlap with 

the final conformational space sampled (Figure 2.21). The limited conformational 

sampling could suggest that the interfacial structures of Bcl-xL is restricted to 

different conformational subspace depending on the binding partner, but is also 

likely a direct consequence of the finite simulation times in explicit solvent. 

Particularly for unbound Bcl-xL (2M03 and 1R2D trajectories), spontaneous 

unwinding and reforming of interfacial helices and changes in interfacial tertiary 

structures likely occur at timescales beyond those accessed by the current 
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simulations. More advanced sampling technique might be required to reliably probe 

the conformational space accessible to Bcl-xL in bound and unbound states [162-

164]. 

 

Figure 2.8 Projection of six independent simulations trajectories on the first two 

major components derived from the set of 49 PDB structures. The projected 

locations of all PDB structures are marked using ×, except that the starting 

structure of each simulation is marked with ⊗ and pointed by arrows. Clusters 1 

through 7 are colored in red, black, orange, purple, cyan, blue, and green, 

respectively. The cluster numbers of the PDB structures used to initiate the 

simulations are also indicated. 

2.4 Conclusions 

It has been increasingly recognized that regulated unfolding of proteins is widely 

involved in cellular signaling and transduction [107]. Bcl-xL, in particular, has been 

recently shown to undergo dramatic local unfolding upon binding and folding of the 

intrinsically disordered PUMA protein [109]. There is an important need to 

understand the molecular principles of how such binding induced folding and 
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unfolding may be achieved with high reliability and efficiency to be viable in 

cellular signaling and regulation. Critical analysis of existing PDB structures of Bcl-

xL in bound and unbound states has revealed that its BH3-only binding interface is 

intrinsically more dynamic that the rest of the protein. In particular, the specific π-

stacking interaction between PUMA Trp71 and Bcl-xL His113 is clearly required 

for Bcl-xL interfacial unfolding in the case of PUMA [109], but does not appear 

necessary for Bcl-xL partial unfolding itself. Intrinsic dynamics at the BH3-only 

protein binding interface of Bcl-xL has been further confirmed by atomistic 

simulations of six representative bound and unbound structures in explicit solvent, 

even though these simulations are apparently insufficient to sample large-scale 

spontaneous conformational fluctuations in explicit solvent. Together, the current 

study supports that the BH3-only protein binding interface of Bcl-xL is highly 

dynamic and poised to adopt alternative conformations in response to ligand 

binding, as well as changes in solution conditions and post-translational 

modifications. Such intrinsic interfacial conformational plasticity is likely the main 

physical basis of regulated unfolding observed in the Bcl-xL/PUMA interaction. 

With the ability to interact with numerous pro-apoptotic proteins including p53, Bcl-

xL has been targeted by small molecules for cancer therapy [165]. The dynamic 

nature of its BH3-only binding interface should be a critical consideration in such 

rational drug design and optimization efforts. 
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2.5 Supporting Material 

Table 2.2 Information about 49 PDB entries 

PDB 
Main Binding 
Partner(s)† 

Organism Method 
Mutations* 

2ME8 in p53-bound state Homo sapiens Solution NMR  
2MEJ p53 Homo sapiens Solution NMR  
4A1U α-β-foldamer 2C  Homo sapiens X-ray Diffraction  
3PL7 BAX BH3 peptide Homo sapiens X-ray Diffraction  
2LP8 BAK BH3 peptide Homo sapiens Solution NMR  
1G5J BAD BH3 peptide Homo sapiens Solution NMR  
1BXL BAK BH3 peptide Escherichia coli Solution NMR  
1PQ1 BIM BH3 peptide Mus musculus X-ray Diffraction A168S, E193D 
2YQ7 BIM BH3 peptide Homo sapiens X-ray Diffraction  
3FDL BIM BH3 peptide Homo sapiens X-ray Diffraction  
2PON Beclin-1 BH3 peptide Homo sapiens Solution NMR  
2YQ6 BIM BH3 peptides Homo sapiens X-ray Diffraction  
2M04 PUMA BH3 peptide Homo sapiens Solution NMR  
2BZW full-length BAD Mus musculus X-ray Diffraction A168S, E193D 
1YSN 43B Homo sapiens Solution NMR  
1YSI N3B Homo sapiens Solution NMR  
1YSG 4FC and TN1 Homo sapiens Solution NMR  
3QKD HI0 Homo sapiens X-ray Diffraction  
4EHR 0Q5 Homo sapiens X-ray Diffraction  
2O2N LIW Homo sapiens Solution NMR  
2O2M LI0 Homo sapiens Solution NMR  
2O1Y 43B Homo sapiens Solution NMR  
2YXJ N3C Homo sapiens X-ray Diffraction  
3SPF B50 Homo sapiens X-ray Diffraction  
3SP7 03B Homo sapiens X-ray Diffraction  
3ZLO X8U Homo sapiens X-ray Diffraction  
3ZLN  H0Y Homo sapiens X-ray Diffraction  
3ZK6 H1I Homo sapiens X-ray Diffraction  
2ME9 unbound Homo sapiens Solution NMR  
1LXL unbound Homo sapiens Solution NMR  
1MAZ unbound Homo sapiens X-ray Diffraction  
3CVA unbound Homo sapiens X-ray Diffraction W137A 
1PQ0 unbound Mus musculus X-ray Diffraction A168S, E193D 
3ILB unbound Mus musculus X-ray Diffraction R139A, A168S, E193D 
3ILC unbound Mus musculus X-ray Diffraction Y101A, A168S, E193D 
3IIH unbound Mus musculus X-ray Diffraction A168S, E193D 
2LPC unbound Homo sapiens Solution NMR  
1AF3 unbound Rattus norvegicus X-ray Diffraction A168S, E193D 
1R2I unbound Homo sapiens X-ray Diffraction F146L 
1R2H unbound Homo sapiens X-ray Diffraction A142L 
1R2G unbound Homo sapiens X-ray Diffraction F97W 
1R2E unbound Homo sapiens X-ray Diffraction E92L 
1R2D unbound Homo sapiens X-ray Diffraction  

http://www.rcsb.org/pdb/explore/explore.do?structureId=2me8
http://www.rcsb.org/pdb/explore/explore.do?structureId=2mej
http://www.rcsb.org/pdb/explore/explore.do?structureId=4a1u
http://www.rcsb.org/pdb/explore/explore.do?structureId=3pl7
http://www.rcsb.org/pdb/explore/explore.do?structureId=2lp8
http://www.rcsb.org/pdb/explore/explore.do?structureId=1G5J
http://www.rcsb.org/pdb/explore/explore.do?structureId=1BXL
http://www.rcsb.org/pdb/explore/explore.do?structureId=1pq1
http://www.rcsb.org/pdb/explore/explore.do?structureId=2yq7
http://www.rcsb.org/pdb/explore/explore.do?structureId=3FDL
http://www.rcsb.org/pdb/explore/explore.do?structureId=2pon
http://www.rcsb.org/pdb/explore/explore.do?structureId=2yq6
http://www.rcsb.org/pdb/explore/explore.do?structureId=2M04
http://www.rcsb.org/pdb/explore/explore.do?structureId=2bzw
http://www.rcsb.org/pdb/explore/explore.do?structureId=1ysn
http://www.rcsb.org/pdb/explore/explore.do?structureId=1ysi
http://www.rcsb.org/pdb/explore/explore.do?structureId=1ysg
http://www.rcsb.org/pdb/explore/explore.do?structureId=3qkd
http://www.rcsb.org/pdb/explore/explore.do?structureId=4ehr
http://www.rcsb.org/pdb/explore/explore.do?structureId=2o2n
http://www.rcsb.org/pdb/explore/explore.do?structureId=2o2m
http://www.rcsb.org/pdb/explore/explore.do?structureId=2O1Y
http://www.rcsb.org/pdb/explore/explore.do?structureId=2yxj
http://www.rcsb.org/pdb/explore/explore.do?structureId=3spf
http://www.rcsb.org/pdb/explore/explore.do?structureId=3SP7
http://www.rcsb.org/pdb/explore/explore.do?structureId=3zlo
http://www.rcsb.org/pdb/explore/explore.do?structureId=3zln
http://www.rcsb.org/pdb/explore/explore.do?structureId=3zk6
http://www.rcsb.org/pdb/explore/explore.do?structureId=2me9
http://www.rcsb.org/pdb/explore/explore.do?structureId=1lxl
http://www.rcsb.org/pdb/explore/explore.do?structureId=1MAZ
http://www.rcsb.org/pdb/explore/explore.do?structureId=3cva
http://www.rcsb.org/pdb/explore/explore.do?structureId=1pq0
http://www.rcsb.org/pdb/explore/explore.do?structureId=3ILB
http://www.rcsb.org/pdb/explore/explore.do?structureId=3ilc
http://www.rcsb.org/pdb/explore/explore.do?structureId=3iih
http://www.rcsb.org/pdb/explore/explore.do?structureId=2lpc
http://www.rcsb.org/pdb/explore/explore.do?structureId=1af3
http://www.rcsb.org/pdb/explore/explore.do?structureId=1r2i
http://www.rcsb.org/pdb/explore/explore.do?structureId=1r2h
http://www.rcsb.org/pdb/explore/explore.do?structureId=1r2g
http://www.rcsb.org/pdb/explore/explore.do?structureId=1r2e
http://www.rcsb.org/pdb/explore/explore.do?structureId=1r2d


 

 35 

2M03 unbound Homo sapiens Solution NMR  
3IIG unbound Mus musculus X-ray Diffraction F105A, A168S, E193D 
3IHF unbound Mus musculus X-ray Diffraction R139A, A168S, E193D 
3IHE unbound Mus musculus X-ray Diffraction F105A, A168S, E193D 
3IHD unbound Mus musculus X-ray Diffraction Y101A, A168S, E193D 
3IHC unbound Mus musculus X-ray Diffraction A168S, E193D 

*Mouse Bcl-xL is different from human Bcl-xL that A168 and E193 are S168 and D193, 

respectively. Here, all mutations are shown with respect to 2M04 amino acid sequence. 

† Full name of small molecule ligand are as follows: 

43B: 3-nitro-n-{4-[2-(2-phenylethyl)-1,3-benzothiazol-5-yl]benzoyl}-4-{[2-

(phenylsulfanyl)ethyl]amino}benzenesulfonamide 

N3B: n-[(4'-fluoro-1,1'-biphenyl-4-yl)carbonyl]- 3-nitro-4-{[2-

(phenylsulfanyl)ethyl]amino}benzenesulfonamide 

4FC: 4'-fluoro-1,1'-biphenyl-4-carboxylic acid 

TN1: 5,6,7,8-tetrahydronaphthalen-1-ol 

HI0: (R)-N-(7-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin- 1-yl)quinazolin-4-yl)-4-(4-

(dimethylamino)- 1-(phenylthio)butan-2-ylamino)-3-nitrobenzenesulfonamide 

0Q5: 4-[5-butyl-3-(hydroxymethyl)-1-phenyl-1H- pyrazol-4-yl]-3-(3,4-

dihydroisoquinolin-2(1H)- ylcarbonyl)-N-{[2-(trimethylsilyl)ethyl]sulfonyl}benzamide 

LIW: 4-[4-(biphenyl-2-ylmethyl)piperazin-1-yl]- n-[(4-{[1,1-dimethyl-2-

(phenylthio)ethyl]amino}- 3-nitrophenyl)sulfonyl]benzamide 

LI0: 4-(4-benzyl-4-methoxypiperidin-1-yl)-n-[(4- {[1,1-dimethyl-2-

(phenylthio)ethyl]amino}- 3-nitrophenyl)sulfonyl]benzamide 

N3C: 4-{4-[(4'-chlorobiphenyl-2-yl)methyl]piperazin- 1-yl}-n-{[4-({(1r)-3-

(dimethylamino)-1-[(phenylthio)methyl]propyl}amino)- 3-

nitrophenyl]sulfonyl}benzamide 

B50: 4-(4-chlorophenyl)-1-[(3S)-3,4-dihydroxybutyl]- N-[3-(4-methylpiperazin-1-

yl)propyl]-3-phenyl- 1H-pyrrole-2-carboxamide 

03B: 5-(4-chlorophenyl)-4-{3-[4-(4-{[(4-{[(2R)- 4-(dimethylamino)-1-

(phenylsulfanyl)butan- 2-yl]amino}-3-nitrophenyl)sulfonyl]amino}phenyl)piperazin- 1-

yl]phenyl}-1,2-dimethyl-1H-pyrrole-3-carboxylic acid 

X8U: 2-[(8E)-8-(1,3-benzothiazol-2-ylhydrazinylidene)- 6,7-dihydro-5H-naphthalen-2-

yl]-5-(4-phenylbutyl)- 1,3-thiazole-4-carboxylic acid 

H0Y: 6-[(8E)-8-(1,3-benzothiazol-2-ylhydrazinylidene)-6,7-dihydro-5H-naphthalen-2-

yl]pyridine-2- carboxylic acid 

H1I: N-(3-(5-(1-(2-(benzo[d]thiazol-2-yl)hydrazono)ethyl)furan-2-yl)phenylsulfonyl)-6-

phenylhexanamide 

 

http://www.rcsb.org/pdb/explore/explore.do?structureId=2m03
http://www.rcsb.org/pdb/explore/explore.do?structureId=3iig
http://www.rcsb.org/pdb/explore/explore.do?structureId=3ihf
http://www.rcsb.org/pdb/explore/explore.do?structureId=3ihe
http://www.rcsb.org/pdb/explore/explore.do?structureId=3ihd
http://www.rcsb.org/pdb/explore/explore.do?structureId=3ihc
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Table 2.3 Clustering results of the 49 PDB structures ordered by cluster size. The 

structures of all clusters are shown in Figure 2.11. PDB structures selected for 

simulations are highlighted in red (also see Table 2.2). 

PDB 
Main Binding 
Partner(s)† 

Cluster 
Number 

PDB 
Main Binding 
Partner(s)† 

Cluster 
Number 

1AF3 unbound 1 2O1Y 43B 2 
1MAZ unbound 1 3ZLN H0Y 2 
1PQ0 unbound 1 3ZLO X8U 2 
1R2D unbound 1 3ZK6 H1I 2 
1R2E unbound 1 3QKD HI0 3 
1R2G unbound 1 2YXJ N3C 3 
1R2H unbound 1 3SPF B50 3 
1R2I unbound 1 4EHR 0Q5 3 
3CVA unbound 1 2YQ6 BIM BH3 peptides 3 
3IHC unbound 1 2YQ7 BIM BH3 peptide 3 
3IHD unbound 1 3FDL BIM BH3 peptide 3 
3IHE unbound 1 3PL7 BAX BH3 peptide 3 
3IHF unbound 1 1BXL BAK BH3 peptide 3 
3IIG unbound 1 2PON Beclin-1 BH3 peptide 3 
3IIH unbound 1 4A1U α-β-foldamer 2C  3 
3ILB unbound 1 2LP8 BAK BH3 peptide 4 
3ILC unbound 1 3SP7 03B 4 
1LXL unbound 2 1G5J BAD BH3 peptide 4 

2LPC unbound 2 1PQ1 BIM BH3 peptide 4 

2M03 unbound 2 2BZW full-length BAD 4 
1YSG 4FC and TN1 2 2ME8 in p53-bound state 5 
1YSI N3B 2 2MEJ p53 5 
1YSN 43B 2 2M04 PUMA BH3 peptide 6 
2O2M LI0 2 2ME9 unbound 7 
2O2N LIW 2    

http://www.rcsb.org/pdb/explore/explore.do?structureId=1af3
http://www.rcsb.org/pdb/explore/explore.do?structureId=2O1Y
http://www.rcsb.org/pdb/explore/explore.do?structureId=1MAZ
http://www.rcsb.org/pdb/explore/explore.do?structureId=3zln
http://www.rcsb.org/pdb/explore/explore.do?structureId=1pq0
http://www.rcsb.org/pdb/explore/explore.do?structureId=3zlo
http://www.rcsb.org/pdb/explore/explore.do?structureId=1r2d
http://www.rcsb.org/pdb/explore/explore.do?structureId=3zk6
http://www.rcsb.org/pdb/explore/explore.do?structureId=1r2e
http://www.rcsb.org/pdb/explore/explore.do?structureId=3qkd
http://www.rcsb.org/pdb/explore/explore.do?structureId=1r2g
http://www.rcsb.org/pdb/explore/explore.do?structureId=2yxj
http://www.rcsb.org/pdb/explore/explore.do?structureId=1r2h
http://www.rcsb.org/pdb/explore/explore.do?structureId=3spf
http://www.rcsb.org/pdb/explore/explore.do?structureId=1r2i
http://www.rcsb.org/pdb/explore/explore.do?structureId=4ehr
http://www.rcsb.org/pdb/explore/explore.do?structureId=3cva
http://www.rcsb.org/pdb/explore/explore.do?structureId=2yq6
http://www.rcsb.org/pdb/explore/explore.do?structureId=3ihc
http://www.rcsb.org/pdb/explore/explore.do?structureId=2yq7
http://www.rcsb.org/pdb/explore/explore.do?structureId=3ihd
http://www.rcsb.org/pdb/explore/explore.do?structureId=3FDL
http://www.rcsb.org/pdb/explore/explore.do?structureId=3ihe
http://www.rcsb.org/pdb/explore/explore.do?structureId=3pl7
http://www.rcsb.org/pdb/explore/explore.do?structureId=3ihf
http://www.rcsb.org/pdb/explore/explore.do?structureId=1BXL
http://www.rcsb.org/pdb/explore/explore.do?structureId=3iig
http://www.rcsb.org/pdb/explore/explore.do?structureId=2pon
http://www.rcsb.org/pdb/explore/explore.do?structureId=3iih
http://www.rcsb.org/pdb/explore/explore.do?structureId=4a1u
http://www.rcsb.org/pdb/explore/explore.do?structureId=3ILB
http://www.rcsb.org/pdb/explore/explore.do?structureId=2lp8
http://www.rcsb.org/pdb/explore/explore.do?structureId=3ilc
http://www.rcsb.org/pdb/explore/explore.do?structureId=3SP7
http://www.rcsb.org/pdb/explore/explore.do?structureId=1lxl
http://www.rcsb.org/pdb/explore/explore.do?structureId=1G5J
http://www.rcsb.org/pdb/explore/explore.do?structureId=2lpc
http://www.rcsb.org/pdb/explore/explore.do?structureId=1pq1
http://www.rcsb.org/pdb/explore/explore.do?structureId=2m03
http://www.rcsb.org/pdb/explore/explore.do?structureId=2bzw
http://www.rcsb.org/pdb/explore/explore.do?structureId=1ysg
http://www.rcsb.org/pdb/explore/explore.do?structureId=2me8
http://www.rcsb.org/pdb/explore/explore.do?structureId=1ysi
http://www.rcsb.org/pdb/explore/explore.do?structureId=2mej
http://www.rcsb.org/pdb/explore/explore.do?structureId=1ysn
http://www.rcsb.org/pdb/explore/explore.do?structureId=2M04
http://www.rcsb.org/pdb/explore/explore.do?structureId=2o2m
http://www.rcsb.org/pdb/explore/explore.do?structureId=2me9
http://www.rcsb.org/pdb/explore/explore.do?structureId=2o2n
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Figure 2.9 A) Packings of α1 in Bcl-xL monomer (2M03 as an example) and domain-

swapped dimers (3FDL as an example). α1 is colored in green. B) An illustration of 

the domain-swapped structures of Bcl-xL. For 3FDL, Bcl-xL is colored in red and 

BIM in blue. The domain-swapped Bcl-xL dimers in 3ZLR are colored in gray. 

 

Figure 2.10 Solvated simulation boxes of all six systems. Water molecules are shown 

in iceblue. Bcl-xL is shown in Cartoon representation, colored in green except for 

α2, α3 and α4, which are colored in red. The BH3-only protein ligands are shown in 

blue. 
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Figure 2.11 Top: RMSF profiles calculated with PDB structures aligned using either 

the core region (black trace) or the whole protein (core trace). Only the 45 

monomeric Bcl-xL PDB structures were included. Bottom: RMSF profiles 

calculated from 24 bound (blue trace) and 21 unbound structures of Bcl-xL (violet 

trace). RMSF profiles are consecutively shifted by 1.0 Å along the y-axis for clarity. 
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Figure 2.12 RMSF profiles calculated from 20 Bcl-xL PDB structures in 2M04. All 

structures were aligned using Cα atoms in the core region (residues 85-98, 123-127, 

140-156 and 162-175) prior to RMSF calculation. 

 

 

Figure 2.13 Intrinsic disorder propensity of Bcl-xL predicted by PrDOS. 
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Figure 2.14 Clustering of the 49 PDB structures. All structures are aligned using the 

core region as defined in the main text before clustered based on the Cα RMSD of 

residues 98-120 (colored in red). The bound ligand (if present) is not shown for 

clarity. The cluster memberships of all PDBs are listed in Table 2.3. 
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Figure 2.15 Time evolution of the center of mass (COM) distance between α1 and 

the core region of Bcl-xL during the six independent simulations. 

 

Figure 2.16 Time evolution of the backbone RMSD of Bcl-xL α1 during the 

simulations. All snapshots were aligned to the initial conformations using the core 

region. 
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Figure 2.17 Starting (A) and final (B) conformations of all six simulations. α1 is 

colored in cyan, residues 98-120 in red, and bound peptide in blue. 
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Figure 2.18 Time evolution of the backbone RMSD of BH3-only peptide ligands 

during the simulations. All snapshots were aligned to the initial conformations using 

the Bcl-xl core region (as defined in the main text). 
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Figure 2.19 Time evolution of Bcl-xL secondary structure for each simulation 

trajectory. Red indicates helical, gray indicates disordered, and white corresponds 

to deleted regions. 
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Figure 2.20 Average residue helicity of Bcl-xL derived from the second half of the 

simulation trajectories. Incremental vertical offset of 0.2 was added for clarity. 

 

Figure 2.21 Projection of 20 PDB structures in 2M04 on the first two major 

components derived from the set of 49 PDB structures. The projected locations of 

the 49 PDB structures are marked using ×, while the 20 PDB structures in 2M04 are 

shown with their respective model numbers. Clusters 1 through 7 are colored in red, 

black, orange, purple, cyan, blue, and green, respectively. 
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CHAPTER 3  

ENHANCED SAMPLING OF INTRINSIC STRUCTURAL HETEROGENEITY 

OF THE BH3-ONLY PROTEIN BINDING INTERFACE OF BCL-XL 

Anti-apoptotic Bcl-xL plays central roles in regulating programed cell death. Partial 

unfolding of Bcl-xL has been observed at the interface upon specific binding to the 

pro-apoptotic BH3-only protein PUMA, which in turn disrupts the interaction of 

Bcl-xL with tumor suppressor p53 and promotes apoptosis. Previous analysis of 

existing Bcl-xL structures and atomistic molecular dynamics (MD) simulations have 

suggested that substantial intrinsic structure heterogeneity exists at the BH3-only 

protein binding interface of Bcl-xL to facilitate its conformational transitions upon 

binding. In this study, enhanced sampling is applied to further characterize the 

interfacial conformations of unbound Bcl-xL in explicit solvent. Extensive replica 

exchange with solute tempering (REST) simulations, with a total accumulated time 

of 16 μs, were able to cover much wider conformational spaces for the interfacial 

region of Bcl-xL. The resulting structural ensembles are much better converged, 

with local and long-range structural features that are highly consistent with existing 

NMR data. These simulations further demonstrate that the BH3-only protein binding 

interface of Bcl-xL is intrinsically disordered and samples many rapidly 

interconverting conformations. Intriguingly, all previously observed conformers are 

well represented in the unbound structure ensemble. Such intrinsic structural 

heterogeneity and flexibility may be critical for Bcl-xL to undergo partial unfolding 

                                                 
 Liu X, Jia Z and Chen J (2017). "Enhanced Sampling of Intrinsic Structural Heterogeneity 

of the BH3-Only Protein Binding Interface of Bcl-xL." Journal of Physical Chemistry B 

121(39): 9160-9168 
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induced by PUMA binding, and likely provide a robust basis that allows Bcl-xL to 

respond sensitively to binding of various ligands in cellular signaling and regulation. 

3.1 Introduction 

Intrinsically disordered proteins (IDPs) in their unbound state do not form well-

defined three-dimensional structures under physiological conditions[2, 3, 166], in 

contrast to the conventional protein structure-function paradigm[1]. They are highly 

prevalent in biology[167-169] and play critical roles in cellular signaling and 

regulation[13, 17, 21, 170, 171]. Mutations of IDPs[172-174] and/or changes in their 

protein levels[170, 175, 176] have been implicated in numerous human diseases. 

There is thus an increasing interest in understanding the physical properties of IDPs 

and how these properties contribute to versatile functions. In particular, inherent 

structural fluctuations of IDPs in their unbound states are likely key to understanding 

how IDPs could respond rapidly and sensitively to various stimuli in cellular 

processes[177, 178]. 

 

Figure 3.1 PDB structures of unbound (A) and PUMA-bound (B) Bcl-xL. Bcl-xL is 

shown in cartoon representation with its color changing from red (at N-terminus) to 

blue (at C-terminus). The BH3-only protein binding interface (residues 98-120) is 

highlighted in green, and the bound PUMA is shown in yellow. 
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Coupled binding and folding of proteins is frequently observed in IDP interactions, 

during which disordered IDPs fold into stable three-dimensional structures upon 

specific binding[100, 161, 179]. It has been recently recognized that regulated 

unfolding of proteins is also often involved in cell signaling[107]. A particularly 

interesting example involves Bcl-xL, a pro-survival Bcl-2 family protein that 

regulates programed cell death[180]. Bcl-xL could become partially unfolded at the 

BH3-only protein binding interface upon specific binding to PUMA, a pro-apoptotic 

BH3-only Bcl-2 family protein. Note that PUMA contains intrinsically disordered 

regions and its BH3 domain folds into a helix upon specific binding to Bcl-xL (see 

Figure 3.1). Partial unfolding of Bcl-xL disrupts its interaction with tumor 

suppressor p53, which in turn abolishes p53 inhibition of Bcl-xL pro-survival 

functions and activates the apoptotic cascade[118, 119, 181]. To date, the molecular 

mechanisms of PUMA-induced partial unfolding of Bcl-xL have not been fully 

understood. Trp-71 in PUMA has been suggested to play critical roles in driving 

Bcl-xL local unfolding, which interacts with Bcl-xL His-113 through π-stacking 

interactions (Figure 3.1)[181]. However, the π-stacking interaction itself appears to 

contribute little to the binding of Bcl-xL with PUMA, since PUMAW71A mutant 

associates with wild type Bcl-xL with similar affinities[181]. In addition, the BH3 

domain of another BH3-only Bcl-2 family protein, BAD[182], also contains a Trp 

that could form similar Trp-His contact with Bcl-xL, but its binding does not induce 

Bcl-xL unfolding[181].  

Our previous analysis of existing experimental structures of Bcl-xL in both unbound 

and bound states and atomistic molecular dynamics (MD) simulations have 
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suggested that substantial intrinsic structural heterogeneity exists at the BH3-only 

protein binding interface of Bcl-xL[94], which could provide a robust molecular 

basis to support Bcl-xL conformational transitions in response to ligand binding. 

However, atomistic simulations of the heterogeneous structural ensemble of the 

disordered interface of Bcl-xL is extremely challenging. Conventional MD 

simulations of  ~300-700 ns at the room temperature did not yield converged 

conformational ensembles[94]. As illustrated in Figure 3.2 C and D, these 

simulations mainly sample local conformational space near their corresponding 

initial structures, and conformational spaces visited by different MD simulations do 

not overlap with each other. In this work, we utilize an advanced sampling technique 

known as replica exchange with solute tempering (REST)[183, 184] to calculate 

better converged structural ensembles of Bcl-xL in the unbound state. REST is a 

Hamiltonian replica exchange method, where the solute and solute-solvent energies 

are scaled by λ and √𝜆, respectively. For the condition λ=1, the system temperature 

is the one of interest (T); whereas if λ<1, the effective temperature of the solute is 

increased to T/λ, while the solvent temperature remains at T. As designed, the 

exchange acceptance ratio is determined by solute energy and solute-solvent 

energies alone, but not the solvent energy (which is the major component of the total 

energy). Therefore, much fewer replicas could be used to achieve sufficient energy 

overlap between neighboring replicas compared with the regular temperature replica 

exchange[78, 185]. Furthermore, REST allows us to focus tempering on any 

molecular region of interest, such as the binding interface of Bcl-xL. These 

properties together make REST particularly suitable for enhanced sampling of larger 
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systems in explicit solvent with significantly reduced computational cost[183, 184, 

186-189]. In the present study, the improved sampling capability of REST has 

allowed the generation of much better converged structure ensembles of the BH3-

only protein binding interface of Bcl-xL. The calculated ensembles have been 

validated by direct comparison with published NMR data, shedding light on how 

Bcl-xL could respond sensitively and rapidly to various binding ligands, particularly 

partial unfolding upon PUMA binding. 

 

Figure 3.2. Projection of simulation trajectories on the first two principal 

components (PCs) derived from 49 PDB structures of Bcl-xL. The positions of all 

PDB structures are marked with ×, with unbound and bound ones in red and black, 

respectively. The initial structure of each simulation is marked with an arrow. 

Results from MD simulations are adapted from our previous work[94]. The heat 

map shows the free energy (in kcal/mol) derived from simulation statistics. Values in 

the parentheses are percentages of variance associated with each PC.  
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3.2 Methods 

3.2.1 System setup and simulation protocols 

Two REST simulations of unbound Bcl-xL have been performed. The initial 

structures were obtained from RCSB Protein Data Bank (PDB) entries 2M03 

(unbound) and 2M04 (PUMA-bound)[181]. The first models from these ensembles 

were processed by renumbering residues in 2M03 to match that in 2M04. The bound 

PUMA peptide in 2M04 was removed, and only the common region of Bcl-xL 

(residues 1-44 and 85-200) were retained.  The termini were capped with an acetyl 

group and N-methyl amide at the N- and C-termini, respectively. Note that the 

interface region (highlighted in green in Figure 3.1A) exhibits high-helical structure 

in 2M03, whereas it is almost fully disordered in 2M04 (Figure 3.1B). The 

significantly different starting structures allow one to better evaluate the level of 

convergence and other properties obtained from these two independent simulations. 

The protein was solvated using TIP3P water molecules in a rectangular simulation 

box constructed with at least 1.0 nm of solvent between protein and the nearest side 

of the box. 12 Na+ ions were added to neutralize the system. Details of the system 

setup are summarized in Table 3.1 and Figure 3.9. 

Both simulations (referred to using the initial structures, 2M03 and 2M04, hereafter) 

were performed using GROMACS-4.6.7[190] patched with PLUMED-2.1.3[188, 

191]. To begin with, energy minimization was carried out for both systems using a 

steepest descent algorithm. Then 50 ps NVT simulation followed by 50 ps NPT 

simulation was used to equilibrate the system. The equilibrated boxes were then used 

to initiate two independent REST simulations under NVT conditions. Only the BH3-
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only protein binding interface, residues 98-120, was subjected to tempering. The 

effective temperatures range from 298 K to 500 K, exponentially spaced among 16 

replicas. The choice of 500 K as the highest temperature provides accelerated 

conformational diffusion without requiring a larger number of replicas to cover the 

temperature span. The corresponding values of the scaling factor λ are 1, 0.966, 

0.933, 0.902, 0.871, 0.842, 0.813, 0.785, 0.759, 0.733, 0.708, 0.684, 0.661, 0.639, 

0.617, and 0.596, respectively. The frequency of neighbor exchange attempts was 

every 2 ps, which is commonly used and believed to allow efficient mixing of 

replicas while ensuring proper equilibration prior to exchange attempts. The length 

of each REST simulation is 500 ns per replica, and the average exchange acceptance 

ratio is ~ 50%. In both simulations, weak position restraints with a force constant of 

100 kJ/mol/nm2 were imposed on Cα atoms of the Bcl-xL core region, which 

includes residues 85-95, 123-127, 140-156, and 162-175. The core region has been 

shown to display minimal variance among all PDB structures of Bcl-xL[94]. The 

Amber99sb force field[75] was used. Although it’s different from CHARMM36 

force field used in our previous MD simulations, both force fields are well 

parameterized and not expected to significantly affect simulation results. The cutoff 

distance of van der Waals interactions was set to 1.0 nm, and the nonbonded list was 

updated every 5 steps. Particle Mesh Ewald (PME) method[155] was used to 

calculate long-range electrostatic interactions, with a 0.12 nm Fourier spacing. All 

bonds were constrained using LINCS[192], and the integration time step was 2 fs. 
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Table 3.1. Summary of system setup 

 

Initial 

Structure 

Water 

Number 

Na+ 

Number 

Total Atom 

Number 

Simulation Box 

(nm × nm × nm) 

2M03 7361 12 24601 6.59 × 6.54 × 5.69 

2M04 8566 12 28216 7.25 × 6.63 × 5.86 

 

3.2.2 NOE, clustering and principal component analyses 

Only snapshots sampled at λ = 1 during the last 200 ns of the simulation were 

included in NOE analysis. For each frame, NOE-like distances were first calculated 

based on the r-6 summation scheme for cases involving multiple equivalent 

protons[193, 194]. The averaged NOE distances for simulated ensembles were then 

calculated based on <r-6>-1/6 averaging scheme. Experimental NMR restraints of 

unbound Bcl-xL were obtained from PDB 2M03. Among the 527 total NOE distance 

restraints, there are 29 NOEs within the interface region (residues 98-120) and 30 

NOEs between the interface and the rest of the protein. Only these 59 interface-

related NOEs were considered in the assessment of the simulated ensembles. As we 

compute contact map between residues in the interface region and the rest of the 

protein, experimental NOE distance restraints from another unbound Bcl-xL 

structure, PDB 2LPC[141], were also considered for reference. 

For principal component analysis (PCA), Bcl-xL structures, either from PDB or 

simulation trajectories, were first aligned using Cα atoms of the core region (residues 

85-98, 123-127, 140-156, and 162-175), and Cα atoms of the interface region 

(residues 98-120) were then analyzed. The first two principal components (PCs) 

were derived from 49 PDB structures that include Bcl-xL configurations in both 

bound and unbound states (see reference[94] for more details). Snapshots from 
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various simulation trajectories were then projected onto these two PCs. In REST 

simulations, we extracted conformations every 20 ps from the first condition (λ=1). 

The free energy surfaces were derived directly from the 2D probability distributions 

along the first two PCs. 

Clustering analysis was performed using the “gmx cluster” tool in GROMACS. All 

snapshots from two REST simulations were first aligned using backbone heavy 

atoms of the core region (residues 85-98, 123-127, 140-156, and 162-175), and root-

mean-square deviation (RMSD) of backbone heavy atoms at the interface region 

(residues 98-120) was then used for clustering, with a cutoff value of 3.0 Å. 

3.2.3 Conformational entropy 

To quantify peptide backbone flexibility and compare sampling efficiency between 

MD and REST simulations, we calculated the conformational entropy for each 

residue’s backbone dihedral angles φ and ψ. For a given 2D probability distribution 

of (φ, ψ) with bin size of 8° × 8°, conformational entropy was estimated as 

𝑆 = −𝑘𝐵 ∑𝑝𝑖𝑙𝑛𝑝𝑖                                                                                                                   (3.1)                                                                                                                           

where pi is the probability of each bin in φ/ψ space, and kB is the Boltzmann constant. 

3.3 Results and Discussion 

3.3.1 Enhanced sampling of the BH3-only protein binding interface in REST 

simulations  

Explicit solvent MD simulations initiated from distinct PDB structures at 300 K only 

managed to sample very limited conformational spaces near the initial 

conditions[94] (e.g., Figure 3.2C-D). The ability of REST to enhance the sampling 
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of Bcl-xL interfacial conformation is first evaluated by examining at the secondary 

structure level. The main structure segment of Bcl-xL that appears to adopt varying 

conformations is helix 3. During both REST runs, helix 3 underwent numerous 

helix-coil transitions. As a result, the ensembles sampled at the λ = 1 condition 

contain mixtures of various helix and coil conformations regardless of the initial 

PDB structures (Figure 3.3). The average residue helicity in segment 3 peaks at 

~0.75 for simulations initiated from 2M03 and ~0.38 from REST run 2M04 (Figure 

3.10). Even though the convergence is still far from ideal, it is much better than the 

previous regular MD simulations, where helix 3 remained largely folded after up 

to 710 ns when initiated from PDB structures (e.g., 1R2D) with fully folded 

helix[94]. The improved sampling ability of REST simulations is also evident by 

examining the backbone φ/ψ space visited by residues in the interfacial region, most 

of which sampled broader distributions in REST simulations (Figure 3.11). The 

peptide conformations appear much less likely to be trapped in local energy minima 

during REST simulations. As such, residue backbone conformational entropies 

calculated using Eq. 3.1 are consistently higher from REST simulations (see Figure 

3.4). Note that, although residues 104-119 in MD simulation of 2M04, and residues 

105-106 in MD simulation of 1BXL show higher conformational entropy than in 

REST simulations, this is most likely due to the lack of stable interfacial helix 

reforming in these MD simulations[94]. 

The quality and convergence of conformational sampling at the tertiary level was 

evaluated using PCA analysis. As shown in Figure 3.2, REST simulations were able 

to sample much broader conformational space than any of the previous MD runs. 
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Furthermore, conformational spaces sampled by both REST runs appear to have 

significant overlaps, with run 2M04 sampling a substantially broader region that 

includes what was sampled by run 2M03. Interestingly, all representative 

conformational sub-states identified from existing PDB structures, including both 

ligand-bound and ligand-free states, appear to be visited in both REST simulations 

(Figure 3.2A-B). Nonetheless, we note that substantial differences persist between 

structural ensembles obtained from two REST runs at both secondary and tertiary 

levels, suggesting the simulations were not fully converged. This highlights the 

formidable challenges of sampling complex and heterogeneous conformational 

space of moderately-sized disordered protein segments, particularly in the context 

of a bigger protein. It probably requires significantly longer REST simulations, or 

more efficient advanced sampling techniques to further improve the level of 

convergence in the calculated structural ensembles. 

 

Figure 3.3. Helicity of residues near the BH3-only protein binding interface as a 

function of REST simulation time at condition λ = 1. Helical residues are colored in 

red. 
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Figure 3.4. Residue backbone conformational entropy in the BH3-only protein 

binding interface of Bcl-xL. The first 300 ns data of REST simulations were 

discarded. Results from MD simulations are obtained by analyzing trajectories from 

our previous work[94]. 

 

3.3.2 Validation of REST-derived ensembles of unbound Bcl-xL 

The reliability of the ensembles generated by REST simulations has been mainly 

examined by comparing the back-calculated NOE distances with experimental 

values. As shown in Table 3.2, all NOE distances for pairs of protons within the 

BH3-only protein binding interface region obtained from both REST simulations are 

within ~1 Å of experimentally assigned upper bounds. This is notable since the 

initial structures of these simulations are significantly different from each other 

(Figure 3.1). This implies the local structures of the Bcl-xL interface derived from 

these two REST simulations are likely realistic. Table 3.3 and Figure 3.12 

summarize NOE violation analysis for pairs of protons between the BH3-only 

protein binding interface and the rest of the Bcl-xL protein. For the ensemble derived 
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from REST simulation 2M03, only 3 out of the 30 NOEs are violated by over 1 Å. 

On the other hand, the ensemble derived from simulation 2M04 yields more 

violations, with 14 out of 30 NOEs violated by at least 2 Å. This likely reflects the 

formidable challenge of sampling tertiary packing among different protein 

segments. Nonetheless, further analysis reveals that the contact maps between 

residues of the BH3-only protein binding interface region and the rest of the protein 

are actually similar from both ensembles (Figure 3.5). The implication is both REST 

simulations have sampled similar conformational space of the interface; however, 

the relative probabilities of various conformational substates are not quantitatively 

converged between two simulations. This notion is also consistent with PCA results 

showing a high level of overlap in conformational spaces sampled (Figure 3.2A and 

B). Importantly, both contact maps are highly consistent with the experimental NOE 

contact maps (black and red × in Figure 3.5). Taken together, although REST 

simulations were not fully converged and some NOE violations persist, the obtained 

ensembles appear to yield consistent local and tertiary structural features that are 

likely realistic. 
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Table 3.2. Summary of NOE violation analysis for proton pairs within the BH3-only 

protein binding interface region of Bcl-xL in the two REST simulations. 

Proton Pairs 
RNMR 

(Å) 
𝑅2M03
REST 

(Å) 

Violation 

(Å) 
𝑅2M04
REST 

(Å) 

Violation 

(Å) 

E98 H L99 H 2.67 2.76 0.09 2.40 - 

L99 H R100 H 2.75 2.41 - 2.90 0.15 

L99 H Y101 H 3.69 4.09 0.40 4.71 1.02 

R100 H Y101 H 2.75 2.35 - 2.99 0.24 

Y101 H R102 H 2.96 3.10 0.14 2.81 - 

R102 H R103 H 4.53 2.57 - 2.65 - 

R103 H A104 H 2.85 3.14 0.29 3.33 0.48 

A104 H F105 H 3.10 3.24 0.14 3.24 0.14 

A104 H S106 H 4.36 4.77 0.41 5.40 1.04 

F105 H S106 H 3.27 2.40 - 3.00 - 

F105 H L108 H 4.74 4.90 0.16 5.66 0.92 

S106 H D107 H 3.79 2.60 - 2.25 - 

D107 H L108 H 3.10 2.30 - 2.70 - 

L108 H T109 H 2.92 2.62 - 2.72 - 

L108 H S110 H 3.58 4.10 0.52 4.25 0.67 

T109 H S110 H 3.13 2.59 - 2.44 - 

T109 H Q111 H 4.00 4.20 0.20 3.99 - 

S110 H L112 H 4.29 4.34 0.05 4.05 - 

Q111 H L112 H 2.85 2.48 - 2.30 - 

Q111 H H113 H 4.32 4.89 0.57 4.41 0.09 

L112 H H113 H 2.96 3.06 0.10 3.27 0.31 

H113 H I114 H 4.00 2.74 - 3.12 - 

L99 H L99 QQD 5.50 3.30 - 3.06 - 

L99 QQD R100 H 5.50 3.24 - 3.04 - 

L99 QQD Y101 H 5.50 4.83 - 4.47 - 

L108 H L108 QQD 4.73 3.25 - 2.97 - 

L112 H L112 QQD 5.50 3.12 - 3.13 - 

L112 

QQD 

H113 H 
5.50 2.75 - 2.91 - 

I114 H I114 QD1 5.17 3.11 - 3.32 - 

RNMR is experimentally determined NOE distance. 𝑅2M03
REST and 𝑅2M04

REST are calculated NOE-

like distance derived from the two REST simulations. 
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Table 3.3. Summary of NOE violation analysis for proton pairs between the BH3-

only protein binding interface (left column) and the rest of protein (right column) in 

the two REST simulations. 

Atom Pairs 
RNMR 

(Å) 
𝑅2M03
REST  

(Å) 

Violation 

(Å) 
𝑅2M04
REST  

(Å) 

Violation 

(Å) 

E98 H E96 H 3.79 4.28 0.49 4.36 0.57 

E98 H F97 H 3.06 2.67 - 2.47 - 

E98 H V141 QQG 5.41 4.76 - 5.59 0.18 

L99 H F97 H 3.94 4.14 0.20 4.00 0.06 

L108 QQD V126 H 5.29 5.46 0.17 7.80 2.51 

L108 QQD V127 H 5.29 5.61 0.32 9.20 3.91 

L108 QQD E129 H 5.29 4.79 - 8.76 3.47 

L108 QD1 L130 QD1 3.56 2.97 - 6.21 2.65 

L108 QD1 L130 QD2 3.56 3.38 - 6.43 2.87 

L108 QD2 L130 QD1 3.56 2.52 - 6.25 2.69 

L108 QD2 L130 QD2 3.56 2.89 - 7.14 3.58 

L108 QQD L130 H 5.29 3.68 - 7.81 2.52 

L108 QQD L130 QQD 2.74 2.25 - 5.11 2.37 

L108 QQD F131 H 5.29 5.71 0.42 10.57 5.28 

L108 QD1 F146 H 5.50 5.82 0.32 6.11 0.61 

L108 QD2 F146 H 5.50 4.76 - 5.15 - 

L108 QQD G147 H 5.29 6.11 0.82 6.17 0.88 

L108 QQD L150 H 5.78 5.52 - 4.21 - 

I114 H L150 QQD 5.09 3.86 - 3.65 - 

I114 QD1 L150 QQD 2.71 2.57 - 2.65 - 

I114 QD1 S154 H 5.94 4.07 - 7.18 1.24 

I114 QD1 V155 H 5.50 5.95 0.45 7.98 2.48 

I114 QD1 L162 QD1 3.62 3.27 - 3.32 - 

I114 QD1 L162 QD2 3.62 2.69 - 3.23 - 

I114 QD1 V163 H 5.50 7.06 1.56 8.88 3.38 

I114 QD1 S164 H 6.99 8.95 1.96 10.14 3.15 

I114 QD1 R165 H 6.00 8.19 2.19 8.88 2.88 

I114 QD1 I166 QD1 2.88 3.11 0.23 4.40 1.52 

Y120 H Q121 H 3.31 2.90 - 2.67 - 

Y120 H W169 HE1 3.79 3.74 - 4.89 1.10 

RNMR is experimentally determined NOE distance restraint. 𝑅2M03
RESTand 𝑅2M04

REST are 

calculated NOE-like distances for the two REST simulations. 
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Figure 3.5. Contact probability maps between residues of the BH3-only protein 

binding interface region (residues 98-120) and the rest of the protein computed from 

the last 200 ns of REST simulations 2M03 and 2M04, respectively. Contact 

formation is defined when the minimal heavy-atom-distance between two residues is 

≤ 4.2 Å. The probability of forming residue contacts in our simulations is shown in 

heat map, and contacts detected experimentally from NOE measurements are 

marked with black (from PDB 2M03) or red × (from PDB 2LPC).  

 

3.3.3 Intrinsic flexibility and structural propensities of the BH3-only protein binding 

interface 

The above analysis has strongly supported that enhanced sampling efficiency of 

REST has led to structural ensembles that are much better converged and more 

realistic. This allows us to further examine the conformational properties of the 

BH3-only protein binding interface of Bcl-xL to understand how they may provide 

a molecular basis for Bcl-xL recognition. Clearly, the interface is inherently flexible, 

with root-mean-square fluctuation (RMSF) values that are much higher than other 

helical regions and similar to terminal loops and tails (see Figure 3.6). We note that 

RMSF values of the interface region derived from REST run 2M04 are larger than 

those from run 2M03, which may be due to the unfolded initial structure (Figure 3.1) 

and thus over-representation of disordered conformations in the final ensemble. 
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Most interfacial residues are highly flexible and could sample both α-helix and 

extended conformations in the Ramachandra space (Figure 3.11A and B) and yield 

large backbone conformational entropy (Figure 3.4). This is also reflected in Figure 

3.13 that solvent accessible surface area (SASA) of each interfacial residue shows 

large variance in both simulated ensembles and PDB ensembles. Moreover, packing 

between the BH3-only protein binding interface and the rest of the protein is not 

very tight, and many transient contacts could be formed between them (Figure 3.5). 

Interestingly, MD and NMR ensembles of unbound Bcl-xL have similar SASA 

profiles, despite substantial helical contents observed in MD. That is, residual 

structures do not lead to premature exposure of hydrophobic residues prior to 

binding (e.g., F105).  

 

Figure 3.6. RMSF profiles of Bcl-xL Cα atoms calculated from REST trajectories 

(not including the first 300 ns data). All structures were superimposed based on Cα 

atoms of the core region (residues 85–98, 123–127, 140–156, and 162–175) before 

RMSF calculations.  
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The top eight most populated conformational “substates” identified from the 

clustering analysis are shown in Figure 3.7 and Figure 3.14, which further illustrate 

the highly heterogeneous nature of the BH3-only protein binding interface of Bcl-

xL. The interfacial region could adopt various helical or disordered conformations, 

and interact with the rest of the protein through different packing modes. Moreover, 

based on our PCA analysis (Figure 3.2), which mainly captures the global motion 

of the interface regions, it’s evident that all previously observed configurations could 

be visited by the free form of Bcl-xL. Although PC1 and PC2 are not necessarily 

appropriate reaction coordinates, energy barriers among various free energy basins 

seem to be mild (~2-3 kcal/mol), suggesting that conformational fluctuations at the 

BH3-only protein binding interface are likely rapid. For instance, both bound 

configurations of Bcl-xL in complex with BAX[145] (Figure 3.8A) or BAD[195] 

(Figure 3.8B) are well represented in the disordered ensemble derived from REST 

simulations. Although the existence of bound-like conformations in the unbound 

ensemble does not directly suggest conformational selection-like mechanism[26, 

196-198] in Bcl-xL binding, accessibility of various bound states even in absence of 

ligands could facilitate Bcl-xL to respond rapidly to specific binding events, 

including the observed partial unfolding induced by PUMA binding.  
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Figure 3.7. Central structures and populations of eight largest clusters for the 

simulated structure ensemble. Initial structure of simulation 2M03 is shown in grey 

cartoon, with the BH3-only protein binding interface highlighted in green. Central 

structure of each cluster is shown in blue, with the interfacial region colored in red. 

Clusters 1, 4, 7 and 8 are from 2m03 simulation, and 2, 3, 5 and 6 from 2m04 

simulation. 
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Figure 3.8. Probability distribution of interfacial Cα RMSD of the Bcl-xL structural 

ensemble derived from REST simulation 2M03 with respect to two PDB structures: 

(A) 3PL7 chain A (BAX bound form) and (B) 1G5J (BAD bound form). 

Representative low RMSD structures are shown. Bcl-xL in 3PL7 and 1G5J are 

colored in gray, with the BH3-only protein binding interface highlighted in green 

and bound BH3-peptide shown in ochre. Representative configurations of the 

interface sampled in REST are shown in red. 
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3.4 Conclusions 

Previous NMR and biochemical studies have demonstrated that anti-apoptotic Bcl-

xL undergoes local unfolding upon specific binding to the BH3-only protein PUMA, 

which in turn disrupts the interaction between Bcl-xL and tumor suppressor p53 and 

activates apoptosis[181]. However, the detailed mechanisms of such regulated 

unfolding of Bcl-xL have not been fully understood yet. Our previous studies have 

suggested that substantial intrinsic structure heterogeneity exists at the BH3-only 

protein binding interface of Bcl-xL[94], which could provide a general mechanism 

for supporting coupled binding, folding and unfolding in Bcl-xL recognition. We 

have leveraged enhanced sampling capability of REST to further characterize the 

conformational properties of unbound Bcl-xL at atomistic level in explicit solvent. 

Independent REST simulations initiated from two contrasting initial PDB structures 

yield structural ensembles that are not only much better converged but also highly 

consistent with available NMR data. The new simulations further support the notion 

that the binding interface of Bcl-xL has significant and inherent conformational 

heterogeneity. Intriguingly, the new results reveal that all previously observed 

conformations of Bcl-xL, including both bound and unbound states, are well 

represented in the unbound ensemble of Bcl-xL, and their interconversion appear to 

be rapid and involve small free energy barriers. Altogether, it is highly plausible that 

such inherent structural heterogeneity and plasticity at the binding interface is 

crucial for Bcl-xL to undergo rapid structural rearrangement and respond sensitively 

to various binding ligands for downstream signaling. Such a general molecular 
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mechanism may also be relevant for understanding other emerging cases of 

regulated unfolding in cellular signaling and regulation[107]. 

3.5 Supporting Material 

 

 

Figure 3.9 Initial structures of REST simulations. Water molecules are shown in red 

dots, and Bcl-xL in cartoon representation with color changing from red (at N-

terminus) to blue (at C-terminus). The BH3-only protein binding interface (residues 

98-120) is highlighted in green. 

 

 

Figure 3.10. Averaged helicity profiles of Bcl-xL from two REST simulations. Only 

the last 200 ns data were used in this analysis. 
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Figure 3.11 Two-dimensional probability distribution of (φ, ψ) for residues at the 

Bcl-xL interface region from two REST simulations (this work) and six MD 

simulations (from the previous work, see Ref 29 of the main text). 
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Figure 3.12 Mapping of NOE violations greater than 1 Å to PDB structure 2M03. 

All NOE distances for pairs of protons within the BH3-only protein binding 

interface region obtained from both REST simulations are within ~1 Å of 

experimentally assigned upper bounds. Therefore, only proton pairs between the 

BH3-only protein binding interface and the rest of protein were shown here for 

REST 2M03 (left) and 2M04 (right) simulations. Bcl-xL is in gray cartoon, with the 

BH3-only protein binding interface highlighted in green. Protons within the BH3-

only protein binding interface and the rest of protein are colored in blue and red, 

respectively. 
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Figure 3.13 Mean and standard deviation of solvent accessible surface area (SASA) 

for each residue in the BH3-only protein binding interface of Bcl-xL calculated from 

simulated and PDB ensembles. For simulated ensembles, the first 300 ns trajectories 

were excluded in the calculation. For PDB ensembles, all models in PDB 2M03 

(unbound state) or 2M04 (bound state) were analyzed. The bound PUMA in 2M04 

was removed from before analysis. A water probe with 1.4 Å radius was used in all 

SASA calculations. 
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Figure 3.14 Back view of central structures and populations of eight largest clusters 

for the simulated structure ensemble. Initial structure of simulation 2M03 is shown 

in grey cartoon, with the BH3-only protein binding interface highlighted in green. 

Central structure of each cluster is shown in blue, with the interfacial region colored 

in red. 
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CHAPTER 4  

RESIDUAL STRUCTURE ACCELERATES BINDING OF INTRINSICALLY 

DISORDERED ACTR BY PROMOTING EFFICIENT FOLDING UPON 

ENCOUNTER 

Intrinsically disordered proteins (IDPs) often fold into stable structures upon 

specific binding. The roles of residual structure of unbound IDPs in coupling binding 

and folding have been under much debate. While many studies emphasize the 

importance of conformational flexibility for IDP recognition, it was recently 

demonstrated that stabilization the N-terminal helix of intrinsically disordered 

ACTR accelerated its binding to another IDP, NCBD of the CREB-binding protein. 

To understand how enhancing ACTR helicity accelerates binding, we derived a 

series of topology-based coarse-grained models that mimicked various ACTR 

mutants with increasing helical contents and reproduced their NCBD binding 

affinities. Molecular dynamics simulations were then performed to sample hundreds 

of reversible coupled binding and folding transitions. The results show that 

increasing ACTR helicity does not alter the baseline mechanism of synergistic 

folding, which continues to follow “extended conformational selection” with 

multiple stages of selection and induced folding. Importantly, these coarse-grained 

models, while only calibrated based on binding thermodynamics, recapitulate the 

observed kinetic acceleration with increasing ACTR helicity. However, the residual 

helices do not enhance the association kinetics via more efficient seeding of 

                                                 
 Liu X, Chen J and Chen J (2018). "Residual Structures Accelerate Binding of Intrinsically 

Disordered ACTR by Promoting Efficient Folding upon Encounter." Journal of Molecular 

Biology 431(2): 422-432 
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productive collisions. Instead, they allow the nonspecific collision complexes to 

evolve more efficiently into the final bound and folded state, which is the primary 

source of accelerated association kinetics. Meanwhile, reduced dissociation kinetics 

with increasing ACTR helicity can be directly attributed to less entropic penalty of 

forming the bound state. Altogether, this study provides important mechanistic 

insights into how residual structure may modulate thermodynamics and kinetics of 

coupled binding and folding of IDPs. 

4.1 Introduction 

Unlike well-folded proteins, intrinsically disordered proteins (IDPs) lack stable 3D 

structures in the unbound state under physiological conditions[1-3, 21, 53, 98, 170, 

199, 200]. They play important roles in cellular protein-protein interaction networks 

and are capable of interacting with many targets with specificity[2, 3, 13, 17, 100, 

169, 170]. Upon specific binding, IDPs often gain stable secondary and/or tertiary 

structures[100, 161, 179]. The molecular mechanism of how IDPs achieve efficient 

coupled binding and folding has been under intensive studies[61, 81, 161, 198, 201-

205]. In particular, the unbound states of IDPs often contain residual structure that 

resembles those in the bound state[25, 53, 81, 100, 199, 206, 207], even though the 

roles of such residual structure in IDP recognition remain debatable. On one hand, 

residual structure may serve as initial contact points that facilitate productive 

binding and folding, referred to as conformational selection-like mechanisms[25]. 

On the other hand, conformational flexibility has been argued to be crucial for 

binding, and increasing the level of residual structure may reduce the association 
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kinetics[24, 70, 208]. It has been argued that rapid folding upon encounter is critical 

for IDPs to achieve facile specific recognition[209, 210]. The dual-transition-state 

theory[211] predicts that the diffusion-limited encounter rate represents an upper-

limit for that of IDP coupled binding and folding, which cannot be achieved unless 

IDPs fold rapidly upon encounter (i.e., beyond the typical speed limit of μs-1 for 

isolated proteins[212]). Curiously, it has been observed that IDPs have similar 

association rates compared to folded proteins[213, 214]. The implication is that IDPs 

could fold efficiently upon encounter in general. Several features of IDPs have been 

argued to contribute to efficient folding upon encounter, such as small interacting 

domains, simple folded topologies with low contact orders, and likely an appropriate 

balance between residual structure and conformational flexibility[53]. 

In a recent NMR and stopped-flow kinetic study, Kjaergaard and coworkers 

examined the effects of stabilizing residual helices on the association of activation 

domain of the activator for thyroid hormone and retinoid receptors (ACTR) with the 

nuclear coactivator binding domain (NCBD) of CREB-binding protein[31] (Figure 

4.1). Eight ACTR mutants were designed with varying helical propensities in the N-

terminal helix (H1), without perturbing its electrostatic properties or inter-molecular 

interactions. Intriguingly, increased helicity of ACTR H1 was observed to accelerate 

the rate of association with NCBD and at the same time decelerate the dissociation 

rate, leading to a net stabilization of the complex. Such accelerated association 

induced by increasing residual helicity has also been reported for the association of 

KIX with c-Myb[215, 216] and assembly of the spectrin tetramerization 

domain[217]. Yet, this observation is in contrast to several previous studies where 
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the association rates are either reduced (e.g., in p27Kip1/cyclin A/Cdk2[208] and 

pKID/KIX[70] interactions) or remain similar (e.g., PUMA binding to MCL-1[203]) 

with increasing residual helicity. Mechanistically how stabilized residual helices 

modulate the interaction kinetics and mechanism is not clear. As discussed in the 

previous work [31], one plausible explanation is that the rate-limiting folding step 

occurs after an initial binding step, and the energy barrier decreases with increased 

helical content[31]. Another interpretation could be the existence of several parallel 

pathways, and increasing helical population may significantly increase the flux of 

conformational selection like pathways (rather than lower the barrier height)[31].  

 

Figure 4.1(A) Structure of the NCBD/ACTR complex (PDB 1KBH[218]) and (B) the 

Cα-only Gō-like model. 

 

Molecular dynamics (MD) simulations could provide microscopic details necessary 

for unveiling the molecular mechanisms of complex coupled binding and folding 

processes, which often involve multiple intermediate states and parallel 

pathways[61, 70, 81, 197, 198, 210, 219]. However, atomistic simulations using 

physics-based force fields remain computationally too expensive to sample 

reversible binding and folding transitions to obtain reliable and statistically 

meaningful observations on mechanism[53]. Instead, topology-based coarse-

grained (CG) modeling has been shown to offer an effective tool for mechanistic 
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studies of coupled binding and folding of IDPs into stable complexes [70, 219, 220], 

which arguably is also governed by the minimal frustration principle of protein 

folding[221]. With proper calibration to balance the interplay of residual folding and 

intermolecular interactions, these Gō-like models have been successfully applied to 

several IDP complexes, and many predictions have been substantiated by 

independent experiments [70, 198, 209, 222-224]. In this work, we first derive a 

series of Gō-like CG models that are carefully calibrated to mimic ACTR mutants 

with various residual helical contents and reproduce their NCBD binding affinities. 

Milliseconds of MD simulations were then performed to sample hundreds of 

reversible coupled binding and folding transitions to analyze the association kinetics 

and mechanism. The results show that these Gō-like models, while only calibrated 

based on binding thermodynamics, recapitulate the observed kinetic acceleration 

with increasing ACTR helicity. Mechanistic analyses reveal that pre-existing 

structures in ACTR do not significantly alter the baseline mechanism of its 

synergistic folding upon binding to NCBD. Instead, they accelerate the overall 

association kinetics mainly by promoting more efficient folding upon encounter. 

4.2 Results and Discussion 

4.2.1 Gō-like models recapitulate higher NCBD/ACTR affinity with stabilized ACTR 

H1 

As summarized in Figure 4.2A and Table 4.1, scaling of the intra-molecular 

interaction strengths of ACTR H1 allows direct modulation of its average helicity. 

The average helicity is bound between 10% to 95% due to the coarse-grained nature 

of Gō-like model. However, the resulting models overestimate how much 
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NCBD/ACTR is stabilized by increasing ACTR H1 helicity, probably because the 

coarse-grained models often could not properly balance entropy and enthalpy, and 

directly stabilizing ACTR H1 overly reduce the entropic cost of binding. To capture 

the binding affinities of ACTR to NCBD measured experimentally[31], the inter-

molecular interaction strength between ACTR and NCBD needs to be slightly scaled 

down, which was determined by replica exchange (REX) simulations in 

combination with Hamiltonian mapping[225, 226]. As shown in Figure 4.2B, 

log(Kd) of the final calibrated models shows a strong correlation (R2 = 0.98) with 

log(Khelix), as observed experimentally[31]. The slopes are also similar for the 

simulated and experimental values[31] (-0.80 and -0.84, respectively). Consistently, 

the free energy profiles as a function of the fraction of total inter-molecular native 

contacts (Qinter), presented in Figure 4.3A and B, illustrate that the bound state 

becomes increasingly favorable as ACTR gains more helical structures at H1 region. 

Experimentally, various ACTR mutants were designed without perturbing its 

electrostatic interactions or inter-molecular interactions in the complex[31]. We can 

assume that the bound state remains similar in all mutants. Therefore, increasing 

ACTR secondary structures could reduce the overall entropic cost of forming 

NCBD/ACTR complex, to result in augmented complex stability. By decomposing 

the free energy into enthalpic and entropic contributions (Figure 4.9), we found that 

the overall entropic penalty (T∆S) from unbound state (Qinter = 0) to fully bound state 

(Qinter = 0.6) is indeed reduced from 78.3 kcal/mol to 73.4 kcal/mol as we increase 

ACTR H1 helicity from 0.44 to 0.80 (Figure 4.9B upper inset). Being able to capture 

the key features of experimentally observed structural and thermodynamic 
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properties, the calibrated Gō-like models should enable us to investigate how 

residual helicity of ACTR H1 modulates the binding kinetics and pathways of 

NCBD/ACTR interaction. 

Table 4.1 Summary of production simulation details and derived NCBD/ACTR 

binding kinetic parameters (see Methods for details). 

α  fH1 finter 
tsim 

(ms) 

k+ 

 (μs-1) 

k- 

 (μs-1) 

kcap 

 (μs-1) 

kesc 

 (μs-1) 

kevo 

 (μs-1) 
Ncap Nevo 

ρevo 

(%) 

MFPTevo 

(ns) 

0.44 1.4 0.977 1.79 
0.32 

(0.02) 

0.69 

(0.04) 

95.65 

(0.41) 

109.15 

(0.55) 

0.66 

(0.04) 
62484 366 0.56 28.66 

0.49 1.5 0.973 1.76 
0.32 

(0.02) 

0.60 

(0.03) 

94.15 

(0.39) 

110.35 

(0.43) 

0.67 

(0.03) 
58388 348 0.60 29.75 

0.53 1.6 0.968 1.72 
0.32 

(0.02) 

0.52 

(0.03) 

93.60 

(0.44) 

111.25 

(0.49) 

0.67 

(0.04) 
54762 321 0.59 28.72 

0.69 2 0.959 1.70 
0.36 

(0.02) 

0.39 

(0.02) 

93.10 

(0.52) 

111.25 

(0.58) 

0.78 

(0.03) 
44312 298 0.67 31.30 

0.80 2.5 0.955 1.60 
0.47 

(0.04) 

0.29 

(0.01) 

93.05 

(0.70) 

110.65 

(0.68) 

0.98 

(0.08) 
31481 264 0.84 31.07 

tsim: accumulated simulation time from 20 independent runs. 

ρevo: probability of converting collision complex to fully bound state (i.e., Nevo / Ncap.) 

Values in the parenthesis are standard errors of the mean, which is calculated as 𝜎 √𝑛⁄ , 

where σ is the standard deviation, and n is 20, i.e., the number of independent runs. 

 

 

Figure 4.2 (A) H1 helicity of unbound ACTR (α) at 300 K versus the scaling factor 

fH1 of intra-molecular interaction strengths within ACTR H1 region. (B) log(Khelix) 

of H1 of unbound ACTR versus log(Kd) of ACTR/NCBD binding at 300 K from 

simulation and experiment[31]. The green line is the best-fitted line of simulation 

data. 𝑲𝐡𝐞𝐥𝐢𝐱 = 𝜶 (𝟏 − 𝜶)⁄  and simulated Kd was calculated using Equation 4.1. 
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Figure 4.3 (A) Potential of mean force (PMF) as a function of Qinter at 314 K for five 

NCBD/ACTR models. These profiles were obtained from MD production 

simulations and calculated as -RTln[P(Qinter )], where P(Qinter) is the probability 

distribution of Qinter, T is the temperature, and R is the gas constant. All traces have 

been shifted such that the free energy value at Qinter=0 is zero. (B) Same as (A) 

except that all traces have been shifted that free energy value at Qinter=0.58 is zero. 

(C) Association and dissociation rates as a function of the H1 helicity of unbound 

ACTR. 

 

4.2.2 Enhancing ACTR H1 helicity accelerates NCBD binding 

An intriguing observation from the experimental study[31] is that stabilizing ACTR 

H1 increases the association rate constant, and at the same time decreases the 

dissociation rate constant of ACTR/NCBD complex formation[31]. Even though the 

Gō-like models were calibrated solely based on thermodynamic properties, they can 

reproduce the dependence of both association and dissociation rate on ACTR H1 

helicity. As shown in Table 4.1 and Figure 4.3C, the association rate (k+) is 

moderately enhanced as ACTR H1 becomes more helical, which is also consistent 

with decreasing binding free energy barriers as shown in Figure 4.3A. Free energy 

decomposition analysis (Figure 4.9) shows that the binding free energy barrier along 

Qinter stemmed from the imperfect compensation of the favorable enthalpic and 

unfavorable entropic contributions, as predicted in the funnel-like free energy 

landscape theory of protein folding[227]. Stabilizing ACTR H1 results in more 

favorable interaction energies near the transition state (e.g., Figure 4.9A inset), thus 
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lowering the free energy barrier of association. The simulations also predict that the 

dissociation rate (k-) decreases as α is increased from 0.44 to 0.80 (Figure 4.3C), 

which seems to be a direct consequence of increasing stability of the bound state 

(see Figure 4.3B). 

4.2.3 Accelerated NCBD binding through efficient folding upon encounter 

To understand how ACTR H1 helicity enhancement modulates the NCBD/ACTR 

binding kinetics, we further evaluate its effects on various stages of NCBD/ACTR 

complex formation. For this, three general states, including the unbound, collision 

complex and bound states, were defined (see Equation 4.3) and transitions between 

these states were extracted from the production trajectories and analyzed. The results 

are summarized in Table 4.1. For more disordered ACTR, the capture rate (kcap) is 

slightly faster, and there were significantly more capture events (Ncap), which seems 

to be consistent with the fly-casting theory[24]. However, collision complex 

formation occurs considerably faster than forming the bound complex, and the 

correlation between capture rate and association rate is very week (Figure 4.10), 

implying that this step alone unlikely determines the overall kinetics of coupled 

binding and folding of ACTR to NCBD. On the contrary, the evolution rate (kevo) is 

on the same order of magnitude as the overall binding rate (k+) (Table 4.1 and Figure 

4.4A) and shows the strongest correlation with k+ (Figure 4.4A), suggesting that the 

impacts of increasing ACTR H1 helicity are mainly reflected in kevo. 
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Figure 4.4 (A) Evolution rate and (B) probability of collision complex evolving into 

the bound state as a function of the associate rate. (C) Kd at 314 K versus the 

dissociation rate. 

 

Note that both mean first passage time of evolution (MFPTevo) and number of 

evolution events (Nevo) contribute to the calculation of kevo (Equation 4.6), and we 

would like to further understand which one is the dominant factor that leads to 

increased kevo (and k+) induced by ACTR H1 stabilization. Intriguingly, MFPTevo is 

on the order of tens of nanoseconds in all cases (Table 4.1), suggesting that evolution 

from collision complex to bound state occurs rapidly for successful transitions. This 

agrees well with previous notion that many rare events are rare because they are 

infrequent, and not because they are slow (for instance, the protein folding transition 

path time was found to be 10,000 shorter than the mean waiting time in unfolded 

state) [228-230]. This observation also implies that NCBD/ACTR complex 

formation seems to be a sharp, cooperative structural transition, as suggested 

previously by Dogan and coworkers[231]. Therefore, MFPTevo cannot be used to 

explain the kinetic advantage of increased ACTR helicity on NCBD binding. As 

shown in Table 4.1, MFPTevo indeed doesn’t decrease when ACTR is more helical, 

and similar insensitivity of MFPTevo in response to changes of ionic strength is also 

found in the case of PUMA binding to Mcl-1[232]. Instead, greater kevo and k+ arise 
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mainly due to the higher probability of converting collision complex to fully bound 

state (ρevo) for ACTR variants with more preformed H1 helical structures (Figure 

4.4B). That is, ACTR residual structure accelerates NCBD binding mainly by 

promoting more efficient folding upon encounter. 

The above findings from kinetic analysis are further supported by the 

thermodynamic and structural analysis. As shown in Figure 4.3A, the free energy 

profiles reveal the presence of a metastable intermediate state at Qinter ≈ 0.3, which 

appears to be critical for lowering binding free energy barriers as ACTR H1 helicity 

increases. As shown in Figure 4.5, when unbound ACTR has a higher level of 

secondary structures, more native contacts can be formed in both peptides at this 

intermediate state, which may explain the extra enthalpy gain (Figure 4.9A inset) 

that lowers the binding free energy barrier. Furthermore, the presence of 

energetically more favorable, structurally more ordered intermediate state may be 

more “folding-competent” both energetically and topologically, which is consistent 

with the higher probability of collision complex evolving into fully bound state 

induced by ACTR helicity enhancement (Table 4.1). Altogether, the current analysis 

reinforces the pivotal role of efficient folding upon encounter in accelerating the 

overall kinetics of coupled binding and folding[53, 209-211].  
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Figure 4.5 Distributions of the fraction of native contacts formed within ACTR (A) 

and NCBD (B) in the intermediated state (0.21 ≤ Qinter ≤ 0.32). 

 

The reduced dissociation rate as ACTR H1 becomes increasingly helical (Table 4.1) 

appeared to correlate well with the increased binding affinity between ACTR and 

NCBD (Figure 4.4C). This is not surprising considering that dissociation is largely 

a unimolecular process, where the rate is mainly determined by the depth of the 

bound free energy minimum[227]. In other words, reduction of dissociation rate is 

a direct consequence of stronger binding between NCBD and ACTR with increasing 

ACTR H1 helicity. 

4.2.4 Baseline mechanism of NCBD/ACTR recognition 

Although the topology-based models neglect many atomistic details and the absolute 

values presented here may not be directly compared with experimental results, these 

models were based on the principle of minimal frustration of protein folding[233-

235] and should be able to capture the baseline mechanisms of coupled binding and 

folding of IDPs. The carefully calibrated Gō-like models seem to reproduce both 

thermodynamic and kinetic properties of NCBD/ACTR complex formation, thus 

allowing us to derive further mechanistic insights into NCBD/ACTR coupled 

binding and folding. As shown in Figure 4.6, the overall folding of each peptide is 



 

 91 

coupled with the binding in a cooperative manner, as the fractions of total intra-

molecular native contacts (𝑄intra
ACTR and 𝑄intra

NCBD) increase gradually with Qinter. This is 

consistent with previous experimental[236] and simulation findings[81, 198, 210]. 

Such an overall mechanism is conserved as ACTR H1 becomes more helical (Figure 

4.6). Moreover, detailed examination of the transition path ensemble suggests that 

the ensemble is heterogeneous and transitions at the microscopic level may involve 

multiple trials and steps (Figure 4.7). The presence of several intermediate states as 

well as involvement of both conformational selection (e.g., Figure 4.7A and B) and 

induced fit (e.g., Figure 4.7C and D) pathways seems to agree with the “extended 

conformational selection” model[237]. These mechanistic features have been 

described in detail in our previous work[198]. 

 

Figure 4.6 2D free energy profiles at 314 K as a function of Qinter and Qintra
ACTR (top) 

or Qintra
NCBD (bottom). Contour levels are drawn at every 1 kcal/mol. 
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Figure 4.7 Representative transitions from unbound to bound state. The traces were 

color in time ordering from blue to red. (A) and (B) are for conformational selection 

like pathways, (C) and (D) for induced fit like pathways, and (E) for other 

pathways. Transient, but non-productive visit of alternative pathways was present 

in (B) and (D), but absent in (A) and (C). 

 

Stabilizing ACTR H1 results in continued differences in the pathway of coupled 

binding and folding. We have analyzed all productive transitions from unbound to 

bound states by monitoring the change of NCBD intra-molecular tertiary structures 

in response to ACTR binding. Figure 4.8 shows the 2D free energy profiles as a 
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function of 𝑄intra−tert
NCBD  and Qinter, which reveal how the relative populations of two 

key intermediates (I1 and I2 in Figure 4.8A) change with increasing ACTR H1 

helicity. For more disordered ACTR H1, intermediate state I1 appears to be 

dominant, where most tertiary structures within NCBD were not formed (e.g., see 

Figure 4.8A). As ACTR H1 becomes increasingly helical, the population of 

intermediate state I2 increases, where NCBD has already gained significant amount 

of tertiary structures when only ~25% of native contacts between NCBD and ACTR 

have been formed (e.g., see Figure 4.8E). Such shift of relative populations of I1 and 

I2 also suggests that as ACTR H1 became more helical, there is a greater chance 

that NCBD could become folded before reach the fully bound state. This is 

consistent with the previous notion that enhancing the helicity of ACTR H1 results 

in an intermediate state with “folding-competent” topology, thus promoting efficient 

folding upon encounter and accelerating its association with NCBD. 

 

Figure 4.8 2D free energy profiles at 314 K as a function of Qintra-tert
NCBD and Qinter 

calculated from transition path ensembles. Panels A-E are for α = 0.44, 0.49, 0.53, 

0.69 and 0.80, respectively. Contour levels are drawn at every 1 kcal/mol. 
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4.3 Conclusions 

Recent NMR structural studies and stopped-flow kinetic measurements have shown 

that increasing helicity of ACTR H1 not only enhances the stability of NCBD/ACTR 

complex, but also accelerates the association rate while decelerating the dissociation 

rate[31]. This is surprising because previous studies have generally emphasized the 

importance of conformational flexibility in IDP recognition and stabilizing residual 

helicities have been found to either reduce the binding kinetics or have minimal 

impacts[70, 203, 208]. Here we have constructed a series of topology-based coarse-

grained models that were carefully calibrated by reproducing key thermodynamic 

properties of the unbound state and NCBD/ACTR interaction. Through milliseconds 

of MD simulations, hundreds of reversible binding and folding transitions were 

generated to analyze the kinetics, thermodynamics and mechanism of NCBD/ACTR 

interaction. The results show that with an increasing amount of preformed structural 

elements in unbound IDPs, the overall entropic cost of forming NCBD/ACTR 

complex is reduced, which leads to increased binding affinity and thus reduced 

dissociation rate. Increasing ACTR helicity does not significantly alter the baseline 

mechanism of the synergistic folding of ACTR and NCBD during association, 

which continues to follow an “extended conformational selection” model with 

multiple stages of selection and induced folding. Increasing residual structure in 

ACTR H1, however, results in a higher probability of productive evolution of 

nonspecific collision complexes to the final bound and folded state, and this is shown 

to be the primary source of accelerated association kinetics. Taken together, this 

study provides mechanistic insights into how residual structure modulates 
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thermodynamics and kinetics of coupled binding and folding of IDPs and highlights 

the importance of efficient folding upon encounter in such processes. 

4.4 Methods 

4.4.1 Topology-based coarse-grained models of NCBD/ACTR 

A Cα-only sequence-flavored Gō-like model was previously derived for the wild-

type NCBD/ACTR complex (see Figure 4.1)[198]. Briefly, this model was built 

based on PDB structure 1KBH[218] (model 1) using the MMTSB Gō-Model 

Builder (http://www.mmtsb.org)[235, 238]. It was then calibrated to recapitulate the 

overall residual structure level of unbound peptides and the binding affinity. This 

was achieved by first uniformly scaling the interaction strengths of intra-molecular 

native contacts, to reproduce the experimental residual helicity profiles of unbound 

peptides. The interaction strengths of inter-molecular native contacts were then 

scaled to match the simulated binding affinity of the complex with experimental 

values. In this model, the total numbers of native contacts between peptides (𝑁inter), 

within NCBD (𝑁intra
NCBD ), within ACTR (𝑁intra

ACTR ) and in NCBD intra-molecular 

tertiary structures (𝑁intra−tert
NCBD ) are 76, 78, 49 and 26, respectively. 

To model ACTR variants with different H1 residual helicities, the above Gō-like 

model was further tuned by uniformly scaling its interaction strengths of all intra-

molecular native contacts within segment H1. Scaling factors for ACTR H1 (fH1) 

were set at 1.4, 1.5, 1.6, 2.0 and 2.5 for five ACTR variants, which yield H1 residual 

helicities (α) ranging from 0.44 to 0.80 (see Table 4.1), comparable to the 

experimental values for mutants studied by Kjaergaard and coworkers[31]. For each 

model, the inter-molecular interaction strengths between ACTR variant and NCBD 
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were uniformly rescaled, such that the calculated thermodynamic stability of the 

NCBD/ACTR complex matched the experimental value[31]. This fine-tuning was 

performed using replica exchange (REX) simulations in combination with 

Hamiltonian mapping[226, 239]. The inter-molecular scaling factors (finter) in the 

five final models are 0.977, 0.973, 0.968, 0.959 and 0.955, respectively (see Table 

4.1). 

4.4.2 Simulation protocols 

All MD simulations were performed using CHARMM[149, 150], and REX 

simulations were performed using CHARMM[149, 150] with MMTSB[146]. 

Langevin dynamics was used with a friction coefficient of 0.1 ps-1 and a time step 

of 10 fs. All bond lengths were constrained using SHAKE[156]. 

To compute the averaged helicities of ACTR H1, 1 μs MD simulations of ACTR 

alone were performed at 300 K. For all simulations of NCBD/ACTR, the complex 

was put in a cubic box with the size of 105 Å under periodic boundary conditions. 

First, a REX simulation of the complex was performed for 2 μs using the original 

Gō-like model[198] to generate structural ensembles. Hamiltonian mapping[226, 

239] was then used to identify scaling parameters that would reproduce the 

experimental stabilities. 2 μs REX simulations using these new models were then 

carried out to verify the stability of the complex. After model calibration, all 

production simulations of the NCBD/ACTR complexes were performed at 314 K, 

near the melting temperatures. For each model, 20 independent simulations were 

initiated from random conformations. The accumulated simulation times ranged 

from 1.60 to 1.79 ms for each complex (Table 4.1), which yielded hundreds of 
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reversible binding/unbinding transitions for reliable analysis of kinetic rates and 

pathways. Simulation trajectories were saved every 100 ps for analysis. 

4.4.3 Analysis 

To calculate the average helicity, we first calculated the number of (i, i+4) Cα-Cα 

contacts in ACTR H1. A contact is considered to be formed if the Cα-Cα distance is 

no more than 1 Å greater than that in the fully folded state (PDB: 1KBH). The overall 

helicity of ACTR H1 was then calculated as the ensemble-averaged fraction of (i, 

i+4) Cα-Cα native contacts formed. 

For the complex, the dissociation constants (Kd in M) were computed from the bound 

probabilities (pb) as[198] 

𝐾𝑑 =
1660

𝑉0

(1 − 𝑝𝑏)
2

𝑝𝑏
                                                                           (4.1) 

where V0 is the volume of simulation box in Å3. Conformations with 𝑁inter ≥ 44 are 

considered bound. 

All kinetic information was derived from production simulations of the complex. 

Both the binding (k+) and unbinding rates (k-) were calculated directly as the inverse 

of corresponding mean first passage times (MFPTs) between the bound (B) and 

unbound (U) states (Equation 4.2), where the two states were defined as 𝑁inter  ≥ 44 

and 𝑁inter  < 1, respectively. Running average over 10 ns was performed before 

assigning the states to suppress fictitious high frequency transitions. 
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𝑈
𝑘+/𝑘−
↔   𝐵                                                                                             (4.2) 

To further understand how residual helical stability may affect different stages of 

coupled binding and folding, three general conformational states were defined, 

including an additional collision complex (CC) state, 

𝑈
𝑘𝑐𝑎𝑝/𝑘𝑒𝑠𝑐
↔      𝐶𝐶

𝑘𝑒𝑣𝑜
→  𝐵                                                                     (4.3) 

where kcap, kesc, and kevo are capture, escape and evolution rates, respectively. Here, 

the unbound state was more strictly defined as conformations without specific or 

nonspecific inter-molecular contacts (i.e., 𝑁inter < 1 and 𝑁inter
ns  < 1). CC includes 

conformations with only nonspecific inter-molecular contacts (i.e., 𝑁inter < 1 and 

𝑁inter
ns  ≥ 1). Again, running average over 10 ns was performed before state 

assignment. kcap, kesc, and kevo were calculated from number of transitions and MFPT 

between states as described previously[210, 220]: 

𝑘cap = MFPTcap
−1                                                                                                      (4.4) 

𝑘esc =
𝑁esc/(𝑁esc + 𝑁evo)

(MFPTesc ×𝑁esc +MFPTevo × 𝑁evo)/(𝑁esc +𝑁evo)
                    (4.5) 

 

𝑘evo =
𝑁evo/(𝑁esc +𝑁evo)

(MFPTesc ×𝑁esc +MFPTevo ×𝑁evo)/(𝑁esc +𝑁evo)
                   (4.6) 

 

Ncap, Nesc, and Nevo are the numbers of capture, escape, and evolution transitions, 

respectively. 

Ensembles of transition path trajectories were collected from production MD 

simulations to further analyze the pathways of NCBD/ACTR synergistic folding. 



 

 99 

Each transition path trajectory was defined between the fully unbound state (𝑁inter 

= 0 and 𝑁inter
ns  = 0) last visited and the fully bound state (𝑁inter ≥ 50) first visited 

(e.g., see Figure 4.7). The more stringent state criteria are necessary to eliminate 

spurious, noncommitting transitions. Very few intra-molecular tertiary contacts 

were present in bound state of ACTR[198], thus we didn’t examine ACTR folding 

upon binding. NCBD is a molten globular protein with a high level of secondary 

structures in the unbound state. Its binding-induced folding was analyzed by 

tracking its intra-molecular tertiary structure formation, quantified by 𝑄intra−tert
NCBD . 

4.5 Supporting Material 

 

Figure 4.9 Enthalpic (A) and entropic (B) contributions in NCBD/ACTR complex 

formation. Here, we used the unbound state (Qinter = 0) as the reference state. 

Enthalpic contribution (ΔH) was obtained from the averaged potential energies for 

each Qinter state. Entropic contribution (TΔS) was calculated as the difference 

between ΔH and free energy values. 
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Figure 4.10 Capture rate as a function of the associate rate. 
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CHAPTER 5  

HYRES: A COARSE-GRAINED MODEL FOR MULTI-SCALE ENHANCED 

SAMPLING OF DISORDERED PROTEIN CONFORMATIONS 

Efficient coarse-grained (CG) models can be coupled with atomistic force fields to 

accelerate the sampling of atomistic energy landscapes in the multi-scale enhanced 

sampling (MSES) framework. This approach may be particularly suitable for 

generating atomistic conformational ensembles of intrinsically disordered proteins 

(IDPs). While MSES is relatively robust to inherent CG artifacts, achieving optimal 

sampling efficiency requires CG modeling to generate local and long-range 

fluctuations that are largely consistent with those at the atomistic level. Here, we 

describe a new hybrid resolution CG model (HyRes) for MSES simulations of 

disordered protein states, which is specifically designed to provide semi-quantitative 

secondary structure propensities together with a qualitative description of long-

range nonspecific interactions. The HyRes model contains an atomistic description 

of the backbone with intermediate resolution side chains. The secondary structure 

propensities are tuned by adjusting the backbone hydrogen-bonding strength and  

torsion profile. The sizes and covalent geometries of side chains are parameterized 

to reproduce distributions derived from atomistic simulations. Lennard-Jones 

parameters for sidechain beads are assigned to reproduce statistical potentials 

derived from protein structural database, and then globally parameterized with 

                                                 
 Liu X. and Chen J (2017). "HyRes: A Coarse-grained Model for Multi-scale Enhanced 

Sampling of Disordered Protein Conformations." Physical Chemistry Chemical Physics 

19(48): 32421-32432. 
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nonspecific electrostatic interactions to reproduce free energy profiles of pair wise 

interactions and key conformational properties of model peptides. Application of 

HyRes to MSES simulations of small IDPs suggests that it is capable of driving 

faster structural transitions at the atomistic level and increasing the convergence rate 

compared to Cα-only Gō-like models previously utilized. With further optimization, 

we believe that the new CG model could greatly improve the efficiency of MSES 

simulations of larger and more complex IDPs frequently involved in cellular 

signaling and regulation. 

5.1 Introduction 

Intrinsically disordered proteins (IDPs) remain fully or partially disordered in the 

unbound state under physiological conditions[2, 3, 21, 53]_ENREF_1. Compared 

with globular proteins, IDPs are enriched in polar and charged residues, and 

deficient in hydrophobic residues[11]. They often play significant roles in cellular 

signalling and regulation[17, 21, 48, 107, 170, 175], and are frequently associated 

with human diseases including cancer and neurodegenerative diseases[13, 170, 173, 

174, 240]. There is thus a great need to understand the physical basis of IDP 

functions in molecular recognition and cellular signaling. The dynamic nature of 

unbound IDPs, however, requires their properties to be described by heterogeneous 

ensembles that are not amenable to traditional experimental techniques geared 

towards structured proteins. Averaged properties measured on disordered protein 

states are generally insufficient to uniquely define the underlying ensembles via 

various restrained structure calculation or selection selection protocols[7, 53, 55, 
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206, 241]_ENREF_15. Reliable physics-based atomistic simulations thus have an 

important role to play. 

We recently adapted the multi-scale enhanced sampling (MSES) approach of Kidera 

and coworkers[242] to couple Gō-like coarse-grained (CG) models for enhanced 

sampling of protein conformations in atomistic (AT) force fields[83, 243]. In brief, 

both AT and CG representations of the system are simulated simultaneously, but 

they don’t interact directly with each other except through a MSES coupling 

potential (UMSES). Potential energy of the hybrid system is shown in Eq. 5.1, 

𝑈ℎ𝑦𝑏𝑟𝑖𝑑(𝑟𝐴𝑇 , 𝑟𝐶𝐺 , 𝜆) = 𝑈𝐴𝑇(𝑟𝐴𝑇) + 𝑈𝐶𝐺(𝑟𝐶𝐺) + 𝜆𝑈𝑀𝑆𝐸𝑆(𝑟𝐴𝑇, 𝑟𝐶𝐺)                       (5.1) 

where UAT and UCG are AT and CG potentials, respectively. UMSES is designed 

to restrict the structural divergence between AT and CG models along selected 

degrees of freedom. A proper UMSES is expected to leverage rapid CG fluctuation 

to accelerate structural transitions at the atomistic level, and the scaling factor λ 

determines how closely the AT and CG configurations could track each other. Bias 

introduced by MSES coupling is removed using Hamiltonian replica exchange (H-

REX), which communicates coupled conformational dynamics to the limit of λ=0 

where AT and CG models are completely independent and proper ensembles could 

be recovered at both resolutions. Our MSES approach also incorporates temperature 

replica exchange (T-REX) to further enhance the sampling efficiency[83, 243]. 

Application to small -hairpins and helical peptides supports that MSES could 

dramatically accelerate the sampling of peptide conformational transitions. 

Compared with other multiscale sampling methods such as direct coordinate 

swapping in resolution exchange[244-246], coupling AT and CG models through 
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UMSES provides several significant advantages. It offers flexibility in controlling 

energetic impact of diverged conformations at AT and CG levels, which improves 

exchange efficiency and provides superior scalability to large systems. Also, it 

prevents the CG model from dictating the conformational dynamics and makes 

MSES more robust against inherent CG artifacts. 

A key bottleneck in sampling large-scale conformational rearrangement, either for 

folded proteins or IDPs, is that these transitions are often entropically limited[83, 

243, 244]. Kinetics of such transition is temperature insensitive, and the popular 

temperature-based REX protocols becomes ineffective. In this regard, MSES could 

provide unique advantages, because CG modeling reduces the conformational space 

and may be particularly effective in driving conformational search at atomistic level. 

However, the efficiency of MSES depends critically on the ability of CG modeling 

to generate local and long-range structural fluctuations that are largely consistent 

with those expected at the atomistic level. Otherwise, the CG model would attempt 

to drive atomistic transitions through unfavorable pathways, which will hinder the 

convergence of MSES simulations. Previous studies have shown that coupling the 

AT model to a simple Cα-based Gō-like model could significantly increase atomistic 

structural transitions in simulations of both β-hairpin[83] and small IDPs[243]. 

However, these studies also suggest that the efficiency of MSES for simulating IDPs 

is limited by the existence of inconsistent structural fluctuations between Cα-based 

CG and atomistic models[243]. This problem is anticipated to become more severe 

for larger and more complex IDPs. There is thus a need to explore or develop 

alternative CG models for more efficient MSES simulations of IDPs. 
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CG modeling is an area of intensive research and numerous CG protein models have 

been described in the literature. Some CG force fields treat solvent molecules 

implicitly, for example, the united-residue (UNRES) model[247-252], PRIME 

(protein intermediate resolution model)[253-256], Bereau and Deserno’s CG 

model[257], OPEP (optimized potential for efficient structure prediction) force 

field[258-262] and PRIMO force field[263]. Others include solvent molecules 

explicitly, such as MARTINI[264, 265] and PACE[266]. We refer the reader to 

references[267-270] for more complete reviews. We note that virtually all existing 

CG models are designed to work independently (i.e., as alternatives to AT models), 

which presents formidable challenges and requires stringent optimization and/or 

more sophisticated effective potential energy functions. We have evaluated several 

CG protein models and the results suggest that none of them is capable of provide a 

balanced description of disordered protein ensembles[271]. Here, we describe a new 

hybrid resolution CG model (HyRes) that has been specifically designed for MSES 

simulations of IDPs. A guiding hypothesis is that, the CG model should be able to 

capture essential conformational features of IDPs to achieve best possible efficiency 

of MSES simulations. In particular, most regulatory IDPs are known to contain some 

level of residual secondary structures (mostly helical) and transient long-range 

contacts with functional implications[2, 7, 81, 272]. Importantly, the new model 

does not have to be highly accurate to be effective in MSES simulations, because 

the quality of structure ensembles derived from MSES simulations is ultimately 

determined by the AT model. In addition, HyRes should be designed with simple 

potential energy function to minimize the computational overhead in MSES 
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simulations. To this end, the new model contains a united-atom representation of the 

backbone to semi-quantitatively describe secondary structure propensities. Side 

chains are represented at intermediate resolution, to provide a qualitative description 

of long-range nonspecific interactions. The model is parameterized based on 

atomistic and CG simulations of model compounds and peptides as well as statistical 

potentials derived from protein structure database. The new model is then validated 

using a set of model IDPs and its efficacy for MSES simulations evaluated using 

short IDPs. 

5.2 Models and Methods 

5.2.1 Peptide model with hybrid resolutions 

In the HyRes model, the peptide backbone is represented at the united-atom level 

and side chains at an intermediate resolution. The goal is to allow semi-quantitative 

description of secondary structure propensities together with a qualitative 

description of geometries and pair-wise interactions between side chains. Detailed 

description of peptide backbone, particularly the hydrogen bonding geometry, has 

been shown to be critical for realistic modeling of peptide conformational 

equilibrium[273]. Figure 5.1 summarizes the representation of all 20 amino acids in 

HyRes.  There is no side chain bead in Gly, while there are two side chain beads in 

Lys and Arg, three side chain beads in His, Phe, and Tyr, five side chain beads in 

Trp, and one side chain bead in the other amino acids. Detailed mapping of side 

chain atoms from the atomistic model[152, 153, 274] to CG beads are summarized 

in Table 5.6. 
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Figure 5.1 HyRes representation of all 20 natural amino acids. The CG side chain 

beads are shown in VDW representation to proportion, with the atomistic model 

shown in ball-and-stick to illustrate the mapping scheme (summarized in Table 5.6). 

Representative backbone and side chain beads in the HyRes model are labeled in 

red. 

 

5.2.2 Effective potential energy function 

The total interaction energy U is shown in Eq. 5.2. It consists of eight terms, 

including bond (Ubond), angle (Uangle), dihedral (Udihedral), improper dihedral 

(Uimproper), backbone / torsion cross-term (UCMAP), Lennard-Jones interactions 

(ULJ), hydrogen bonding (UHbond) and electrostatic potentials (Uelec), 
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𝑈
= 𝑈𝑏𝑜𝑛𝑑 +𝑈𝑎𝑛𝑔𝑙𝑒 +𝑈𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 + 𝑈𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 + 𝑈𝐶𝑀𝐴𝑃 +𝑈𝐻𝑏𝑜𝑛𝑑 + 𝑈𝐿𝐽 + 𝑈𝑒𝑙𝑒𝑐(5.2) 

𝑈𝑏𝑜𝑛𝑑 =∑ 𝑘𝑏(𝑏 − 𝑏0)
2

𝑏𝑜𝑛𝑑𝑠
                                           (5.3) 

𝑈𝑎𝑛𝑔𝑙𝑒 =∑ 𝑘𝜃(𝜃 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒𝑠
                                                    (5.4) 

 𝑈𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 =∑ 𝑘𝜒[1 + 𝑐𝑜𝑠(𝑛𝜒 − 𝛿)]
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

                           (5.5) 

𝑈𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 =∑ 𝑘𝜓(𝜓 − 𝜓0)
2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠
                                       (5.6) 

𝑈𝐻𝑏𝑜𝑛𝑑 = ∑ 𝜀𝐻𝐵 [5 (
𝜎

𝑟
)
12

− 6(
𝜎

𝑟
)
10

] 𝑐𝑜𝑠4 𝜃𝐴𝐻𝐷
𝐻𝑏𝑜𝑛𝑑𝑠

         (5.7) 

𝑈CMAP =∑ 𝑈CMAP(𝜑,𝜓)non−Gly,   non−Pro 
residues

                                (5.8) 

The bond (Ubond) and angle (Uangle) interactions are described as harmonic potentials 

(Eq. 5.3 and 5.4). Uangle is found between all adjacent bonds, except those 

constituting a triangle (such as for the His side chain) and the Ci-1-Ni-CBi angle for 

Pro. Bond and angle parameters for the peptide backbone are obtained directly from 

the CHARMM19 united-atom force field[275]. The equilibrium values and force 

constants of other bonds and angles are optimized to reproduce distributions 

obtained from atomistic simulations of dipeptides in the GBSW implicit solvent[59] 

based on the mapping scheme (Table 5.6). The force constants are restricted to be 

between 200 to 600 kcal/mol/Å2 for bonds and to 20-90 kcal/mol/rad2 for angles 

during the optimization. 

Dihedral potentials (Udihedral shown in Eq. 5.5) are applied to peptide  (Ci-1-Ni-CAi-

Ci),  (CAi-1-Ci-1-Ni-CAi),  (Ni-CAi-CBi-CCi, if present) and ’ (CBi-CAi-Ci-Oi, 
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only for a few selected residues, see below). Parameters related to  are obtained 

directly from the CHARMM 19 force field[275]. The peptide bond strongly favors 

the trans-conformation for all non-proline amino acids. Therefore, for ,  n is set to 

2 and  to 180° in Eq. 5.5, and a 9.00 kcal/mol energy barrier is used here to separate 

cis- and trans- conformations. The barrier reflects a slight increase from the 8.2 

kcal/mol value in CHARMM19, such that only trans-conformation is sampled in 

CG simulations of dipeptides. However, for  in Xi-1-Proi, both cis- and trans-

conformations are accessible. To allow efficient sampling of both cis- and trans-

conformations, a smaller energy barrier (5.40 kcal/mol) is applied to  in this case, 

which is based on the previous report that the barrier of trans- to cis- rotation for Xi-

1-Proi is ~65% of that for Xi-1-nonProi[276]. Udihedral related to  is applied to residues 

Lys, Arg, His, Phe, Tyr and Trp, and parameters were obtained by fitting the 

distribution of  from atomistic simulations of dipeptides.  

Improper potentials (Uimproper) are required to maintain the chirality of Cα atoms in 

non-Gly amino acids (i.e., on CAi-Ni-Ci-CBi, where CAi is the central atom), 

planarity of peptide bonds (i.e., on Ni-Ci-1-CAi-Hi for non-Pro amino acids and Ci-

CAi-Ni+1-Oi for all amino acids), and planarity of the Trp side chain ring. Although 

representing multiple atoms in the side chain by one bead could impact the geometry 

of Cα-connected atoms/beads to different degrees for different amino acids, we treat 

the chirality of Cα atoms uniformly (i.e., 35.3°) for all non-Gly amino acids in the 

HyRes model. 

The secondary structure propensities are mainly determined by the backbone 

hydrogen bonding interactions (UHbond) and / torsion cross-term (via the CMAP 
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term in CHARMM[153]) (UCMAP). UHbond is applied on peptide backbone N, H and 

O atoms, and depends on both the N-O distance and O-H-N angle (r and AHD in Eq. 

5.7, respectively). σ in Eq. 5.7 is set to the ideal hydrogen bond donor-acceptor 

distance of 2.9 Å. In the current model, the same CMAP is applied to all non-Gly, 

non-Pro residues. The main role of the CMAP term is to fine tune secondary 

structure preferences together with backbone hydrogen-bonding interactions. 

Specifically, stabilizing or dis-stabilizing potentials may be added to / regions 

corresponding to certain secondary structures, such as α-helix, π-helix, parallel and 

anti-parallel β strand, and poly-proline II (PPII) structures. 

Nonspecific van der Waals (vdW) interactions between atoms separated by at least 

3 virtual bonds are described by Lennard-Jones (LJ) potential (ULJ) (Eq. 5.9), where 

𝑟min
i /2  and 𝜀i are the vdW radius and interaction strength of bead i. LJ parameters 

of the backbone atoms were first obtained from the CHARMM 19 force field, and 

then the interaction strengths were scaled down to account for lack of solvent 

screening of protein-protein dispersion interactions (see Results and Discussions 

for details). Initial vdW radii of side chain beads are assigned by matching the total 

volume occupied by corresponding atoms in the AT model, and 𝜀i values assigned 

based on Miyazawa and Jernigan’s (MJ) statistical potentials[277]. These 

parameters are then optimized based on free energy profiles of pair-wise interactions 

and model peptide simulations (see Results and Discussions for details). 
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𝑈𝐿𝐽 =∑𝜀𝑖,𝑗 [(
𝑟𝑖,𝑗
𝑚𝑖𝑛

𝑟𝑖,𝑗
)

12

− 2(
𝑟𝑖,𝑗
𝑚𝑖𝑛

𝑟𝑖,𝑗
)

6

]

𝑖,𝑗

                                             

𝑤𝑖𝑡ℎ 𝑟𝑖,𝑗
𝑚𝑖𝑛 =

𝑟𝑖
𝑚𝑖𝑛 + 𝑟𝑗

𝑚𝑖𝑛

2
, 𝑎𝑛𝑑 𝜀𝑖,𝑗 = √𝜀𝑖𝜀𝑗                       (5.9) 

There is no charge on either backbone atoms or side chain CG beads, except for 

those corresponding to charged groups in Lys, Arg, Asp, and Glu. Nonspecific 

electrostatic interactions are described using the Debye-Hückel-type potential, 

𝑈𝑒𝑙𝑒𝑐 = ∑
𝑞𝑖𝑞𝑗

4𝜋𝜀𝑟𝜀0𝑟𝑖,𝑗
𝑒−
𝑟𝑖,𝑗
𝐷

𝑐ℎ𝑟𝑔.𝑝𝑎𝑖𝑟𝑠

                                             (5.10) 

where 𝑞i is the charge of CG bead i, 𝑟i,j is the inter-charge distance, and 𝜀0 is the 

permittivity of vacuum. D is the Debye screening length. At 300 K, D (in Å) depends 

ionic strength (I, in M) according to √9.48/𝐼. Note that similar potentials have been 

widely used in various CG models and shown to provide an adequate description of 

long-range electrostatic interactions, even though accurate modeling of electrostatic 

solvation in heterogeneous protein environments requires more detailed and 

computationally more intensive implicit solvent theories. In the present work, I is 

set to 0.01 M, to roughly account for the low salt conditions in many NMR 

experiments.𝜀r  is the effective dielectric constant. The final value of 𝜀r , 20, was 

chosen in the current model based on simulations of several highly charged model 

peptides (see Results and Discussions for details). 

5.2.3 AT and CG simulation protocols 

The HyRes model has been implemented in CHARMM[149, 150]. Multiple sets of 

AT and CG simulations were performed in explicit or implicit solvent for backbone 
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and side chain analogs, dipeptides, and various model peptides. The protocols of 

these simulations are summarized below. Unless otherwise noted, Langevin 

dynamics was always used with a friction coefficient of 0.2 ps-1 and a time step of 2 

fs. SHAKE algorithm[156] was used to constrain the length of all bonds involving 

hydrogen atoms. 

• Dipeptide simulations: Explicit solvent simulations of the Ala dipeptide (Ace-Ala-

Nme) were performed using both AMBER ff99SB-ILDN[74] and 

CHARMM36m[73] force fields, as implemented in GROMACS 2016.1[278]. 586 

TIP3P water molecules[279] were used to solvate the dipeptide. Simulations were 

performed in the NPT ensemble at 298 K and 1 atm pressure under periodic 

boundary conditions. The PME method[280] was used to treat long-range 

electrostatic interactions. Short-range nonbonded interactions were truncated at 1.0 

nm in the AMBER ff99SB-ILDN simulation, and 1.2 nm in CHARMM36m 

simulation. Each simulation lasted for 200 ns. In addition, all 20 dipeptides were 

simulated at 300 K for 300 ns in the GBSW implicit solvent, to derive the 

distributions of side chain conformations for parameterization of bonding 

parameters as well as for initial assignment of vdW radii of side chain beads.  

• Free energy of side chain interactions: Potentials of mean force (PMFs) for pair-

wise interactions between hydrophobic side chains were calculated by umbrella 

sampling simulations at 300 K in both the CHARMM36 explicit solvent and GBSW 

implicit solvent[59] atomistic force fields,  and compared to the results from the 

HyRes model. In atomistic simulations, harmonic potentials with a force constant of 

5.0 kcal/mol/Å2 were imposed on the center of mass distance between the pair of 
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side chain analogs. 17 windows were used, spanning from 4 to 12 Å at a spacing of 

0.5 Å. The simulation time at each window was 5 and 8 ns for explicit and implicit 

solvent calculations, respectively. In the CG simulation, the force constant of 

harmonic restraining potentials was 1.0 kcal/mol/Å2. A total of 12 windows were 

used, spanning the reaction coordinate from 4 to 15 Å at a spacing of 1 Å. Each 

window was sampled for 200 ns. The weighted histogram analysis method 

(WHAM)[281] was then utilized to calculate the free energy profiles along the 

center of mass separation distance. 

• Model peptide simulations: Multiple model peptides were used in parameterization 

and validation of HyRes, including Gly10, (AAQAA)3, 30 variants of the (EK)25 

peptide[64], the 24-residue arginine/serine (RS) peptide,  the 28-residue kinase 

inducible transactivation domain of transcription factor CREB (KID), the activation 

domain of the activator for thyroid hormone and retinoid receptors (ACTR, residues 

1040-1086), nuclear coactivator binding domain of the CREB binding protein 

(NCBD, residues 2059-2117), and a β-hairpin GB1m3[282]. The sequences of all 

model peptides are summarized in Table 5.7. Conformational ensembles of 

relatively shorter and simpler Gly10, (AAQAA)3, RS peptide, KID, and GB1m3 

peptides in HyRes were calculated using direct MD simulations at 300 K. For each 

peptide, two independent simulations were performed, one starting from the folded 

or helical structure (control run) and the other starting from fully extended structure 

(folding run). The folded configuration of KID was obtained from RCSB Protein 

Data Bank (PDB) entry 1KDX[283]. Comparison of results from folding and control 

runs demonstrate that convergence can be achieved with 200 ns MD.  
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Conformational ensembles of ACTR, NCBD and (EK)25 peptides in HyRes were 

calculated using T-REX simulations, performed using CHARMM in combination 

with the MMTSB toolset[146]. For (EK)25 peptides, T-REX simulations were 

initiated from fully extended structures. For ACTR and NCBD, both control and 

folding runs were performed for convergence analysis. The folded conformations in 

control runs of ACTR and NCBD were obtained from their complex structure (PDB: 

1KBH[284]). Each simulation involved eight replicas with temperatures 

exponentially spaced between 300 and 500 K, and exchanges between neighboring 

replicas were attempted every 2 ps. The simulations lasted for 200 ns per replica. 

Averaged exchange acceptance ratio was ~20% for all three peptides. 

Conformations sampled at the lowest temperature were collected for analysis. 

For Gly10, four additional 10 ns explicit solvent simulations were performed at 300 

K under NPT conditions using the CHARMM36m force field to estimate solvent 

screening of dispersion interactions. The peptide was solvated by 7240 TIP3P water 

molecules in a 60 Å-cubic box. In these simulations, the peptide end-to-end distance 

was restrained to either 7 or 20 Å to represent the compact or extended conformation 

states. We also carried out Monte Carlo (MC) simulation of free Gly10 using 

ABSINTH model[60] implemented in CAMPARI package to calculate the 

conformational properties. ABSINTH has been highly successful in describing the 

IDP sequence composition-structural preference relationship[60, 63, 200, 285], and 

thus provides a good reference for examining the conformational properties of Gly10. 

The MC simulation follows the protocol as defined in “file abs3.2_opls.prm” in 

CAMPARI. The peptide was put in a droplet of 80 Å radius and simulated at 300 K 
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under NVT conditions. The simulation lasted 41,000,000 MC steps, with the first 

1,000,000 steps excluded in the analysis. A 200-ns simulation of Gly10 was also 

performed in the GBSW implicit solvent for comparison.  

• MSES simulations: In MSES simulations of (AAQAA)3, AT and CG models were 

coupled using UMSES imposed on (i, i+4) Cα atoms that form native helical contacts. 

UMSES with soft asymptote was used to reduce energy penalty for significantly 

different conformations between AT and CG models and avoid exchange bottleneck 

between neighboring replicas[243], 

𝑈𝑀𝑆𝐸𝑆(𝑟𝐴𝑇 , 𝑟𝐶𝐺) =∑0.5𝑘𝑖(𝑑𝑖
𝐴𝑇 − 𝑑𝑖

𝐶𝐺)
2

𝑖

,             𝑖𝑓 |∆𝑑𝑖| ≤ 𝑑𝑠 

=∑𝐴+
𝐵

(𝑑𝑖
𝐴𝑇 − 𝑑𝑖

𝐶𝐺)
𝑠 + 𝑓𝑚𝑎𝑥(𝑑𝑖

𝐴𝑇 − 𝑑𝑖
𝐶𝐺)

𝑖

, 𝑖𝑓 |∆𝑑𝑖| > 𝑑𝑠 

𝑤𝑖𝑡ℎ ∆𝑑𝑖 =  𝑑𝑖
𝐴𝑇 − 𝑑𝑖

𝐶𝐺                                                (5.11) 

where 𝑑i
AT and 𝑑i

CG  are Cα-Cα distances for residue pair i in atomistic and CG 

models, respectively. ds is the distance threshold where UMSES smoothly switches 

from quadratic to the soft asymptote. s determines how quickly the maximal force, 

fmax, is approached at large distance difference |𝑑i
AT − 𝑑i

CG|. A and B are identified 

by requiring both MSES coupling energy and force to be continuous at 

|𝑑i
AT − 𝑑i

CG| = 𝑑s . The H-REX protocol previously optimized for disordered 

proteins[243] is used in this work. For comparison, three independent sets of 

simulations were preformed using T-REX in GBSW implicit solvent and MSES 

with the GBSW model coupled to the Cα-only Gō-like model (MSES/Gō) or the 

HyRes model (MSES/HyRes). For each protocol, both control and folding 
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simulations were initiated from helical and extended structures, respectively, for 

convergence analysis. All simulations were performed with 16 replicas and 

temperatures ranging from 270 K to 500 K. Other simulation details are listed in 

Table 5.1. 

Table 5.1 T-REX and MSES Simulations of (AAQAA)3. 

Protocol Run 
Simulation time 

(ns/replica) 

Exchange 

acceptance ratio 

T-REX 
Control 100 0.61 

Folding 100 0.61 

MSES/Gō 
Control 50 0.55 

Folding 50 0.55 

MSES/HyRes 
Control 50 0.51 

Folding 50 0.51 

5.3 Results and Discussions 

5.3.1 Side chain bonded parameter optimization 

Packing of peptide side chains has long been recognized as a key factor in 

determining protein structure (and folding)[286]. A flexible CG protein model thus 

needs to provide a reasonably realistic description of side chain geometries. 

Accordingly, the equilibrium bond and angle parameters (as well as vdW radii) of 

the HyRes model are assigned to maximally reproduce atomistic distributions 

according the mapping scheme (Table 5.6). The corresponding bond and angle force 

constants are assigned to reproduce the root-mean-squared (RMS) fluctuations from 

atomistic simulations. As summarized in Figure 5.2, the average values of all virtual 

bond lengths and angles observed in the atomistic GBSW model are well reproduced 

in HyRes. Importantly, the CG model is also able to reproduce the distributions of 

most virtual bonds and angles, except those displaying multi-modal distributions 

(Figure 5.12 and Figure 5.13). These are the cases where the side chain samples 
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multiple rotamers at the atomic resolution and reflect an inherent consequence of 

coarse-graining. For these bonds and angles, the associated standard deviation 

derived from atomistic simulations are larger than those in the HyRes model (Figure 

5.2). Once the bond and angle parameters are assigned, side chain  (Ni-CAi-CBi-

CCi) dihedral potentials are parameterized by fitting atomistic distributions to cosine 

expansions for residues Lys, Arg, His, Phe, Tyr and Trp.  The resulting parameters 

are summarized in Table 5.8. As shown in Figure 5.14, all atomistic distributions 

along  can be well reproduced by HyRes. Additional dihedral potentials are 

imposed on ’ (CBi-CAi-Ci-Oi), to finely tune the helical propensities of individual 

amino acids (independent of the backbone φ/ψ CMAP cross-term). Since Asp, Asn, 

Thr, Cys and Val have been suggested to have lower helical propensities than other 

non-Gly, non-Pro residues[287, 288], weak Udihedral along ’ is applied to these 

residues to capture this feature (see Table 5.9). 

 

Figure 5.2 Averaged values and standard deviations of bond lengths (top) and 

angles (bottom) for all 20 amino acids, derived from 300 ns of GBSW and 100 ns 

HyRes simulations of dipeptides at 300 K. 
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5.3.2 Scaling of backbone vdW interactions  

The original CHARMM19 vdW parameters for the backbone over-estimate the 

effective strengths of nonspecific dispersion interactions in HyRes due to a lack of 

solvent screening, and this leads to severe over compaction in peptide simulations. 

To address this limitation, we uniformly scale down the strengths of backbone vdW 

interactions (εi in Eq. 5.9). Determination of the appropriate scaling factor is guided 

by explicit solvent simulations of Gly10, a highly flexible peptide that does not have 

any side chains and is thus particularly sensitive to the balance of water-mediated 

backbone-backbone interactions. Two sets of explicit solvent simulations of Gly10 

were performed on representative “compact” and “extended” states to estimate the 

ratio between net contribution of vdW interactions and the intra-peptide component 

alone:  

 𝑓 =
𝑈𝑣𝑑𝑤
𝑡𝑜𝑡 (𝑐𝑚𝑝)−𝑈𝑣𝑑𝑤

𝑡𝑜𝑡 (𝑒𝑥𝑡)

𝑈𝑣𝑑𝑤
𝑖𝑛𝑡𝑟𝑎(𝑐𝑚𝑝)−𝑈𝑣𝑑𝑤

𝑖𝑛𝑡𝑟𝑎(𝑒𝑥𝑡)
                                                     (5.12) 

The results show that the net contribution of vdW interactions to the stabilization of 

compact states is about 20-40% of the intra-peptide component alone (see Table 

5.10 for details). That is, solvent screening reduces the energetic contribution of 

nonspecific vdW interactions to conformational collapse by 60-80%. Accordingly, 

vdW interactions of all backbone atoms (εi) are reduced to 30% of the original 

CHARMM19 values to approximately account for solvent screening in HyRes. The 

scaling significantly reduces over-compaction. The conformational properties of 

Gly10 calculated using HyRes agrees well with results from various atomistic 

simulations in implicit and explicit solvents (Table 5.2 and Figure 5.3). We note that 

GBSW is known to generate overly compact ensembles (e.g., compared to 
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ABSINTH, blue vs green traces in Figure 5.3). HyRes appears to display a small 

bias towards compaction, which is likely due to lack of more sophisticated implicit 

treatment of solvent. Benchmark simulations suggest that the compaction bias is 

smaller for more complex and longer peptides (see below), and the current choice 

of scaling appears appropriate. 

 

Figure 5.3 Probability distribution of the end-to-end distance, Rg and SASA of Gly10 

obtained from HyRes, GBSW and ABSINTH simulations at 300 K. 

 

Table 5.2 Ensemble averaged end-to-end distance (de2e), radius of gyration (Rg), and 

solvent accessible surface area (SASA) of Gly10 simulated using HyRes, GBSW, 

CHARMM27, CHARMM36, Amber ff12SB and ABSINTH. 

Model <de2e> (Å) <Rg> (Å) <SASA> (Å2) 

HyRes 13.65 6.15 1000 

GBSW 10.65 5.23 899 

CHARMM27§ 13.30 5.65 880 

CHARMM36§ 18.14 7.22 1010 

Amber ff12SB§ 14.78 6.31 934 

ABSINTH 16.54 6.94 959 
§ Results are from Drake and Pettitt’s work[289]. 

 

5.3.3 Side chain non-bonded parameters 

The vdW radii of all amino acid side chain beads were first assigned based on the 

average volume occupied by corresponding atoms in GBSW implicit solvent 

simulations of dipeptides, as 𝑅 = √3𝑉/4π
3

. The initial values of vdW radii were 

fine-tuned by examining the backbone / adiabatic energy surfaces of dipeptides 

and PMFs of side chain pair-wise interactions. The backbone / energy surface is 
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particularly sensitive to the covalent geometry and vdW radii. Other non-bonded 

parameters such as hydrogen bonding interactions and vdW interaction strengths 

have relatively weaker effects. It was found that special 1-4 vdW radii were needed 

for most amino acid side chain beads to reproduce results from GBSW implicit 

solvent, e.g., comparing Figure 5.15 and Figure 5.16. The final assignment of vdW 

radii is summarized in Table 5.3. MD simulations of Ala dipeptide were also 

performed to compare HyRes with AMBER ff99SB-ILDN[74] and 

CHARMM36m[73] explicit solvent force fields. The results are shown in Figure 

5.4. Although details in free energy landscapes are different among all three models, 

probabilities of visiting various secondary structure regions (e.g., α helical vs 

extended states) appear similar. Note that inherent secondary structure propensities 

of HyRes have also been fined tuned using the / CMAP and ’ torsion terms 

based on model peptide simulations. This will be described in detail in the following 

sections. 

 

 

Figure 5.4 Backbone / free energy profiles of alanine dipeptide obtained from 200 

ns of MD simulations using (A) HyRes, (B) AMBER ff99SB-ILDN, and (C) 

CHARMM36m. 

 

 



 

 121 

To determine vdW interaction strengths of side chain beads, we followed a 

deconvolution strategy previously described by Bereau and Deserno[257] to 

reproduce the 20 × 20 MJ matrix using 20 parameters (ϵi
′) based on the Lorentz-

Berthelot (LB) mixing rule (Eq. 5.9). The final values of 20 ϵi
′ were listed in Table 

5.4. As shown in Figure 5.5, the pair-wise vdW interaction strengths calculated using 

20 ϵi
′ is in excellent agreement with the original MJ matrix, with the overall RMSD 

of 0.25 RT. Only 11 out of the 210 pair-wise interactions deviate by greater than 0.5 

RT (Table 5.5). Deviation of Cys-Cys pair-wise interaction from MJ potential may 

be related to disulfide bond formation in proteins. Among these 11 pairs of residues, 

nine pairs are between charged residues or between charged and hydrophobic 

residues. Interactions between oppositely charged residues were underestimated by 

this deconvolution method, while overestimated for residues with same charges 

(Table 5.5). When explicit electrostatic interactions are taken into account between 

charged residues, the actual strengths of interactions involving charged residues 

agree better with the MJ matrix (Figure 5.17). Importantly, the nonspecific attractive 

interactions between oppositely charged residues in HyRes are ~2 kcal/mol (Figure 

5.17), which is very similar to results obtained from atomistic simulations in explicit 

solvent[266, 290].  
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Figure 5.5 ϵi,j' parameters from original MJ statistical potentials (upper left) and in 

HyRes model by calculating ϵi,j' from ϵi,' using the LB mixing rule (lower right). 

 

The deconvoluted parameters (𝜖i
′) for 20 amino acids are then rescaled based on the 

PMFs of pair-wise interactions between side chain analogs using atomistic results 

as a reference. During the rescaling process, the minimum and maximum values of 

𝜖i
′  (for Lys and Leu, respectively) are adjusted while the relative scale 

( 𝜖i
′ −min[𝜖i

′]) (max[𝜖i
′] − min[𝜖i

′]⁄ ) of each residue is maintained. Optimal 

agreement with atomistic PMFs were found with min[𝜖i
′]  = 0.1 kcal/mol and 

max[𝜖i
′] = 0.9 kcal/mol. For residues with multiple CG beads in the side chain, such 

as Lys, Arg, His, Phe and Trp (see Figure 5.1), the scaled 𝜖i
′ needs to be further 

partitioned to the constituent CG beads based on the mapping scheme (Table 5.6). 

The final parameters are summarized in Table 5.3. As illustrated in Figure 5.6, the 

resulting PMFs of side chain interactions in HyRes are in excellent agreement with 

atomistic results. Note that HyRes tends to shift the minima of PMFs towards larger 

values, which is a direct consequence of using CG beads to represent groups of 

atoms with anisotropic structures. An implication is that HyRes likely remains 

limited in accurate description of side chain packing. However, the main objective 
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of developing HyRes is to provide a better CG modeling for MSES simulation of 

atomistic ensembles. A highly precise of long-range interactions at the CG level is 

not expected to be critical. 

 

Figure 5.6 Free energy profiles as a function of separation distance between the 

center of mass of hydrophobic amino acid side chain analogs. 
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Table 5.3 Lennard-Jones parameters for all side chain beads. 

Residue CG bead 𝜀i (kcal/mol) 𝑟i
min/2 (Å) 𝑟i

min/2 (1-4) (Å) 

Ala CB -0.308 2.12 2.12 

Val CB -0.62 2.75 2.75 

Leu CB -0.9 2.96 2.96 

Ile CB -0.772 2.97 2.97 

Met CB -0.636 2.98 3.68 

Asn CB -0.18 2.65 3.25 

Asp CB -0.148 2.61 3.11 

Gln CB -0.204 2.89 3.89 

Glu CB -0.14 2.85 3.95 

Cys CB -0.532 2.47 2.77 

Ser CB -0.188 2.32 2.72 

Thr CB -0.228 2.62 2.62 

Pro CB -0.212 2.77 2.77 

Lys CB -0.05 2.78 3.48 

Lys CC -0.05 2.36 3.06 

Arg CB -0.135 2.78 3.18 

Arg CC -0.135 2.54 2.94 

His CB -0.108 2.34 2.64 

His CC -0.081 2.18 2.48 

His CD -0.081 2.11 2.41 

Phe CB -0.22 2.64 2.94 

Phe CC -0.22 2.33 2.63 

Phe CD -0.22 2.33 2.63 

Tyr CB -0.197 2.64 2.94 

Tyr CC -0.197 2.33 2.63 

Tyr CD -0.0984 2.45 2.75 

Trp CB -0.168 2.42 2.72 

Trp CC -0.084 2.24 2.54 

Trp CD -0.168 2.09 2.39 

Trp CE -0.168 2.33 2.63 

Trp CF -0.168 2.33 2.63 

 

Table 5.4 ϵi' (in RT) before rescaling obtained from deconvoluting the MJ matrix. 

 

AA(i) C M F I L V W 

ϵi
′ 4.63 5.51 7.53 6.65 7.73 5.37 5.31 

AA(i) Y A G T S N Q 

ϵi
′ 4.3 2.75 2.14 2.08 1.74 1.67 1.87 

AA(i) D E H R K P  

ϵi
′ 1.4 1.34 2.68 1.87 1 1.94  
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Table 5.5 Residue pairs with the deviation ∆ϵi,j' = ϵi,j'(MJ) - ϵi,j'(LB) greater than 0.5 

RT. 

 

AAi C F L W Y D 

AAj C K K P K R 

∆𝜖i,j
′  0.81 0.62 0.59 0.52 0.53 0.67 

AAi D E E R K  

AAj K R K K K  

∆𝜖i,j
′  0.5 0.69 0.64 -0.78 -0.88  

 

 

5.3.4 Tuning of electrostatic interactions 

The Debye–Hückel-type potential has proven highly successful in description 

nonspecific protein interactions[291]. A main parameter subject to tuning in Eq. 

5.10 is the effective dielectric constant εr, which directly scales the strengths of 

electrostatic interactions. The optimal value for a given CG model should be chosen 

to provide a proper balance among various competing short- and long-range 

interactions. We evaluate such balance by examining the conformational properties 

of a set of 30 variants of (EK)25 peptide, which were originally designed by Das and 

Pappu[64] to study how charge patterning governs the conformational preferences 

of IDPs. A parameter, , ranging from 0 to 1, has been defined to quantify the charge 

patterning, with low values for well-mixed sequences and high values for 

segregation of oppositely charged residues in the sequence. As shown Figure 5.7, 

the ensemble averaged radius of gyration (Rg) of (EK)25 peptide decreases as  

increases, a trend that is well reproduced by HyRes with εr = 20. This suggests that 

the overall balance between electrostatic and other interactions is reasonable. 

Nonetheless, HyRes tends to generate conformational ensembles more compact than 

ABSINTH for some sequences with intermediate  (e.g., between 0.1 and 0.4). This 
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again likely reflects inherent limitations associated with CG representations and 

greatly simplified energy function employed (particularly, treatment of solvation). 

 

Figure 5.7 Averaged Rg as a function of charge patterning parameter  for 30 

variants of (EK)25 peptide. Values from HyRes simulations are uniformly shifted up 

by 4 Å to roughly account for larger side chain beads. ABSINTH results are taken 

from Ref. [64].  

 

5.3.5 Balancing backbone hydrogen-bonding and torsion potentials 

Once all vdW parameters were assigned, the strength of backbone hydrogen bonding 

interactions was tuned together with the / CMAP term to recapitulate the 

secondary structure propensities of model peptides. In this work, we mainly focused 

on helix-coil transitions and used (AAQAA)3 as a primary model peptide in 

backbone tuning. (AAQAA)3 is partially helical that is about 20% folded at 300 

K[292]; it has been frequently used in atomistic and CG force field optimization[59, 

243, 293]. The backbone parameters optimized based on (AAQAA)3 were then fine-

tuned using KID, a slightly more complex IDP that folds into two helices upon 

binding to specific target KIX[283]. NMR secondary chemical shifts and atomistic 

simulations have shown that N-terminal helical segment is about 50-60% folded, 

while the second helical segment is only 10-15% folded[61, 294]. The final CMAP 
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is shown in Figure 5.18, and hydrogen bond interaction strength (𝜀HB in Eq. 5.7) is 

set to 1.5 kcal/mol. Figure 5.8 depicts the residual helicity profiles of (AAQAA)3 

and KID calculated from the HyRes model, with representative structures shown in 

Figure 5.19 and Figure 5.20, respectively. The results are highly consistent with both 

NMR and previous atomistic simulations, suggesting that the HyRes model is able 

to capture the sequence dependence of helical propensity quite well. This property 

is expected to be highly beneficial for driving faster atomistic sampling in MSES 

simulations of IDPs.   

 

Figure 5.8 Residual helicity profiles of (A) (AAQAA)3 and (B) KID at 300 K 

calculated using the HyRes model. 

 

5.3.6 HyRes simulations of nontrivial IDPs 

The HyRes model was used to study the RS peptide, a highly charged, disordered 

peptide that has been extensively characterized by NMR[295], small angle X-ray 

scattering (SAXS)[296], and various atomistic simulations[72, 73, 296]. RS peptide 

in HyRes simulations showed averaged Rg of 10.1 Å at 300 K (Figure 5.21), which 

agreed well with SAXS measurements (12.62 Å)[296] by considering CG bead radii 

of 2-3 Å (Table 5.3). The optimized HyRes model was further validated using two 

longer IDPs with more complex conformational properties, ACTR and NCBD. 

These two IDPs can synergistically fold into a stable helical complex upon 

binding[218]. In the unbound state, ACTR has a very low level of residual helices, 
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while NCBD contains has molten globule characteristics with folded-like helical 

contents[297, 298]. Key conformational properties obtained from T-REX 

simulations in HyRes are summarized in Figure 5.9. The results show that HyRes 

yields residual helices in the correct regions revealed in previous studies[81]. It also 

successfully predicts higher helical contents in NCBD than ACTR, even though the 

model over-estimates the helical content of ACTR while under-estimating that of 

NCBD. The calculated Rg distribution of ACTR also agrees well with the result from 

ABSINTH simulations. However, the overall dimension of ACTR seems to be 

under-estimated compared to SAXS measurements, which yielded an average Rg 

~26.3 Å at 278 K for a longer 71-residue construct[299] (vs. the 47-residue segment 

simulated here). Over-estimation of the helical content is likely a key contributing 

factor here. For the larger peptide NCBD (59 residues), HyRes generates largely 

globular conformational ensembles with an averaged Rg of ~11.4 Å, which is in 

reasonable agreement with the value of ~15.2 Å derived from SAXS (after taking 

into account CG bead radii of 2-3 Å in HyRes, see Table 5.3)[26]. For a β-hairpin 

peptide GB1m3, which is ~86% folded at 298 K based on NMR measurement[282], 

the current HyRes model could sample the folded state, but underestimates its 

stability (Figure 5.22). Taken together, these benchmark simulations support the 

notion that HyRes has achieved the main design objective, which is to provide a 

semi-quantitative description of secondary structures and a qualitative description 

of the long-range conformational properties. We note that the model could be further 

improved by including better treatment of hydrogen bonds and solvation. 
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Figure 5.9 Averaged residue helicity profiles and distributions of Rg of ACTR and 

NCBD calculated using HyRes. 

 

5.3.7 Efficiency of HyRes in driving helix-coil transitions in MSES simulations 

Previous work has shown that MSES approach is able to accelerate sampling of 

protein conformations in the rough, complex atomistic energy landscapes, even 

when the atomistic model is only coupled with a simple Cα-based Gō-like model[83, 

243]. MSES simulations of disorder proteins should benefit further from CG models 

that can generate both local and long-range structural fluctuations consistent with 

those observed in atomistic models. The performance of the newly developed HyRes 

model in MSES simulations is examined using the model peptide (AAQAA)3. As 

shown in Figure 5.23, atomistic helicity profiles obtained from T-REX and MSES 

simulations, coupled to either the Cα-only Gō-like model or HyRes, are essentially 

identical as expected. This validates that MSES simulations are able to generate 

proper canonical ensemble free of bias due to MSES coupling. The efficacy of using 

HyRes to accelerate atomistic conformational transitions in MSES simulations is 

then assessed by computing the reversible helix/coil transition rate for each residue 

in (AAQAA)3 at the atomistic level. As summarized in Figure 5.10, the atomistic 
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helix/coil transition rate observed in MSES/Gō simulation is ~2 fold of that in 

atomistic T-REX simulations. Using the HyRes model in MSES simulations further 

accelerates atomistic structural transitions to ~3 fold (red traces in Figure 5.10). 

Although the exact values of helix-coil transition rate depend on a lot of factors, 

such as capping groups, peptide length[300], concentration, temperature[301], 

hydrodynamics[302, 303], etc., our result demonstrates that the HyRes model could 

drive faster conformational transitions in atomistic energy landscapes. Faster helix-

coil transitions translate well into faster convergence rate in averaged 

conformational properties such as residue helicity profiles. As shown in Figure 5.11, 

the residual helicity profiles of (AAQAA)3 obtained from MSES/HyRes simulations 

converge rapidly in both control and folding runs. Especially in the folding runs, 

MSES/HyRes simulation became converged faster than both MSES/Gō and T-REX 

simulations. 

 

Figure 5.10 Reversible helix-coil transition rates for each residue of (AAQAA)3 at 

atomistic level. For each replica, we first computed helix/coil transition rate as 

number of reversible helix/coil transitions divided by simulation time. Results for 

each simulation shown here are averaged values over all replicas. Note that only the 

second half of each trajectory was used in these calculations. 
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Figure 5.11 Convergence rate of (AAQAA)3 residual helicity profiles obtained from 

MSES/HyRes, MSES/Gō, and T-REX simulations. At each time point t, we first 

computed residual helicity profile using trajectory from the beginning to time t. 

RMSD(t) is calculated between the profile at time t and the averaged one calculated 

from all six simulations shown in Figure 5.23. 

5.4 Conclusions 

Understanding the structural basis of IDPs recognition and regulation is critical in 

unveiling the mechanisms of IDP functions and associated diseases. Previous studies 

have demonstrated that the MSES scheme is highly suitable for characterizing 

conformational properties of IDPs. One of the factors that limits the MSES sampling 

efficiency is the ability of CG models to generate both local and long-range 

structural fluctuations that are largely consistent with AT models. Cα-only Gō-like 

models have proven to be inadequate. Here, we describe a new HyRes model 

designed especially for MSES simulations of IDPs. The model treats solvent 

molecules implicitly. The peptide backbone is at atomistic resolution, which allows 

for semi-quantitative description of secondary structure propensities of IDPs. Side 

chains are represented at an intermediate resolution with one or more CG beads, 

whose parameters were carefully tuned provide a qualitative description of transient 

peptide-peptide interactions and long-range conformational properties. Benchmark 

simulations of several IDPs with various level of complexities demonstrate that the 
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HyRes model has achieved all design objectives. Initial application to simple model 

IDPs suggests HyRes can drive faster atomistic transitions in MSES and leads to 

faster convergence in atomistic structure ensembles. With further optimization of 

this CG model using more peptides containing β strands, the HyRes model could be 

extended to study IDPs with more complex secondary structures. We also note that 

achieving the best sampling efficiency with coupling to HyRes will require further 

optimization of the MSES coupling scheme and H/T-REX protocol. These 

developments are ongoing, which can be anticipated to further improve the 

efficiency of MSES for studies of larger and more complex IDPs frequently involved 

in cellular signaling and regulation. 
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5.5 Supplementary Information 

Table 5.6 Mapping of side chain atoms from the CHARMM 22 atomistic model in 

HyRes. A single CB bead is used in all the other residues (except Gly). 

Residue CG bead Atom names in CHARM 22 

Lys 
CB CB HB1 HB2 CG HG1 HG2 CD HD1 HD2 

CC CE HE1 HE2 NZ HZ1 HZ2 HZ3 

Arg 
CB CB HB1 HB2 CG HG1 HG2 CD HD1 HD2 

CC NE HE CZ NH1 HH11 HH12 NH2 HH21 HH22 

His 

CB CB HB1 HB2 CG 

CC CD2 HD2 NE2 

CD ND1 HD1 CE1 HE1 

Phe 

CB CB HB1 HB2 CG CD1 HD1 

CC CD2 HD2 CE2 HE2 

CD CE1 HE1 CZ HZ 

Tyr 

CB CB HB1 HB2 CG CD1 HD1 

CC CD2 HD2 CE2 HE2 

CD CE1 HE1 CZ OH HH 

Trp 

CB CB HB1 HB2 CG 

CC CD1 HD1 NE1 HE1 

CD CD2 CE2 

CE CZ2 HZ2 CH2 HH2 

CF CE3 HE3 CZ3 HZ3 

 

Table 5.7 Sequences of model peptides used in this work. All peptides were capped 

with an acetyl group at N-terminus and N-methyl amide at C-terminus. 

 

Peptide κ Sequence 

Gly10  GGGGG GGGGG 

(AAQAA)3  AAQAA AAQAA AAQAA 

KID  TDSQK RREIL SRRPS YRKIL NDLSS DAP 

ACTR  
EGQSD ERALL DQLHT LLSNT DATGL EEIDR 

ALGIP ELVNQ GQALE PK 

NCBD  
PNRSI SPSAL QDLLR TLKSP SSPQQ QQQVL 

NILKS NPQLM AAFIK QRTAK YVANQ PGMQ 

RS  GAMGP SYGRS RSRSR SRSRS RSRS 

GB1m3  KKWTY NPATG KFTVQ E 

(EK)25 

0.0009 
EKEKE  KEKEK  EKEKE  KEKEK  EKEKE  

KEKEK  EKEKE  KEKEK  EKEKE  KEKEK   

0.0025 
EEEKK  KEEEK  KKEEE  KKKEE  EKKKE  

EEKKK  EEEKK  KEEEK  KKEEE  KKKEK   

0.0139 
KEKKK  EKKEE  KKEEK  EKEKE  KEEKK  

KEEKE  KEKEK  KKEEK  EKEEK  KEEEE   
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0.0140 
KEKEK  KEEKE  KKEEE  KKEKE  KEKKK  

EEKKK  EEKEE  KKEEK  KKEEK  EEEKE   

0.0245 
KEKEE  KEKKK  EEEEK  EKKKK  EEKEK  

EKEKE  EKKEE  KKKKE  EKEEK  EKEKE   

0.0273 
EEEKK  EKKEE  KEEKK  EKKEK  EEEKK  

KEKEE  KKEEE  KKKEK  EEEEK  KKKEK   

0.0450 
EEEEK  KKKEE  EEKKK  KEEEE  KKKKE  

EEEKK  KKEEE  EKKKK  EEEEK  KKKEK   

0.0450 
KKKKE  EEEKK  KKEEE  EKKKK  EEEEK  

KKKEE  EEKKK  KEEEE  KKKKE  EEEKE   

0.0624 
EEKKE  EEKEK  EKEEE  EEKKE  KKEKK  

EKKKE  EKEKE  KKKEK  KKKEK  EEEKE   

0.0834 
EKKKK  KKEEK  KKEEE  EEKKK  EEEKK  

KEKKE  EKEKE  EKEKK  EKKEE  KEEEE   

0.0841 
EKEKK  KKKEE  EKKEK  EEEEK  EEEEK  

KKKKE  KEEEK  EEKKE  EKEKK  KEEKK   

0.0864 
EKKEE  EEEEK  EKKEE  EEKEK  EKKEK  

EEKEK  KEKKK  EKKEE  EKEKK  KKEKK   

0.0951 
KEKKK  EKEKK  EKKKE  EEKKK  EEEKE  

KKKEE  KKEKK  EKKEE  EEEEE  KEEKE   

0.1311 
EKKEK  EEKEE  EEKKK  KKEEK  EKKEK  

KKKEK  KKKKE  EEEEE  KEEKE  KEKEE   

0.1354 
KKEKK  EKKKE  KKEKK  EEEKE  KEKKE  

KKKKE  KEKKE  EEEEE  EEKEE KKEEE  

0.1458 
EKEKE EKKKE EKKKK EKKEK EEKKE 

KEKEK KEEEE EEEEE KEKKE KKKKE  

0.1643 
EKEKK KKKKE KEKKK KEKEK KEKKE 

KEEEK EEKEK EKKEE KKEEE EEEEE  

0.1677 
KEEKK EEEEE EEKEE KKKKK EKKKE  

KKEEE KKKEE KKKEE EEEEK KKKEK  

0.1941 
EEEEE KKKKK EEEEE KKKKK EEEEE 

KKKKK EEEEE KKKKK EEEEE KKKKK  

0.2721 
EEKEE EEEEK EEEKE EKKEE EKEKK  

EKKEK EEKKE KKKKK KKKKK KKEEE  

0.2737 
EEEEE EEEEK EKKKK KEKEE KKKKK 

KEKKE KKKKE KKEEE EEEKE EEKKK  

0.3218 
KEEEE KEEKE EKKKK EKEEK EKKKK 

KKKKK KKKEK KEEEE EEEEK EKEEE  

0.3545 
EEEEE KEEEE EEEEE EEKEE KEKKK  

KKKEK KKKKK KEKEK KKKEK KEEKK  

0.4456 
EEEEK EEEEE KEEEE EEEEE EEEKK  

KEEKK KKKEK KKKKK KEKKK KKKKK  

0.5283 
EEEEE EEEEE EKEEE EKEEK EEKEK  

KKKKK KKKKK KKKKK KKEEK KEEKE  

0.6101 
KEEEE EEEKE EKEEE EEEEE EKEEE  

EKEEK KKKKK KKKKK KKKKK KKKKE  



 

 135 

0.6729 
KKEKK KEKKE EEEEE EEEEE EEEEE  

EEEEK EEKKK KKKKK KKKKK KKEKK  

0.7666 
EKKKK KKKKK KKKKK KKKKK KKEEE 

EEEEE EEEEE EEEEE KKEEE EEKEK  

0.8764 
KEEEE KEEEE EEEEE EEEEE EEEEE  

EEKKK KKKKK KKKKK KKKKK KKKKK  

1.0000 
EEEEE EEEEE EEEEE EEEEE EEEEE  

KKKKK KKKKK KKKKK KKKKK KKKKK  

 

 

Table 5.8 Parameters of Udihedral for side chain χ (Ni-CAi-CBi-CCi). 

Residues 𝑘χ(kcal/mol) n 𝛿 

Lys 0.3 3 0 

Lys 0.5 1 75 

Arg 0.3 3 0 

Arg 0.5 1 75 

His 0.6 3 0 

His 0.4 1 75 

His 0.1 1 50 

Phe 0.8 3 180 

Phe 0.3 1 100 

Phe 0.1 1 50 

Tyr 0.9 3 180 

Tyr 0.3 1 90 

Tyr 0.1 1 50 

Trp 0.8 3 0 

Trp 0.8 1 85 

 

 

Table 5.9 Parameters of Udihedral applied to dihedral ψ’ (CBi-CAi-Ci-Oi) 

Residues 𝑘ψ′(kcal/mol) n 𝛿 

Asp 0.3 1 240 

Asn 0.3 1 240 

Thr 0.3 1 240 

Cys 0.3 1 240 

Val 0.3 1 240 
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Table 5.10 vdW interaction energies (in kcal/mol) for Gly10 in representative 

compact and extended states derived from two independent sets of 10-ns explicit 

solvent simulations. The compact and extended states are mimicked by restraining 

the peptide end-to-end distances to 7 and 20 Å, respectively. 

Simulation Energy term Ucmp Uext Ucmp - Uext 

1 

𝑈vdw
intra−pept

 -1.78 0.33 -2.11 

𝑈vdw
inter -46.69 -49.84 3.15 

𝑈vdw
intra−solv 8358.30 8359.74 -1.44 

𝑈vdw
tot  8309.82 8310.22 -0.40 

2 

𝑈vdw
intra−pep

 -0.78 -0.42 -0.36 

𝑈vdw
inter -47.07 -48.91 1.85 

𝑈vdw
intra−solv 8357.60 8359.23 -1.62 

𝑈vdw
tot  8309.76 8309.90 -0.14 
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Figure 5.12 Distributions of side chain virtual bond lengths from MD simulations of 

dipeptides using the GBSW and HyRes models. 
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Figure 5.13 Distributions of side chain virtual bond angles from MD simulations of 

dipeptides using the GBSW and HyRes models. 
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Figure 5.14 Probability distributions of dihedral χ in dipeptides obtained from CG 

and GBSW atomistic simulations. 
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Figure 5.15 Backbone / adiabatic energy surfaces (in kcal/mol) of all 20 

dipeptides in the HyRes model. The surface was calculated by energy minimization 

with  and   restrained at specified values. The surface was shifted such that the 

minimum value for each system was zero. 
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Figure 5.16 Backbone / adiabatic energy surfaces (in kcal/mol) of all 20 

dipeptides in the GBSW implicit solvent model. The surface was calculated by 

energy minimization with  and   restrained at specified values. The surface was 

shifted such that the minimum value for each system was zero.  
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Figure 5.17 Free energy profiles as a function of separation distance between the 

center of mass of charged amino acid side chain analogs with (red traces) and 

without (green traces) electrostatic interactions. 
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Figure 5.18 Backbone φ/ψ CMAP cross-term (in kcal/mol) in the HyRes model, 

which includes a small energy basin to stabilize α-helixes and a energy barrier to 

suppress the sampling of π-helixes. 

 

 

Figure 5.19 Centroids and populations of six largest clusters for (AAQAA)3 

structure ensemble in the control simulation using HyRes model. All heavy atoms 

were used to compute RMSD between structures, and a fixed radius of 4 Å was used 

to define clusters. 
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Figure 5.20 Centroids and populations of eight largest clusters for KID structure 

ensemble in the control simulation using HyRes model. CA and CB atoms were used 

to compute RMSD between structures, and a fixed radius of 4 Å was used to define 

clusters. 

 

 

Figure 5.21 Probability distribution of Rg of RS peptide obtained from HyRes 

simulations at 300 K. 
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Figure 5.22 Probability distribution of backbone RMSD of GB1m3 peptide with 

respect to the folded state from HyRes simulations at 300 K. 

 

 

  

Figure 5.23 (Left) AT and HyRes representation of folded (AAQAA)3. The AT 

model is shown in cartoon and HyRes model in Licorice representation, with the 

backbone highlighted in purple. (Right) Residual helicity profiles of (AAQAA)3 at 

270 K obtained from MSES/HyRes, MSES/Gō, and T-REX simulations (Table 5.1 of 

the main text). Note that only the second half of each trajectory was used in these 

calculations. 
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CHAPTER 6  

MULTISCALE ENHANCED SAMPLING WITH SOLUTE TEMPERING FOR 

STUDYING DISORDERED PROTEIN CONFORMATIONS 

Intrinsically disordered proteins (IDPs) are fully functional but don’t have well-

defined structures under physiological conditions. The highly dynamic and 

heterogeneous structural ensembles of IDPs are not amenable to traditional 

experimental characterizations, and searching their vast conformational space also 

pushes the limit of sampling capacity of computational simulations. Recently it has 

been realized that multiscale enhanced sampling (MSES) method may be highly 

suitable for accelerating atomistic simulations of IDPs by coupling the atomistic 

model to coarse-grained (CG) ones. Bias from coupling to CG models can be 

removed using Hamiltonian replica exchange such that one could benefit 

simultaneously from the high accuracy of atomistic models and fast dynamics of CG 

ones. To maximize sampling efficiency of MSES simulations, structural transitions 

at the CG level should be as fast as possible and properly translated to the atomistic 

level. Also, the replica exchange protocol should allow the coupled conditions to be 

rapidly exchanged to the uncoupled/unbiased limit. In the present study, we 

presented a simple but effective strategy to achieve these goals, by integrating MSES 

with solute tempering (MSES-ST). Here, the effective temperature of CG model in 

all conditions is set to its melting temperature using the Hamiltonian scaling 

approach based on the idea of solute tempering. This will maximize the structural 

transition rate at the CG level, thus further accelerating atomistic structural 

transitions. Meanwhile, replica mixing could be sped up. Application of MSES-ST 
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to calculate the conformational equilibria of a non-trivial IDP demonstrates its 

improved sampling efficiency over the original MSES scheme. 

6.1 Introduction 

Being fully or partially disordered under physiological conditions, intrinsically 

disordered proteins (IDPs) are recently recognized functional proteins that deviate 

from the traditional structure-function paradigm[1-4, 6, 7, 17, 21, 169, 178]. About 

one-third of eukaryotic proteins contain disordered regions with lengths of more 

than 40 amino acids[13], which implies that many proteins rely on intrinsic disorder 

to carry out functions. Indeed, there is mounting evidence that IDPs could interact 

with many targets and often play critical roles in cellular signaling and regulation[3, 

13, 17, 21, 107, 170]. Moreover, missense mutation of disordered regions is 

frequently associated with human diseases, like cancer and neuron degenerative 

diseases[13, 170, 173, 174, 240]. Thus, there is a great need to understand the 

molecular mechanisms of the functional roles of IDPs in signal transduction and 

regulation network. 

However, the highly dynamic and heterogeneous conformations of IDPs pose great 

challenges in their experimental measurements, from which only ensemble-

averaged properties can be obtained in most cases[55, 166, 206, 241, 304]. In 

contrast, molecular dynamics simulations using physics-based atomistic models 

could provide high temporal and spatial resolution information of the system of 

interest, thus offering a powerful tool in characterizing IDPs. Such approach, 

nevertheless, is computationally costly and often difficult to generate converged 
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structural ensembles for IDPs. Therefore, enhanced sampling method usually is 

required to reduce the computational cost and accelerate atomistic simulations of 

IDPs. 

Development of enhanced sampling technique has been under intensive research, 

and many methods have been proposed, among which temperature replica exchange 

(T-RE)[78] is one of the most popular protocols. Unfortunately, the activation free 

energy of large conformational rearrangement, like protein folding, is often 

dominated by the entropic component[93, 244], which makes tempering ineffective 

in accelerating such transitions[305, 306]. To overcome such entropic problem, we 

have recently developed an enhanced sampling technique, called multiscale 

enhanced sampling (MSES) method by taking advantage of the reduced 

conformational space of coarse-grained (CG) modeling and coupling CG models 

with atomistic (AT) ones to accelerate sampling of atomistic protein energy 

landscapes [83, 243]. Briefly, the simulation box contains both AT and CG 

representations of the system. The AT and CG components of the hybrid system 

don’t interact with each other directly, but configurations at both resolutions are 

coupled through a MSES coupling potential (UMSES) that is applied to selected 

degrees of freedom: 

𝑈ℎ𝑦𝑏𝑟𝑖𝑑(𝑟𝐴𝑇 , 𝑟𝐶𝐺 , 𝜆) = 𝑈𝐴𝑇(𝑟𝐴𝑇) + 𝑈𝐶𝐺(𝑟𝐶𝐺) + 𝜆𝑈𝑀𝑆𝐸𝑆(𝑟𝐴𝑇 , 𝑟𝐶𝐺)                                (6.1) 

where Uhybrid is the potential energy of the hybrid system, and UAT and UCG are 

potentials for AT and CG models, respectively. The MSES coupling potential, UMSES, 

is to restrain the structural difference between AT and CG representations along 

selected degrees of freedom. Such coupling scheme makes MSES more tolerant to 
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inevitable artifacts in CG models and scalable to large systems. UMSES is further 

scaled by a coupling factor λ that ranges from 0 to 1. When λ is large, the AT and 

CG models are strongly coupled, and faster structural transitions at the CG level are 

expected to drive AT conformational transitions. To unbias any artifacts generated 

by coupling AT and CG models, Hamiltonian replica exchange is utilized, such that 

proper ensembles could be recovered at both AT and CG levels at the limit condition 

of λ = 0. Meanwhile, T-RE is incorporated to further enhance the sampling 

efficiency.  

Previous MSES simulations of both partial helical peptides[243] and β-hairpin[83] 

have shown that this strategy is able to significantly improve sampling efficiency, 

but these studies also suggest that maximizing MSES efficiency requires advanced 

protocols to further accelerate structural transitions at AT (and CG) levels in strongly 

coupled conditions. Also, such coupled conditions should be rapidly exchanged to 

the uncoupled limit so as to expedite convergence of simulated ensembles. In the 

present work, we present a simple but effective strategy to achieve these goals, by 

integrating MSES with solute tempering[183] (MSES-ST). In replica exchange with 

solute tempering, both solute-solute and solute-solvent interactions are scaled down, 

such that the effective temperature of solute can be increased. Here, similar 

Hamiltonian scaling approach is used to set the effective temperature of CG model 

in all conditions at its melting temperature. Since AT and CG models don’t directly 

interact with each other, only CG potential needs to be scaled. We show that this 

strategy is effective in accelerating atomistic conformational rearrangements as well 
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as increasing replica mixing rate, which facilitates rapid generation of converged 

structural ensembles of IDPs.  

6.2 Methods 

6.2.1 Simulation details 

A β-hairpin peptide GB1p (GEWTY DDATK TFTVT E), was used to evaluate the 

sampling efficiency of MSES-ST. As a comparison, simulations using T-RE and 

original MSES were also performed. All T-RE, MSES and MSES-ST simulations 

were carried out using CHARMM [149, 150] together with modified MMTSB[146]. 

For each protocol, two independent simulations were performed, one starting from 

fully folded state (i.e., control run) and the other one from fully extended state (i.e., 

folding run). Each simulation had eight replicas, with their temperatures spaced 

exponentially between 300 K and 450 K. Hamiltonian of the CG model in MSES-

ST simulations was scaled such that its effective temperature in all replicas was 389 

K. The atomistic model used in all simulations was implicit solvent GBSW force 

field[59], while in MSES and MSES-ST simulations, the atomistic model was also 

coupled with a topology-based coarse-grained model, the Gō-like model calibrated 

in our previous work[83].  

In MSES and MSES-ST simulations, the coupling potential was applied to Cα-Cα 

distances between nine residue pairs that form native contacts. To reduce energy 

penalty for large structural deviations between atomistic and CG copies and ensure 

uniform exchange acceptance probability between neighboring replicas, the 

coupling potential, UMSES, was smoothly switched from a quadratic form for small 

structural deviations to the soft asymptote for large deviations[243]: 
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𝑈𝑀𝑆𝐸𝑆(𝑟𝐴𝑇, 𝑟𝐶𝐺) =∑0.5𝑘𝑖(𝑑𝑖
𝐴𝑇 − 𝑑𝑖

𝐶𝐺)
2

𝑖

,                                            𝑖𝑓 |∆𝑑𝑖| ≤ 𝑑𝑠 

=∑𝐴+
𝐵

(𝑑𝑖
𝐴𝑇 − 𝑑𝑖

𝐶𝐺)
𝑠 + 𝑓𝑚𝑎𝑥(𝑑𝑖

𝐴𝑇 − 𝑑𝑖
𝐶𝐺)

𝑖

, 𝑖𝑓 |∆𝑑𝑖| > 𝑑𝑠 

𝑤𝑖𝑡ℎ ∆𝑑𝑖 =  𝑑𝑖
𝐴𝑇 − 𝑑𝑖

𝐶𝐺                                                             (6.2) 

where 𝑑𝑖
𝐴𝑇 and 𝑑𝑖

𝐶𝐺  are Cα-Cα distances for the i-th native contact in the atomistic 

and CG models, respectively, and ∆𝑑𝑖  is the difference between them. At the 

distance threshold ds, UMSES begins to smoothly switch from harmonic form to the 

soft asymptote. The switching exponent s indicates how fast the limiting force, fmax, 

can be approached at large |∆𝑑𝑖|. Parameters A and B are calculated by requiring 

both MSES coupling energy and force to be continuous when |∆𝑑𝑖|  is at the 

threshold distance ds. Parameters used in the present work were k = 1.0 kcal/mol/Å2, 

s = 1, ds = 2.0 Å, and fmax = 0.1 kcal/mol/Å. The coupling potential was further scaled 

by a coupling parameter λ (see Eq. 6.1) ranging from 0 to 1, and λ values of the eight 

replicas were 0, 0.10, 0.22, 0.35, 0.49, 0.64, 0.81 and 1.00, respectively.  

For all simulations, Langevin dynamics with a friction coefficient of 0.1 ps-1 was 

performed. The equation of motion was integrated with a time step of 2 fs. SHAKE 

algorithm [156] was used to constrain the length of all bonds involving hydrogen 

atoms. Exchange of replicas with their neighbors were attempted every 2 ps. The 

production simulation time was 800 ns/replica in all case. 

6.2.2 Analysis 

To compute the number of native hydrogen bonds in the atomistic model of GB1p 

during simulations, we first computed the distances between seven pairs of 
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backbone N and O atoms that are involved in hydrogen bonding in the fully folded 

state. In comparison to the fully folded state, the seven distance violations were 

calculated, which then can be used to compute the number of native hydrogen bonds 

as follows: 

𝑁 =∑1−
1

1 + 𝑒−4(∆𝑑𝑖−
7
4
)
    

7

𝑖=1

                                                          (6.3) 

where ∆di is the distance violation for the i-th pair of N-O atoms, and N is the number 

of native hydrogen bonds. 

The atomistic structural transition rate was calculated as the total number of 

reversible folding-unfolding transitions divided by the total simulation time, where 

folded and unfolded states were defined as N ≥ 6.5 and N ≤ 0.5, respectively. Results 

reported in this study are averaged values over all replicas. 

To compute simulation error as a function of trajectory length t, each trajectory was 

first divided into multiple segments of length t. For each segment, the distribution 

of native hydrogen bond number was calculated, and mean absolute error was 

computed with respect to the reference profile, which was the distribution of native 

hydrogen bond number calculated using the whole trajectory and averaged over all 

six simulations. Average and standard deviation of mean absolute error were 

reported here by considering all trajectory segments of length t.  

6.3 Results and Discussion 

By design, both MSES and its variant MSES-ST could generate correct ensembles 

at the condition of λ = 0 via Hamiltonian replica exchange. As shown in Figure 6.1, 
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the probability distributions of number of native hydrogen bonds in the atomistic 

model obtained from T-RE, MSES and MSES-ST simulations are converged to the 

same profile, suggesting that no thermodynamic bias is introduced in MSES and 

MSES-ST protocols. 

 

Figure 6.1 Probability distributions of number of native hydrogen bonds in AT 

model at 300 K obtained from T-RE, MSES, and MSES-ST simulations, including 

both control and folding runs. 

 

 

Figure 6.2 demonstrates the reversible folding-unfolding transition rate in the 

atomistic GBSW model. Clearly, coupling the atomistic model to even a simple 

topology-based CG model in both MSES and MSES-ST simulations could 

accelerate structural transitions at the atomistic level. Moreover, setting the effective 

temperature of CG model to its melting temperature in MSES-ST simulations 

appeared to further facilitate atomistic structural transitions. Note that the 

enhancement of structural transition rate in MSES-ST depends on the system of 

interest and the CG model used. We believe that further improvement of the quality 

of CG modeling may lead to even faster conformational rearrangement. In any case, 
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considering that the sampling efficiency of T-RE is often hindered by slow structural 

transitions, such rapid structural transitions in MSES-ST should be beneficial for 

enhanced sampling capacities and generation of well-converged ensembles. 

 

Figure 6.2. Reversible folding-unfolding transition rate in the atomistic model of 

GB1p averaged over all replicas. 

 

Another indicator of sampling efficiency is the rate of replica round trips between 

the lowest and highest temperatures, or simply replica mixing rate. There have been 

many efforts towards maximizing this quantity to further increase the sampling 

efficiency of T-RE, including adaptively adjusting the distribution of simulation 

temperatures[84, 85] or using biasing potentials[86, 87]. Intriguingly, the replica 

mixing rate in MSES-ST is the fastest among these three simulation protocols (see 

Figure 6.3). Such rapid replica mixing allows the fast dynamics driven by CG 

models under the coupled conditions to be promptly exchanged to uncoupled limit, 

thus increasing sampling efficiency. 

Due to the fast replica mixing, as well as rapid atomistic conformational transitions 

driven by a CG model in its melting temperature, the sampling efficiency of MSES-
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ST is the highest among the three protocols tested here, as shown in Figure 6.4. The 

mean absolute error in calculating the probability distribution of number of native 

hydrogen bonds in GB1p decays fastest in MSES-ST simulations, suggesting its 

superior sampling capacity. 

 

 

Figure 6.3. Rate of replica round trips between the lowest and highest temperatures 

averaged over all replicas. 

 

 

Figure 6.4. Mean absolute error as a function of simulation trajectory length in 

calculating the probability distribution of native hydrogen bond number of GB1p at 

300 K. The solid lines are for averaged values over multiple trajectories, and the 

shaded regions indicate the standard deviation. See section Analysis for more 

details. 
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6.4 Conclusions 

Understanding the structure and dynamics of IDPs plays key roles in elucidating the 

molecular mechanisms of how IDPs carry out versatile functions. It has been 

recently recognized that MSES may be suitable for atomistic characterization of the 

highly dynamic, heterogeneous structural ensembles of IDPs, although maximizing 

the sampling efficiency requires the CG model to drive atomistic structural 

transitions as fast as possible and the coupled conditions to be rapidly exchanged to 

the uncoupled/unbiased condition. To achieve this goal, here we are presenting a 

simple but effective strategy by integrating MSES with solute tempering (MSES-

ST). According to the idea of solute tempering, the effective temperature of CG 

model in all conditions can be set to its melting temperature by scaling its 

Hamiltonian. This will maximize the structural transition rate at the CG level, and 

further accelerate atomistic structural transitions. Such design also increases replica 

mixing rate. Application of MSES-ST to a model IDP demonstrates that faster 

atomistic structural transitions can be achieved, which leads to rapider generation of 

converged structural ensembles and demonstrates its improved sampling efficiency 

over the original MSES scheme. 
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CHAPTER 7  

SUMMARY AND FUTURE DIRECTIONS 

7.1 Summary 

It has been well recognized that IDPs are important functional proteins in many 

cellular processes, especially cellular signaling and regulation, but the mechanisms 

of how intrinsic disorder mediates protein functions remain elusive. In this 

dissertation, computer simulations have been used to study the structure, dynamics 

and interactions of IDPs, which provides important mechanistic insights into the 

functional roles of IDPs. In Chapter 2 and 3, atomistic simulations have been used 

to study the mechanisms of regulated unfolding of Bcl-xL induced by PUMA 

binding. By characterizing the structural ensemble of unbound Bcl-xL, we found 

that the PUMA-binding interface of Bcl-xL is intrinsically disordered and could 

sample various previously observed conformations, including both unbound and 

bound states. Such intrinsic disorder appears to provide the physical basis of Bcl-xL 

regulated unfolding upon interacting with PUMA, and maybe a general mechanism 

of how Bcl-xL could respond sensitively and rapidly to all sorts of cellular signals. 

Chapter 4 presents a mechanistic study of how pre-formed helical element in an IDP, 

ACTR, modulates the kinetics of its binding to another IDP, NCBD. By performing 

simulations using a series of carefully calibrated coarse-grained models, it has been 

found that residual structure in ACTR accelerates NCBD binding mainly by 

promoting efficient folding upon encounter. These studies provide important 

mechanistic insights into how IDPs carry out functions in signal transduction and 
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regulation network, but at the same time, reveal the challenges in computational 

modelling and simulations in studying IDPs, especially the urgent need of new 

sampling techniques for more efficient atomistic simulations. 

Our group has recently developed a novel enhanced sampling method, multiscale 

enhanced sampling (MSES), to improve the efficiency of atomistic simulations. In 

MSES, a coarse-grained model is coupled to the atomistic one, such that atomistic 

structural transitions could be sped up due to the fast dynamics of coarse-grained 

models. Any bias introduced from such coupling can be removed using Hamiltonian 

replica exchange. Thus, MSES allows us to benefit simultaneously from the high 

accuracy of atomistic models and fast dynamics of coarse-grained models. To 

further improve the efficiency of MSES protocol, two strategies have been 

demonstrated in this dissertation. Chapter 5 presents a new hybrid-resolution coarse-

grained model for IDPs, named HyRes. By representing the protein backbone at the 

atomistic level and side chains at the coarse-grained level and optimizing interaction 

parameters targeting results from atomistic simulations, experimental studies, 

HyRes could semi-quantitatively describe the secondary structure of IDPs and 

qualitatively describe the long-range interactions. This allows HyRes to generate 

fluctuations largely consistent with those in atomistic models, thus improving the 

sampling efficiency of MSES. In chapter 6, an advanced replica exchange protocol 

is shown, named MSES with solute tempering (MSES-ST). Here, the effective 

temperature of coarse-grained model in MSES is set at its melting temperature by 

scaling the Hamiltonian. This design allows coarse-grained model to generate faster 

structural transitions, thus further expediting conformational arrangement at the 
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atomistic level. Replica mixing rate is also increased, which enables the fast 

dynamics in coupled conditions to be rapidly communicated to the uncoupled limit. 

Therefore, MSES-ST could show superior sampling capacity than the original 

MSES protocol. 

7.2 Future directions 

The traditional protein structure-function paradigm had long been viewed as one of 

the central scientific dogmas in molecular biology, which suggests that functions of 

protein are tightly linked to their well-defined 3D structures. However, the discovery 

of IDPs has greatly challenged this notion. Although lack of well-defined 3D 

structures in physiological conditions, IDPs are highly abundant and functionally 

important in biological systems. It has now been recognized that protein functions 

can also be mediated by conformational disorder and timescale of motions. Thus, 

there is a great need to establish a new, unified understanding of protein 

structure/disorder/dynamics-function relationship. 

Understanding such new “structure”-function relationship will also help us better 

understand how pathological conditions, like mutations or abnormal changes in 

cellular environment, may impact protein structure, dynamics, interactions and 

functions in human diseases. Moreover, such mechanistic understanding will lay a 

critical foundation for future development of therapeutic strategies to treat these 

diseases. For instance, an emerging approach in drug design is to target disease-

associated IDPs, by disrupting interactions of IDPs with their targets, thus altering 

their functions. Drug molecules could compete with IDPs for binding to the target. 
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Alternatively, they could directly interact with IDPs and change the structure and/or 

dynamics of IDPs, thus preventing the association of IDPs with their targets. These 

novel strategies will greatly expand the venue of drug design, although their 

successful realization will depend critically on our ability to obtain high resolution 

information of the structure, dynamics and interactions of proteins. 

In this regard, computational simulation has proven a powerful tool, especially in 

characterizing the highly heterogeneous and dynamic structures of IDPs. Atomistic 

simulations in particular could provide the necessary high-resolution temporal and 

spatial information that is otherwise unavailable. Of course, challenges remain in 

computational simulation of IDPs using atomistic models, especially the accuracy 

of force fields and the efficiency of sampling algorithm. To improve the accuracy of 

current force fields, it requires both correct identification of sources of error and 

systematic reparameterization accordingly. In order to achieve this goal, a large 

amount of IDPs (and folded proteins) need to be simulated, and the generated 

ensembles should be compared with experimental measurements. Considering the 

computational cost of atomistic simulations, it remains difficult to obtain fully 

converged structural ensembles for IDPs, which then hinders the improvement of 

force field development. Therefore, developing enhanced sampling methods to 

accelerate atomistic simulations is of great importance. 

The challenges in sampling the conformational space of IDPs have multiple aspects. 

As discussed in this dissertation, the free energy barriers of larger, cooperative 

structural transitions are often dominated by the entropic component, which makes 

many sampling methods that are based on tempering ineffective. Therefore, coarse-
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grained modelling would be a good alternative strategy to overcome entropic barrier 

and drive atomistic structural transitions due to the reduced resolution. However, 

how to maximize the sampling efficiency of such approaches needs further 

exploration. Another challenge in conformational sampling is that hidden barrier in 

the orthogonal space often exists for nontrivial structural transitions. For instance, 

certain order parameter can be defined to describe the protein folding process, but 

direct move of this order parameter using biasing potentials may not necessarily 

activate protein folding, since environment also needs to respond properly, like the 

rearrangement of solvent molecules. In this case, orthogonal space sampling could 

be used to enhance sampling along both selected order parameter and its 

environment response, by adding biasing potentials as a function of the order 

parameter and its generalized force. Unfortunately, there is often no obvious order 

parameter to describe the protein conformational rearrangement, especially in the 

case of IDPs where numerous sub-states may exist and there might be multiple 

pathways connecting two macroscopic states. Since MSES scheme doesn’t require 

any definition of order parameters, we propose that integration of MSES with 

orthogonal space sampling in the future may help alleviate the problems of entropic 

barrier, hidden barrier from slow environmental response, and lack of well-defined 

order parameters. With advanced sampling techniques, more efficient atomistic 

simulations can be performed to characterize IDPs in details, which could help us 

better understand the new protein “structure”-function relationship and design more 

effective therapeutic strategies to treat human diseases. 
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