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ABSTRACT 

ACUTE ESTROGEN SYNTHESIS AND ACTION IN THE AUDITORY CORTEX 
OF DEVELOPING MALE ZEBRA FINCHES (TAENIOPYGIA GUTTATA) 

 
MAY 2019 

 
DANIEL M. VAHABA, B.S., WAYNE STATE UNIVERSITY 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Luke Remage-Healey 

 
 

Birdsong, as with human speech, is learned during an age- and 

experience-dependent sensitive period early in life. Songbirds must first 

memorize their parents’ song during a sensory phase, then refine their own 

burgeoning vocalizations to match the auditory memory of their parents’ song 

during a sensorimotor phase. While the error-correction aspect of the 

sensorimotor phase of song learning is comparatively well understood, it is 

largely unknown how auditory memories are formed and how auditory processing 

may change across development to facilitate song memorization. The songbird 

caudomedial nidopallium (NCM) is a brain region that encodes complex 

communication signals like song and is rich in aromatase (enzyme necessary for 

converting precursor androgens to estrogens) and estrogen receptors. In adults, 

acute estrogen signaling enhances auditory encoding, suggesting that one role 

for 17β-estradiol (E2) in NCM during development may be to enhance auditory 

processing and facilitate auditory memorization. Moreover, in the hippocampus of 

rodents, birds, and nonhuman primates, local E2 acts to enhance post-training 

memory consolidation. As such, I set out to determine whether this role for E2 in 
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auditory processing and memorization occurs within the auditory cortex of 

juvenile songbirds. I tested this hypothesis across several experiments: I first 

tested how local E2 administration in NCM modulated auditory processing in 

developing songbirds. Next, I explored how changes in developing neural 

architecture and aromatase expression are aligned with distinct song learning 

phases. I then tested how global and local aromatase inhibition following song 

learning sessions impacted motor production, vocal learning, and 

neurophysiology in developing songbirds. Finally, using a stimulus-specific 

adaptation paradigm, I determined whether findings in juvenile songbirds 

extended to adults. Specifically, I locally blocked local E2 synthesis in NCM 

immediately following song exposure and subsequently measured neural 

recognition of the exposed song. My results showed that sensory coding is 

substantially enhanced in the NCM of sensory-aged birds compared to song-

producing (sensorimotor-aged) juvenile birds, and that E2 exerts an age- and 

hemisphere-dependent effect on modulation of auditory processing. I also found 

that cell density in NCM peaks in sensory-aged birds, and is overall higher in 

dorsal vs. ventral NCM, but that aromatase and parvalbumin expression remain 

high and constant across development; no hemispheric differences for cell 

density or expression were found. Further, I found that neither circulating nor 

locally-derived E2 are required for tutor song memorization in development and 

adulthood; however, estrogen synthesis blockade can impair song production in 

developing birds and can also transform the lasting neural representations of 

autogenous and tutor song in adulthood. Taken together, this 
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dissertation provides new insights into the pleiotropic effects of rapid steroid 

signaling and synthesis within the auditory cortex of developing male songbirds 

with implications for communication processing and sensorimotor learning. 
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CHAPTER I 
 

NEUROESTROGENS RAPIDLY SHAPE AUDITORY CIRCUITS TO SUPPORT 

COMMUNICATION LEARNING AND PERCEPTION: EVIDENCE FROM 

SONGBIRDS 

Published in Hormones & Behavior 
Authors: Daniel M. Vahaba and Luke Remage-Healey 
Year: 2018 

Abstract 

Steroid hormones, such as estrogens, were once thought to be exclusively 

synthesized in the ovaries and enact transcriptional changes through intracellular 

nuclear receptors over the course of hours to days. However, estrogens are also 

locally synthesized within neural circuits, wherein they rapidly (within minutes) 

modulate a range of behaviors, including spatial cognition and communication. 

Here, we review the role of brain-derived estrogens (neuroestrogens) as 

modulators within sensory circuits in songbirds. We first present songbirds as an 

attractive model to explore how neuroestrogens in sensory cortex modulate vocal 

communication processing and learning. Further, we examine how estrogens 

may enhance vocal learning and auditory memory consolidation in sensory 

cortex via mechanisms similar to those found in the hippocampus of rodents and 

birds. Finally, we propose future directions for investigation, including: 1) the 

extent of developmental and hemispheric shifts in aromatase and membrane 

estrogen receptor expression in auditory circuits; 2) how neuroestrogens may 

impact inhibitory interneurons to regulate audition and critical period plasticity; 

and, 3) dendritic spine plasticity as a candidate mechanism mediating estrogen-



 

 2 

dependent effects on vocal learning. Together, this perspective of estrogens as 

neuromodulators in the vertebrate brain has opened new avenues in 

understanding sensory plasticity, including how hormones can act on 

communication circuits to influence behaviors in other vocal learning species, 

such as in language acquisition and speech processing in humans. 

Introduction 

In nature, animals confront an overwhelming number of sensory cues. 

Processing this stream of sensory information is necessary to evaluate potential 

mates, mediate territory disputes, recognize kin, identify neighbors, and detect 

predators. Production and perception of air-borne cues manifest across multiple 

modalities, such as visual displays, tactile/vibrational signals, chemical cues, as 

well as auditory signals (Smotherman and Narins, 2000; Ota et al., 2015; 

Mangiamele et al., 2016; Shamble et al., 2016; Ai et al., 2017; Endevelt-Shapira 

et al., 2018). While most species integrate multimodal information, many rely 

primarily on acoustic cues for intraspecies communication, i.e., vocal 

communication.  

Vocal communication is widespread among vertebrates. Humans 

specialize in spoken language. Rodents emit ultrasonic vocalizations (USVs) 

across many contexts, ranging from mother-pup interactions (Portfors, 2007), 

courtship and mating (Holy and Guo, 2005), and social play (Knutson et al., 

1998). The vast majority of teleosts, such as toadfish and midshipman fish, 

produce underwater calls (Bass, 2008). But for most acoustically-communicating 

vertebrates, these vocalizations are innate. Experience-dependent vocal learning 
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is only found in a handful of animals, including songbirds and humans (Petkov 

and Jarvis, 2012). Thus, hearing serves a unique dual function in songbirds: to 

both detect and learn their species-specific vocal communication signals.  

Here, we review the neural circuits and neuromodulation of auditory 

processing in a well-studied songbird species, the Australian zebra finch 

(Taeniopygia guttata). We suggest that songbirds in general, and zebra finches 

in particular, offer a unique opportunity to investigate how rapid estrogen 

signaling in sensory cortex enables both the processing and learning of vocal 

communication cues across development and in adulthood. Further, we provide 

suggestions for areas of future research on this topic, and suggest possible 

clinical implications of this research for understanding human cognition and 

language.  

Neuromodulators that tune neural circuits 

For intra-species communication to have adaptive value, an organism 

must integrate external and internal cues – such as energy reserves, social 

standing, and reproductive status – and adjust ongoing communication 

encounters. Such flexibility allows for context (both current and previous) to guide 

communication for both sender and receiver. In the vocal communication 

domain, the neural circuits that underlie vocal production as well as hearing must 

therefore be sensitive to context, by way of neuromodulation.  

 The recent scientific fascination with neural ‘connectomics’ has produced 

detailed neural circuit diagrams for a number of organisms. But it has also 

revealed that a wiring diagram is a useful predictor of behavior only when the 
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dynamic ‘functional connectivity’ of that diagram is taken into account 

(Bargmann, 2012; Bargmann and Newsome, 2014; Marder et al., 2014). 

Neuromodulators such as biogenic amines, neurotransmitters, neuropeptides, 

and even gases like nitric oxide all are produced within neural circuits to exert 

modulatory effects (Katz and Lillvis, 2014; Nusbaum et al., 2017; Petersen and 

Hurley, 2017). To momentarily alter the wiring diagram, that is, to shift the 

functional connectivity of a neural circuit, modulators can influence the efficacy 

and even the sign (excitation vs. inhibition) of synaptic connections on a minute-

by-minute timescale, enabling extraordinary circuit- and behavioral flexibility. 

There is now growing appreciation that steroid hormones can act as 

neuromodulators via local synthesis and action in neural circuits (Balthazart and 

Ball, 2006; Woolley, 2007; Remage-Healey, 2014; Rudolph et al., 2016; Kelly 

and Vitousek, 2017). The emergent perspective that steroids may be genuine 

neuromodulators of neural circuits and behavior has been useful in guiding the 

exploration of neuroestrogen synthesis and action in the songbird auditory 

forebrain, as we describe in detail below.  

Estrogens can be rapidly synthesized within sensory circuits to act as 
neuromodulators 

Estrogens were classically thought to be secreted exclusively from the 

gonads. However, it is now clear that estrogens and other steroid hormones are 

also synthesized within the brain (London, 2016; Balthazart et al., 2018). Initial 

evidence for brain-derived estrogens (neuroestrogens) came about from the 

discovery of brain aromatase expression in multiple vertebrate species. 
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Aromatase, the enzyme necessary for converting precursor androgens into 

subsequent estrogens, was previously described solely in peripheral tissue. In 

the 1970s, the first direct evidence for the capacity of central estrogen production 

came about through a number of landmark studies describing neural aromatase 

in both humans (Naftolin et al., 1971; Naftolin et al., 1975a; Naftolin et al., 

1975b), and across a diverse range of vertebrate taxa, including reptiles, fish, 

amphibians, and birds (Callard et al., 1978b; Callard et al., 1978a). Follow-up 

work in songbirds demonstrated that the brain is the primary source of both local 

and circulating estrogens (Schlinger and Arnold, 1992), which suggested a novel 

role for central estrogen synthesis to locally target neural circuits.  

We now understand that brain-derived estrogens can also rapidly tune 

neural circuits and impact a diverse range of behaviors. Initial evidence for rapid 

effects of estrogens on synaptic physiology came from single-neuron recordings 

in the preoptic area (POA) of female rats, in which 17β-estradiol (estradiol) 

altered firing rates within seconds (Kelly et al., 1976). Since then, acute effects of 

estrogens on neuronal activity states and cellular events have been reported for 

the hypothalamus, hippocampus, striatum, amygdala, brainstem, and more 

recently auditory cortex (Dufy et al., 1979; Nabekura et al., 1986; Mermelstein et 

al., 1996; Chaban et al., 2003; Abraham et al., 2004; Remage-Healey and Bass, 

2004; Bryant et al., 2005; Woolley, 2007; Vasudevan and Pfaff, 2008; Remage-

Healey et al., 2010b). Functionally, estradiol’s impact on circuit physiology is 

exceptionally diverse in terms of behavioral actions, timing, and species. In mice, 

aromatization is key to organize the medial amygdala early in life to selectively 
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respond to opposite-sex olfactory cues (Bergan et al., 2014). At a more acute 

timescale, testosterone rapidly increases visually-guided responses to a female 

stimulus in male goldfish, likely through estrogens/rapid aromatization (Lord et 

al., 2009; Mangiamele et al., 2017). Even nociception within the dorsal horn of 

Japanese quail is rapidly modulated by acute estrogen actions (Evrard and 

Balthazart, 2004). Therefore, estrogen synthesis in the brain is important for 

many behaviors, neural circuits, and species, at a range of timescales.  

Classically, steroid hormones like estradiol were thought to exclusively 

target intracellular nuclear receptors and affect transcriptional changes over the 

course of hours to days. However, estrogen receptors found on dendritic and 

axonal processes in guinea pig hypothalamic neurons provided the first evidence 

of a non-nuclear site for the neural actions of estrogens (Blaustein et al., 1992). 

Since then, evidence has emerged that estrogens can rapidly influence neuronal 

activity through membrane-docked estrogen receptors (both ERα and ERβ) that 

are associated with metabotropic-glutamate receptors (Micevych and 

Mermelstein, 2008; Mermelstein, 2009). More recently, rapid actions of estrogens 

have also been found to act through a G-protein coupled estrogen receptor, 

GPER1 (formerly the orphaned ‘GPR30’) (Srivastava et al., 2013; Rudolph et al., 

2016; Barton et al., 2017). The emergent understanding of these many 

mechanisms for steroid actions were presented in a recent review previewing this 

special issue (Balthazart et al., 2018). Below, we describe the contribution of 

recent work in songbirds testing the role of rapid neuroestrogen signaling in 

shaping sensory processing, and place this work in a broader context.  
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The songbird auditory circuit as a model to explore rapid estrogen actions 
on vocal communication processing and learning 

Songbirds are a powerful system to explore local estrogen actions in 

sensory circuits across the lifespan. First, the forebrain circuits that guide 

auditory-dependent behaviors are enriched with estrogen receptors and estrogen 

synthase (aromatase), especially as compared to rodent sensory cortices (as 

reviewed in Vahaba and Remage-Healey, 2015). In agreement with high 

aromatase concentrations, the brain is the primary site of estradiol synthesis in 

male zebra finches (Schlinger and Arnold, 1992), so much so that circulating 

estrogen levels persist in castrated males (Adkins-Regan et al., 1990). The 

abundance of estrogen production and signaling in the songbird auditory 

forebrain makes it an attractive system to measure and manipulate 

neuroestrogen content and evaluate its effects on audition and learning. Below, 

we review how neuroestrogens are generated in the songbird brain, and their 

rapid effects on physiology and related behaviors in both adult and developing 

songbirds. 

The organization of auditory circuits is relatively conserved across the 

class Aves. As in other vertebrates, birds perceive acoustic signals beginning at 

peripheral hair cells in the ear, and these auditory signals reach central cortical 

regions in the auditory forebrain (reviewed in Jarvis, 2004). As shown in Figure 

1, brainstem and midbrain auditory signals are initially relayed from the thalamic 

nucleus oviodalis (Ov) to the avian auditory telencephalic homologue of primary 

auditory cortex (Field L complex; Field L2), which sends afferent projections to 

secondary auditory cortex, including the caudal mesopallium (CM) and the 
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caudomedial nidopallium (NCM) (Vates et al., 1996; Jarvis, 2004; Wang et al., 

2010).  

Interestingly, while this auditory pathway is conserved across birds (Bonke 

et al., 1979a; Wild et al., 1993; Vates et al., 1996; Wang et al., 2010), a high 

concentration of aromatase and estrogen receptors in avian forebrain 

distinguishes vocal learning birds from other species (Metzdorf et al., 1999; 

Silverin et al., 2000; Yoder and Vicario, 2012), especially within NCM (Caras and 

Remage-Healey, 2016). Within the auditory forebrain, aromatase is almost 

exclusively found in NCM, whereas little to no aromatase has been described in 

Field L or CM of zebra finches (Saldanha et al., 2000; Peterson et al., 2005; 

Pinaud et al., 2006; Ikeda et al., 2017). Therefore, NCM provides the 

predominant source of estrogens to the auditory forebrain circuitry in male and 

Figure 1: Two schematized songbird auditory circuits. 

A-B) Auditory stimuli, such as song, arrives from the brainstem and cochlear 
nuclei (not shown) into the midbrain MLd and into the thalamic OV (ovoidalis). 
The primary thalamic recipient of auditory information in the cortex is the Field 
L complex (L1, L2, and L3), which projects to the caudomedial nidopallium 
(NCM) and caudal mesopallium (CM), which are themselves reciprocally 
connected. Auditory information reaches HVC (used as a proper name) by 
way of the nucleus interface (NIf), which itself receives projections from CM 
(not illustrated for clarity). Not depicted are the forebrain basal ganglia and 
song motor circuit pathways that are essential for song learning and 
production. Adapted from Brenowitz and Remage-Healey (2016); Vahaba et 
al. (2017). 
 



 

 9 

female zebra finches. In addition to being regionally concentrated in NCM, 

aromatase is also co-expressed in specific cell types, namely parvalbumin-

positive interneurons (Ikeda et al., 2017). The exceptional capacity for estrogen 

synthesis in the songbird brain has led to investigations of its functional 

significance for cognition and sensory processing. 

Acutely synthesized estrogens within songbird auditory forebrain rapidly 

alter physiology. In zebra finches, estrogens are produced through both de novo 

steroidogenesis and through aromatization of circulating androgens (London et 

al., 2006; London et al., 2009; Remage-Healey et al., 2010a). Social interactions 

and song playbacks rapidly increase neuroestrogen production in the NCM of 

both adult male and female zebra finches (Remage-Healey et al., 2008; 

Remage-Healey et al., 2012). Functionally, local increases in neuroestrogen 

within NCM directly enhance auditory function. In anesthetized zebra finches, 

perfusing estradiol in NCM rapidly increased auditory-evoked firing rates and 

bursting in NCM, consistent with a neuroestrogen-dependent enhanced 

representation of communication signals (Remage-Healey et al., 2010b; 

Remage-Healey, 2012). Similarly, acute peripheral estrogen treatment results in 

a stronger song-evoked fMRI BOLD response bilaterally in the auditory lobule 

(which includes Field L, CMM, and NCM) of male European starlings (De Groof 

et al., 2017). Interestingly, global suppression of estrogen synthesis in these 

same animals specifically reduced auditory responsiveness in the left but not 

right hemisphere auditory lobule (De Groof et al., 2017). In addition to direct 

effects in NCM, estradiol in NCM also increases stimulus-selectivity and auditory 
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responsiveness in downstream regions, including the key sensorimotor nuclei 

HVC and NIf (Remage-Healey and Joshi, 2012; Pawlisch and Remage-Healey, 

2015). Taken together, estradiol in NCM enhances central auditory processing; 

however, it remains to be determined whether enhanced neural representations 

translate into improved audition as assessed by psychophysic or behavioral 

measures. 

So far, we have limited clues about how neuroestrogen signaling in NCM 

regulates behavior. Inhibiting local estrogen synthesis in the NCM of male zebra 

finches rapidly suppressed behavioral preferences for the birds’ own song when 

presented in the left, but not right hemisphere (Remage-Healey et al., 2010b). 

Studies using peripheral administration of aromatase inhibitors also support the 

general idea of estrogen synthesis and auditory function in songbirds (Yoder et 

al., 2012; Alward et al., 2016b). One intriguing possibly is that in addition to 

rapidly guiding auditory encoding, local neuroestrogen production in NCM may 

also facilitate auditory memory consolidation of recent experiences in adults, as 

we discuss below. 

Neuroestrogen provision may help consolidate recent auditory experiences  

In addition to facilitating audition, elevated neuroestrogens in NCM may 

also rapidly enhance the consolidation of recent experiences. While this idea has 

been explored to a lesser extent in auditory circuits, accumulating evidence 

indicates that estrogens enhance cognition in another estrogen-sensitive brain 

region: the hippocampus (HP). Since the 1990s, exogenous estrogens were 

known to have mnemonic-enhancing properties in spatial memory tests (Luine 
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and Rodriguez, 1994). Early studies by Packard & Teather provided the first 

behavioral description of memory-enhancement from post-training peripheral and 

intra-hippocampal presentations of estradiol in rodents (Packard and Teather, 

1997b, a; Packard, 1998). These studies built on the emerging idea that 

estrogens mediate ovarian-cycle dependent changes in dendritic spine plasticity 

in the hippocampus (Woolley and McEwen, 1992), and provided a 

behavioral/functional consequence of this plasticity. Since then, rapid estrogen 

synthesis and action in hippocampus has become an active area of investigation 

(see reviews by Choleris, Frick, Luine, and Korol in this same Special Issue), and 

a more detailed understanding of its mechanism has emerged. 

Generally, estrogens acting in HP enhance spatial memory and object 

recognition (Srivastava et al., 2013; Galea et al., 2017). In rodents, estradiol’s 

ability to enhance memory consolidation is limited to a time-sensitive window 

immediately after learning: subsequent recall is unaffected by estradiol 

treatments if presented >2 hours after initial training (Fernandez et al., 2008). As 

such, the relatively acute impact on memory consolidation is likely mediated by 

rapid neuroestrogen signaling (Tuscher et al., 2016b). One puzzle associated 

with these findings is the limited, indirect evidence for aromatase in the rodent 

HP (Wu et al., 2009; Tabatadze et al., 2014; Sato and Woolley, 2016; Tuscher et 

al., 2016b). By contrast, the songbird hippocampus is highly enriched with 

synaptic and axonal aromatase protein, suggesting it is well positioned to 

facilitate rapid, non-classical steroid signaling (Saldanha et al., 2000; Saldanha et 

al., 2004; Peterson et al., 2005; Rohmann et al., 2007; Remage-Healey et al., 
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2011; Ikeda et al., 2017). In agreement with this, hippocampal estradiol typically 

facilitates spatial cognition in zebra finches (Oberlander et al., 2004; Rensel et 

al., 2013; Bailey and Saldanha, 2015; Bailey et al., 2017), and blocking GPER1 

in HP completely prevents learning a food caching task (Bailey et al., 2017). With 

these recent findings in mind, neuroestrogens may play a similar role in sensory 

learning in songbirds, including the  processing and consolidation of recent 

auditory experiences (Vahaba and Remage-Healey, 2015). 

In addition to providing a source of estrogens to the auditory system, NCM 

is also implicated in  auditory learning and recognition memory in adult songbirds 

(Chew et al., 1995; Mello et al., 1995; Bolhuis and Gahr, 2006; Gobes and 

Bolhuis, 2007; Hahnloser and Kotowicz, 2010). NCM exhibits a seasonal 

enlargement during breeding photoperiods in European starlings, who are open-

ended song learners (De Groof et al., 2009). In adult zebra finches, NCM is 

considered a focal region for storing recent auditory representations (Chew et al., 

1995; Kruse et al., 2000; Stripling et al., 2001; Dong and Clayton, 2008, 2009; 

Smulders and Jarvis, 2013; Soyman and Vicario, 2017). Single, brief exposures 

(40 mins) to a song results in a short-term memory for the trained song and 

subsequent recognition in NCM (Dong and Clayton, 2009). While NCM appears 

to be required for adult auditory memory consolidation and recognition, the 

molecular mechanisms supporting this are only recently becoming clearer 

(London and Clayton, 2008; Ahmadiantehrani and London, 2017) and may 

involve rapid estrogen signaling.  
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Neuromodulators act within central auditory circuits to enable post-training 

memory consolidation. Like estrogens, local noradrenergic modulation of NCM is 

required for both auditory processing (Ikeda et al., 2015; Lee et al., 2017) and 

memorization (Velho et al., 2012). Moreover, estradiol levels increase in adult 

NCM during social and song exposure, which may facilitate changes necessary 

for auditory memory formation (Remage-Healey et al., 2008; Remage-Healey et 

al., 2012). Auditory memory consolidation in NCM involves epigenetic 

modifications (Phan et al., 2017), which is also a route by which estradiol 

mediates spatial learning in rodents (Zhao et al., 2010). In adult songbirds, 

inhibiting global estrogen synthesis impairs short-term auditory memorization and 

recognition in NCM. While the specific role for neuroestrogens in sensory 

learning has yet to be directly tested in adult songbirds, local estradiol in the 

olfactory bulb of mice improves odor memory consolidation (Dillon et al., 2013), 

providing an intriguing parallel. In the following section, we consider how a similar 

mechanism may exist for consolidating sensory (tutor) memories across the song 

learning critical period in juvenile songbirds.   

Evidence that estrogens are involved in auditory processing necessary 
during developmental song learning  

 
Both male and female developing songbirds form an auditory memory of 

their tutor’s song that is necessary for accurate vocal (song) learning and 

imitation. In closed-ended learners, song models are acquired across a critical 

period early in development classically described as occurring across two 

phases: 1) tutor song memorization (“sensory phase”), and 2) motor rehearsal 
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(“sensorimotor phase”) (London, 2017). During the sensory phase (tutor song 

memorization), pre-vocalizing songbirds begin encoding/memorizing their father’s 

or older sibling’s song beginning around 25 days post-hatch (dph) (Immelmann, 

1969; Roper and Zann, 2006; Deregnaucourt and Gahr, 2013), or possibly earlier 

since some embryonic birds are selectivity responsive to adult conspecific song 

(Colombelli-Negrel et al., 2012; Spencer and Minderman, 2018). Once a tutor 

song ‘template’ memory is formed, birds begin to evaluate their burgeoning vocal 

imitations compared to the tutor memory during the sensorimotor phase. The 

sensorimotor phase (motor rehearsal) is akin to early infant babbling (Doupe 

and Kuhl, 1999; Aronov et al., 2008; Lipkind et al., 2013; Prather et al., 2017) and 

begins with emergent vocalizations, followed by song refinement, and eventual 

song crystallization that coincides with sexual maturation. In the case of zebra 

finches, the sensorimotor phase ends with a single highly stereotyped song 

produced throughout adulthood. While the behavioral study of song learning has 

intrigued scientists as far back as Aristotle, the neural mechanisms enabling 

song learning has a relatively more recent history beginning around the 1960s. 

 Other recent reviews have provided excellent coverage of the role 

of motor and cortical-basal ganglia pathways in sensorimotor learning (Mooney, 

2009; Brainard and Doupe, 2013), and here we restrict our discussion on 

neuroestrogens and song learning by focusing on tutor memorization during the 

sensory phase and the contributions of auditory forebrain circuits, namely NCM 

(Bolhuis and Gahr, 2006; Bolhuis et al., 2010). While other auditory forebrain 

regions are likely involved in auditory memory acquisition for learned song (e.g. 
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CMM, Terpstra et al., 2006; Jeanne et al., 2011) , as well as other auditory-

responsive regions (Adret et al., 2012; Mandelblat-Cerf et al., 2014; Piristine et 

al., 2016; Roberts et al., 2017), these areas are largely devoid of aromatase in 

cell bodies as well as neurites, compared to the high expression found in NCM 

(Saldanha et al., 2000; Ikeda et al., 2017), and thus direct roles for 

neuroestrogens are unlikely.  

NCM is considered a primary site required for tutor song memorization 

and representation (Bolhuis and Gahr, 2006; Clayton, 2013; Bolhuis and 

Moorman, 2015) but see (Canopoli et al., 2016, 2017). Compared to 

sensorimotor-aged males, auditory-evoked firing rates and the coding accuracy 

of single neurons for individual song stimuli in NCM are both elevated in pre-

singing, sensory-aged zebra finches that are beginning to form auditory 

memories of their tutor song (Vahaba et al., 2017). In developing songbirds, tutor 

song playback evokes higher immediate-early gene expression in NCM than 

does a novel male’s song (Gobes et al., 2010). Innate preference for tutor song 

in adults is abolished when NCM is bilaterally lesioned (Gobes and Bolhuis, 

2007). Further, like adult songbirds, habituation to specific vocalizations occurs in 

NCM early in development, suggesting a role in encoding recent/familiar auditory 

experience (Stripling et al., 2001; Miller-Sims and Bottjer, 2014). Transcript levels 

for the plasticity-related immediate early gene (IEG) egr-1 (also known as zenk) 

peak in male NCM during the onset of sensory learning/opening of the song 

learning critical period (Jin and Clayton, 1997). In parallel with this, blocking 

plasticity-related MAPK signaling pathway in the auditory lobule (including both 
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NCM and CMM) specifically during developmental tutoring prevents accurate 

tutor song imitation in adulthood (London and Clayton, 2008). Furthermore, 

tutoring naïve juvenile songbirds rapidly biases a subpopulation of single NCM 

neurons towards selectivity for the tutor’s song (Yanagihara and Yazaki-

Sugiyama, 2016). These findings together suggest that NCM is required for 

accurate tutor song encoding, memorization and imitation, yet the molecular 

mechanisms enabling putative NCM-dependent auditory memory consolidation 

are less well known (Moorman et al., 2011). Since neuronal cell density is adult-

like by 20 dph in NCM (Stripling et al., 2001), and as auditory responsiveness is 

markedly enhanced in sensory-aged songbirds compared to sensorimotor-aged 

males (Vahaba et al., 2017), it may be that age-dependent changes in steroid 

hormones and their cognate receptors across the song learning critical period in 

development may partially explain NCM’s role in song learning/tutor song 

memorization. 

Steroid hormones can limit song learning critical period plasticity during 

development, such as androgens which, like estrogens, also exert fast-actions on 

neural circuits (Wu et al., 2001; Bass and Remage-Healey, 2008; Foradori et al., 

2008; Kelley and Bass, 2010). In developing songbirds, administering androgens, 

such as testosterone (T), to closed-ended learners before adult-like song is 

achieved leads to premature song and circuit crystallization (Korsia and Bottjer, 

1991; Whaling et al., 1995; Bottjer and Johnson, 1997) but see (Templeton et al., 

2012). One idea explaining this is that as sexual maturation approaches 

alongside song maturation, testosterone acts to crystallize a song circuit and 
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enable adult-like courtship. Accordingly, circulating T peaks towards the tail-end 

of the song learning/sexual maturation period, potentially signifying the ‘closure’ 

of the critical period for song learning (Marler et al., 1987). In addition to pre-

maturely crystallizing plastic song production, androgen implants early in 

development also lead to parallel premature ‘adult’-like physiology in the song 

motor pathway (Livingston and Mooney, 2001). Therefore, androgens impede 

motor variability by blocking vocal exploration, leading to stereotyped/crystallized 

song during development. In keeping with this model, androgens continue to 

exert profound influence over song motor circuits in adulthood (Alward et al., 

2013; Alward et al., 2014; Alward et al., 2016a; Alward et al., 2017). 

Song learning experiments based on circulating levels and peripheral 

hormone manipulations are confounded by the fact that brain is the main source 

of circulating steroids in songbirds (Schlinger and Arnold, 1992). For example, if 

testosterone acts as a cue to end song learning plasticity once adequate song is 

achieved, one would expect that peripheral T levels correspond to song learning 

fidelity. However, peripheral T levels measured at 100 dph in male zebra finches 

do not correlate with the degree of tutor song imitation (Deregnaucourt et al., 

2013). Moreover, circulating T levels do not change in male zebra finches 

between the sensorimotor phase (50-60 dph) and the closing of the song 

learning critical period (105 – 130 dph), suggesting peripheral androgen levels 

are stable across development (Mori and Wada, 2015). Unlike androgens, 

circulating estradiol levels during the sensory phase of song learning are a more 

reliable predictor of eventual song similarity in adulthood (Marler et al., 1988). As 
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such, estrogens are a candidate neuromodulator of tutor song encoding and 

memorization. 

Estrogens are well-positioned to regulate song learning due to the unique 

distribution of aromatase and estrogen receptors in vocal learners, as well as the 

role of estrogen in masculinizing vocal circuits in females. Although NCM is a 

highly conserved auditory forebrain region across Aves (Wild et al., 1993; Wang 

et al., 2010), as mentioned above there is a unique abundance of estrogen 

receptors and aromatase distribution in the avian forebrain of vocal learners, 

including NCM, compared to innately vocalizing birds (Metzdorf et al., 1999; 

Silverin et al., 2000; Yoder and Vicario, 2012). It is interesting to note that unlike 

songbirds, innately vocalizing male ruffed grouses have somatic aromatase 

protein expression in the Field L complex (Corfield et al., 2013). One role for local 

estradiol may be to establish song learning neural circuits. Exogeneous estradiol 

exposure in female zebra finch chicks, who do not normally sing in adulthood, 

masculinizes the neural song circuit by enlarging song nuclei, and enables male-

like vocal learning and production (Gurney and Konishi, 1980). Follow-up studies 

demonstrated that brain-derived estrogens could account for the masculinization 

of the song motor pathway in zebra finches (Holloway and Clayton, 2001). Taken 

together, these studies suggest that neuroestrogens are required for vocal 

learning (motor) circuits in songbirds. Therefore, estradiol may be important 

across development for song learning, and perhaps specifically within the 

sensory phase, given that estradiol enhances auditory processing in adult 

songbirds. 
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Peripheral levels of estrogens and cortical membrane estrogen receptors 

peak during the sensory phase of song learning, suggesting local 

neuroestrogens in NCM may influence tutor song memory consolidation. 

Sparrows, zebra finches, and canaries all have elevated levels of circulating 

estradiol exclusively during the sensory phase of song learning, a period critical 

for encoding and consolidating the model song (Pröve, 1983; Weichel et al., 

1986; Marler et al., 1987; Marler et al., 1988), however see (Adkins-Regan et al., 

1990). In swamp sparrows, this sensory phase estradiol peak is a reliable 

predictor for eventual tutor song imitation in adulthood (Marler et al., 1987). 

Alongside changes in local and global estradiol, GPER1 transcript levels peak at 

30 dph in male telencephalon (which includes NCM) and are 5-times higher at 

that age than in adult males (Acharya and Veney, 2011). As GPER1 is one 

putative mechanism by which neuroestrogens rapidly enhance auditory 

processing (Remage-Healey et al., 2013; Krentzel et al., 2018), a coincident 

peak in circulating estradiol levels and cortical GPER1 expression suggests a 

role for estradiol in auditory memory consolidation in NCM. 

Neuroestrogens in NCM may be important during development for 

modulating online auditory processing to guide tutor song memory consolidation. 

In contrast with adults with increased neuroestrogen production during song 

exposure, juvenile zebra finches have reduced estradiol levels in NCM during 

social tutoring, and this is followed by a sharp rise one hour post-training (Chao 

et al., 2015). The functional role of these dynamics during tutoring is unclear. 

One hypothesis is that acute changes in neuroestrogens within NCM modulates 
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online auditory processing, as in adults which may be important for tutor song 

memory consolidation. Recently, it was revealed that locally presented estradiol 

within NCM rapidly transforms auditory encoding in a lateralized, and age-

dependent fashion in developing male zebra finches (Vahaba et al., 2017). 

Therefore, since both adult and developing NCM is left-lateralized for auditory 

processing and memory consolidation (reviewed above for adults; Moorman et 

al., 2012; Chirathivat et al., 2015; Moorman et al., 2015), neuroestrogens in NCM 

may guide tutor song memorization by impacting sensory coding in a 

hemisphere-specific manner. The extent of interactions between neuroestrogens 

and established cell-signaling and molecular mechanisms enabling auditory 

processing and memory consolidation in songbirds remain to be tested (London 

and Clayton, 2008; Moorman et al., 2011; Ahmadiantehrani and London, 2017). 

In the sections that follow, we suggest future research directions to elucidate our 

understanding of how neuroestrogens mediate cognitive and sensory processes 

(Figure 2). 
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Figure 2: Current understanding and proposed function/mechanisms of 
rapid estrogen signaling in song auditory forebrain. 
A) Top: Experimental timeline from previous studies on awake or anesthetized 
songbirds. “Auditory experience” is often conspecific song playback through 
speakers, whereas social exposure is always a live, adult conspecific (male tutor, 
or male/female) presentation. Bottom: The physiological effects and temporal 
fluctuation of neuroestrogen production depends on age. In juvenile male zebra 
finches, song tutoring leads to an immediate decline in local estrogen content, 
whereas sixty minutes after the offset of tutoring, there is a rapid elevation in 
estrogen production that may be important for consolidating tutor song 
memories. When estrogens are presented in NCM, there are age- and 
hemisphere-dependent effects on spontaneous and auditory-evoked physiology. 
In adults, song playbacks and social presentations both elicit immediate 
elevations in neuroestrogen production, which rapidly enhance auditory 
responses both physiologically and behaviorally. We propose that the rapid 
production and actions of neuroestrogens B) change across the critical period for 
song learning, depending on age and hemisphere; C) impact local inhibitory 
circuits to modulate auditory signal detection; and D) regulate dendritic spine 
plasticity necessary for sensory memory consolidation. E2 = 17-beta-estradiol; 
Exc. = excitatory projection neuron; PV = parvalbumin-expressing interneuron. 
Portions of this figure adapted from (Vahaba et al., 2017). 
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Outlook & future directions 

1) How does the expression of aromatase and estrogen receptors change 
across development? 

Presently, much of what is known about estrogen receptor and aromatase 

expression in the songbird brain is from studies on adult songbirds. Thus, 

relatively little is known about how the actions or production of estrogens may 

change in the songbird brain across development. Previous work describing 

songbird aromatase expression in the brain has been limited by age (pre-CP 

aged subjects, Saldanha et al., 2000), inference of protein expression via mRNA 

measurement , neuroanatomical spatial resolution and antibody specificity 

(Palkovits punches: (Schumacher and Balthazart, 1987; Balthazart et al., 1990; 

Vockel et al., 1990), focusing on non-sensory cortices (Vockel et al., 1988), or 

limited point-sampling during vocal learning (typically ~45 dph only, Saldanha et 

al., 1999). While estrogen production gradually increases in NCM across 

development, it will be important to verify and expand on this by quantifying 

bilateral aromatase protein expression, as peripheral hormone changes may also 

impact these findings (Chao et al., 2015). Further, as neuronal cell density is 

adult-like by 20 dph in NCM, developmental changes in intrinsic synaptic 

physiology, and auditory-evoked extracellular activity (Jin and Clayton, 1997; 

Kudo and Yazaki-Sugiyama, 2017; Vahaba et al., 2017) may in part be explained 

by changing estrogen production across ontogeny (Chao et al., 2015). Acute 

estrogen action and/or synthesis may explain developmental changes in auditory 

properties during development, as GPER1 transcript levels are 5-times higher in 

sensory-aged male telencephalon compared to adults (Acharya and Veney, 



 

 23 

2011). Therefore, as recently suggested by physiological recordings (Vahaba et 

al., 2017) hemispheric- and age-dependent changes in sensory coding may be 

accounted for by the expression and/or activity of neuroestrogen-related 

signaling molecules like aromatase.    

2) Do neuroestrogens interact with inhibitory neuronal networks to shape 
developmental song learning?  

Sensory circuits primarily consist of interconnected excitatory and 

inhibitory neurons. Excitatory neurons receive and transmit signals within and 

across brain regions, whereas local inhibitory interneurons shape the gain, 

coding, selectivity, and modulation state of local cortical networks (Pi et al., 2013; 

Vallentin et al., 2016; Natan et al., 2017). Inhibitory neurons therefore shape 

specific auditory response states, making them primary regulators of processing 

and plasticity (Blackwell and Geffen, 2017). There is a diverse set of cortical 

GABAergic interneurons involved in auditory encoding (Tremblay et al., 2016; 

Wood et al., 2017), including the widely studied parvalbumin (PV) expressing 

neurons.  

Parvalbumin is a protein directly important for calcium buffering and is a 

reliable marker for a subtype of inhibitory cortical interneurons (reviewed in 

Aizenberg et al., 2015). In mammalian cortex, parvalbumin-positive neurons are 

the primary inhibitory cell type, including auditory cortex (Xu et al., 2010). 

Specifically found within layers 2-6 of mammalian auditory cortex, parvalbumin-

positive (PV+) neurons are required for encoding amplitude, frequency tuning, 

and sensorimotor integration, as well as auditory discrimination and adaption 
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(Cruikshank et al., 2001; Moore and Wehr, 2013; Schneider et al., 2014; 

Aizenberg et al., 2015; Natan et al., 2017). As such, sharper frequency tuning is 

associated with recruitment of PV+ cells in auditory cortex (Li et al., 2014). 

Tuning by PV+ cells in auditory brain regions may be regulated in part by 

rapid estrogen synthesis and signaling. In mammals, estrogen receptors are 

exclusively and highly expressed in PV+ interneurons (≥80%) (Blurton-Jones and 

Tuszynski, 2002; Higaki et al., 2012). Moreover, peripheral estradiol 

administration increases PV+ neurons in the arcuate nucleus of adult female rats 

(Sotonyi et al., 2010), a hypothalamic brain region in which estradiol acts rapidly 

via membrane-bound estrogen receptors (Roepke et al., 2009). In addition to 

rapid estrogen actions targeting PV cells, aromatase itself is highly and 

consistently co-expressed in PV+ neurons within human and nonhuman primate 

temporal cortex (Yague et al., 2006; Yague et al., 2008; Yague et al., 2010; 

Azcoitia et al., 2011). Taken together, PV+ neurons are critical for sensory coding 

in mammalian auditory circuits, and rapid estrogen actions on and synthesis 

within PV+ cells likely participate in the integration of auditory signals.  

In songbirds, inhibitory neurons in NCM may contribute to auditory 

learning and processing. Nearly half of all neurons In NCM are GABAergic, which 

are activated by song presentations (Pinaud et al., 2004; Pinaud et al., 2008), 

and are necessary for shaping auditory processing, selectivity, and memorization 

(Pinaud et al., 2008; Yanagihara and Yazaki-Sugiyama, 2016). By rapidly tuning 

inhibitory neurotransmission necessary for auditory-evoked neural activity, 

neuroestrogens may modulate auditory physiology in NCM. As with human and 
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nonhuman primate temporal cortex (Yague et al., 2006; Yague et al., 2008), PV 

and aromatase are co-expressed in neurons within adult songbird auditory brain 

regions, including NCM (Ikeda et al., 2017). Song learning during development 

also provides a unique opportunity to explore how estrogens and inhibitory 

circuits in NCM may regulate critical period plasticity. Like aromatase and 

estrogen receptors, parvalbumin is uniquely expressed in forebrain song nuclei of 

avian vocal learners (Hara et al., 2012), and higher activation of PV cells 

corresponds to ‘better’ visual learning in an avian association cortex-like brain 

region (Ambalavanar et al., 1999). Songbirds thus offer a powerful model to 

explore natural mechanisms gating critical period plasticity for learned complex 

vocal signals in auditory forebrain (London, 2017), as well as testing the role for 

rapid estrogen actions in PV cells on auditory encoding. 

3) Do neuroestrogens acutely remodel dendritic spines in NCM to facilitate 
auditory plasticity? 

Estrogens enhance cognition via fast-actions on dendritic spines (Luine 

and Frankfurt, 2012; Srivastava, 2012). Peripheral estrogen treatment improves 

learning and memory, and rapidly (within 30 – 40 mins) increases hippocampal 

synaptogenesis and dendritic spine density (MacLusky et al., 2005; Phan et al., 

2012; Jacome et al., 2016). Supporting the role of local and fast actions of 

estradiol mediating synaptic plasticity, estradiol rapidly (after 30 mins) increases 

dendritic spine densities in cortical neurons via nongenomic mechanisms, 

(Srivastava et al., 2008), and blocking in vivo estrogen synthesis centrally, within 

HP, prevents estradiol-dependent circuit plasticity (Vierk et al., 2015). Together, 
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estrogens quickly modify dendritic spine dynamics that are functionally and 

behaviorally necessary for improved memory raising the prospect of similar 

mechanisms for auditory memory consolidation in songbirds. 

In adult male zebra finches, dendritic spine densities in NCM rapidly 

double soon after brief (30 mins) exposures to novel song, an effect which is 

suppressed when endocannabinoid signaling is blocked (Gilbert and Soderstrom, 

2013; Holland and Soderstrom, 2017). Intriguingly, acute estrogen treatment 

rapidly suppresses inhibitory synaptic transmission in rodent HP via an 

interaction with the cannabinoid receptor type 1 (CB1) (Huang and Woolley, 

2012). As NCM is thought to integrate auditory information in adult songbirds by 

modulating inhibitory activity, rapid estrogen signaling in NCM may help encode 

and consolidate auditory experience by increasing dendritic spine density.  

Developing songbirds may also undergo similar estradiol-dependent spine 

remodeling for tutor song memorization. In developing zebra finches, experience- 

and age-dependent changes in dynamic spine stabilization are critical for song 

learning and HVC circuit development (Roberts et al., 2010). As estradiol rapidly 

modulates spine dynamics in mammalian neural circuits, post-tutor 

neuroestrogen elevations in NCM may be important for consolidating recent tutor 

experience (tutor song) through acute dendritic spine alterations in developing 

auditory forebrain. Interestingly, both extracellular signal-regulated kinase (ERK) 

and mammalian target of rapamycin (mTOR) signaling cascades are required in 

the auditory forebrain of developing male songbirds for tutor memorization and 

imitation (London and Clayton, 2008; Ahmadiantehrani and London, 2017), which 
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are two intracellular routes of action required for estradiol-induced memory 

consolidation and related synaptic plasticity modifications in adult rodents 

(Fortress et al., 2013; Tuscher et al., 2016a).  

Does work on neuroestrogens in songbirds and other species have clinical 
implications for human cognition and communication? 

In humans, an association between circulating hormones and hearing has 

been established most convincingly for women across the menstrual cycle and 

during pregnancy. There is an abundance of studies showing that hormonal 

cycles can shift the behavioral threshold to detect sounds, verbal memory 

(Fernandez et al., 2003; Zimmerman et al., 2011), as well as the otoacoustic 

emissions detected from women (Al-Mana et al., 2010; Caras, 2013). There is 

now increasing interest in the role of estrogens in mediating the pathophysiology 

of auditory dysfunction as well, and the role of hormone-replacement therapy 

(HRT) in changing auditory function (Frisina and Frisina, 2016). Clearly, however, 

more work is therefore needed in non-human animal models to understand the 

basic mechanisms of how hormones like neuroestrogens can impact vocal 

communication processing and memory.    

There is also evidence that hormones are important for speech perception 

and language learning during development in humans. As with songbirds (Marler 

et al., 1987), elevations in circulating estradiol during development are a positive 

predictor of future language success in children (Wermke et al., 2014; Schaadt et 

al., 2015). Children with social and sensory processing difficulties, such as 

autism, have difficulties with voice processing and recognition, as well as 
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underconnected auditory circuits (Gervais et al., 2004; Abrams et al., 2013). 

Autism and related speech language disorders may be due in-part to estrogen 

abnormalities, such as aromatase gene mutations (Anthoni et al., 2012). 

Therefore, work in animal models such as songbirds will help elucidate how 

estrogens transform auditory circuits in development, especially as it relates to 

learned vocal communication. 

Conclusions  

Studies on songbirds have provided critical progress toward 

understanding the rapid, nongenomic effects of neuroestrogens on physiological, 

molecular, and behavioral responses in vertebrates. Our current perspective that 

locally produced estradiol in songbird auditory forebrain occurs in social 

situations and enhances auditory processing should now direct future studies to 

address the functional significance more broadly. As such, songbirds will 

continue to serve as a valuable animal model to further reveal how brain-

generated estrogens interact with sensory circuits to enable natural vocal 

communication perception and learning across the lifespan. Going forward, it will 

be difficult to disentangle whether estrogens improve auditory learning due to 

improved hearing, or whether neuroestrogens enhance both hearing and learning 

via independent mechanisms. Accordingly, studies of songbirds can allow us to 

disentangle these two actions in future studies (Vahaba et al., 2017). As 

songbirds and humans share the rare and remarkable suite of traits for learned 

vocalizations (Chakraborty and Jarvis, 2015; Prather et al., 2017), future studies 

may reveal more direct parallels for neuroestrogens in central auditory circuits 
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necessary for communication learning and processing, potentially leading to 

important translational discoveries.  
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CHAPTER II 
 

CENTRAL HYPOTHESIS 

The central hypothesis that has guided my experiments is that rapid E2 

synthesis within NCM modulates hearing-related neural activity and auditory 

memory consolidation across development in male zebra finches (Taeniopygia 

guttata). First, I identified neuroestrogens’ impact on cortical physiology by 

manipulating E2 signaling in the auditory cortex across the critical period for 

vocal learning and measured resultant auditory-evoked neural activity to assess 

how neuroestrogens shape sensory representations. Next, I first determined 

whether cortical E2 is required for consolidation of a recent auditory experience 

by blocking E2 production in NCM immediately after an auditory learning 

experience in adult songbirds, and measuring neural recognition in NCM using a 

habituation paradigm. Then, I evaluated how E2 regulates vocal imitation and 

neural representation of a social model in developing songbirds by inhibiting 

systemic and cortical E2 production immediately after vocal learning sessions, 

and measured how well pupils imitated their social model (tutor) in adulthood. I 

followed up bioacoustic analyses on song learning subjects with neural 

recordings in NCM and HVC in adulthood and determined how representations of 

autogenous and tutor song were impacted from early-life hormone manipulations. 

Finally, I quantified changes in aromatase, parvalbumin, and neuronal density in 

the auditory forebrain across development by measuring somatic aromatase 

expression in the auditory cortex across the critical period, as well as 

parvalbumin expression, and neuronal density. These histological experiments 
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determined how changes in E2 content correspond to changes in estrogen 

synthase, cortical interneurons, and overall changes in NCM morphology across 

development. Taken together, these aims help clarify how nongenomic steroid 

signaling and production operate within a developing and developed auditory 

forebrain within the context of complex acoustic communication encoding and 

consolidation. 
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CHAPTER III 
 

SENSORY CODING AND SENSITIVITY TO LOCAL ESTROGENS SHIFT 

DURING CRITICAL PERIOD MILESTONES IN THE AUDITORY CORTEX OF 

MALE SONGBIRDS. 

Published in eNeuro 
Authors: Daniel M. Vahaba, Matheus Macedo-Lima, and Luke Remage-Healey 
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Abstract 

Vocal learning occurs during an experience-dependent, age-limited critical 

period early in development. In songbirds, vocal learning begins when pre-

singing birds acquire an auditory memory of their tutor’s song (sensory phase) 

followed by the onset of vocal production and refinement (sensorimotor phase). 

Hearing is necessary throughout the vocal-learning critical period. One key brain 

region for songbird auditory processing is the caudomedial nidopallium (NCM), a 

telencephalic region analogous to mammalian auditory cortex. Despite NCM’s 

established role in auditory processing, it is unclear how the response properties 

of NCM neurons may shift across development. Moreover, communication 

processing in NCM is rapidly enhanced by local E2 administration in adult 

songbirds; however, the function of dynamically fluctuating E2 in NCM during 

development is unknown. We collected bilateral extracellular recordings in NCM 

coupled with reverse microdialysis delivery in juvenile male zebra finches 

(Taeniopygia guttata) across the vocal learning critical period. We found that 

auditory-evoked activity and coding accuracy were substantially higher in the 

NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, 
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we observed both age-dependent and lateralized effects of local E2 

administration on sensory processing. In sensory-aged subjects, E2 decreased 

auditory responsiveness across both hemispheres; however, a similar trend was 

observed in age-matched control subjects. In sensorimotor-aged subjects, E2 

dampened auditory responsiveness in left NCM, but enhanced auditory 

responsiveness in right NCM. Our results reveal an age-dependent physiological 

shift in auditory processing and lateralized E2 sensitivity that each precisely track 

a key neural “switch point” from purely sensory (pre-singing) to sensorimotor 

(singing) in developing songbirds. 

Significance Statement  

Vocal communication, such as language and birdsong, is learned during 

an age-limited critical period early in development. Initially, infants and songbirds 

exclusively listen to memorize their native tongue before producing nascent 

vocalizations. We show that the transition from pre-singing to vocalizing in 

developing songbirds is accompanied by a large shift in auditory gain and coding 

in cortical neurons. Further, while estrogens generally improve hearing in 

adulthood, we found that brain estrogens either enhanced or diminished auditory 

responsiveness depending on both critical period phase and cerebral 

hemisphere. Our findings therefore highlight a neural transition in auditory 

processing and lateralized hormone sensitivity at a key stage in development, 

and similar mechanisms could be relevant for speech processing and language 

acquisition in humans. 
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Introduction 

Critical periods are windows of heightened experience-dependent 

neuroplasticity in which early sensory input shapes neural circuits and behaviors. 

Critical period research has historically focused on how sensory exposure or 

deprivation drive cortical and behavioral shifts in development (Lorenz, 1937; 

Wiesel and Hubel, 1963; Bolhuis, 1991; Hensch, 2005). Some critical periods for 

learned behaviors, such as vocal communication, shift from being purely sensory 

(auditory) to an active sensorimotor phase (vocal production, exploration, and 

refinement) (Kuhl, 2010). Such behavioral transitions are likely accompanied by 

neural changes in sensory processing. Relatively little is known about factors that 

change during vocal communication learning, however, as experience-dependent 

learned vocal communication (‘vocal learning’) is found in only a handful of 

animal species, including humans and songbirds (Petkov and Jarvis, 2012). 

In some songbird species, such as zebra finches (Taeniopygia guttata), 

males are the exclusive vocal learners (Immelmann, 1969). Males learn song 

during two developmental phases (Fig. 3A). In the sensory phase, birds acquire 

an auditory memory of their tutor’s song, and then slowly refine their burgeoning 

vocalizations to approximate this tutor memory during the sensorimotor phase 

(Mooney, 2009). Research on the neural circuitry of vocal learning has largely 

explored song production premotor and cortico-basal ganglia circuits (Roberts et 

al., 2012; Brainard and Doupe, 2013). While auditory processing is necessary for 

song learning (Thorpe, 1954; Konishi, 1965), far less is known about the 

contribution of the auditory cortex during song learning in early development. 
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The caudomedial nidopallium (NCM; Fig. 3B) is key for auditory processing. 

NCM receives projections from primary cortical thalmo-recipient Field L, and is 

considered the avian analogue of the mammalian secondary auditory cortex 

(Vates et al., 1996; Wang et al., 2010). NCM is important for both processing 

species-specific vocal communication (Mello et al., 1992; Theunissen et al., 

2004), as well as auditory memory consolidation (Chew et al., 1995; London and 

Clayton, 2008; but see Canopoli et al., 2014). Further, much like the neural 

circuits for human language processing, NCM’s role in auditory memory 

encoding and processing appears to be lateralized (Avey et al., 2005; Moorman 

et al., 2012, 2015; De Groof et al., 2013). Despite this clear role in auditory 

function, it is unclear how NCM’s response properties shift across the vocal 

learning critical period.  

In zebra finches, auditory behavioral perception and discrimination are 

adult-like as early as ~30 days post-hatching (dph; Braaten et al., 2006). Studies 

on developmental changes in NCM neurophysiology have focused on the 

putative opening and closing of the sensory phase (20 and ~30-35 dph, 

respectively; Böhner, 1990), but not beyond (Stripling et al., 2001; Miller-Sims 

and Bottjer, 2014). While there are subtle differences between juvenile age 

groups for song selectivity, auditory preferences and response magnitude at 35 

dph are comparable to adults. Similarly, Jin and Clayton (1997) found that NCM 

neuronal cell density is also similar to adults at 20 and 30 dph. To date, changes 

in communication processing in auditory forebrain outside of the sensory phase 

has been limited to immediate-early gene studies on 45 dph zebra finches 
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(Bailey and Wade, 2003, 2005), and physiology studies on tutor song selectivity 

at ~22 or ~60 dph (Adret et al., 2012; Yanagihara and Yazaki-Sugiyama, 2016, 

respectively). 

Circulating estrogens fluctuate across the critical period in several 

songbird species (Pröve, 1983; Weichel et al., 1986; Marler et al., 1988; but see 

Adkins-Regan et al., 1990), and predict vocal learning success (Marler et al., 

1987), as in humans (Wermke et al., 2014). Estrogen levels in NCM gradually 

increase over the critical period, and also acutely in response to single tutoring 

bouts in juvenile male zebra finches (Chao et al., 2015). In adult songbirds, both 

circulating (Maney et al., 2006; Caras et al., 2012), and brain-derived estrogens 

(neuroestrogens; namely 17β-estradiol [E2]) (Remage-Healey et al., 2010b; 

Remage-Healey and Joshi, 2012) generally enhance complex communication 

encoding within telencephalic auditory brain regions, including NCM. Unlike other 

avian auditory forebrain nuclei that are devoid of estrogen synthase (Field L and 

CMM; Fig. 1B), NCM is highly enriched with aromatase (Saldanha et al., 2000; 

Peterson et al., 2005). Moreover, while ascending auditory circuits are conserved 

across Aves, aromatase is uniquely found within the NCM of vocal learners 

(Metzdorf et al., 1999; Silverin et al., 2000). Together, these observations 

suggest that fluctuating neuroestrogens in NCM may dynamically influence 

auditory processing in development. 

We tested two hypotheses, that: 1) auditory responsiveness to natural 

communication signals in NCM changes across the critical period for vocal 
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learning; and 2) NCM auditory responsiveness and coding are rapidly modulated 

by changes in local estrogens. 

Materials & Methods 

Subjects 

All animal procedures were performed in accordance with the Institutional 

Animal Care and Use Committee at the University of Massachusetts Amherst. 

Male zebra finches (N = 31 birds; n = 26 for estradiol experiments; n = 5 for 

control recordings) were obtained from our breeding colonies, ranging in age 

from 25 – 95 days post-hatch (dph). Hemisphere was considered the unit of 

replication, as NCM is a bilateral structure with no direct reciprocal connections 

between hemispheres (Vates et al., 1996). Subjects’ were initially binned by age 

reflecting the different critical period phases for song learning (Fig. 3A): sensory, 

25 – 34 dph (left = 4; right = 5); sensory/sensorimotor: 40 – 64 dph (left = 13; 

right = 8); and sensorimotor: 65 – 95 dph (left = 5; right = 3). Zebra finches begin 

displaying overt sexually dimorphic plumage at around 40 dph. For subjects <40 

dph, or that did not have male features (black striations, brown badge feathers, 

orange cheeks, etc.), DNA was extracted from whole blood, and a PCR was run 

to determine their sex (see below). Subjects were raised in mixed-sex breeding 

colonies following a 14:10 light:dark cycle. Once selected for the experiment, 

subjects were housed in an acoustic isolation chamber with a nonrelated adult 

companion female. For pre-singing 25 – 34 dph subjects, the experiment was 

either carried out the same day as the surgery, or subjects were isolated with a 
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companion female for 1 day prior to the experiment. For 40 - 95 dph birds, 

subjects were co-housed with a companion female for 2 to 7 days prior to the 

experiment in order to capture birds’ own song (BOS), which was recorded using 

Sound Analysis Pro (Tchernichovski et al., 2000) via an omni-directional 

microphone (Countryman; Menlo Park, CA, USA) inside a sound-attenuation 

chamber (Eckel Acoustics; Cambridge, MA, USA).  
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Figure 3: Critical period timeline, avian auditory circuit, and experimental 
paradigm. 
A, The critical period for song learning unfolds across a 3 timespan. While some 
songbird species begin song learning and recognition at embryonic stages of 
development (Colombelli-Negrel et al., 2012), zebra finch sensory learning 
begins at 25 days post-hatch (Clayton, 2013). Autogenous song production can 
occur as early as 35 dph (typically closer to 40 dph; personal observation), and 
initially overlaps with the sensory learning phase, until 65 dph when 
sensorimotor-only learning continues as birds begin to refine their developing 
subsong until eventual song crystallization (~100 dph). Timeline adapted after 
Clayton (2013). B, Schematic of the avian ascending auditory neural circuit. After 
sounds are first processed in upstream peripheral and brainstem auditory 
regions, communication is encoded within the midbrain nucleus MLd (dorsal part 
of the lateral mesencephalic nucleus), which sends projections to the thalamic 
nucleus ovoidalis (Ov). Ov sends projections primarily to Field L, comparable to 
mammalian primary auditory cortex, as well as to NCM (Vates et al., 1996). 
Secondary auditory cortex regions NCM (caudomedial nidopallium) and CMM 
(caudomedial mesopallium) are reciprocally connected and receive afferent 
projections from Field L. C, Experimental setup and paradigm. Top: in vivo 
microdialysis and extracellular electrophysiology schematic. A microdialysis 
cannula was first descended into NCM (apx. 1.10 mm ventral; light gray circular 
region). Afterwards, a carbon-fiber electrode was placed within the proximate 
region of perfusate diffusion. Bottom: experimental timeline. DPH, days post-
hatch day; MLd, dorsal part of the lateral mesencephalic nucleus; nucleus 
ovoidalis, Ov; NCM, caudomedial nidopallium; CMM, caudomedial mesopallium; 
aCSF, artificial cerebrospinal fluid; E2, 17β-estradiol. 
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Sex Determination PCR 

For juvenile birds without discernable male features (<35 dph), whole 

blood was obtained from the ulnar vein, and DNA was subsequently extracted 

using a commercially-available kit (QIAmp DNA Mini Kit; Qiagen #51304). 

Purified DNA was subsequently used for PCR using a set of degenerate primers 

linked to the Z- and W-chromosomes (Griffiths et al., 1998). Amplified PCR 

product was then visualized alongside a negative control (water) and both adult 

male and female positive controls on a 2% agarose gel using electrophoresis. 

Subjects with two bands separated by 36 bp were excluded from the study 

(indicating presence of W chromosome; thus females), and subjects showing a 

single band (indicating no W chromosome) were retained for the experiment. 

Surgery 

Surgery was performed one to five days prior to the experiment for most 

subjects (Figure 3C; surgery was conducted the day of recordings in 2 birds). 

Animals were food deprived for 30 minutes prior to an intramuscular injection of 

Equithesin (30 - 40 µL). Twenty minutes after Equithesin, birds were wrapped in 

a cloth jacket, and secured to a custom designed surgical stereotaxic apparatus 

(45° head angle; Herb Adams Engineering) with a heating pad underneath them 

(36° C). Afterwards, scalp feathers were removed, and a 20 µL subcutaneous 

injection of lidocaine (2% in ethanol; Sigma-Aldrich) was administered under the 

scalp. The scalp was then resected, and a positioning-needle was placed just 

posterior to the midsagittal sinus bifurcation (MSB) and used as a 0-point 

anatomical reference. The skull was then marked at the anterior-most extent of 
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NCM: rostral = -1.20 mm, and lateral/medial = 0.90 mm, relative to the MSB. This 

marking provided a site for microdialysis probe implantation on the day of 

recording (see below) alongside recording electrodes immediately adjacent 

(caudal) into NCM. A silver wire was implanted between skull leaflets over the 

cerebellum to serve as a reference ground. A head-post was then affixed to the 

bird using cyanoacrylate and dental cement. Following surgery, birds were 

placed in a recovery cage on a heating pad (36° C) with available food and water 

until they awoke from the anesthetic. After recovery, birds were given an oral 

administration of Meloxicam (1 µL/g weight; 0.1 mg/mL), and returned to their 

acoustic isolation chamber in a separate cage from the companion female. 

Anesthetized Extracellular Electrophysiology & Acute Estradiol Treatment 

On the day of the experiment, subjects were food deprived for 30 minutes 

prior to initial anesthetic injections. After 30 minutes of food deprivation, 90 - 100 

µL of 20% urethane was evenly administered across three injections separated 

by 45 minutes each. Once the subject was anesthetized, subjects were brought 

to the recording room, and affixed to a custom head-post stereotaxic apparatus 

(45° head angle; Herb Adam Engineering). A small fenestra was made over one 

hemisphere of NCM and the dura was resected. A microdialysis probe (CMA-7; 

Harvard Apparatus) was first inserted just anterior to the intersecting point of 

NCM (as marked by the prior surgery; apx. 1.10 mm ventral; Fig. 3C) and 

artificial cerebrospinal fluid (aCSF) was perfused at 2 μL/minute using a syringe 

pump (PHD 2000; Harvard Apparatus). Implanting microdialysis probes creates 

an acute injury in the brain, which includes local increases in glial aromatase 
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after 24 hours in male zebra finches (Saldanha et al., 2013). Here, microdialysis 

probes were implanted for no longer than 4 hours, so it is unlikely that injury-

induced glial aromatase influenced NCM properties within the time course of the 

current experiments. 

After the probe was inserted, a carbon fiber electrode (CarboStar-1 

[Kation]; Minneapolis, MN) was placed within the proximity of the microdialysis 

probe and a recording site was found using search stimuli (Fig. 3C). A recording 

site was determined as being within NCM based on its: 1) anatomical 

coordinates (0.80 – 1.40 mm ventral) and 2) spontaneous and stimulus-evoked 

activity using a set of non-experimental stimuli (search stimuli, see below).  

After at least 30 minutes of aCSF infusion had elapsed, the first of three 

trials began (Fig.  3C). Each trial included 20 repeats of each stimulus with an 

inter-stimulus interval of 10 ± 2 s (experimental stimuli, see below), lasting 

approximately 25 minutes. Following the end of the first playback trial, 17-β-

estradiol (E2; 30 μg/mL [110 μM]; dose based on similar studies (Remage-Healey 

et al., 2010b; 2012; Remage-Healey and Joshi, 2012; Pawlisch and Remage-

Healey, 2015)) was retrodialyzed for 30 minutes, and afterwards, a new playback 

period (using the same stimuli as in trial 1) was presented while E2 was 

continuously infused. The same steps for E2 were repeated with aCSF alone for 

trial 3 as a washout period. At the end of the recording session, electrolytic 

lesions were performed at the recording site for later anatomical confirmation. 

The infusion/playback regiment in trials 1 – 3 were repeated when possible in the 

contralateral NCM (n = 12 of 26 subjects). 
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At the end of the experiment, birds were killed via rapid decapitation. 

Brains were removed and placed in a 20% sucrose-formalin solution at 4° C to 

allow for tissue fixation. Once fixed, brains were frozen in an embedding medium 

(O.C.T. compound; Tissue-Plus; Fisher HealthCare) and stored at -80° C until 

they were subsequently sectioned at 45 μm and Nissl-stained for histological 

verification of probe and electrode placement. 

Auditory Stimuli & Playback 

Five unique conspecific songs and one white noise (WN) stimulus were 

used to initially identify auditory responsive recording sites typical of NCM 

(search stimuli). For playback trials, a unique set of experimental stimuli were 

used and included two novel conspecific male songs (CON1 and CON2; different 

from search stimuli CON), heterospecific song (Bengalese finch; HET), and WN. 

Bird’s own song (BOS) and temporally-reversed BOS (REV-BOS) was used 

when available for 40 - 95 dph animals. If BOS was unavailable for a 40 - 95 dph 

subject (n = 4), an age-matched juvenile male conspecific song (JUV CON) and 

temporally-reversed JUV CON (REV-JUV CON) was used instead. For all 

sensory-aged subjects, a 40 dph JUV CON and REV-JUV CON was presented in 

place of BOS and REV-BOS. All stimuli were ~2 s in duration (two motif 

renditions of directed song with introductory notes; ~1.7 – 2.4 s total duration), 

normalized to ~70 dB (A-weighted), and bandpass filtered at 0.3 – 15 kHz using 

Adobe Audition. Each playback trial randomly presented 20 repetitions of each 

stimulus (15 repetitions initially for the first 3 subjects) with a randomly 
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determined inter-stimulus interval of 10 ± 2 s between each stimulus. The 

average playback trial duration was ~25 minutes. 

Data Analysis 

Multi-unit electrophysiological recordings were analyzed offline using 

Spike2 (ver. 7.04, Cambridge Electronic Design, Cambridge, UK). For each 

unique subject’s multi-unit analysis, a voltage threshold to distinguish signal from 

noise was initially set based on Trial #1, and maintained across all subsequent 

trials. Thresholds were set at least 2-fold above the noise-band of a given 

recording. Recordings were then analyzed by suprathreshold activity aligned to 

the playback of auditory stimuli. Stimulus-evoked firing frequency was defined 

as the total number of spikes (threshold crossings) 2 s post-auditory stimulus 

onset divided by the number of trials (stimulus repeats), whereas spontaneous 

firing frequency was defined as the number of threshold crossings 2 s period 

prior to the onset of an auditory stimulus divided by the total number of trials. To 

account for firing variability across subjects, auditory responses were normalized 

using Z-score transformations using the following equation: 

𝑍‒ 𝑠𝑐𝑜𝑟𝑒 =
𝑆̅ − 𝐵̅

√𝑉𝑎𝑟(𝑆) + 𝑉𝑎𝑟(𝐵) − 2𝐶𝑜𝑣𝑎𝑟(𝑆, 𝐵)
 

Where S is the number of spikes during stimulus response (2 s, beginning 

at stimulus onset), and B is the number of spikes during baseline (2 s prior to 

stimulus onset). 𝑆̅ and 𝐵̅ represent the means of these values across all stimulus 

presentations for a given playback trial. 
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Single-unit spike sorting 

 While multi-unit physiological recordings provide information about 

population responses, we also isolated single neurons to investigate auditory 

responsiveness for cells with high signal-to-noise ratios. Isolating single-units 

provide an increased sample size, reducing animal usage numbers and allowing 

us to track the response properties of single units (1-2 units per recording site) 

over time in response to estrogen modulation. To identify putative single-neurons 

for analysis, Trial #1 multi-unit recordings were sorted for large-amplitude single-

unit templates based on waveform using default settings in Spike2 (n  = 53 

single-units). Sorted single units were retained for analysis if they were distinctly 

clustered from noise or other units in a principal components analysis space, and 

had an interspike interval (ISI) > 1 ms (i.e., zero ISIs were within the 1 ms bin for 

all units; Fig. 5A). Following sorting, each single unit was confirmed to be 

auditory responsive using visual inspection of peristimulus time histograms, as 

well as by paired t-tests comparing each unit’s spontaneous and stimulus-evoked 

firing rates. Units that were statistically responsive (p < 0.05) to at least one 

auditory stimulus during Trial #1 were included. On average, each multi-unit 

recording site yielded 1 – 2 distinct and auditory-responsive single-units. Peak-to-

trough waveform durations were measured to initially distinguish broad- vs. 

narrow-spiking neurons (as in Schneider and Woolley, 2013; Yanagihara and 

Yazaki-Sugiyama, 2016); however, we did not observe cell type-specific 

descriptive effects. Due also to inferential statistical power limitations, we opted 

to group all single units in our analyses and disregard waveform classifications. 



 

 46 

Pattern Classifier 

A custom pattern classifier was developed in Python to assess reliability 

and discriminability of neuronal responses to different stimuli (similar to Caras et 

al., 2015; as in Lee et al., 2017).  For each single-unit recording, the stimulus-

evoked firing responses to the 6 different stimuli were compared iteratively. At 

the start of each run of the classifier, one trial of each stimulus was 

pseudorandomly selected as the template (6 templates). All remaining 19 trials 

for each stimulus (114 trials total) were compared one at a time to the templates 

using a similarity measure. This procedure was repeated 1000 times to generate 

a confusion matrix, which represents data in terms of actual versus predicted 

stimulus classification (Fig. 5F).  

Before comparison, each response to a stimulus iteration was Gaussian-

filtered. The standard deviation (σ) of the filter was employed as a variable for 

each cell, i.e. the classifier was run with varying σ values of 1, 2, 4, 8, 16, 32, 64, 

128 and 256 ms (1000 simulations for each). The filter that yielded the highest 

accuracy score was used for that cell. Templates and trials were correlated by 

using the Rcorr method (Schreiber et al., 2003; Caras et al., 2015): 

𝑅𝑐𝑜𝑟𝑟 =
𝑠𝑡𝑟𝑖𝑎𝑙  ∙  𝑠𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒

|𝑠𝑡𝑟𝑖𝑎𝑙|  ×  |𝑠𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒|
 

 

Where 𝑠 represents the vectors of the trial and the template responses after 

filtering, which are dot-multiplied then divided by the product of their lengths. This 

calculation returns a value between 0 and 1, which represent total dissimilarity or 

total similarity, respectively. The stimulus type of the template that provided the 
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highest Rcorr(trial, template) value was considered the predicted stimulus for the 

trial in analysis. Therefore, percent accuracy scores were generated by how well 

each neuron’s firing pattern was predictive of the auditory stimulus.  

The classifier output for each neuron was assessed statistically via a trial 

shuffling approach (Caras et al., 2015). Trials were stripped of stimulus labels, 

pseudorandomly shuffled and relabeled, essentially generating random 

responses to the stimuli. The pattern classifier was then run with this shuffled 

dataset. The distribution of the accuracies (means of diagonals in the confusion 

matrices) generated in each run of the original dataset was compared with the 

shuffled dataset via Cohen’s d. Cohen’s d was > 0.2 for all single-units included 

in our analysis, which is considered a modest effect size (Cohen, 1988). As there 

were 6 stimuli presented to each bird, the trial shuffling accuracy yields 

distributions centered at 16.67% (i.e. “chance” graphed for visual reference; e.g. 

dashed-line in Fig. 5F). In contrast to the Z-score, which measures how much 

the stimulus response is relative to baseline across all trials, Rcorr is a correlation-

based metric that takes into account spike-timing variability phenomena such as 

jitter, missing spikes and noise in a trial-by-trial basis (Schreiber et al., 2003). 

Code Accessibility 

The Python code developed for the pattern classifier can be made available upon 

request. 
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Statistical Analyses 

All statistical analyses were performed using IBM SPSS Statistics for 

Windows (version 23; Armonk, NY). To test for developmental shifts in multi-unit 

activity, we conducted three-way ANOVAs (phase * hemisphere * stimulus) 

separately on trial #1 data (aCSF: Z-score, firing rates, and classification 

accuracy). Similar methods were used for testing development changes in single-

unit activity. To determine effects of E2 on auditory responsiveness, we 

performed a mixed-effects ANOVA (ME-ANOVA; within-subject factor: treatment; 

between-subject factors: hemisphere, stimulus). Separate ME-ANOVAs were run 

for <35 dph vs. 40+ dph subject (see Results). For ME-ANOVAs, we restricted 

our statistical analyses to aCSF and E2 trials (#1 and #2, respectively) as we 

were interested in estrogenic effects on auditory processing; however, we 

present washout data (trial #3) in all relevant figures to provide a visual 

comparison. If a significant interaction was found in the ME-ANOVA model (e.g. 

significant hemisphere * trial interaction), separate follow-up ME analyses were 

run for each factor level (e.g. separate analysis for left vs. right NCM * trial). All 

post-hoc comparisons were performed using Tukey’s HSD. All statistical tests 

with p < 0.05 were considered significant. See Table 1 for all statistical tests 

employed for each figure illustrated. 



 

 49 

Results 

Distribution of ages * hemisphere 

We recorded from 26 unique juvenile male subjects. Of the initial 26 

subjects, we obtained 12 successful bilateral recordings. NCM is a bilateral 

structure with no direct reciprocal connections between hemispheres (Vates et 

al., 1996), so drug infusions administered to the initial hemisphere are unlikely to 

directly impact physiology in the contralateral hemisphere. NCM recordings from 

adult males (195+ dph) were obtained from a separate set of experiments using 

identical methods without microdialysis probe (n = 4 subjects) to serve as a 

visual comparison (e.g. Fig. 4B). 
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Figure 4: Multi-unit shifts in NCM auditory responsiveness across 
development. 
A, Representative multi-unit recordings from a 25, 47, and 95 dph subject (right, 
left, and left hemisphere, respectively). Top: Representative response to a single 
presentation of conspecific song (CON2) from a multi-unit recording during Trial 
#1 (aCSF); Middle: raster plot and corresponding peri-stimulus time histogram (6 
seconds duration) across all CON2 presentations during Trial #1 (aCSF); Bottom: 
CON2 sonogram. B, 25 – 34 dph subjects have higher normalized auditory 
response than both 40 – 64 and 65 – 95 dph birds. Dotted-line in B, is average 
CON Z-score from adult male NCM recordings from a separate study (graphed 
for visual comparison; n = 4 birds [195 – 360 dph; average age = 267.7 dph]). C, 
D, Based on Z-score results, we analyzed birds based on critical period phase 
(sensory [25 – 34 dph] vs sensorimotor [40 – 95 dph]), and found that sensory-
aged birds’ NCM have C, lower spontaneous firing rates, and D, elevated 
stimulus-evoked firing rates compared to sensorimotor-aged subjects. *** p < 
0.001 (Z-score: 25 – 34 dph vs. 40 – 64 dph, and 25 – 34 dph vs 65 – 95 dph; 
spontaneous and stimulus-evoked firing: sensory-aged vs. sensorimotor-aged). 
MUA, multi-unit activity; CON2, conspecific song 2. 
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Developmental shifts in NCM auditory physiology and encoding 

As we were interested in developmental differences in auditory responses, 

we initially divided our data into three conventional age groups based on their 

phase in the critical period for song learning (Fig. 3A): 1) 25 – 34 dph (sensory-

aged; n  = 5); 2) 40 – 64 dph (sensory/sensorimotor-aged; n  = 13); and 3) 65 – 

95 dph (sensorimotor-aged; n  = 8); as in Livingston and Mooney (2001). 

We first analyzed multi-unit recordings to assess whether auditory 

encoding during baseline conditions (Trial #1; aCSF) differed across subjects 

depending on the developmental phase and hemisphere (Fig. 4A). Multi-unit 

auditory Z-scores in the left NCM were significantly higher than in the right NCM 

across development (left: 0.368 ± 0.019; right: 0.340 ± 0.029; mean ± SEM, F(1, 

220) = 6.663, p = 0.010, η2 = 0.035). Further, there was a significant age-

dependent effect on auditory responsiveness (Fig. 4B; F(2, 220) = 37.156, p < 

0.001, η2 = 0.275), such that 25 – 34 dph phase subjects demonstrated 

significantly higher auditory Z-scores (0.563 ± 0.037) compared to both 40 – 64 

dph (0.271 ± 0.018; p < 0.001) and 65 – 95 dph subjects (0.349 ± 0.027; p < 

0.001); there were no significant differences between 40 – 64 dph and 65 – 95 

dph subjects (p = 0.059). There were no significant hemisphere * age interactions 

for trial #1 Z-scores, F(2, 220) = 1.464, p = 0.233, η2 = 0.012. Further, multi-unit 

classification accuracy showed a similar effect of age (F(2, 240) = 6.257, p = 0.002, 

η2 = 0.059), whereby 25 – 34 dph subjects had higher accuracies (72.31  ± 

2.64%) compared to both 40 – 64 dph (54.20 ± 2.86%; p < 0.001), and 65 – 95 

dph subjects (58.46 ± 4.05%; p = 0.001); 40 – 64 and 65 – 95 subjects were 
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statistically similar (p = 0.936).  No effect of hemisphere on accuracy was 

observed (F(1, 240) = 3.254, p = 0.073, η2 = 0.016). 

As there were no overall age * hemisphere interactions for trial #1 

normalized auditory responses and classification accuracy, and because 40 – 64 

dph and 65 – 95 dph subjects were statistically similar, we divided subjects into 

two juvenile age groups for all subsequent analyses: 1) sensory-aged (25 - 34 

dph), and 2) sensorimotor-aged (40 - 95 dph). This division closely matches a 

major developmental transition for young male zebra finches, namely before 

(sensory phase) and after (sensorimotor phase) autogenous singing begins 

(Clayton, 2013). 

Developmental differences in Z-score can be the result of elevated 

stimulus-evoked firing rates, reduced spontaneous firing rates, or a combination 

of both. Therefore, we assessed whether differences in multi-unit spontaneous 

and/or stimulus-evoked firing frequency in NCM explained elevated Z-scores in 

sensory-aged subjects (Fig. 4C, D). Sensory-aged subjects had both significantly 

reduced spontaneous firing (13.246 ± 0.977 Hz) and higher stimulus-evoked 

firing (39.087 ± 0.2.646 Hz) compared to sensorimotor-aged subjects 

(spontaneous: 17.432 ± 0.653 Hz, F(2, 222) = 11.136, p = 0.001, η2 = 0.037; 

stimulus-evoked: 27.295 ± 0.864 Hz, F(2, 222) = 11.136, p = 0.001, η2 = 0.067). 

The effect of age on spontaneous firing rates was independent of hemisphere 

(hemisphere: F(1, 222) = 1.064, p = 0.303, η2 = 0.005; hemisphere * age: F(1, 222) = 

0.509, p = 0.477, η2 = 0.001). Similarly, no hemisphere * age interactions (F(1, 222) 



 

 53 

= 2.032, p = 0.155, η2 = 0.005) nor an overall effect of hemisphere were found for 

stimulus-evoked firing (F(1, 222) = 3.092, p = 0.080, η2 = 0.017). 

Developmental shifts in single-unit activity  

While examining multi-unit activity provides information about how 

population of neurons respond to auditory stimuli, we also analyzed isolated 

single neurons using waveform template matching (Fig. 5A, B; see Methods) to 

investigate whether developmental changes in auditory responsiveness could be 

explained by the activity of single neurons. Spontaneous firing rates were lower 

in sensory-aged subjects (3.34 ± 0.28 Hz) compared to sensorimotor-aged 

subjects (4.91 ± 0.25 Hz; F(1, 292) = 8.204, p = 0.004, η2 = 0.027; Fig. 5C). No 

other significant interactions or main effects were found for spontaneous firing. 

Stimulus-evoked firing was statistically similar in sensory-aged and sensorimotor-

aged juveniles; p = 0.315; η2 = 0.003; Fig. 5D), and there was no effect of 

hemisphere (F(1, 292) = 0.293, p = 0.589, η2 = 0.001), nor a hemisphere * age 

interaction (F(1, 292) = 0.239, p = 0.626, η2 = 0.001). As with the multi-unit findings, 

single-units from sensorimotor-aged males had significantly lower Z-scores 

(0.310 ± 0.012) compared to units from sensory-aged males (0.461 ± 0.026; F(1, 

292) = 25.561 p < 0.001, η2 = 0.080; Fig. 5E). There was no effect of hemisphere 

(F(1, 292) = 0.065, p = 0.798, η2 < 0.001), nor a hemisphere * age interaction (F(1, 

292) = 0.469, p = 0.494, η2 = 0.002) for single-unit Z-scores. 

To evaluate whether developmental changes in communication 

processing affected auditory encoding, we analyzed the physiology data using a 

pattern classifier (see Methods). Irrespective of hemisphere, sensory-aged 
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subjects demonstrated higher accuracy rates (53.86 ± 2.50%) compared to 

sensorimotor-aged subjects (40.38 ± 1.57%; F(1, 262) = 11.321, p = 0.001, η2 = 

0.041; Fig. 5F). In summary, our findings indicate that auditory neurons in NCM 

track critical period phase transitions leading to higher auditory responsiveness 

and coding in sensory-aged, pre-signing birds. 

Effects of estradiol on NCM physiology and encoding are hemisphere- and 
age-dependent 

Estradiol enhances stimulus-evoked activity in the NCM of adult male and 

female songbirds (Remage-Healey et al., 2010b; Remage-Healey et al., 2012; 

Remage-Healey and Joshi, 2012). Further, E2 production is rapidly enhanced in 

NCM during social interactions and song playbacks (Remage-Healey et al., 

2008). While there are dynamic changes in neuroestrogen synthesis in the NCM 

of developing songbirds during and following song tutoring (Chao et al., 2015), it 

is unknown whether E2 locally modulates stimulus-evoked activity as in adults. 

Since we observed clear developmental differences in auditory responsiveness 

and coding, we elected to analyze subjects separately by age groups for E2’s 

effect on auditory responsiveness. 

Estradiol reduces overall NCM firing in sensory-aged subjects 

Estradiol significantly decreased Z-scores in sensory subjects (aCSF: 

0.461 ± 0.026; E2: 0.406 ± 0.035; F(1, 72) = 9.659, p = 0.003; η2 = 0.118; Fig. 6A), 

independent of hemisphere or stimulus (p > 0.292). As with normalized auditory 

responses, E2 also reduced spontaneous and stimulus-evoked firing rates 
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(spontaneous: F(1, 72) = 23.085, p < 0.001; η2 = 0.243; stimulus-evoked: F(1, 72) = 

14.151, p < 0.001, η2 = 0.164; Fig. 6C, D), independent of hemisphere or 

hemisphere * trial interactions (p > 0.05). Further, E2 treatment reduced 

classification accuracy across both hemispheres; F(1, 54) = 7.68, p = 0.003, η2 = 

0.153 (aCSF: 51.18% ± 3.35; E2: 38.87% ± 1.95; Fig. 6B). However, the 

descriptive data suggest E2’s overall effect on accuracy was influenced by effects 

in right NCM (Fig. 6B; a main effect of hemisphere was non-significant, p = 

0.067). All other main effects and interactions for stimulus and hemisphere were 

non-significant across all physiological and classification measurements for 

sensory-aged subjects (p > 0.80). 

We noted a general trend for attenuated firing rates and Z-scores across 

trials for sensory-aged subjects (e.g., compare ‘washout’ periods to ‘pre’ periods 

in Fig. 6). Therefore, in a separate set of sensory-aged birds (n = 5 birds; 6 

single units), we tested whether observed decreases in neural activity also 

occurred in the absence of E2 treatment. To this end, aCSF was administered 

across all 3 trials in place of E2 and a washout trial (trials #2 and #3, 

respectively), and resulting activity was compared between trials #1 and #2. 

Normalized auditory responses decreased across trials (Fig. 6A, inset), but this 

was not statistically significant (F(1, 30) = 3.542, p = 0.070; η2 = 0.106; trial 1 aCSF 

= 0.41 ± 0.03; trial 2 aCSF = 0.34 ± 0.04), nor were changes in spontaneous 

firing rates (F(1, 30) = 0.473, p = 0.497; η2 = 0.016; trial 1 aCSF = 2.55 ± 0.15 Hz; 

trial 2 aCSF = 2.37 ± 0.26 Hz). However, there was an overall significant 

decrease in stimulus-evoked firing (F(1, 30) = 5.095, p = 0.031; η2 = 0.145; trial 1 
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aCSF = 7.44 ± 0.56 Hz; trial 2 aCSF = 5.92 ± 0.78 Hz), and classification 

accuracy (F(1, 30) = 17.075, p < 0.001; η2 = 0.363; trial 1 aCSF = 47.92 ± 3.21%; 

trial 2 aCSF = 36.55 ± 2.56%) across trials 1 and 2. There were no significant 

stimulus * trial interactions, nor any overall effects of stimulus (p > 0.10). 

Together, results from sensory-aged birds suggest that while E2 may dampen 

auditory responsiveness in NCM, this pattern is difficult to disentangle from 

overall decreases in neuronal firing and classification accuracy in rundown trials 

with aCSF only.  

Estradiol imparts hemisphere-dependent changes in sensorimotor-aged 
subjects 

For sensorimotor-aged subjects, there was a significant trial * hemisphere 

interaction for Z-score (F(1, 202) = 4.435, p = 0.036; η2 = 0.021; Fig. 7A), such that 

E2 significantly reduced Z-scores in the left (F(1, 112) = 4.845, p = 0.030; η2 = 

0.041), but not in the right hemisphere (F(1, 90) = 2.131, p = 0.148; η2 = 0.023). 

Further, E2 imparted a hemisphere-dependent effect on firing rates in 

sensorimotor-aged subjects (spontaneous: F(1, 202) = 6.594, p = 0.011; η2 = 0.032; 

stimulus-evoked: F(1, 202) = 9.426, p = 0.002, η2 = 0.045; Fig. 7C, D). Specifically, 

E2 significantly decreased both spontaneous and stimulus-evoked firing in left 

NCM (spontaneous: p = 0.023; η2 = 0.045; stimulus: F(1, 112) = 8.066, p = 0.005; 

η2 = 0.067), whereas overall firing rates in right NCM were significantly increased 

(spontaneous: p = 0.011; η2 = 0.069; stimulus-evoked: F(1, 90) = 7.226, p = 0.009, 

η2 = 0.074). Classification accuracy was statistically unaffected by E2 treatment 

(F(1, 202) = 3.369, p = 0.068, η2 = 0.016; Fig. 7B). In summary, these data suggest 
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that acute modulation of NCM auditory responsiveness by E2 is lateralized, and 

that E2 in the right hemisphere of NCM enhances overall neural firing, 

independent of changes in stimulus coding in sensorimotor-aged birds, whereas 

the opposite is observed in left NCM. 
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Figure 5: Single-unit auditory response and encoding in NCM is elevated 
during sensory phase. 
A, Representative single neurons. Left: two sorted single units distinctly clustered 
in principal components space; Middle: 100 sequential iterations from two 
separate single neurons overlaying their respective waveform template. Right: 
inter-stimulus interval plots for top single unit. Each bin = 1 ms. Units derived 
from Trial #1 (aCSF) recording from a sensory-aged subject (30 dph; left NCM). 
B, Raster plot and peri-stimulus time histogram from representative single-units 
from a sensory-aged and sensorimotor-aged bird (33 [right NCM], and 71 dph 
[left NCM], respectively). C, D, Spontaneous firing rates are lower in sensory-
aged subjects irrespective of hemisphere; however, D, there are no age-
dependent differences in single-unit stimulus-evoked firing rates. E, F, Across 
hemispheres, E, single-unit auditory Z-scores and F, classification accuracy are 
significantly higher in sensory-aged birds. Dotted-line in F, is chance-level 
prediction for classifier (1 in 6 chance for accurately classifying a given stimulus = 
16.67%). *** p < 0.001; ** p < 0.01 (sensory-aged vs. sensorimotor-aged). 
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Figure 6: Estradiol (E2) dampens auditory responsiveness in NCM. 
A, B, C, D, Relative to aCSF (Trial #1), E2 treatment decreased A, Z-scores, B, 
classification accuracy, C, spontaneous, and D, stimulus-evoked firing rates in 
the NCM of sensory-aged subjects. Hemisphere-specific averages are depicted 
for visual comparison and consistency, but there was no trial * hemisphere effect. 
Averaged measurements across hemispheres are depicted in the last set of 
columns (Both); ** p < 0.01 (effect of trial; Trial #1 vs. Trial #2). Dotted-line in B, 
is chance-level prediction for classifier (1 in 6 chance for accurately classifying a 
given stimulus = 16.67%). Inset in A, average z-score across trials in aCSF 
rundown experiment (p = 0.07; Trial #1 vs. Trial #2; n = 5 sensory-aged birds; 6 
single-units). 

Naturalistic sounds elicit higher single-unit auditory responses in NCM 
across age 

In addition to developmental and E2 effects on NCM auditory physiology, 

we compared stimulus-dependent effects on single-unit auditory responsiveness. 
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As work on physiological preference for natural sounds over synthetic tones in 

telencephalic auditory forebrain nuclei has been previously reported in several 

oscine species (Leppelsack and Vogt, 1976; Bonke et al., 1979b), including 

zebra finches (Theunissen et al., 2004; Hauber et al., 2007), we report all the 

main effects of stimulus in Table 2 for concision. In short, we found that NCM is 

typically more responsive to naturalistic auditory stimuli (song) compared to a 

synthetic sound (white noise). 

 

Figure 7: The effects of estradiol (E2) on auditory responsiveness in the 
NCM of sensorimotor-aged birds are lateralized.  
A, B, Depending on hemisphere, E2 treatment either increases (right NCM) or 
decreases (left NCM) auditory Z-scores relative to aCSF (Trial #1) in 
sensorimotor subjects. However, B, classification accuracy remains unaffected. 
C, D, Similar to Z-scores, both C, spontaneous and D, stimulus-evoked firing 
rates decrease or increase in response to E2 depending on hemisphere (left or 
right NCM, respectively). Dotted-line in B, is chance-level prediction for classifier 
(1 in 6 chance for accurately classifying a given stimulus = 16.67%). * p < 0.05 
(left/right: Trial #1 vs. Trial #2); ** p < 0.01 (left/right: Trial #1 vs. Trial #2). 
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Table 1: Statistical table. 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Statistical table

Results Data structure Type of Test Observed power (α = 0.05)

Fig. 2B, Z-score Assumed normal distribution; age 

(25 - 34; 40 - 64; 65 - 95 dph) * 

hemisphere (left NCM; right NCM)

Three-way ANOVA hemisphere = 0.728; age = 1.00; 

hemisphere * age = 0.251

Fig. 2C, spontaneous firing rate Assumed normal distribution; 

phase (sensory; sensorimotor) * 

hemisphere (left NCM; right NCM)

Three-way ANOVA hemisphere = 0.058; phase = 0.738; 

hemisphere * phase = 0.266

Fig. 2D, stimulus-evoked firing rate Assumed normal distribution; 

phase (sensory; sensorimotor) * 

hemisphere (left NCM; right NCM)

Three-way ANOVA hemisphere = 0.092; phase = 0.918; 

hemisphere * phase = 0.626

Fig. 3C, Z-score Assumed normal distribution; 

phase (sensory; sensorimotor) * 

hemisphere (left NCM; right NCM)

Three-way ANOVA hemisphere = 0.057; phase = 0.999; 

hemisphere * phase = 0.105

Fig. 3D, classification accuracy Assumed normal distribution; 

phase (sensory; sensorimotor) * 

hemisphere (left NCM; right NCM)

Three-way ANOVA hemisphere = 0.051; phase = 0.918; 

hemisphere * phase = 0.070

Fig. 3E, spontaneous firing rate Assumed normal distribution; 

phase (sensory; sensorimotor) * 

hemisphere (left NCM; right NCM)

Three-way ANOVA hemisphere = 0.482; phase = 0.815; 

hemisphere * phase = 0.069

Fig. 3F, stimulus-evoked firing rate Assumed normal distribution; 

phase (sensory; sensorimotor) * 

hemisphere (left NCM; right NCM)

Three-way ANOVA hemisphere = 0.084; phase = 0.171; 

hemisphere * phase = 0.078

Fig. 4A, Z-score Assumed normal distribution; trial 

(aCSF; E2) * hemisphere (left 

NCM; right NCM)

Mixed effects ANOVA trial = 0.866; hemisphere = 0.119; 

trial * hemisphere = 0.182

Fig. 4A, inset;  Z-score (rundown) Assumed normal distribution; trial 

(trial #1 - aCSF; trial #2 - aCSF)

Mixed effects ANOVA trial = 0.445

 

Fig. 4B, classification accuracy Assumed normal distribution; trial 

(aCSF; E2) * hemisphere (left 

NCM; right NCM)

Mixed effects ANOVA trial = 0.866; hemisphere = 0.450; 

trial * hemisphere = 0.369

Fig. 4C, spontaneous firing rate Assumed normal distribution; trial 

(aCSF; E2) * hemisphere (left 

NCM; right NCM)

Mixed effects ANOVA trial = 0.997; hemisphere = 0.050; 

trial * hemisphere = 0.104

Fig. 4D, stimulus-evoked firing rate Assumed normal distribution; trial 

(aCSF; E2) * hemisphere (left 

NCM; right NCM)

Mixed effects ANOVA trial = 0.960; hemisphere = 0.185; 

trial * hemisphere = 0.363

Fig. 5A, Z-score Assumed normal distribution; trial 

(aCSF; E2) - separate analyses by 

hemisphere (left vs. right)

Two-way repeated measures 

ANOVA

left NCM = 0.588; right NCM = 0.303

Fig. 5B, classification accuracy Assumed normal distribution; trial 

(aCSF; E2) - separate analyses by 

hemisphere (left vs. right)

Two-way repeated measures 

ANOVA

left NCM = 0.293; right NCM = 0.196

Fig. 5C, spontaneous firing rate Assumed normal distribution; trial 

(aCSF; E2) - separate analyses by 

hemisphere (left vs. right)

Two-way repeated measures 

ANOVA

left NCM = 0.629; right NCM = 0.725

Fig. 5D, stimulus-evoked firing rate Assumed normal distribution; trial 

(aCSF; E2) - separate analyses by 

hemisphere (left vs. right)

Two-way repeated measures 

ANOVA

left NCM = 0.804; right NCM = 0.758
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Table 2: Stimulus-specific effects on single-unit NCM auditory 
responsiveness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Stimulus-specific effects on NCM single-unit auditory responsiveness

Dependent variable

(single-unit data) Model Statistical tests

F -values & 

degrees of 

freedom p -value

Effect size

(partial η 2) Post-hoc results

Development 

(aCSF; Trial #1 only)

Z -score phase * 

hemisphere * 

stimulus

Three-way ANOVA; 

Tukey's HSD
F (7, 292) = 4.682 < 0.001 0.101 WN < CON1, CON2, 

HET, JUV CON, and 

JUV REV CON (p < 

0.003)

Stimulus-evoked firing phase * 

hemisphere * 

stimulus

Three-way ANOVA; 

Tukey's HSD
F (7, 292) = 2.400 0.022 0.054 WN < CON1 and HET 

(p <  0.022)

Classification accuracy phase * 

hemisphere * 

stimulus

Three-way ANOVA; 

Tukey's HSD
F (7, 262) = 2.529 0.016 0.063 WN < JUV CON (p  = 

0.023)

Effect of E2

(aCSF vs. E2)

Sensory

Z -score trial * hemisphere * 

stimulus

Three-way ANOVA F (5, 72) = 2.062 0.080 0.125 n/a

Stimulus-evoked firing trial * hemisphere * 

stimulus

Three-way ANOVA F (5, 72) = 1.495 0.202 0.094 n/a

Classification accuracy trial * hemisphere * 

stimulus

Three-way ANOVA F (1, 54) = 1.298 0.278 0.107 n/a

Sensorimotor

Z -score

Left NCM trial * stimulus Two-way ANOVA; 

Tukey's HSD
F (7, 112) = 3.097 0.005 0.162 WN < BOS, CON1, 

CON2, and HET (p  < 

0.038)

Right NCM trial * stimulus Two-way ANOVA F (5, 90) = 2.275 0.054 0.112 n/a

Stimulus-evoked firing

Left NCM trial * stimulus Two-way ANOVA F (7, 112) = 1.365 0.227 0.079 n/a

Right NCM trial * stimulus Two-way ANOVA F (5, 90) = 0.558 0.732 0.030 n/a

Classification accuracy

Left NCM trial * stimulus Two-way ANOVA; 

Tukey's HSD
F (7, 112) = 2.415 0.024 0.131 WN < JUV CON (p = 

0.048)

Right NCM trial * stimulus Two-way ANOVA F (5, 90) = 0.880 0.498 0.047 n/a
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Discussion 

Here, we demonstrate that auditory neurons in pre-singing, sensory-aged 

male zebra finches have higher auditory responses to natural communication 

vocalizations compared to older juvenile males. Moreover, sensitivities to E2 

signaling in auditory cortex change with age: while sensory-aged birds showed 

an overall decrease in auditory response when treated with E2, sensorimotor-

aged birds showed a divergent response to E2 depending on hemisphere (either 

overall increase or decrease). Taken together, this study is the first to our 

knowledge to consider developmental and hemispheric effects on sensory coding 

and rapid steroid modulation of auditory processing. 

Ontogenetic shifts in vocal communication encoding 

During the critical period phase for auditory memory formation, pre-singing 

(sensory-aged) juvenile songbirds encode communication signals with higher 

fidelity than juveniles beginning autogenous song production (sensorimotor-

aged). As such, elevated auditory-evoked responses in sensory-aged birds 

suggest the transition from purely auditory encoding (sensory phase) to song 

production with gradual modification through error-correction (sensorimotor 

phase) learning may track these perceptual developmental shifts. To our 

knowledge, this is one of the first studies to document neurophysiological 

changes in the NCM of pre-singing and sensorimotor learning in juvenile male 

songbirds. Prior studies have described developmental shifts in the auditory 

forebrain, but have mainly compared 20 vs 35 dph songbirds (all sensory-aged). 

Amin et al. (2007) described adult-like auditory responses in the brainstem in 20 
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and 35 dph zebra finches, and stimulus-dependent auditory selectivity in the 

CMM of 35 dph birds. In awake recordings of NCM, electrophysiological auditory 

responses are comparable in 20 and 30-35 dph (Stripling et al., 2001; Miller-Sims 

and Bottjer, 2014). Our results build upon these findings by expanding the span 

of time considered during the critical period. These findings inform how learning-

dependent transitions during maturation shift auditory processing within NCM. 

The elevated auditory processing we observe during in sensory-aged 

subjects may be related to the coincident formation of a tutor auditory memory 

during this critical period of development. While auditory input is necessary 

during the song refinement and error-correction phase in sensorimotor-aged 

birds (e.g. Mandelblat-Cerf et al., 2014); initially, birds must solely listen before 

they sing. Perhaps enhanced auditory activity and encoding in NCM during early 

development ensures a high-fidelity tutor song memory acquisition for young 

males to subsequently imitate. As NCM is one of the putative loci for tutor song 

memory (Bolhuis and Gahr, 2006; London and Clayton, 2008; Gobes et al., 

2010), elevated auditory responsiveness may be important for early tutor 

memory consolidation. Alternatively, an increasing amount of tutor experience 

may facilitate neural transitions from a more broadly tuned auditory circuit 

(sensory-aged; higher auditory neural activity) to a more selectively tuned circuit 

(sensorimotor-aged; relatively dampened auditory response). Yanagihara and 

Yazaki-Sugiyama (2016) found that a relatively short period of tutoring (10 days) 

radically shifted a sub-population of single neurons’ auditory selectivity in the 

NCM of juvenile males, and biased neuronal responses toward primarily the tutor 
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and/or birds’ own song. If tutoring experience itself shapes auditory selectivity, 

then perhaps less experience with tutor or exposure to adult song in general in 

sensory-aged subjects (9 days relative to onset of critical period opening) 

compared to older juveniles (15 – 70 days) explains heightened auditory 

responsiveness in NCM. However, our finding that stimulus classification 

accuracy is higher in sensory-aged subjects suggests that rather than NCM 

being broadly tuned to any sound, young juvenile songbirds can accurately 

distinguish naturalistic communication signals with higher fidelity than 

sensorimotor-aged birds.  

One caveat to our interpretation that there is a neural “switch point” in 

auditory processing that precisely tracks behavioral transitions during vocal 

learning (sensory/pre-singing → sensorimotor/singing) is the ability to dissociate 

true developmental effects from E2-dependent effects. In adult songbirds, song 

presentation elicits an increase in E2 levels in NCM, while in juveniles, tutoring 

leads to decreased E2 in NCM and increased levels afterward (Remage-Healey 

et al., 2008; Remage-Healey et al., 2012; Chao et al., 2015). As such, auditory 

presentations alone may elicit changes in local E2 availability that may be age-

dependent. However, it remains to be tested whether song presentations to 

anesthetized songbirds, such as in our study, drive local changes in E2 

production as with awake, behaving songbirds. Thus, future experiments should 

clarify whether local E2 synthesis in NCM is state-dependent, and should also 

explore whether local infusion of an aromatase inhibitor during song presentation 
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blocks and/or unmasks age-dependent and estradiol-dependent regulation of 

auditory responsiveness in NCM. 

Future experiments should also consider these identified developmental 

milestones in the NCM of juvenile females, who also learn song early post-

hatching for eventual mate selection in adulthood (Miller, 1979; Riebel, 2000; 

Terpstra et al., 2006). The extent that elevated auditory responses in NCM of 

sensory-aged juveniles are similar between males and females will contribute 

information about its underlying mechanism.  

Acute effects of estrogens on sensory-aged songbirds 

Sensory-aged male zebra finches begin forming auditory memories of their 

tutor’s song before attempting their own vocalizations (Mooney, 2009). As such, 

we predicted that E2 would enhance auditory tuning as it does in adults 

(Remage-Healey et al., 2010b; Pinaud and Tremere, 2012; Remage-Healey et 

al., 2012; Remage-Healey and Joshi, 2012; but see Lattin et al., 2017). However, 

E2 treatments led to significant decrements in auditory processing irrespective of 

hemisphere. One explanation may be that E2 dynamics change during 

development. Chao et al. (2015) observed acute decreases in E2 levels during 

tutoring in the NCM of developing male zebra finches, but also that NCM E2 

levels increase immediately after a tutoring session. As such, acute 

neuroestrogen production may impair auditory memory acquisition during a 

learning session in sensory-aged songbirds (Korol and Pisani, 2015; Rensel et 

al., 2015), whereas post-training E2 increases may facilitate memory 

consolidation (Srivastava et al., 2013; Frick, 2015; Vahaba and Remage-Healey, 
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2015). Further, the expression of telencephalic GPER1 (G-protein coupled 

estrogen receptor 1 that can mediate rapid neuroestrogen signaling [Rudolph et 

al., 2016]) is five-fold higher in sensory-aged zebra finches (Acharya and Veney, 

2011). Therefore, NCM may be particularly sensitive to low concentrations of E2 

in sensory-aged animals. This work thus suggests that dynamic changes in 

estrogen receptor and aromatase protein expression in NCM across 

development may explain an initial suppressive effect of E2 signaling on auditory 

processing in sensory-aged male songbirds.  

One important caveat to these results is that in a separate set of sensory-

aged birds with aCSF retrodialyzed across all three trials (run-down experiment), 

we observed decreased classification accuracy and stimulus-evoked firing rates, 

as well as a trend for reduced normalized auditory responsiveness. These results 

make it more difficult to disentangle the effects of E2 on decreases in NCM 

responsiveness and encoding in sensory-aged subjects from purely time-

dependent effects. Nonetheless, E2 reduced spontaneous firing in sensory-aged 

birds, which was not observed in aCSF-only trials, and may reflect a true 

dampening of auditory responsiveness. Moreover, the run-down experiment 

emphasizes how our observations of increased firing during E2 treatment, as 

seen in the right NCM of sensorimotor-aged subjects, are likely counteracting this 

overall steady run-down effect in juvenile males. 

Acute, lateralized effects of estrogens on sensorimotor-aged songbirds 

The lateralization of E2 actions on auditory encoding and firing rate in 

NCM differ across development. In sensorimotor-aged birds, E2 imparts a 
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hemisphere-dependent effect. In left NCM, E2 led to decreased normalized 

auditory response, as well as spontaneous and stimulus-evoked firing rates, 

without affecting classification accuracy. In contrast, E2 administration in the right 

NCM increased stimulus and spontaneous-evoked firing rates, without impacting 

normalized auditory responses or classification accuracy. These data add to a 

growing literature on the lateralized neuromodulation of hearing by brain 

hormones. For example, oxytocin receptors are preferentially upregulated the in 

left auditory cortex of maternal female rats, which enhances pup call 

saliency/encoding (Marlin et al., 2015). In male European starlings, inhibiting 

aromatase suppresses vocal communication responses in the left, but not right 

hemisphere of the auditory forebrain (De Groof et al., 2017). Similarly, blocking 

E2 synthesis in left but not right NCM extinguishes male songbirds’ behavioral 

preference for their own song (Remage-Healey et al., 2010b). Therefore, our 

findings add further evidence for hemisphere-dependent hormone 

neuromodulation of communication processing in auditory cortex, and expands 

this concept to include developing animals. 

Prior work on developmental neuromodulation has not addressed how 

sensitivities to E2 may differ by hemisphere, and whether estrogen synthase or 

estrogen receptor expression is similarly lateralized. Chao et al. (2015) found 

decreased E2 in NCM during tutor song exposure in developing male subjects; 

however, E2 was only measured within the left NCM. Therefore, our current 

results suggest that E2 fluctuations in right NCM may increase or remain 

unchanged during tutoring. Future experiments should also clarify changes in 
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aromatase and estrogen receptors (both nuclear [ERα and ERβ] and membrane-

bound [GPER1; mGluR1/ERα] across development and between hemispheres, 

as these factors may also account for divergent effects of E2 on auditory 

physiology in NCM across the critical period. Alternatively, the auditory cortex of 

juvenile male zebra finches may mature at different rates depending on 

hemisphere. Our data suggest that the right NCM matures faster than the left, as 

E2 enhancement of auditory responsiveness is more adult-like in the right vs left 

NCM of sensorimotor-aged subjects (Remage-Healey et al., 2010b). Future 

experiments exploring developmental changes should also identify whether NCM 

is lateralized in neuronal development across the critical period, as well, since 

there are no reported differences in NCM cell density between developing vs. 

adult male NCM (Stripling et al., 2001), nor any published quantifications of left 

vs right neuronal density in NCM at any age. 

These findings contribute to a broader point of interest on how steroid 

hormones may participate in learning. Accumulating evidence demonstrate that 

rapid, local E2 synthesis and signaling is critically linked to neural plasticity in the 

hippocampus and amygdala (Zhao et al., 2010; Srivastava et al., 2013; Bailey et 

al., 2017; Bender et al., 2017). Less is known about rapid E2 signaling and 

plasticity in sensory cortices, such as the auditory cortex. In adult zebra finches, 

blocking global E2 synthesis impairs neural adaptation to familiar songs in NCM, 

a proxy for auditory memory formation (Yoder et al., 2012). In juvenile songbirds, 

circulating E2 predicts tutor imitation accuracy (Marler et al., 1987); however, the 

majority of studies on hormones and song learning in development have focused 
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on androgens. Administering testosterone or dihydrotestosterone to juvenile 

songbirds prematurely crystallizes song (Korsia and Bottjer, 1991; Bottjer and 

Hewer, 1992; Whaling et al., 1995; Livingston and Mooney, 2001; however, see 

Templeton et al., 2012). Therefore, it remains to be tested how neuroestrogen 

synthesis in the auditory forebrain is involved in vocal learning. Our results 

suggest that local E2 may interfere with auditory encoding in sensory-aged birds 

and within the left NCM of sensorimotor-aged birds, whereas E2 presented to the 

right NCM in sensorimotor-aged animals may aid in encoding song. These 

possibilities await future experimental tests to determine potential functional roles 

for E2 in song learning.  

Conclusion 

Here, we demonstrate that robust shifts in sensory processing in the auditory 

cortex precisely track experience-dependent critical period milestones, and 

extend our understanding of estrogen-dependent neuromodulation of auditory 

responsiveness across development. Our findings indicate that age and 

hemisphere are critical factors to consider when evaluating sensory physiology in 

development and in response to neuromodulators. Further, these data provide 

insight into a broader understanding of how estrogen signaling, and audition may 

change across the lifespan, and in relation to hemisphere and communication 

learning. In humans, estrogens generally enhance hearing in adulthood, and 

appear to have a lateralized effect on listening (Tillman, 2010) and verbal 

memory (Fernandez et al., 2003). Interestingly, Wild et al. (2017) found adult-like 

neural responses to speech in the auditory cortex of 3- and 9-month old infants, a 
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time during which circulating estrogen levels predict future language success 

(Wermke et al., 2014; Quast et al., 2016). As such, future research should 

consider both hormonal state and hemisphere when studying hearing-evoked 

neural changes in auditory cortex. 
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CHAPTER IV 
 

BRAIN ESTROGEN PRODUCTION AND THE ENCODING OF RECENT 

EXPERIENCE 

Published in Current Opinion in Behavioral Science 
Authors: Daniel M. Vahaba and Luke Remage-Healey 
Year: 2015 

Abstract 

The vertebrate central nervous system integrates cognition and behavior, 

and it also acts as both a source and target for steroid hormones like estrogens. 

Recent exploration of brain estrogen production in the context of learning and 

memory has revealed several common themes. First, across vertebrates, the 

enzyme that synthesizes estrogens is expressed in brain regions that are 

characterized by elevated neural plasticity and is also integral to the acquisition, 

consolidation, and retrieval of recent experiences. Second, measurement and 

manipulation of estrogens reveal that the period following recent sensory 

experience is linked to estrogenic signaling in brain circuits underlying both 

spatial and vocal learning. Local brain estrogen production within cognitive 

circuits may therefore be important for the acquisition and/or consolidation of 

memories, and new directions testing these ideas will be discussed.  

Introduction  

Historically, steroid hormones were thought to be produced exclusively in 

peripheral endocrine glands and to influence vertebrate behavior through long-

term (hours to days) regulation of gene expression. In the case of estrogens, 
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these ‘classical’ effects are mediated in the brain via the nuclear steroid 

receptors, estrogen receptor  (ER) and ER. It is now clear that the brain itself 

is also a key site of steroid hormone synthesis and action (Corpechot et al., 

1981). Brain-derived steroids provide a local source of neuromodulators that can 

act upon neural circuits at rapid timescales akin to classical neurotransmitters 

(seconds to minutes) (Remage-Healey, 2014). While the rapid effects of steroid 

hormones are often studied in the context of sexual behavior (Cornil et al., 2013), 

the role of neurosteroids in behaviors and neural systems beyond reproduction 

has only recently received attention. One area in particular has been 

understanding how estrogen signaling may enhance or otherwise alter cognition 

on momentary timescales. While there are a host of hormones that modulate 

learning and memory (Orr et al., 2009; Rabinowitz et al., 2014), the potent 

endogenous estrogen 17-estradiol (E2) has a clear influence on cognition and 

neural plasticity (Srivastava et al., 2013; Luine, 2014; Bailey and Saldanha, 

2015). As such, this review will concentrate on the role of locally-synthesized 

brain E2 in learning and memory.  

Focusing on recent findings, we evaluate three fundamental aspects of E2 

and cognition: 1) the expression of estrogen synthase (aromatase) in brain 

regions critical for memory consolidation; 2) how measurement and manipulation 

of relatively rapid E2 synthesis relates to encoding recent experience; and 3) 

whether learning and post-learning epochs are associated with periods of E2 

production and/or suppression. For the purposes of this review, we define the 

following terms: 
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Learning: active process of acquiring new information through 

experience. 

Memory: stored information and/or consolidation of new information from 

a learning experience/event 

Cognition: an active, sensory-dependent process that encompasses both 

a learning event (e.g. training) and the subsequent consolidation of the memory 

about that event (e.g. post-training), which can be recruited in future contexts. 

Recent experience: a discrete window of time including both a potential 

learning event and the ~2-hour period that follows immediately after the learning 

event.  

Encoding: the active process of memory consolidation of a recent 

learning event. 

Does the role of E2 in brain regions associated with cognition depend on 
the local availability of aromatase, as well as membrane estrogen 

receptors, within these same regions? 

Estradiol appears to influence learning and memory across a diverse 

group of species, including: nematodes (Sugi et al., 2011), songbirds (Bailey et 

al., 2013), rodents (Luine, 2014), and nonhuman (Lacreuse et al., 2014) and 

human (Sherwin, 2012) primates. One interesting observation supporting the 

proposed role of acute neuroestrogen signaling in cognition is the presence of 

aromatase (estrogen synthase) in brain regions critical for memory encoding, 

consolidation, and recall among vertebrates. Aromatase expression is conserved 

across several functionally homologous neural structures in vertebrates (Callard 

et al., 1978b). Figure 8 presents for the first time a cross-species comparison of 
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aromatase expression in three brain regions that facilitate distinct types of 

memory: 1) fear memory consolidation and social recognition (amygdala 

(Bergan et al., 2014)); 2) spatial navigation and novel object recognition 

(hippocampus (Boulware et al., 2013; Bailey and Saldanha, 2015)); and 3) 

vocal communication learning, and language acquisition (auditory 

cortex/forebrain (Bailey and Saldanha, 2015)). Neuronal aromatase is enriched 

in these canonical ‘memory’ regions in mammals and their functionally similar 

regions in nonmammalian species; we present representatives showing this in 

human (Homo sapiens) and nonhuman primates (Maca mulatta), rodents (Mus 

musculus), birds (Taeniopygia guttata), reptiles (Aspidoscelis uniparens), and 

fish (Porichthys notatus). While aromatase is found in the brain of amphibians 

(Nakagawa and Iwabuchi, 2012; Iwabuchi et al., 2013; Coumailleau and Kah, 

2014), the spatial resolution and region specificity are less clear and difficult to 

resolve for present purposes. Of note, at present, there is a paucity of direct 

evidence for the presence of aromatase in mouse hippocampus (Wu et al., 2009; 

Stanic et al., 2014), which may be explained by the promoter used to identify its 

presence. A recent finding in Xenopus provides intriguing evidence that there 

may be multiple splice variants for brain-specific aromatase (Nakagawa and 

Iwabuchi, 2012). Therefore, the absence of evidence for aromatase in mouse 

hippocampus (as well as the auditory cortex) may be due to antibody specificity. 

In contrast to mice, aromatase is reliably found in rat dorsal hippocampus 

(Tabatadze et al., 2014).  
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Figure 8: Aromatase is typically expressed in brain regions crucial for 
cognition among vertebrates.  
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Aromatase expression is abundantly expressed within the hippocampus, auditory 
cortex/forebrain, and amygdala of several representative species across a wide 
range of classes. Black stripped-filled brain regions indicate no reported 
presence of aromatase, whereas maroon-filled brain regions indicate detectable 
presence of aromatase as assessed through various techniques. Briefly, 1) 
hippocampus - humans: (Yague et al., 2010; Azcoitia et al., 2011); rhesus 
macaques: (Yague et al., 2008); mice: not seen in hippocampus (Wu et al., 2009; 
Stanic et al., 2014); but see (Ivanova and Beyer, 2000); birds: (Saldanha et al., 
2000; Peterson et al., 2005); reptiles (medial cortex): (Krohmer et al., 2002; Dias 
et al., 2009); fish (dorsolateral telencephalon): (Forlano et al., 2001; Menuet et 
al., 2003); 2) auditory cortex/forebrain – humans: (Stoffel-Wagner et al., 1998; 
Yague et al., 2006); rhesus macaques: (Yague et al., 2008); birds (caudomedial 
nidopallium; NCM (Butler et al., 2011)): (Saldanha et al., 2000; Peterson et al., 
2005); reptiles (anterior dorsal ventricular ridge; ADVR (Butler et al., 2011)): 
(Dias et al., 2009); fish (posterior portion of the ventral telencephalon; Vp): 
(Forlano et al., 2001; Forlano et al., 2005; Fergus and Bass, 2013); 3) amygdala 
- humans: (Biegon et al., 2015); rhesus macaques: (Takahashi et al., 2014); 
mice: (Wu et al., 2009); birds (nucleus taenia; TnA): (Saldanha et al., 2000); 
reptiles: (Krohmer et al., 2002; Dias et al., 2009; Cohen and Wade, 2011, 2012); 
fish (supracommissural nucleus of the ventral telencephalon; Vs (Northcutt, 
1995; Bass et al., 2000)): (Forlano et al., 2001; Forlano et al., 2005). 

 

While the presence of aromatase demonstrates the capability for local E2 

synthesis, acute changes in neurophysiology and behavior typically depend on 

membrane-bound ERs present within these same aromatase-expressing brain 

regions. In addition to membrane-trafficked versions of the classical nuclear ERs 

(ER and ER), there are also several membrane-bound estrogen receptors 

(mERs) that rapidly modulate E2-dependent behaviors (Seredynski et al., 2015) 

and neurophysiology (Woolley, 2007), including: mERs associated with a 

membrane glutamate receptor (mGluR), Gq-coupled mER (Gq-ER), GPER1 

(formerly GPR30), and ER-X (as reviewed in Frick, 2015). These cognate mERs 

are typically co-expressed in aromatase-enriched brain regions associated with 

the encoding of recent experience. For example, both aromatase and GPER1 

are found in the hippocampus, nucleus taeniae of the amygdala (TnA), and the 
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caudomedial nidopallium (NCM; functionally homologous to mammalian 

secondary auditory cortex) of adult and developing male songbirds (Acharya and 

Veney, 2011). Regions such as NCM and hippocampus are necessary for 

auditory and spatial memory consolidation, respectively, across the lifespan 

(London and Clayton, 2008; Yoder et al., 2012; Rensel et al., 2013).  

In sum, the molecular machinery necessary to both synthesize and 

respond to local E2 fluctuations are found within neural structures critical for 

memory consolidation and encoding. It is therefore important to consider the 

functional significance of aromatase expression and its relationship to learning. 

What is the relationship between fluctuating brain E2 levels and the 
acquisition vs. consolidation of recent experience? 

In addition to the strong overlap of aromatase expression in functionally 

homologous brain regions across diverse taxa, there is ample evidence to 

suggest that acute neuroestrogen synthesis actively influences learning and 

memory. Local E2 production is implicated in learning and memory across a 

broad range of species, including humans, non-human primates, songbirds, 

rodents, and nematodes (Sugi et al., 2011; Luine, 2014; Bailey and Saldanha, 

2015; Frick, 2015). Research has primarily focused on hippocampal-dependent 

memory and E2, and mounting evidence indicates that exogenous E2 enhances 

hippocampal-dependent memory consolidation (which may reflect endogenous 

fluctuations during and after learning). For example, E2 infused into the dorsal 

hippocampus of adult female mice within a critical 2 hour window following a 

training event caused an enhancement in subsequent recognition memory 
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performance (Frick, 2015). In addition to an E2-dependent enhancement, 

systemic and local inhibition of aromatase activity impairs spatial and auditory 

memory consolidation in songbirds, as well as long-term potentiation (LTP) in 

rodents (Vierk et al., 2012; Yoder et al., 2012; Bailey et al., 2013). Therefore, 

exogenous manipulation of E2 availability impacts the encoding of recent 

experience in spatial memory tasks. However, it is less clear if pharmacologically 

induced changes in local E2 levels reflect physiological changes of 

neuroestrogen production in non-manipulated animals. 

Understanding the molecular mechanisms of learning and memory has 

been dominated by approaches that manipulate the neurochemistry and activity 

of cognitive circuits. Recent approaches now allow the measurement of the on-

line activity and neurochemical state of cognitive circuits.  Relevant to the current 

topic, in vivo central E2 measurements have provided direct information about 

physiological changes in local steroid environments, and have been successfully 

adapted for songbirds (Chao et al., 2015), quail (Ubuka et al., 2014), rats (Sato 

and Woolley, November 2014 (Washington D.C., USA)), and nonhuman primates 

(Kenealy et al., 2013).  Studies using in vivo microdialysis, as well as brain 

content assays of macroarea homogenates, have revealed that E2 synthesis is 

elevated following recent learning events (Chao et al., 2015; Tuscher et al., 

November 2013 (San Diego, CA, USA)). Specifically, E2 levels are elevated 

within 60 mins subsequent to spatial navigation and vocal communication 

training (Chao et al., 2015; Tuscher et al., November 2013 (San Diego, CA, 

USA)). This timeframe parallels the critical window for pharmacological effects on 
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enhancing or impairing memory consolidation by administering E2 or inhibiting 

aromatase, respectively (Bailey et al., 2013; Bailey and Saldanha, 2015; Frick, 

2015). One functional consequence of post-learning elevations in brain E2 may 

be the rapid enhancement of synaptogenesis in critical cognitive structures such 

the hippocampus and prefrontal cortex (Inagaki et al., 2012). Thus, E2 appears 

to be dynamically upregulated immediately after learning events, and these 

increases are likely important for dendritic spine alterations and modulations of 

synaptic strength. In this way, modifying the strength of functional synaptic 

connections between neurons is a key candidate mechanism for E2 altering 

higher cognitive function, such as learning and memory.  

A competing hypothesis – is the enhanced memory consolidation mediated 
by the suppression of E2 synthesis during a learning event vs. a 

rebound increase in E2 after training? 

Work in rodents and songbirds has led to the idea that rapid post-training 

E2 elevations are cognitively enhancing. However, recent findings in rodents and 

songbirds highlight the intriguing possibility that dynamic suppression of E2 

synthesis during a learning event may be a critical component of memory 

formation/consolidation (Korol and Pisani, 2015). In adult rats, systemic 

treatment with an aromatase inhibitor prior to and during a spatial learning task 

actually improves working memory in subsequent tests (Alejandre-Gomez et al., 

2007). Furthermore, E2 levels are suppressed in the auditory forebrain of juvenile 

songbirds during a song learning event (Chao et al., 2015), and this suppression 

during tutoring is followed by a subsequent post-training elevation in E2. These 

findings that E2 is suppressed during a training event and subsequently elevated 
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may explain similar observations that E2 is elevated post-training in other 

vertebrates (Chao et al., 2015; Tuscher et al., November 2013 (San Diego, CA, 

USA)). Together, these observations lead to the hypothesis that E2 levels are 

“rebounding” from neuroestrogen suppression during a learning event. Therefore 

it is important to clarify the functional role of reduced neural E2 production in the 

acquisition of sensory experience, in songbirds, rats and other model systems. In 

particular, key future research directions include understanding the acute control 

mechanisms for in vivo brain aromatase activity (such as calcium-dependent 

phosphorylation of the enzyme (Cornil et al., 2013)), as well as improving our 

temporal resolution for the fluctuations in neuroestradiol during and following 

discrete learning events.   

While suppressing E2 could facilitate learning, elevated E2 may actually 

interfere with the encoding of recent experience. In corvids (Rensel et al., 2015) 

and finches (Rensel et al., 2013), exogenous E2 interferes with hippocampal-

dependent spatial memory, which is consistent with recent findings in the 

prefrontal cortex in aged nonhuman primates (Lacreuse et al., 2014). Thus, it 

may be that the plasticity-enhancing effects of E2 may be deleterious to the 

faithful initial encoding of a novel sensory stimulus (Korol and Pisani, 2015). As 

such, it remains important to consider the balance between potential cognitively-

enhancing, as well as –impairing roles for brain-derived E2 in the encoding and 

consolidation of recent experience. This is especially important when considering 

the timing of fluctuations in local E2 levels in higher cognitive circuits. 
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Conclusions and future directions 

Thus far, we have presented work illustrating the largely conserved 

expression of aromatase in brain regions associated with learning and memory, 

proposed functional roles for E2 synthesis within these regions as it relates to 

memory consolidation, and suggested an alternative possibility that local 

suppression of E2 may be an important modulator for experience encoding. It is 

clear that more work is needed to further clarify the pluripotent mechanisms by 

which brain E2 signaling contributes to learning and memory.  

The study of estrogen signaling in learning & memory has been largely 

focused on spatial navigation and object recognition memory in adult animals 

within the hippocampus. It will be interesting and necessary to expand the study 

of acute E2 production in cognition to include: 1) novel memory types (e.g. 

sensory: auditory and olfactory (Yoder et al., 2012; Dillon et al., 2013)); 2) ages 

across the lifespan (e.g. critical periods early in development, especially in 

relation to sensorimotor learning); 3) aromatase-enriched regions outside of the 

hippocampus (e.g. medial amygdala), and 4) areas of the brain in which 

neurophysiological signatures of experiential learning can be readily accessed. 

Broadening the range of research initiatives (i.e., across neural structures, age, 

memory-type, and species) is now necessary to build a generalized 

understanding of E2's role in cognition. Moreover, there is little information about 

fluctuating steroid levels in oft studied brain regions involved in cognition. For 

example, we now have the opportunity to determine in vivo changes in central E2 

levels during and following training in regions such as the hippocampus. 
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Other burgeoning areas of steroid-mediated learning and memory include 

E2’s apparent effect on epigenetic alterations. Epigenetic mechanisms, namely 

histone acetylation and DNA methylation, appear to mediate several aspects of 

learning and memory, and recent evidence suggests that E2’s enhancement of 

memory consolidation relies on local chromatin modifications (Zhao et al., 2012).  

While there is no direct evidence for rapid neural aromatization regulating 

epigenetics, future studies should begin testing the effect of aromatase inhibitors 

on subsequent epigenetic changes and memory retrieval. 

Another exciting prospect for future work is neuroestrogens’ potential role 

in facilitating critical period plasticity for sensorimotor learning. HVC (proper 

name; functionally similar to Broca’s area) is a requisite telencephalic 

sensorimotor nucleus for vocal learning, and integrates both auditory input and 

vocal output in songbirds. During development, rapid dendritic spine remodeling 

occurs within HVC immediately after initial tutoring experience, and the amount 

of spine remodeling post-tutoring is a strong predictor for vocal development and 

model imitation (Roberts et al., 2012). E2 is required for both the development of 

the sensorimotor circuit (including HVC) and for proper tutor song imitation. 

Therefore, acute fluctuations in brain-derived E2 may facilitate memory 

consolidation during development in estrogen-sensitive forebrain regions (such 

as NCM), which project to and modulate downstream auditory representations in 

HVC (Remage-Healey and Joshi, 2012). It is interesting to note that a role for E2 

in vocal communication learning has been recently implicated in human infants, 

as well (Schaadt et al., 2015). 
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Research on the role of brain-derived estrogens in learning and memory 

has just begun. Expanding the research spotlight to include novel structures, 

behaviors, species, now presents an exciting jumping off point to explore the way 

that rapid changes in brain estrogen fluctuations regulate the encoding of recent 

experience.  
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CHAPTER V 
 

BLOCKING NEUROESTROGEN SYNTHESIS TRANSFORMS NEURAL 

REPRESENTATIONS OF LEARNED SONG, BUT NOT IMITATION 

ACCURACY IN DEVELOPING SONGBIRDS 

Abstract 

Birdsong, like human speech, is learned early in life by first memorizing an 

auditory model. Once memorized, birds compare their own burgeoning 

vocalizations to their auditory memory, and adjust their song to match the model. 

While much is known about this latter part of vocal learning, less is known about 

how initial auditory experiences are formed and consolidated. In adults and 

developing songbirds, there is strong evidence suggesting the caudomedial 

nidopallium (NCM), a higher order auditory forebrain area, is the site of auditory 

memory consolidation. However, the mechanisms that facilitate this consolidation 

are unknown. One likely mechanism is brain-derived 17β-estradiol (E2). E2 is 

important in the hippocampus for post-learning memory consolidation. Further, 

circulating E2 is elevated during the auditory memory phase, and in NCM 

immediately after song learning sessions, suggesting it functions to encode 

recent auditory experience. Therefore, we tested whether E2 production was 

necessary for auditory memory consolidation in development. Our results 

demonstrate that while systemic estrogen synthesis blockade regulates song 

production, inhibiting E2 synthesis locally within NCM does not prevent song 

learning. However, early life E2 manipulations in NCM transform neural 
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representations of birds’ own song and its model song in both NCM and a 

downstream sensorimotor nucleus (HVC). Taken together, these findings 

suggest that E2 plays a complex role during development, and demonstrate that 

contrary to our initial predictions, unilateral post-training estrogen synthesis 

blockade in the auditory cortex does not negatively impact vocal learning.  

Introduction 

While many animals use sounds to communicate with one another (vocal 

communication), the ability to learn to vocally communicate is relatively rare 

(Petkov and Jarvis, 2012). In vocal learning animals, such as humans and 

songbirds, vocal learning occurs across two main phases: an auditory 

memorization (‘sensory’) phase, followed by a sensorimotor phase (‘babbling’, 

error correction/feedback) (Kuhl, 2010; Derégnaucourt, 2011). While much is 

known about sensorimotor learning, how of auditory memories form early in life is 

less clear.  

One brain region likely involved in storing auditory memories is the 

caudomedial nidopallium (NCM) (Bolhuis and Moorman, 2015). NCM, comparable 

to mammalian secondary auditory cortex, is required for accurate song learning. 

Blocking ERK-signaling bilaterally in NCM during tutoring leads to poor song 

imitation (London and Clayton, 2008). Tutoring naïve juvenile songbirds leads to 

an increased proportion of tutor-song-selective neurons in NCM (Yanagihara and 

Yazaki-Sugiyama, 2016). Further, bilateral NCM lesions abolish innate preference 

for tutor song in adults (Gobes and Bolhuis, 2007; but see Canopoli et al., 2016; 

Canopoli et al., 2017). Thus, NCM contains a putative tutor ‘engram’; however, the 
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mechanisms that enable auditory memory formation and consolidation remain 

unknown. 

Consolidating recent experience in other contexts and systems require 

presynaptic signaling molecules (‘neuromodulators’), such as brain-derived 

estrogens. 17β-estradiol (E2; a predominant estrogen) is a candidate 

neuromodulator required for auditory memory consolidation due to its faciliatory 

role in adult hippocampal-dependent cognition, across taxa (Vierk et al., 2012; 

Srivastava et al., 2013; Luine, 2014) (Woolley and McEwen, 1992; Packard and 

Teather, 1997b; Packard, 1998; Woolley, 2007; Frick, 2012; Bailey et al., 2013; 

Rensel et al., 2013; Bailey and Saldanha, 2015; Rensel et al., 2015; Barth et al., 

2016; Tuscher et al., 2016b; Bailey et al., 2017; Blaustein, 2017; Bayer et al., 

2018), but see (Korol and Pisani, 2015). Additionally, both circulating and brain-

manufactured estrogens (‘neuroestrogens’) typically enhance hearing (Caras, 

2013; Caras and Remage-Healey, 2016), and are associated with language and 

verbal memory (Fernandez et al., 2003; Zimmerman et al., 2011; Anthoni et al., 

2012; Wermke et al., 2014; Schaadt et al., 2015). Together, current evidence 

suggests that neuroestrogen signaling may facilitate the consolidation of recent 

auditory experience. 

Neuroestrogen rapidly enhances auditory physiology within NCM across 

the lifespan (Remage-Healey et al., 2010b; Remage-Healey and Joshi, 2012; 

Vahaba et al., 2017). Thus, it is possible that one functional role of E2 acting within 

the auditory forebrain is to facilitate song memory consolidation. NCM is uniquely 

enriched with estrogen synthase (aromatase) in vocal learning birds (Silverin et 
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al., 2000), suggesting its presence is distinctly important for song learning. Further, 

systemic inhibition of estrogen synthesis during training and testing results in 

impaired auditory recognition in adult zebra finches (Yoder et al., 2012). However, 

it’s unclear how neuroestrogens may affect song learning during tutor 

memorization.  Currently, there is limited evidence for the functional role of E2 

during the vocal learning critical period. In songbirds, circulating E2 levels rise 

during the sensory phase, and at least in swamp sparrows, predict future tutor 

imitation success (Pröve, 1983; Weichel et al., 1986; Marler et al., 1987; Marler et 

al., 1988), as in humans with language (Wermke et al., 2014; Quast et al., 2016). 

Moreover, the expression of GPER1 (a membrane-bound estrogen receptor 

proposed to mediate the rapid effects of E2) peaks in the telencephalon of male 

songbirds during the sensory phase (Acharya and Veney, 2011). As with E2-

dependent learning in rodents, E2 levels are rapidly elevated in NCM immediately 

after a song learning session (Chao et al., 2015).  

The aim of the present study was to determine whether E2 synthesis is 

necessary for the consolidation of a recent auditory experience and the eventual 

vocal imitation of a tutor model. Based on prior findings, we postulated that 

elevated E2 levels in the auditory forebrain aid in memory consolidation following 

individual learning bouts. We tested whether the eventual degree of vocal similarity 

between the social model (tutor) and the pupil in adulthood would be impaired by 

inhibiting neuroestrogen synthesis in NCM during and immediately after bouts of 

vocal communication learning. 
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Methods & Materials 

All methods and procedures were approved by the Institutional Animal 

Care and Use Committee (IACUC) at the University of Massachusetts Amherst. 

Immunocytochemistry 

Animals, perfusion, and sectioning 

Male juvenile zebra finches (n = 6) were selected from mixed-sex breeding 

aviaries maintained on a 14:10 light:dark cycle. Male sensorimotor subjects (n = 

3; 65, 71, and 71 dph) were identified by their sexually dimorphic plumage 

(orange cheek feathers; brown and black badge feathers). Sensory-aged male 

subjects without dimorphic plumage (n = 3; 20, 26, and 34 dph) were identified by 

PCR (see Sex Determination below). All subjects were obtained from our 

breeding colony and were exposed to adult song up until the day of the 

perfusion. Birds were euthanized via anesthetic overdose (isoflurane) and 

transcardially perfused with 20 - 30 mL of 0.1M phosphate buffer saline (PBS) 

followed by 35 mL of 4% paraformaldehyde (PFA). After perfusion, brains were 

extracted and placed into 4% PFA for 24 hours at 4° C. Brains were then 

transferred to a 30% sucrose-0.1 M PBS solution for 24 – 48 hours at 4° C. Once 

fixed, brains were submerged in an opaque tissue-embedding medium (O.C.T. 

compound; Tissue-Plus; Fisher Health-Care) and frozen at -80° C. Brains were 

thawed on wet ice on the day of sectioning and hemisected using a razor blade 

to allow us to carefully distinguish hemispheres. Brains were sectioned at 35 µm 

in the sagittal plane at -20° C using a cryostat (Leica CM3050 S). Each 
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hemisphere was separately collected into two series for lateral sections, and four 

series for medial sections. Medial sections were determined by the emergence of 

cerebellum. Sectioned tissue was placed in cryoprotectant medium in 12-well 

plates, which was wrapped with Parafilm and stored at -20° C until 

immunocytochemistry. 

Antibodies 

Antibodies and dilutions for aromatase and parvalbumin were identical to 

those used in Ikeda et al. (2017). Briefly, we used a polyclonal anti- aromatase 

primary antibody raised in rabbit (1:2,000; a generous gift from Dr. Colin 

Saldanha), and a monoclonal anti-parvalbumin primary antibody raised in mouse 

(1:10,000; Millipore MAB1572; RRID: AB_2174013). Secondary antibodies 

included goat anti-rabbit Alexa 488 (1:500; Thermo Fisher Scientific Inc.), and 

goat anti-mouse Alexa 647 (1:100; Thermo Fisher Scientific Inc.). 

Procedure 

Brain sections were first manually washed 3 x in 0.1 M PB, followed by 3 x 

15-minute washes in 0.1 M PB on a plate shaker, followed by a 2-hour incubation 

at room temperature with 10% normal goat serum (Vector) in 0.3 % PBT. Tissue 

was then transferred to a 10% normal goat serum-0.3% PBT solution containing 

the primary antibodies and incubated at room temperature for 60 minutes. 

Afterwards, plates were tightly wrapped in parafilm and placed on an orbital 

shaker in a cold room at 4° C for 48 hours. On day 3, tissue was washed 3 x 15 

minutes in 0.1 % PBT before being transferred to the secondary antibody-
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containing solution made in 0.3% PBT for 60 minutes. At this point, tissue was 

kept in the dark to prevent any florescent bleaching. Tissue was washed again 3 

x 10 minutes in 0.1% PBT, and finally transferred to 0.1 M PB, wrapped in 

parafilm, and stored at 4° C. Several days later, tissue was slide mounted, 

covered with ProLong Diamond Antifade Mountant with DAPI (Thermo Fisher 

Scientific Inc.), cover slipped, and placed in an opaque slide box and stored at 4° 

C. 

Confocal imaging 

Fluorescently-labelled tissue was imaged using a confocal microscope 

(Nikon A1 Resonant Confocal) with NIS-Elements imaging software. The laser 

strength and gain were determined independently for each antibody/fluorescent 

channel of interest. Once the levels were determined, the same setting was 

applied across all sections per fluorescent channel. NCM was located 

anatomically by the presence of cerebellum and the absence of aromatase-rich 

nucleus taenia (TnA; lateral boundary of NCM). An overview/reference image at 

10x was obtained for each section followed by subregion (dNCM and vNCM) z-

stacks obtained at 60x (1 µm z-steps for 15 µm). 

Image analysis 

An experimenter blind to subjects’ ages and hemisphere quantified the 

total number immunostained cells for each fluorescent channel using ImageJ 

1.52h (Schneider et al., 2012). We measured immunopositive-neurons two ways. 

Initially, we quantified aromatase and parvalbumin immunopositive-cells by 
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calculating their expression as a percentage of DAPI to normalize for relative cell 

density across sections and subjects (e.g. Aromatase+ cells % of DAPI = total # 

of aromatase+ cells / total # of DAPI+ cells). Additionally, we also quantified cell 

density relative to image volume to provide a more standardized report of its 

expression using the following equation: 

 

𝐶𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑚𝑚3) =  
𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑖𝑚𝑚𝑢𝑛𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒−𝑐𝑒𝑙𝑙𝑠

𝑖𝑚𝑎𝑔𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
  

 

Juvenile Song Learning 

Animals 

Juvenile male zebra finches (Taeniopygia guttata) were obtained from our 

breeding aviaries (N = 34; n= 6 for systemic experiments; n = 28 for microdialysis 

experiments). Nest boxes with an active clutch of young zebra finches (<10 dph) 

were observed to identify the putative mother. Once identified, the mother, 

offspring, and their nest box were placed in a cage within a sound-attenuation 

chamber (Eckel Acoustics), either as a single-family group, or, in a few rare 

instances, two adjacent cages of females with siblings were placed in the same 

chamber. Some breeding pairs were also isolated before laying a clutch (n = 3). 

In these instances, the adult male was left in the sound-attenuation chamber until 

the fledglings were ~13 dph. The remaining fledgling were removed from the 

breeding colony by 13 dph (range = 5 – 17 dph), which is well before the putative 

opening of the critical period for song learning (~20 – 25 dph). Birds were 

confirmed to be male via sex determination PCR at ~22 dph. By ~30 dph, most 

birds were isolated from their siblings and mom (range = 29 – 39 dph; n = 2 birds 
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that were >38 dph; most birds were 29 – 31 dph) and placed in a new cage and 

sound-attenuation chamber along with an unrelated adult companion female. An 

omnidirectional microphone (Countryman) was placed in the chamber and song 

was continuously recorded for the remainder of the experiment using Sound 

Analysis Pro (Tchernichovski et al., 2000). 

For microdialysis subjects, a total of 20 birds were successfully treated 

with FAD or aCSF (n = 5 subjects per hemisphere per treatment). An additional 

eight subjects experienced non-health related technical issues during 

microdialysis (e.g. clogged microdialysis probe) that resulted in them being 

prematurely disconnected but retained as surgery control subjects (‘cannula’-only 

subjects). One of these failed microdialysis subjects was deprived of any tutoring 

or adult male song until after 131 dph and served as an isolate control subject.  

Timeline  

Systemic 

For systemically-treated subjects, birds were co-housed with an adult 

companion female throughout the entire experiment. Tutoring began at 40 dph 

(see Tutoring regiment) and was immediately followed by oral administration of 

the assigned treatment. Tutoring continued every other day for 20 days (i.e. 10 

days of total tutoring), ending at 60 dph. Peripheral FAD treatment suppresses 

E2 synthesis for up to 48 hours (Wade et al., 1994). Thus, there was one 

‘washout’ day without any treatments between each tutoring session. Birds were 
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returned to group housing at 131 dph, and after at least 6 weeks (~196 dph), 

were re-captured to record song and terminal electrophysiology recordings. 

Microdialysis 

Guide cannulae were unilaterally implanted in NCM several days after 

being initially isolated with a companion female. Several days following surgery, 

birds were connected to the microdialysis apparatus in a new sound-attenuation 

chamber without any companion birds. One day later, daily tutoring began for two 

to three days. After the last tutor session, birds were disconnected from the 

microdialysis setup and placed in a sound-attenuation chamber with an adult 

female companion bird in an adjacent cage. Companion females were switched 

every two weeks. Birds were returned to a group setting (all-male aviary in 

breeding room, or in a mixed-sex sound-attenuation chamber in same-sex cage) 

at 131 dph. After at least 6 weeks had elapsed, birds were returned to a sound-

attenuation chamber for follow-up song recording and subsequent 

electrophysiology experiments. After electrophysiology recordings, birds were 

sacrificed, and brains were extracted for future sectioning and histological 

examination. 

Sex determination 

Zebra finches begin to develop sexually dimorphic plumage at ~30 - 40 

dph. Therefore, we used established methods (Griffiths et al., 1998) as we have 

previously described (Chao et al., 2015; Vahaba et al., 2017) to determine 

juvenile birds’ sex. Briefly, DNA for sex determination PCR was extracted from 
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whole blood obtained from the ulnar vein typically at ~22 dph (median age = 22 

dph; range = 18 – 30 dph). Identified males were retained for the experiment, 

whereas females were returned to their original breeding aviary along with their 

mother once the youngest male fledgling reached ~30 dph. 

Pharmacological inhibition of aromatase 

For systemic experiments, birds were fed 30 µL of either saline (0.9% 

NaCl in ddH20) or FAD (1 mg/mL in 0.9% NaCl) immediately following tutoring 

cessation. This dose is similar to previous studies that demonstrate significantly 

reduced aromatase activity and/or estradiol levels in zebra finches (Wade et al., 

1994; Saldanha et al., 2000; Saldanha et al., 2004; Remage-Healey et al., 

2010b; Rensel et al., 2013). Microdialysis subjects were retrodialyzed with 

artificial cerebrospinal fluid (aCSF) and 100 µM FAD in aCSF prepared as in 

previous experiments (Remage-Healey et al., 2008; Remage-Healey et al., 

2010b; Remage-Healey et al., 2012; Chao et al., 2015).  

In Vivo Microdialysis 

Surgery 

A unilateral CMA-7 microdialysis guide cannula with obdurator (CMA 

Microdialysis, CMA 7, ref. no. P000138) was implanted several days after 

isolation with a companion female (median age = 39 dph; range = 35 – 47 dph), 

as in previous studies (Remage-Healey et al., 2008; Ikeda et al., 2014; Chao et 

al., 2015). Birds were food deprived 30 minutes prior to surgery, and then 

received an intramuscular injection of Equithesin (30 – 40 µL, typically). Twenty 
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minutes later, birds were swaddled in a Kim wipe, and placed atop a heating pad 

and secured via ear bars at 45° to our custom surgical stereotaxic apparatus 

(Herb Adams Engineering). Head feathers were removed and a 20 µL 

subcutaneous injection of 2% lidocaine was administered underneath the scalp, 

which was subsequently resected to expose the outer layer of skull. The 

midsagittal sinus bifurcation (MSB) was then identified and used as a 0-point 

anatomical reference. A unilateral fenestra was then made over one hemisphere 

of NCM (coordinates: rostral = 1.20 mm, lateral = ± 0.90 mm), and the dura was 

carefully resected. A CMA-7 guide cannula with obdurator was then descended 

approximately 1.0 mm ventral into the proximate region of NCM (ventral range of 

NCM at this coordinate is 0.80 – 1.40 mm). The guide cannula was secured 

using cyanoacrylate and dental cement, and the exposed scalp and incision area 

sealed with cyanoacrylate. Birds recovered on a heating pad in a cage with ad 

libitum food and water until awake, after which they were transferred back to their 

sound-attenuation chamber in a separate cage from the companion female. 

Acute neural injury induces glial aromatase production in birds, with 

aromatase responses peaking at 72 hours, and persisting up to six weeks after 

insult (Peterson et al., 2004; Wynne et al., 2008; Balthazart and Ball, 2013). To 

reduce the confound of injury-induced aromatase upregulation from the guide 

cannula surgery, birds were given at least three days to recover prior to starting 

microdialysis (median = 4 days; range = 3 – 5 days) to allow for injury-induced 

glial aromatase levels to subside (Saldanha et al., 2013).  
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Microdialysis 

After the recovery period, birds were connected to the microdialysis 

apparatus in a new sound-attenuation chamber. The obdurator was replaced with 

a CMA-7 microdialysis probe (1 mm membrane length, CMA Microdialysis, ref. 

no. P000082), which was then connected to a dual-channel microdialysis swivel 

(375/D/22QM; Instech Labs) via fluorinated ethylene propylene (FEP) inlet and 

outlet tubing. Once the bird was connected, aCSF was dialyzed at a rate of 2 

µL/min by a syringe pump located outside of the chamber (PHD 1000, Harvard 

Apparatus). After being hooked-up, all birds were observed to ensure they were 

healthy as evidenced by eating, drinking, and the ability to comfortably navigate 

the cage. Dialysate samples were collected every hour during the day (~09:00 - 

~18:00 pm), yielding ~120 µL of dialysate per sample. Perfusate was dialyzed at 

a rate of 2 µL/min for the entire duration of the microdialysis experiment. Several 

hours after the final tutor session, FEP tubing was disconnected and birds were 

returned to a sound-attenuation chamber in a separate cage alongside an adult 

companion female. As described in similar studies (London and Clayton, 2008), 

guide cannulae eventually detach after experiments as the skull develops and 

expands, without any obvious deleterious health effects, typically 12 days after 

the last day of microdialysis (range = 6 – 38 days post-final microdialysis day; in 

one case, this did not occur until 154 days after microdialysis). 

Tutoring regimen  

All birds were naïve to song before the tutoring period. After tutoring, all 

birds were returned to an individual sound-attenuation chamber with an unrelated 
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adult female companion in an adjacent cage. Including a companion female is 

atypical for most experimental studies of song learning in the lab, and there is 

some evidence to suggest that adult females may impact song development in 

juvenile male zebra finches (Kojima and Doupe, 2011) and cowbirds (King et al., 

2005). However, we opted to include a companion female as isolating subjects is 

less naturalistic for zebra finches (a highly gregarious songbird), and likely a 

great deal more stressful for developing subjects.  

Passive audiovisual tutoring playback  

In an initial pilot experiment, we were curious whether an automated 

passive playback tutoring design would enable accurate song learning/imitation 

in adulthood, as used in other song tutoring studies (Deshpande et al., 2014; 

Chao et al., 2015). Similar early isolation procedures as with the systemic and 

microdialysis subjects were used on a separate set of birds (n = 8). Otherwise 

unmanipulated subjects were isolated from their mother and siblings ~37 dph, 

and daily tutoring began at 42 dph until 47 dph (5 sessions total). Tutoring began 

at ~10:00 each day and lasted for one hour. During the tutoring session, a 60-

minute tutoring video was played on a USB-powered LCD monitor (Lilliput 7-in) 

alongside song broadcasted via an adjacent speaker (Sony; model # SRS-

TP1WHI). The video and song were obtained from an adult male zebra finch 

singing directed song to a female. At 48 dph, birds were reunited with an adult 

female companion and kept in isolation until 111 dph, after which time they were 

returned to a mixed-sex aviary. Song was recorded throughout the entirety of the 

experiment. Overall, birds tutored with passive audiovisual methods produced 
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poor copies of the tutor song (n = 6; mean ± SEM; similarity = 41.09% ± 0.07%; 

range = 23.37% - 64.98%), likely due to zebra finches requiring active/self-

solicited learning (e.g. operant tutoring) and/or social instruction (reviewed in 

Derégnaucourt, 2011). Therefore, all remaining subjects were exposed to a 

hybrid live-tutoring with passive song playback of that tutor that yielded more 

reliable tutor song imitation. 

Live tutoring with audio playback – systemic subjects 

Audio visual tutoring methods did not yield successful tutor imitations. 

Therefore, we opted for a tutoring paradigm that included a live-male tutor 

alongside passive audio playback as in London and Clayton (2008). Unlike some 

songbird species that can learn song from passive audio playbacks (e.g. Thorpe, 

1958; Marler and Peters, 1988), zebra finches require either operantly-evoked 

playbacks or social instruction (Tchernichovski et al., 2001; Derégnaucourt, 

2011; Deregnaucourt et al., 2013). We developed a tutor playback that combined 

passive audio playback alongside a live adult male. While operant playback has 

been used successfully to tutor zebra finches, we wanted to target the post-

tutoring period with higher temporal precision. Operant training is pupil initiated 

and can span a long time period, whereas a controlled, timed playback allowed 

us to target the period immediately after training (i.e. the putative auditory 

memory consolidation period). To that end, we first identified a non-breeding 

adult male from our colony that was vocally active, and sang in the presence of 

an observer. The tutor was placed in a sound-attenuation chamber with an adult 

female and female-directed song was recorded, from which a 60-minute tutoring 
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playback file was created. The same tutor playback and adult male was used for 

all systemically-treated subjects, as well as several of the microdialysis subjects 

(n = 22). After the original tutor perished, a new adult male was recruited, and a 

similar one-hour tutor playback file was created and presented to the remainder 

of subjects (n = 15). 

The tutor playback file consisted of a 12-minute clip with 40 unique song 

bouts that was repeated five times. Each song bout contained 2 - 8 motifs, and 

included introductory notes. The 12-minute clip was assembled from 12 

individual 1-minute blocks, where each block contained 30 seconds of song (4 – 

5 song bouts per song period, each separated by 5 seconds of silence) followed 

by 30 seconds of silence. The final tutoring playback file was amplified to ~70dB 

(A-weighted) and bandpass filtered at 0.3 – 15 kHz (Adobe Audition), and played 

through a portable speaker (Sony, model# SRS-TP1WHI) placed inside the 

sound-attenuation chamber. 

The tutor was placed in an individual cage and kept in a sound-attenuation 

chamber with other adult zebra finches at least 24 hours before the day of 

tutoring. On the day of tutoring, an experimenter placed the tutor cage beside the 

pupil’s cage. After a 10-minute acclimation period without any song playback, the 

tutoring playback recording began. Immediately after the end of the tutor 

playback file, the tutor was removed from the pupil’s chamber. 
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Bioacoustic analysis 

Automated song analysis 

Percent similarity, accuracy, and % sequence similarity was analyzed 

using SAP (Tchernichovski et al., 2000). Ten motifs of the tutor song were each 

compared to ten motifs of each pupil’s song from 130 dph using default settings 

for asymmetric mean values, yielding 100 comparisons per subject. Similar 

methods were used for measuring Weiner entropy (WE) and entropy variance 

(EV) across development in systemic subjects. As only half of the systemically-

treated subjects produced song pre-tutoring (n = 3; 1 FAD subject and 2 saline 

subjects), we averaged pre-tutoring WE and EV across all subjects to compare 

with relative to 49 dph, which was the first day all subjects produced song. 

Manual song similarity analysis 

In addition to automated song similarity methods, we also measured the 

number of tutor syllables copied by each subject and the quality of each copy. 

Coded and randomized motifs were qualitatively analyzed on a syllable-by-

syllable basis as being either ‘good’, ‘poor’, or ‘not available’ relative to the tutor 

song by three experimenters blind to treatment conditions and subject 

identification. We confirmed that raters agreed across multiple dimensions by 

performing inter-rater reliability measurements using an unweighted Fleiss’s 

Kappa. Raters were in excellent agreement in assessing syllable accuracy (K = 

0.563, p < 0.001), assessing the syllables pupils were likely imitating (K = 0.657, 

p < 0.001), and on the total number of syllables copied from a tutor by a pupil (K 
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= 0.455, p < 0.001). Moreover, raters’ intra-reliability was similarity high: raters 

agreed on 60.46% of syllable accuracy, 65.12% on pupil syllables that reflect the 

tutor syllable, and 58.14% on both the accuracy and imitated syllable in the 

pupil’s song. Further, raters’ similarity scores were well-matched to the SAP 

measurements: there was a significant positive correlation between all raters 

visual similarity scoring and SAP’s % similarity measurement (r(97) = 0.75, p < 

0.001 ; Fig. 12C).  

Singing rate 

An experimenter blind to treatment conditions measured the daily number 

of song bouts and their length for the entire pre-tutoring period (3 – 5 days pre-

tutoring), tutoring period (10 days; tutor-off days), and every 5 days after the last 

day of tutoring until 130 dph (14 days). An individual song bout was defined as 

being at least 1 s in total duration and considered unique if 500 ms of silence 

elapsed between singing periods. Song bouts were analyzed for one 3-hour 

period per analyzed day (14:00 – 17:00). These methods were adapted from 

previous studies measuring song rate (Meitzen et al., 2007; Aronov et al., 2008; 

Meitzen et al., 2009; Alward et al., 2013). 

Adult song plasticity 

In a subset of birds (n = 23), we compared birds’ own song at 130dph 

(putative closure of the critical period for song learning) and song after being 

exposed to other adult male song (>6 weeks post-130 dph return). We used 

simple qualitative measurements to assess whether song had changed (either 
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‘yes’ or ‘no’ based on visual comparisons of several song files from each time 

point) instead of more thorough bioacoustic analyses as treatment did not appear 

to affect the likelihood of changing adult song (see Results), which was the main 

question of the experiments.  

Behavior 

Female two-choice song phonotaxis 

Female songbirds use song to evaluate a potential mate (Zann, 1996; 

Tomaszycki and Adkins-Regan, 2005; Holveck and Riebel, 2007). Therefore, in 

addition to measuring song similarity, we also tested whether less subtle song 

features were affected by treatment by measuring song preference in adult 

female zebra finches. A 13” x 10” cage was placed in the center of a sound-

attenuation chamber alongside speakers set on either side of it. Three ground-

level perches were placed in the left- and right-most extreme side of the cage 

floor. A piece of cardboard cage matting was placed on the cage floor and 

divided into quarters with colored tape: left, left of middle, right of middle, and 

right. A non-breeding adult female zebra finch from our aviary (N = 12) was 

placed in the two-choice cage and isolated for ~24 hours before the playback 

experiment began to increase salience of the future song playback. On Day 2, a 

30 min song file was presented starting at ~13:00. The song file consisted of a 2-

minute clip repeated 15 times. The first minute of the 2-minute clip contained 

adult song solely from one FAD or saline bird, whereas the second minute of the 

2-minute clip contained song from only one bird of the opposite treatment 
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condition. Each 1-minute clip included 5 s of song, followed by 5 s of silence, 

which was repeated 4 times (40 s total), and followed by 20 s of silence (60 s 

total) played on one side of the speakers. The 1-minute clip of the second bird 

was broadcasted on the opposite speaker in a similar manner. The same 2-

minute clip was repeated 15 times (30 mins total). On Day 3, a different playback 

file was played at a similar time (~13:00) with new song stimuli played on 

opposite speakers compared to Day 2 to account for potential side-bias (e.g. if 

FAD song was broadcasted on the left speaker on Day 2, a new FAD song was 

broadcasted on the right speaker on Day 3). Females were returned to the aviary 

after the cessation of Day 3 playbacks. Birds were excluded from analysis if they 

spent the entire time in the middle/neutral zone (one bird was excluded from 

analysis from both days, and another bird was excluded from just one day of 

analysis). Total time spent near either the FAD or saline side was measured. 

Additionally, a FAD preference ratio was calculated similar to Remage-Healey et 

al. (2010b): 

 

 𝐹𝐴𝐷 𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 =  
∑ 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑛𝑒𝑎𝑟 𝐹𝐴𝐷 𝑠𝑝𝑒𝑎𝑘𝑒𝑟

∑ 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑛𝑒𝑎𝑟 𝐹𝐴𝐷 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 + ∑ 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑛𝑒𝑎𝑟 𝑠𝑎𝑙𝑖𝑛𝑒 𝑠𝑝𝑒𝑎𝑘𝑒𝑟
 

Microdialysis tutoring session behavior 

Pupils who are more ‘attentive’ to the tutor during song learning sessions 

produce more similar copies of the tutor song in adulthood (Chen et al., 2016). 

As such, we explored whether treatment affected pupils’ behavior during tutoring 

sessions. Subjects were videotaped for 3 one-hour periods during each tutoring 

day, including: 1) the hour just prior to tutoring onset; 2) the tutoring period (~70 



 

 105 

mins; 10-minute acclimation period + 60 min audio playback); and 3) the hour 

immediately after tutor offset. Three 10-minute clips per tutoring period for each 

subject were created for future behavioral scoring, including: 1) tutor acclimation 

period; 2) the beginning of tutor playback; and 3) 20 – 30 mins into the tutor 

playback period. Videos were scored for numerous behaviors by an experimenter 

blind to subjects’ treatment conditions using JWatcher (Blumstein and Daniel, 

2007). Behaviors quantified included: events (eating; drinking; perch hops; 

grooming/preening; jumps; flights; feather ruffling; head scratching), and states 

(resting/sleeping; tutor zone; outside of tutor zone; not in view). 

Electrophysiology 

Surgery 

As others have reported (e.g. London and Clayton, 2008), guide cannulae 

implanted during development eventually dissociate from the skull, and the 

wound heals normally (see Methods), which allowed us to perform 

electrophysiology recordings from formerly dialyzed birds in adulthood.  Surgical 

methods for the electrophysiology experiments were similar to previous 

procedures (Remage-Healey and Joshi, 2012; Ikeda et al., 2015; Vahaba et al., 

2017; Krentzel et al., 2018), the main difference being a lack of an implanted 

microdialysis probe in the current experiment. At least six weeks following birds 

being returned to the aviary (median age on day of surgery = 227 dph, range = 

158 – 526 dph), birds were recaptured, placed in a cage with a companion adult 

female, and song was recorded. On the day of the surgery, birds were initially 
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food deprived for 30 minutes. Afterwards, an intramuscular injection of Equithesin 

was administered, and 20 minutes later, birds were swaddled in a Kim wipe, and 

placed atop a heating pad and secured via ear bars to a custom surgical 

stereotaxic apparatus (50° head angle). The bird’s beak was opened and placed 

in a beak holder. Once the bird was secured, head feathers were removed, and a 

20 µL subcutaneous injection of 2% lidocaine was administered underneath the 

scalp, which was subsequently resected to expose the outer layer of skull. The 

MSB was then identified and used as our 0-point anatomical reference. A 

positioning needle was placed over the MSB, and adjusted to bilaterally mark 

NCM (rostral: -1.4 mm; lateral: ± 1.1 mm) and HVC (lateral: ± 2.40 mm). A piece 

of silver wire was inserted between the skull leaflets over the cerebellum to serve 

as a reference ground. A custom-fabricated metal head-post was then affixed 

above the beak and skull using dental cement and cyanoacrylate, followed by 

sealing the exposed scalp with cyanoacrylate. After surgery, birds were placed 

on heating pad within a recovery cage and provided with ad libitum food and 

water. Once birds awoke, they were returned to their sound-attenuation chamber 

in a separate cage from the companion female. 

Anesthetized extracellular recordings  

Extracellular, multiunit electrophysiological recordings were obtained from 

NCM and HVC in anesthetized subjects (n = 21 birds [aCSF = 8 birds; FAD = 8 

birds; cannula = 5 birds]; single-units x treatment x region: aCSF = 20 HVC units; 

49 NCM units; FAD = 31 HVC units; 48 NCM units; cannula = 14 HVC units; 18 

NCM units) using Spike2 (version 7.04, Cambridge Electronic Design) at a 
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sampling rate of 16.67 kHZ, bandpass-filtered at 0.3 – 5 kHz. On the day of the 

experiment, birds were starved for 30 mins, followed by three intramuscular 

injections of 20% urethane on alternating sides of pectoral muscle (~100 µL total; 

~33 µL per injection). Injections were administered every 45 minutes. Once 

anesthetized, birds were brought up to the recording room, wrapped in a Kim 

wipe, placed on a heating pad, and affixed to a custom head-post stereotaxic 

apparatus. The outer- and inner-leaflet of skull and dura was then exposed over 

the HVC and NCM of one hemisphere. A drop of silicone oil was placed over the 

exposed brain to prevent the tissue from drying out. Individual carbon-fiber 

electrodes (CarboStar-1; Kation) were advanced into the proximate region of 

NCM and HVC based on: 1) anatomical location (~0.80 – 1.40 mm ventral; and 

~0.50 mm ventral, respectively); and 2) characteristic spontaneous- and 

stimulus-evoked firing rates. In anesthetized adult songbirds, HVC preferentially 

responds to playbacks of birds’ own song (BOS) (Margoliash, 1983, 1986). As 

such, we played BOS along with other songs in our search stimuli set (see 

below) and used a combination of characteristic spontaneous activity and neural 

responses to BOS as an indication of placement within HVC. After a completed 

playback trial, electrodes were advanced 100 – 150 µm dorsal/ventral along the 

same track, and, if the region-specific characteristic firing persisted, a new 

recording was obtained. Once a track was past anatomical limits and/or ceased 

to display characteristic firing patterns, an electrolytic lesion presented at the 

most recent site for future anatomical confirmation. After one hemisphere was 

complete, the contralateral hemisphere was exposed and recorded. At the end of 
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the experiment, birds were rapidly decapitated, and their brains were extracted 

and placed in a 20% sucrose-formalin solution for future sectioning and histology. 

In addition to recording from successful subjects (i.e. aCSF and FAD treated 

subjects), we also recorded from subjects that whose microdialysis cannulae 

became non-functional during the tutoring experiment. We present these data as 

a visual comparison as surgery controls (noted as ‘Cannula’ subjects) but due to 

the variability for microdialysis failure in these subjects, we omitted them from our 

statistical model. 

Auditory stimuli and playback 

All stimuli were adjusted to ~70 dB (A-weighted) and bandpass filtered to 

0.3 – 15 kHz (Adobe Audition). Two sets of stimuli were used during the 

recordings. A search set was composed of two unique conspecific songs (i.e. 

zebra finch; CON), birds’ own song (BOS), reverse BOS (REV-BOS), and white 

noise (WN). The experimental set was composed of two novel CONs, BOS, 

REV-BOS, tutor’s song (TUT), reverse TUT (REV-TUT), and WN. Search stimuli 

were presented manually by the experimenter to confirm putative NCM and HVC 

sites, whereas the experimental set were played automatically and randomized 

via a custom written script in Spike. For experimental playbacks, each stimulus 

was pseudorandomly played once per block, with a total of 20 blocks being 

presented for each playback period. Stimuli were separated by a 10 s inter-

stimulus interval ± 0 - 2 s of random time.  
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Single-unit spike sorting 

Individual single units were sorted using default parameters in Spike2 

(v.7.04, Cambridge Electronic Design; as in Vahaba et al., 2017). Units were 

retained for analysis if they: 1) were distinctly clustered in a principal component 

analysis space (apart from noise and other units); 2) had an interspike interval of 

> 1 ms; and 3) were auditory responsive by visual inspection of the peristimulus 

time histogram and raster plot. 

Data analysis 

Single-unit electrophysiology recordings were analyzed using similar 

methods as in Vahaba et al. (2017). Briefly, spontaneous firing rates were 

defined as the total number of waveform events (spikes) occurring in a 2-second 

period prior to the onset of an auditory stimulus, whereas stimulus-evoked firing 

was defined as the number of spikes during a 2-second window starting at the 

onset of an auditory stimulus. The total number of spikes per stimulus were 

divided by the number of stimulus iterations to yield firing rates (Hz). Firing rates 

were also z-transformed to normalize data and account for variability across 

subjects and units using the following equation: 

𝑍‒ 𝑠𝑐𝑜𝑟𝑒 =
𝑆̅ − 𝐵̅

√𝑉𝑎𝑟(𝑆) + 𝑉𝑎𝑟(𝐵) − 2𝐶𝑜𝑣𝑎𝑟(𝑆, 𝐵)
 

Where S and B represents the number of stimulus-evoked and 

spontaneous spikes, respectively; 𝑆̅ and 𝐵̅ represent the mean number of 

stimulus and spontaneous spikes for a given stimulus.  
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We also analyzed stimulus selectivity using d prime (d'; Green and Swets, 

1966), a psychophysics metric of discriminability used for assessing neural 

responses to a given stimulus relative to a different stimulus (e.g. Bauer et al., 

2008; Remage-Healey and Joshi, 2012; Moseley et al., 2017), using the following 

equation: 

𝑑′𝐴 − 𝐵 =  
2(𝑅𝑆[𝑆𝑇𝐼𝑀𝐴] − 𝑅𝑆[𝑆𝑇𝐼𝑀𝐵])

√𝜎2 [𝑆𝑇𝐼𝑀𝐴] +  𝜎2[𝑆𝑇𝐼𝑀𝐵]
 

Where RS is the response strength (mean stimulus-evoked firing rate 

subtracted from the mean spontaneous firing rate), STIMA represents the focal 

stimulus of interest, STIMB represents the relative stimulus to compare other 

stimuli to, and 𝜎2 is the RS variance for a given stimulus. WN was used as the 

comparison stimulus for NCM recordings, and CON1 for HVC recordings (see 

Results).  

Adult Habituation Experiment 

Subjects 

A separate set of otherwise untreated adult male zebra finches (n = 22) 

were removed from our single-sex aviary (median age on day of 

electrophysiology recording = 274 dph; all males at least 120 dph) and placed in 

a cage within a sound-attenuation chambers alongside an adult companion 

female while song was recorded using Sound Analysis Pro (Tchernichovski et al., 

2000). Birds were kept in the same cage until the day of the surgery which 

typically occurred after 3 days of isolation (mode = 3 days isolation pre-surgery; 

range = 0 – 6 days). 
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Surgery  

The surgery methods used for this experiment were nearly identical to the 

one above. The main difference was that the skull was exposed solely over both 

hemispheres of NCM. After bilateral marking of NCM (coordinates = rostral: -1.20 

mm; lateral = +/- 1.10 mm), the outer and inner leaflets of skull were carefully 

removed, leaving the dura intact as much as possible. Following silver wire 

implantation, a silicone dural sealant (Kwik-Sil, World Precision Instruments 

[WPI]) was placed over the exposed skull. 

Auditory Training & Drug Administration 

Awake birds were placed in a custom-fabricated restraint tube and brought 

into the recording room. After being secured to the head-post stereotaxic 

apparatus, 200 iterations of a single adult male zebra finch song (two motifs 

within one song bout, including intro notes) was presented (TRAIN) with a 12 s 

ISI. Training lasted 46 minutes in total. Immediately after the last TRAIN iteration, 

~100 nL of either artificial cerebrospinal fluid (aCSF) or 100 µM FAD in aCSF 

were locally administered via pre-loaded glass micropipettes broken back to ~24 

µm internal diameter, which were left in place for >2 minutes following injection to 

prevent dispersal. This volume has been successfully used in previous studies 

and appears to disperse across the extent of NCM (Tremere et al., 2009; 

Remage-Healey and Joshi, 2012). Pipettes were successively descended ventral 

1.10 mm in NCM, followed by pressure-injections (Pneumatic PicoPump, PV830; 

World Precision Instruments).  Following drug treatments, the exposure was 
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sealed with a lower tear-strength silicone adhesive (Kwik Cast), cured, and then 

the bird was returned to his cage. 

Electrophysiology 

Awake, restrained birds were brought back to the recording room for 

electrophysiology recordings 6 or 20 hours after training. Birds were non-

anesthetized as habituation is not typically observed in anesthetized songbirds 

(Remage-Healey et al., 2010b), but see (Ono et al., 2016). Parylene-coated 

tungsten electrodes (0.5 or 2MΩ; A-M Systems) were descended bilaterally into 

the approximate drug injection region from Training. Recordings were amplified 

using an A-M system amplifier and obtained through a connected 1401 board 

and Spike2 (CED). A set of stimuli were first presented to the bird search stimuli 

to confirm the recording site displayed NCM characteristic-like auditory 

responses. After site confirmation, experimental stimuli were presented to the 

bird while neural activity was continuously recorded. Each recording site was 

electrolytically lesioned following playback. Recording sites/exposures were once 

again covered with silicone adhesive, and birds were either sacrificed via rapid 

decapitation immediately after recordings (n = 8) or 2-3 days later (n = 15) to 

allow for lesion sites to become more pronounced and readily observable in 

sectioned tissue (e.g. allow time for gliosis). Extracted brains were placed in 20% 

sucrose-formalin for attempted future sectioning and histological verification of 

recording and drug site via Nissl stain. 
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Auditory Stimuli & Playback 

All auditory stimuli were presented at ~70 dB. Search stimuli consisted of 

a unique set of non-familiar conspecific song not used in the experimental stimuli 

set. Experimental playback stimuli presented during neural recordings included 

the trained conspecific song (TRAIN) and its reverse (REV-TRAIN), three novel 

conspecifics (CON1, CON2, CON3) and one reversed (REV-CON3), bird’s own 

song (BOS) and its reverse (REV-BOS), and white noise (WN). To ensure birds 

were unfamiliar with the song presented, several stimuli were graciously adapted 

from an online zebra finch song repository 

(http://people.bu.edu/timothyg/song_website/). We also used two songs from 

birds in our own breeding colony as they had been removed long before the 

experiment began. Birds were presented with 25 consecutive iterations of each 

experimental stimulus with a 12 second ISI in blocks (e.g. 25 CON1 playbacks, 

then 25 CON2 playbacks, then 25 WN playbacks, etc.), as in previous 

experiments (e.g. Yoder et al., 2012). 

Analysis 

Analyses were inspired from previous studies with minor changes (e.g. 

Yoder et al., 2012). Briefly, multi-unit recordings were analyzed root mean 

squared (RMS) in Spike2 for the stimulus and baseline period. The stimulus 

period included the entire duration of playback stimulus + 100 ms after offset, 

whereas the baseline period was defined as a 500 ms period preceding stimulus 

onset. Mean baseline RMS was derived across the entire recording period, 

whereas mean stimulus RMS was calculated for each individual stimulus. Data 

http://people.bu.edu/timothyg/song_website/
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were filtered on a per trial (i.e. stimulus repetition) basis. First, any trial exceeding 

two-times the mean RMS for either baseline or stimulus RMS (separately) was 

excluded. After, any trial above/below 2.5 standard deviations was then excluded 

for both stimulus and baseline RMS. Finally, a grand mean baseline RMS 

(derived from the entire recording period; across stimuli) was subtracted from 

stimulus RMS values, yielding an adjusted RMS. Slope was derived from trials 1 

– 25 using the lm() function via the stats package in R.  

Statistical analysis 

 
All statistical analyses were performed using R (R Core Team, 2018) via 

RStudio (RStudio Team, 2016) using several packages, including: tidyverse; plyr; 

sciplot; irr; corrplot; data.table; and Hmisc. Histology data (% DAPI; cell density) 

were analyzed using a two-way ANOVA (NCM subregion X phase). Singing rates 

were analyzed using a two-way ANOVA (treatment X time of day). Pearson’s 

correlation was used to analyze changes in Weiner entropy relative to eventual 

song similarity at 130dph. One-way ANOVAs were employed to assess systemic 

treatments effect on song learning outcomes (separate analyses for per cent 

similarity, sequential similarity, and accuracy). Female phonotaxis data were 

analyzed using two-way ANOVAs (treatment X trial day). For microdialyzed 

subjects, automated and manual song similarity analyses were analyzed using a 

two-way ANOVA (treatment X hemisphere). Inter-rater reliability for manual song 

similarity scoring was analyzed using an unweighted Fleiss’s kappa. The 

comparison between automated (SAP) and manual (visual) song similarity was 
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measured using Pearson’s correlation. Tutoring behavior was analyzed using a 

mixed-effects ANOVA (tutoring day [within] X treatment [between]), and a 

correlation matrix adjusted for multiple comparisons (adjusted α = 0.00048). For 

behavioral analyses, we restricted our data to the first 10 minutes of tutoring for 

only days 1 and 2 to be consistent as some subjects received three days of 

tutoring. A chi-squared was used to compare distributions of adult song plasticity 

across treatment. For electrophysiology measurements, a three-way ANOVA 

was employed (treatment X recording hemisphere X stimulus). Finally, for adult 

habituation neural recordings, adaption slopes were compared using two-way 

ANOVAs (treatment type [aCSF/nothing vs. FAD] X stimulus type [familiar vs. 

trained]). All post hoc comparisons were performed using Tukey’s honestly 

significant difference (HSD) test. P-values < 0.05 were considered significant. 

Data from ‘cannula’ subjects were omitted from any statistical model and are 

plotted throughout the manuscript as a visual comparison (see Results). 

Results 

Cell density is region- and age-dependent in developing auditory forebrain 
while aromatase and parvalbumin expression are unchanging 

 
We first sought to confirm the presence of aromatase in NCM across 

development. While previous studies have characterized aromatase expression 

developing songbird brains, both directly (protein: Saldanha et al., 2000) and 

indirectly (Vockel et al., 1988; Jacobs et al., 1999; Saldanha et al., 1999; Chao et 

al., 2015), information on aromatase protein expression specifically within NCM 
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between the sensory and sensorimotor phase of the song learning period has not 

been assessed, to our knowledge. In addition to aromatase, we were also 

curious as to whether transitions between learning phases were associated with 

differences in expression of the calcium buffering-protein parvalbumin. 

Parvalbumin is a a marker for a unique subpopulation of inhibitory interneurons 

(Tremblay et al., 2016), is co-localized with aromatase in NCM (Ikeda et al., 

2017), and its presence often denotes changes in critical period plasticity within 

mammalian visual cortex (Hensch, 2005), as well as songbird song circuits 

(Balmer et al., 2009). We focused solely on males as they were the sex of 

interest for subsequent song and physiology experiments in this study. Although 

we collected both hemispheres of NCM for this experiment, we excluded 

hemisphere as a factor in our statistical model as we were underpowered. 

Qualitatively, we found similar expression of aromatase and parvalbumin across 

both hemispheres of sensory- and sensorimotor-aged subjects (see Tables 1 & 

2). 

We divided our subjects into two age groups reflecting the two different 

developmental song learning phases: sensory- and sensorimotor-aged (20-34 

and 65-71 dph, respectively). Overall, our density measures revealed 

comparable aromatase, parvalbumin, and aromatase-parvalbumin co-expression 

in both dorsal and ventral NCM across development (aromatase: F(1, 31) = 2.458, 

p = 0.127; parvalbumin: F(1, 31) = 0.035, p = 0.854; aromatase-parvalbumin: F(1, 31) 

= 0.003, p = 0.957), age (aromatase: F(1, 31) = 2.218, p = 0.147; parvalbumin: F(1, 

31) = 0.277, p = 0.602; aromatase-parvalbumin: F(1, 31) = 0.339, p = 0.565), without 
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any significant interactions between age and hemisphere (aromatase: F(1, 31) = 

0.048; parvalbumin: F(1, 31) = 0.751; aromatase-parvalbumin: F(1, 31) = 0.757; p > 

0.3 for all tests; Table 1). 
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Interestingly, we observed a significantly higher DAPI expression in dorsal 

NCM compared to ventral NCM (F(1, 31) = 8.128, p = 0.008), as well as higher 

DAPI expression in sensory-aged animals compared to sensorimotor-aged 

subjects (F(1, 31) = 6.291, p = 0.018; Fig. 9C,D). No significant interactions 

emerged between region and age (F(1, 31) = 0.587, p = 0.449). Similar results 

were found when we normalized counts for the markers of interest (aromatase 

and parvalbumin) to the relative amount of DAPI to account for subject and 

image variability (Fig. 9A,B; see Tables 3 & 4 for all descriptive data for density 

and % of DAPI measurements). Overall, these findings confirm that aromatase 

and parvalbumin are present in the developing auditory forebrain, and that NCM 

appears to undergo cellular pruning as birds develop while maintaining subregion 

differences in cell density.  
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Figure 9: Changes in neuronal density and aromatase and parvalbumin 
expression in NCM across development. 
A, Aromatase, parvalbumin, aromatase parvalbumin co-expression, respectively, 
from an exemplar sensory-aged male bird (26 dph; right hemisphere; ventral 
NCM). Pseudo-colored: yellow, aromatase; cyan, DAPI; magenta, parvalbumin. 
Each image from a single slice of a z-stack taken at 60x magnification. Scale bar 
= 30 µm. White arrowheads indicate aromatase and parvalbumin co-expression. 
B, Expression of aromatase, parvalbumin, and aromatase/parvalbumin co-
expression, respectively, relative to the expression of DAPI (%), and parvalbumin 
co-expression relative to total aromatase expression (%). Overall, there are no 
significant differences in expression by age or NCM subregion. Circles = dorsal 
NCM; triangles = ventral NCM; green = sensory-aged birds; orange = 
sensorimotor-aged birds. C, DAPI expression across development; top row: 
sensory-aged bird (25 dph; right NCM); bottom row: sensorimotor-aged bird (71 
dph; right NCM). 10x images taken from a 4 x 4 stitched image. Dorsal and 
ventral NCM images taken from a z-project max intensity 60x image. D, Cell 
density (DAPI expression) by region and age. Dorsal NCM shows higher cell 
density than ventral NCM. Similarly, sensory-aged birds have higher overall cell 
density across subregions compared to sensorimotor-aged subjects. * = p < 0.05; 
** = p < 0.001.
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Song learning is unaffected by global estrogen synthesis inhibition during 
development 

Systemic administration: Birds in this experiment received an oral 

administration of either FAD or saline every other day for 20 days immediately 

following tutoring. Initially, we measured singing rates of systemically-treated 

animals before (<40 dph) and during the tutoring period (40 – 60 dph) as global 

inhibition of estrogen synthesis in adult songbirds reduces song production 

(Alward et al., 2016b). Pre-tutoring, birds sang at comparable rates independent 

of the time of day or future treatment group (treatment: F(1, 13) = 2.466, p = 0.140; 

time of day: F(1, 13) = 1.797, p = 0.203; treatment * time of day: F(1, 13) = 0.719, p = 

0.412; Fig. 10A,B). However, during the tutoring period, FAD treatment 

significantly suppressed singing rates (FAD = 63.8 ± 13.6 bouts; saline = 116.0 ± 

14.4 bouts; F(1, 103) = 6.623, p = 0.012; Tukey’s HSD: p = 0.012) independent of 

time of day (F(1, 103) = 0. 222, p = 0. 639) or an interaction between time of day 

and treatment (F(1, 103) = 1.882, p = 0.173; Fig. 10A,B). Interestingly, while initial 

song production was reduced during development, eventual song similarity at 

130 dph (one-way ANOVA (treatment); F(1, 4) = 0.064), accuracy (F(1, 4) = 0.021) , 

and sequential similarity (F(1, 4) = 0.095) were statistically similar when both FAD 

and saline subjects reached adulthood (p > 0.77; Fig. 10D & Table 5). 

Additionally, while FAD birds appeared to exhibit a lower tutor song similarity 

score early in development (49 dph), there was no effect of treatment (F(1, 4) = 

0.427, p = 0.549), nor an interaction of treatment with age (F(4, 16) = 0.569, p = 

0.689). There was, however, a significant increase in song similarity as birds  
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Figure 10: Systemic estrogen synthesis inhibition suppresses song 
production without impacting tutor song copying. 
A, Daily number of song bouts before and across the tutoring/treatment period. 
B, Birds sing at similar rates before treatment/tutoring; however, systemic FAD 
treatment reduces song production (p = 0.012). Circles/orange = saline-treated 
birds (n = 3); triangles/blue = FAD birds (n = 3). C, Song similarity is lowest at 49 
dph despite treatment (effect of age: p = 0.005; * is relative to 49 dph). D, At 130 
dph, tutor song similarity, accuracy, and sequence similarity, respectively, are all 
similar across treatments. E, Change in Weiner entropy at 49 dph (post-tutoring 
day #5) predicts eventual percent song similarity to the tutor at 130 dph, 
independent of treatment (r2 = 0.903; p = 0.004). * = p < 0.05. 

 

reached adulthood (age: F(4, 16) = 5.528, p = 0.005; post-hocs: p < 0.05 for 

49 dph vs. 86 & 130 dph; all other age comparisons non-significant, p > 0.06; 

Fig. 10C). Together, these data show that global estrogen synthesis is required 

for song production and does not impact eventual tutor song imitation. 

Developmental changes (relative to pre-tutoring values) in Weiner entropy 

(WE) and entropy variance (EV) during tutoring predict adult tutor song fidelity 

(Deshpande et al., 2014). Independent of treatment, we tested this relationship 

for birds in the present experiment to assess whether they developed along a 

‘typical’ song learning trajectory. In agreement with the previous report, we found 

a strong, significant positive correlation between change in WE at 49 dph and  
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Table 5: Automated song similarity measurements. 
Values represent mean +/- the standard error of the mean for each song 
similarity metric. 
 

percent song similarity in adulthood (130dph); r(4) = -0.951, p = 0.004, as 

well as a similar significant correlation when we considered entropy variance 

instead of WE (r(4) = 0.863, p = 0.027; Fig. 10E). Therefore, while systemic FAD 

treatment did not impact song learning, developing song was predictive of 

eventual similarity, indicating that our daily treatment regimen did not impair a 

‘normal’ song learning trajectory. 

Female phonotaxis behavior: While song similarity data can provide 

information on how well a bird imitates a model song, there are likely subtle song 

features that are affected by early-life manipulations that may not be captured by 

automated analyses. As adult female zebra finches use courtship song to 

evaluate potential life-long mates (Zann, 1996), we asked whether a females’ 

song preference was impacted by a males’ drug treatment during development. 

We found a significant interaction between treatment and trial day (F(1, 17) = 7.30, 

Method Treatment Hemisphere Subjects

Systemic Saline - 3 78.38  ± 7.13 77.52  ± 3.52 56.01  ± 7.28

FAD - 3 80.66  ± 5.50 78.04  ± 0.79 58.64  ± 4.47

Microdialysis aCSF Left 5 60.71  ± 9.19 74.40  ± 2.07 60.57  ± 3.04

Right 5 63.51  ± 7.53 71.69  ± 2.31 64.17  ± 4.47

FAD Left 5 52.79  ± 9.22 75.74  ± 1.07 68.20  ± 9.04

Right 5 54.15  ± 9.13 74.43  ± 1.37 69.99  ± 8.91

Cannula Left 3 49.12  ± 15.34 69.32  ± 0.91 72.31  ± 14.86

Right 4 64.50  ± 9.70 71.04  ± 1.80 51.50  ± 4.92

Isolate Left 1 24.56  ± - 68.40  ± - 85.01  ± -

Accuracy Sequential matchSimilarity



 

 124 

p = 0.151). Follow-up analyses revealed that on the first day of phonotaxis, 

females spent more time near the speaker broadcasting a FAD-treated birds’ 

song (p = 0.015), whereas on the second day there was nonsignificant tendency 

for preferring control birds’ song (p = 0.059; Fig. 11A). We also evaluated a ‘FAD 

preference ratio’ for day 1 vs. day 2. Visually, it appears that females initially 

prefer FAD song and then ‘switch’ preferences on day 2, but this was not 

statistically significant (F(1, 8) = 2.958, p = 0.124; Fig. 11B). We also confirmed 

that there was no overall side bias (p = 0.0989) nor inherent preference for a 

specific male’s song independent of treatment (p = 0.557). Thus, systemic 

estrogen synthesis blockade during development did not negatively impact song 

features important for eventual female mate-choice selection. 

Figure 11: Female songbirds temporarily prefer E2-suppressed adult song. 
A, Adult female songbirds spend more time near a speaker broadcasting adult 
song from systemic E2 suppressed males on day 1, but not 2, in a two-day 
phonotaxis experiment (p = 0.015). B, Preference ratios for FAD song relative to 
control song is similar across days. * = p < 0.05. 

Song learning is unaffected by inhibition of local estrogen synthesis in 
NCM during development 

In vivo microdialysis with social + playback tutoring: Systemic treatments 

yielded no effect of aromatase blockade, but leaves open the possibility that 
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temporally-precise, site-directed manipulations within NCM may yield changes in 

auditory memorization. As with systemically-administered subjects, central 

unilateral FAD treatment did not modify eventual tutor imitation, nor did the 

cannulated hemisphere or interaction between treatment and hemisphere affect 

percent similarity (F(1, 16), treatment = 0.965; hemisphere = 0.056; treatment * 

hemisphere = 0.007; p > 0.340), accuracy (F(1, 16), treatment = 1.325; hemisphere 

= 1.277; treatment * hemisphere = 0.157; p > 0.266), or sequence similarity (F(1, 

16), treatment = 0.950; hemisphere = 0.153; treatment * hemisphere = 0.017; p > 

0.343; Fig. 12A & Table 5). Therefore, contrary to our original prediction, 

unilateral central estrogen synthesis blockade in NCM did not impair tutor song 

memorization and eventual imitation. 

Manual song similarity quantification: Whole motif similarity measurements 

via SAP is the conventional method to objectively analyze tutor similarity for 

zebra finches (Tchernichovski et al., 2000). Inspection of spectrograms 

suggested that SAP similarity measurements were not capturing the full extent of 

tutor song similarity (Fig. 12B: high % SAP song similarity for Cannula subject, 

but visually and acoustically dissimilar; opposite issue with aCSF subject). To 

address this, we employed visual song similarity measures in the spirit of early 

songbird bioacoustic research studies that relied solely on visual spectrographic 

assessment (Borror and Reese, 1953; Thorpe, 1954; Eales, 1985). In 

accordance with this match between SAP and when visual scoring methods, 

there were no significant effects for visually-scored song similarity (average 

percent copied) by cannulated hemisphere (F(1, 16) = 0.227, p = 0.640), treatment  
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Figure 12: Song copying is unaffected by central estrogen production 
inhibition via in vivo microdialysis. 
A, 130 dph song similarity, accuracy, and sequence similarity, respectively, are 
all comparable across aCSF- and FAD-treated birds. Cannula ‘surgery controls’ 
are graphed for visual comparison. Orange = aCSF; blue = FAD; grey = cannula; 
circle = left NCM; triangle = right NCM. B, Example song spectrograms and their 
average song similarity % relative to tutor. Letters denote syllables; A’ = partial 
syllable derived from A. Note the seemingly high similarity of both the aCSF and 
FAD motif, yet divergent song similarity scores (aCSF bird = right NCM; FAD bird 
= right NCM; similarity score is averaged across 100 motif comparisons, see 
Methods).  C, Manual song similarity measurements are strongly correlated with 
automated methods; color/shape denotes unique rater (r2 = 0.563, p < 0.001); 
jitter added to reveal overlap. D, As with automated methods, manual song 
similarity scoring reveals comparable tutor song copying across treatments. 
 

(F(1, 16) = 0.561, p = 0.465), nor an interaction between either factor (F(1, 16) 

= 0.074, p = 0.789; Fig. 12D). Therefore, irrespective of bioacoustic assessment, 

unilateral blockade of neuroestrogen production in the auditory forebrain during 
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and immediately after song learning did not impair auditory memorization of the 

tutor song. 

Figure 13: Juvenile male songbirds are similarly attentive to the tutor 
during microdialysis. 
The time a bird spent near a live adult male tutor during in vivo microdialysis is 
similar across treatments, targeted hemispheres, and tutoring day. A, Behavior 
presented is from the first 10 minutes of song playback alongside live male 
presentation (see Methods). Orange = aCSF; blue = FAD; circle = left NCM; 
triangle = right NCM. Tutor preference ratios are similar across treatments. B, 
Correlogram of tutoring behavior and song similarity measurements reveal 
significant correlations (more time spent near the tutor negatively associated with 
time spent away from the tutor; tutor zone time positively correlated with tutor 
preference ration), and novel findings (positive correlation of head scratching and 
drinking); p < 0.0005 (adjusted α; Bonferroni correction). Behavior data 
presented is from the first 10 minutes of tutor playback across days 1 and 2 of 
tutoring. C, Motor activity is statistically similar across treatment and tutoring 
days. 
 

Tutoring behavior: Attention plays a critical role for vocal learning early in 

development (e.g. Chen et al., 2016). Since estrogens can modulate attention in 

rodents (see references in Sommer et al., 2018) we explored whether FAD 

treatment impaired measures of attention during tutoring sessions in a subset of 

subjects (FAD n = 9; aCSF n = 9). Overall, we found no effect of treatment on the 

amount of time pupils spent near the tutor (‘tutor zone’; a proxy for tutor attention) 
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on either tutoring day (F(1, 14); p > 0.190 for main effects and interaction; Fig. 

13A). The time spent near the tutor is one obvious behavior to explore with clear 

predictions about its impact on eventual song copying. However, as there are not 

many quantitative data to our knowledge on pupil behavior during tutoring, we 

also explored whether the other behaviors we scored might also be predictive of 

future tutor song similarity. We generated a correlogram that included all tutor 

session behaviors, as well as song similarity measurements (both visual and 

SAP derived). Overall, there were few significant correlations of interest 

pertaining to song similarity and behavior that emerged (Fig. 13B). 

Another possibility is that FAD treatment may impair locomotion. We 

explored whether two common motor behaviors (jumping and perch hopping), as 

well as time spent resting/sleeping were affected by pharmacological exposure. 

Overall, neither treatment nor tutoring day affected jumping or perch hops (F(1, 14); 

p > 0.158 for main effects and interaction; Fig. 13C); however, birds spent more 

time resting irrespective of treatment on the second day of tutoring, suggesting 

that the novelty of an adult male wanes after the first session (F(1, 14) = 7.938, p = 

0.0137; all other analyses p > 0.808; Fig. 13C). These results suggest that as 

with song similarity, behavior during a social learning session is similarly 

unaffected by unilateral central neuroestrogen synthesis blockade.  

Song changes after exposure to adult male conspecifics: We noticed 

highly aberrant song types in several formerly microdialyzed subjects 

independent of treatment at 131 dph (X2 (N = 23) = 1.189, p = 0.552), which is 

well beyond the putative ‘closing’ of the critical period for song learning and song 
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should be highly stable (Fig. 14). Aberrant songs were always highly variable 

(i.e. not crystallized/stereotyped) at 130 dph and resulted in high stereotypy after 

being exposed to other adult male birds, and typically involved dropping and/or 

adding new syllables (6/8 subjects added, dropped, or modified syllables). These 

results suggest that, in addition to age, experience gates the song learning 

critical period closure, which has been described in other studies on lab-reared 

tutored and isolate zebra finches (Eales, 1985; Morrison and Nottebohm, 1993; 

Jones et al., 1996; Deregnaucourt et al., 2013). 

Figure 14: Song changes in formerly microdialyzed subjects after exposure 
to adult male song at 130 dph. 
A, Spectrogram examples from two aCSF and two FAD microdialysis subjects. 
Top row: song at 130dph; Bottom row: song at 6 weeks+ 130dph after subjects 
were exposed to conspecific adult males. B, Histogram demonstrating that 
treatment had no bearing on whether microdialysis subjects altered their adult 
song after exposure to conspecific males. 

Neuroestrogen suppression in development leads to enhanced neural 
representations of birds’ own song and tutor song in HVC of adults 

In a subset of formerly microdialyzed birds (21 out of 28 birds), we 

obtained neural recordings from two brain regions associated with song learning 
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and tutor memory representation: NCM and HVC. Relative to the implanted 

cannula site, recordings were obtained from both the contralateral and ipsilateral 

hemisphere to the site of microdialysis cannulation (i.e. contralateral = recording 

from non-dialyzed hemisphere; ipsilateral = recording from dialyzed hemisphere).  

NCM: We first explored whether treatment impacted NCM firing 

properties. Spontaneous firing rates were unaffected by recording hemisphere, 

treatment, and there was no interaction between the two factors (F(1, 93) =  0.238, 

0.003, and 0.779, respectively; p > 0.60; Fig. 15A). Contrary to spontaneous 

firing, stimulus-evoked firing was significantly affected by a recording hemisphere 

x treatment interaction (F(1, 651) = 7.938, p = 0.005) as well as there being a main 

effect for treatment (F(1,6) = 4.334, p = 0.038) and stimulus (F(6, 651) = 7.670, p < 

0.001). Follow-up analyses revealed that the stimulus effect was driven mainly by 

an overall lower response to WN (WN < BOS, CON1, CON2, and REV-BOS), 

and a higher response evoked by CON1 (CON1 > REV-TUT; Tukey’s HSD, p < 

0.02 for all stimulus comparison; Fig. 15B). To avoid pseudo-replication 

(Picciotto, 2018), and because of the main effect of stimulus, we opted to perform 

follow-up analyses on just CON1 data for NCM. Follow-up analyses did not yield 

any significant differences between recording hemispheres for stimulus-evoked 

firing in FAD-treated (F(1, 46) = 0.513, p = 0.478) nor aCSF-treated subjects (F(1,47) 

= 0.734, p = 0.396).  

While raw firing rate data are informative, it is also useful to consider 

normalized auditory response rates (z-score) which accounts for recording site 

variability in spontaneous and stimulus-evoked activity (e.g. Vahaba et al., 2017).  
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Figure 15: Single-unit recordings in NCM reveal modest differences in 
auditory responses in adulthood. 
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Representative NCM single-unit recordings from an aCSF and FAD in response 
to presentations of birds’ own song (BOS) and tutor song. Each recording 
includes a song spectrogram (Top), and raster plot (Middle) with corresponding 
peri-stimulus time histogram in 10 ms bins (Bottom) across a 6 second period. 
The same unit is presented for each treatment across the two stimuli. B, 
Spontaneous firing rates were unaffected by developmental microdialysis 
treatment. Orange = aCSF; blue = FAD; grey = cannula; circle = contralateral 
hemisphere (relative to microdialysis site); triangle = ipsilateral hemisphere 
(relative to microdialysis site). C, Stimulus-evoked firing rates were significantly 
lower for WN and overall higher for CON1. A recording hemisphere x treatment 
interaction was significant; however, post hoc analyses limited to CON1 found no 
statistical differences for either treatment. D, Analysis of normalized auditory 
response (z-score) yielded a significant stimulus x recording hemisphere effect: 
contralateral NCM responded less to WN compared to all other stimuli, whereas 
forward conspecific stimuli elicited higher responses in the ipsilateral NCM, 
irrespective of treatment. E, Ipsilateral d’ values relative to WN. BOS selectivity 
was higher in FAD songbirds in the ipsilateral hemisphere. BOS = birds’ own 
song; CON1; CON2 = conspecific song; REV-BOS = reverse bird’s own song; 
REV-TUT = reverse tutor song; TUT = tutor song. * = p < 0.05. 
 

Analyses revealed a significant main effect of stimulus (F(6, 651) = 17.643, p 

< 0.001) and recording hemisphere (F(1, 651) = 12.935, p < 0.001), as well as a 

significant interaction between stimulus and recording hemisphere (F(6, 651) = 

3.051, p = 0.006; Fig. 15C). In contralateral NCM, WN elicited a significantly 

lower z-score compared to all other stimuli (p < 0.001 for all stimulus 

comparisons). In contrast, z-scores were typically higher for non-reversed 

conspecific stimuli in the ipsilateral hemisphere regardless of treatment (CON1 > 

REV-BOS, REV-TUT, TUT, and WN; BOS > REV-TUT and WN; CON2 > REV-

TUT and WN; p < 0.05 for all stimulus comparisons). Overall, the results in NCM 

suggest that irrespective of treatment, forward, conspecific stimuli (i.e. CON1, 

CON2, and BOS) reliably evoke the highest normalized auditory responses in the 

cannulated hemisphere. 



 

 133 

Our initial impetus in recording from microdialyzed subjects was to test 

whether representations of learned stimuli (i.e. BOS and TUT) were different 

based on treatment early in development. To address this question, we 

calculated d prime (d’; see Methods) relative to WN to determine stimulus 

selectivity, as described in previous studies (Adret et al., 2012; Yanagihara and 

Yazaki-Sugiyama, 2016; Moseley et al., 2017). We limited our analyses to TUT 

and BOS as these were the learning-related auditory stimuli of interest that may 

have been impacted by treatment. Because of our earlier findings for auditory 

response profiles, we compared d’ scores separately by recording hemisphere. 

Treatment did not impact overall TUT selectivity for either contralateral (F(1, 14) 

=2.222, p = 0.158) or ipsilateral (F(1, 79) = 2.861, p = 0.095) recording sites in 

NCM. However, FAD subjects demonstrated significantly stronger BOS 

selectivity in the ipsilateral cannulated (F(1, 79) = 6.371, p = 0.014; Fig. 15D), but 

not contralateral hemisphere (F(1,14) = 3.93, p = 0.067; Fig. 16). Taken together, 

unilateral E2 suppression in NCM during development enhances BOS 

representation in NCM relative to control birds. 

HVC: The sensorimotor nucleus HVC contains a population of tutor-song-

selective cells (Volman, 1993; Prather et al., 2008; Vallentin et al., 2016; Moseley 

et al., 2017) and receives E2-sensitive, indirect projections from NCM in part via 

the nucleus interfacialis of the nidopallium (Nif; Remage-Healey and Joshi, 2012; 

Pawlisch and Remage-Healey, 2015). To determine whether suppressing E2 

synthesis in development affected downstream representations of either BOS or 

tutor song, we also recorded from HVC. Baseline firing rates were similar across  
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Figure 16: Contralateral d’ selectivity in single NCM and HVC neurons. 
A, NCM; statistical analyses were performed for TUT and BOS, only (see 
Results). Other stimuli plotted for visual comparison. Irrespective of stimulus, 
responses were significantly higher in aCSF treated subjects in both ipsilateral 
and contralateral NCM. B, HVC; statistical analyses were performed for TUT and 
BOS, only (see Results). Other stimuli plotted for visual comparison. Both TUT 
and BOS selectivity were statistically similar in contralateral HVC. 
 

treatments, recording hemisphere, and no interaction between the two 

factors were found (F(1, 47), p >  0.132; Fig. 17A). For stimulus-evoked firing, 

there was a main effect of stimulus (F(6, 329) = 5.83, p < 0.001) and recording 

hemisphere (ipsilateral > contralateral; F(1, 329) = 10.661, p = 0.001; Fig. 17B). All 

other effects and interactions were non-significant (p > 0.131). Follow-up 

analyses revealed that BOS elicited a significantly higher evoked firing response 

compared to all stimuli except TUT (BOS > CON1, CON2, REV-BOS, REV-TUT, 

and WN; p < 0.05); no other stimulus comparisons were significantly difference. 

As with NCM, we also analyzed normalized auditory response in HVC. 

There was a significant effect of stimulus (F(6, 329) = 10.384, p < 0.001), treatment 

(F(1, 329) = 11.297, p < 0.001), as well as a significant interaction between  
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Figure 17: Tutor song selectivity is elevated in single HVC neurons of 
formerly estrogen-suppressed adult songbirds. 
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A, Representative HVC single-unit recordings from an aCSF and FAD in 
response to presentations of birds’ own song (BOS) and tutor song. Each 
recording includes a song spectrogram (Top), and raster plot (Middle) with 
corresponding peri-stimulus time histogram in 10 ms bins (Bottom) across a 6 
second period. The same unit is presented for each treatment across the two 
stimuli. B, Spontaneous firing rates were similar across treatments. Orange = 
aCSF; blue = FAD; grey = cannula; circle = contralateral hemisphere (relative to 
microdialysis site); triangle = ipsilateral hemisphere (relative to microdialysis site). 
C, Stimulus-evoked firing rates were significantly higher for BOS compared to all 
other stimuli except for TUT. Further, ipsilateral HVC displayed higher overall 
stimulus-evoked firing rates compared to contralateral HVC, independent of 
treatment. D, Analysis of normalized auditory response (z-score) yielded similar 
results as with firing rate; namely, a significantly higher response to BOS over all 
other stimuli independent of treatment, as well as a significantly suppressed 
response to WN compared to CON2 and TUT. E, Contralateral d’ values relative 
to CON1. TUT selectivity is significantly higher in FAD subjects solely in the 
contralateral hemisphere. BOS = bird’s own song; CON1; CON2 = conspecific 
song; REV-BOS = reverse bird’s own song; REV-TUT = reverse tutor song; TUT 
= tutor song. * = p < 0.05. 
 

recording hemisphere and treatment (F(1, 329) = 25.745, p < 0.001; Fig. 

17C). All other main effects and interactions were non-significant (p > 0.176). 

BOS elicited a significantly higher response than did all other stimuli (BOS > 

CON1, CON2, REV-BOS, REV-TUT, TUT, and WN; p < 0.016). Conversely, 

HVC was less responsive to WN compared to select forward conspecific stimuli 

(WN < CON2 and TUT; p < 0.009). Based on the enhanced response to BOS for 

both z-score and stimulus-evoked firing, we opted to focus our follow-up tests on 

BOS. No significant differences were found for treatment for either the 

contralateral (F(1, 14) = 1.097, p = 0.313) or the ipsilateral (F(1, 33) = 1.223, p = 

0.277) hemisphere.  

For selectivity analyses, we focused solely on BOS and TUT relative to 

CON1 and tested whether TUT and BOS were differently represented between 

treatments. As there was a significant effect of stimulus and recording 
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hemisphere, we analyzed the effect of treatment on TUT and BOS selectivity 

separately by hemisphere. BOS selectivity was statistically similar across 

treatments across both the ipsilateral (F(1, 33) = 1.691, p = 0.202; Fig. 17D), and 

contralateral hemisphere (F(1, 14) = 0.804, p = 0.385; Fig. 16B). In contrast, HVC 

units were more selective for TUT in the ipsilateral hemisphere of FAD subjects 

(F(1, 33) = 5.82, p = 0.022; Fig. 17D), but not contralateral hemisphere (F(1, 14) = 

3.45, p = 0.084; Fig. 16B). Taken together, unilateral E2 synthesis inhibition 

appears to enhance the neural selectivity for tutor song independent of the 

animal’s ability to imitate the tutor’s song. 

Adult songbirds are unaffected by post-training inhibition of estrogen 
synthesis in NCM 

As with juvenile songbirds, E2 is also acutely synthesized in the NCM of 

adult songbirds (Remage-Healey et al., 2008; Remage-Healey et al., 2012). 

Therefore, we also tested whether neuroestrogen production is involved in 

consolidating recent auditory experience in adult male zebra finches using a well-

established auditory adaptation paradigm (see Methods). Overall, adaptation 

rates (slope) were significantly shallower (lower) for familiar vs. novel stimuli 

(familiar = -0.28 ±0.4, novel = -0.49 ± 0.06; F(1, 122) = 4.150, p = 0.044), 

independent of treatment (F(2, 122) = 1.182, p = 0.310) or an interaction between 

treatment and stimulus type (F(2, 122) = 0.349, p = 0.706; Fig. 18). Thus, unilateral 

estrogen synthesis in NCM immediately post-training did not adversely impact 

memory consolidation across development and in adulthood. 
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Figure 18: Neural adaptation to learned song is reduced in adult NCM 
independent of post-training E2 synthesis inhibition. 
A, An exemplar multiunit response in the NCM of an untreated hemisphere. 
Adjusted RMS declines at a faster rate (steeper slope) for novel song (CON3, 
CON4, and CON5) compared to a shallower slope (slower adaptation) for the 
recently exposed song (CON1). Slopes for each stimulus is shown at the bottom 
of each panel. B, Average slope per stimulus in aCSF or non-treated 
hemispheres compared to FAD-treated hemispheres in NCM; slope derived from 
multi-unit RMS. Orange = aCSF or no treatment; blue = FAD; circles = novel 
stimuli (three unique CON per bird); triangles = trained stimulus (a single unique 
CON). The y-axis has been compressed for clarity and five slope data points 
were omitted (-3.37, -2.72, -2.56, -1.58, 0.51). * = significant main effect of 
stimulus type (novel vs. trained); p < 0.05. CON = conspecific song. 

Discussion 

Our findings suggest that while aromatase is present in developing 

auditory cortex, global and unilateral neuroestrogen production is not required for 

tutor song memorization. However, neuroestrogen blockade leads to suppressed 

singing rates during development and enhanced neural representations of tutor 

song in a downstream sensorimotor nucleus when measured in adulthood. 

Taken together, this study is the first, to our knowledge, that tests the 

involvement of estrogen synthesis in consolidating an ethologically-relevant 

sensory memory within the developing auditory forebrain. Therefore, this study 
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extends our knowledge of the role, region, and age in which estrogen is involved 

in learning. 

Developmental and regional shifts in neuronal cell density in NCM 
independent of changes in aromatase expression or inhibitory 
interneurons 

 
We observed a decline in NCM cell density in sensorimotor-aged birds 

compared to sensory-aged subjects. Only one prior study, to our knowledge, has 

assessed the cell density of NCM across development and found no regional nor 

age differences in sensory-aged (20 and 30 dph) and adult male zebra finches 

(Stripling et al., 2001). It is unclear why our results diverge from those of Stripling 

et al. (2001). However, the findings suggest a form of experience-dependent 

network pruning that could explain heightened auditory responses in NCM in 

sensory- vs. sensorimotor-aged male songbirds (Vahaba et al., 2017). 

Alternatively, the volume of NCM many expand with age, leading to decreased 

density. To our knowledge, the volume of NCM across development has not 

been well characterized, and these ideas remain to be tested. 

The density of cells in dorsal NCM was higher compared to ventral NCM 

in contrast to previous observations (Stripling et al., 2001). This effect was 

independent of age, suggesting an anatomical distinction in developing NCM that 

may persist in adulthood (M. Macedo-Lima & L. Remage-Healey, unpublished 

observations). Numerous studies have described dorsal/ventral differences in 

response to auditory stimuli in NCM, but there does not appear to be a 

consensus regional effect. For example, immediate-early gene (IEG) auditory 
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responses (i.e. ZENK induction in NCM in response to auditory playbacks) yield 

varying results depending on species: no differences between NCM subregions 

are reported in in adult male European starlings (Gentner et al., 2004) or adult 

male budgerigars (Eda-Fujiwara et al., 2012), whereas higher dNCM ZENK 

compared to vNCM has been reported in both adult female white-crowned 

sparrows (Sanford et al., 2010) and both sexes of adult black-capped chickadees 

(Phillmore et al., 2003; but see Avey et al., 2014). In contrast, extracellular 

recordings in the NCM of adult starlings find stronger experience-dependent 

changes in firing rates in ventral vs dorsal NCM (Thompson and Gentner, 2010), 

which were suggested to be attributed to a noted enhanced thalamic input from 

Field L to ventral NCM (Vates et al. 1996). Therefore, while subregion NCM 

divisions are anatomically distinct, the functional significance of this density 

difference across development is unclear, but are suggestive of regional 

differences in auditory responsiveness. 

In addition to quantifying NCM neuronal density, we observed similar 

expression of aromatase and parvalbumin protein across the critical period for 

song learning. While aromatase expression has been assessed previously 

across development and in adults, we found that subregions within NCM of 

sensory- and sensorimotor-aged males possess a similar capacity for estrogen 

synthesis. As aromatase is similarly expressed in NCM across development, 

changes in precursor androgens may explain previously observed age-

dependent differences in baseline E2 in NCM across the critical period (Chao, et 

al., 2014), specifically in parallel with the maturation of the testes. Further, our 
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findings with parvalbumin are in-line with recent findings that find that PV cell 

density is largely unchanged in across development in the NCM of in male and 

female zebra finches, as well as other auditory forebrain nuclei (Cornez et al., 

2018). Therefore, PV-dependent inhibitory tone and estrogen production remain 

relatively unchanged across development, suggesting important roles throughout 

the juvenile period in males. 

Brain estrogen synthesis and song production in developing songbirds  

Our experiments with systemic FAD treatment suggest that E2 facilitates 

song production in juvenile songbirds. It is well established that singing is 

regulated by classic (genomic) steroid hormone action, such as E2, in adult 

songbirds. In adult male zebra finches, long-term aromatase inhibition leads to 

suppressed courtship displays, including song production (Walters and Harding, 

1988). More recent studies have found that E2 production also appears to 

acutely facilitate song production in adult zebra finches (Alward et al., 2016b). 

Our data expand on this understanding that acute suppression of E2 production 

constrains singing to now include developing male songbirds. The neural locus of 

this effect of E2-withdrawal on song production is unknown, but likely to include 

social behavior network nuclei such as the aromatase-rich nucleus taenia 

(Saldanha et al., 2000; Ikebuchi et al., 2009). Androgens, namely testosterone, 

have classically been thought to be the critical hormone for the onset of motor 

production in developing songbirds. For example, plastic song emerges 

alongside the rise of testosterone in juvenile swamp sparrows (Marler et al., 

1987). However, it has also been noted that circulating estrogens coincides with 
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the onset of subsong (Marler et al., 1987). Thus, our data suggest that E2, and 

the conversion of precursor androgens to E2 within specific brain areas, may 

play a more significant role in song production in development than previously 

thought. 

Circulating and brain-derived estrogens are not required for tutor song 
memorization 

Overall, systemic aromatase inhibition yielded minimal effects on eventual 

tutor song similarity. While tutor song similarity was slightly lower at 49 dph in 

FAD subjects, FAD-treated birds quickly ‘catch-up’ to comparable tutor song 

similarity levels as control birds, and produce songs of equal valence for adult 

female conspecifics. These results are novel given the relatively limited number 

of studies that have directly tested the role of hormones in song learning in male 

songbirds. Androgens crystallize plastic song (Korsia and Bottjer, 1991; Whaling 

et al., 1995; Bottjer and Johnson, 1997) and neural circuit development 

(Livingston and Mooney, 2001). In contrast, circulating estrogen levels are 

thought to promote plasticity due to their coincident rise in age-limited song 

learning in birds during the auditory memorization (“sensory”) phase of 

development (Pröve, 1983; Weichel et al., 1986; Marler et al., 1987; Marler et al., 

1988; but see Adkins-Regan et al., 1990). While our sample size is limited, the 

data suggest that circulating estrogen synthesis is not required for tutor song 

memorization during development. 

One important caveat for the systemic FAD experiment here is that our 

pharmacological treatment may have missed a putative ‘critical’ post-training 
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consolidation period (within ~30 mins immediately following tutoring). E2 is 

important for auditory processing in adult and juvenile songbirds; thus, we did not 

want to interfere with online auditory processing of the tutor song during a 

tutoring session/playback. Instead, we intentionally administered FAD 

immediately after the offset of tutoring to specifically target the post-training 

memory consolidation period as in studies on hippocampal E2 and memorization 

(Frick, 2015). Comparable systemic aromatase inhibition treatments in birds led 

to marked reductions in E2 and aromatase activity (Wade and Arnold, 1994; 

Remage-Healey et al., 2010b; Rensel et al., 2013; Alward et al., 2016b), and 

systemic injections lead to suppressed aromatase activity in NCM within 30 mins 

(Alward et al., 2016b; but see Krentzel et al., in submission). Thus, if systemic 

FAD actively suppresses E2 synthesis >30 minutes after administration, and the 

putative post-training auditory memory consolidation period is <30 minutes, it is 

important to consider that the pharmacokinetics of oral FAD may not sufficiently 

target the period of immediate post-training auditory memory consolidation. 

In agreement with our systemic results, targeted unilateral suppression of 

E2 in NCM failed to prevent birds from eventually successfully imitating their 

tutor’s song. Tutoring leads to an initial drop in acute E2 levels within NCM, 

followed by a rapid increase immediately after a tutoring session in juvenile 

songbirds (Chao et al., 2015). In our paradigm, FAD was presented at the onset 

of tutoring and for a one-hour period immediately following the tutor session, 

without any detectable differences in eventual song similarity. Therefore, 
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unilateral E2 synthesis in NCM does not appear to be required for auditory 

memory consolidation.  

Additionally, juvenile songbirds are seemingly unaffected behaviorally by 

unilateral estrogen manipulations in the auditory forebrain. Birds spent 

comparable amounts of time near by the live tutor and were similarly active 

during tutoring sessions. These results add to a small but growing understanding 

of tutor and pupil behavior during song learning. To our knowledge, these results 

are one of two published studies that explicitly quantify pupil behavior during 

tutoring (lab-reared, or otherwise) (Chen et al., 2016). Juveniles are thought to 

preferentially learn from, and as an extension, imitate, more aggressive males 

who are mated or feed them early in development (Zann, 1996). While it is 

largely unknown how pupil behavior during tutoring affects song learning, one 

key behavior appears to be pupil ‘attention’ during tutoring (Chen et al., 2016). As 

unilateral E2 synthesis does not impact attention (in our study, time spent near 

the tutor), it follows that song learning/imitation are similarly unaffected. 

Acute neuroestrogen suppression during development exerts enduring 
effects on neural representation of autogenous and tutor song into 
adulthood 

Suppressing E2 strongly enhanced adult neural representations the tutor’s 

song in HVC. HVC is a sensorimotor nucleus that dually represents both 

autogenous and tutor song in developing (Volman, 1993; Nick and Konishi, 

2005a, b) and adult (Prather et al., 2010; Moseley et al., 2017) songbirds, and is 

necessary for song learning (Roberts et al., 2012). One possibility is that if E2 

reduces singing in microdialyzed birds as in our systemic experiments, there may 
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be a ‘catch-up’ period that leads to enhanced salience, coding, or replay (Dave 

and Margoliash, 2000) of the social model’s song (tutor) once E2 synthesis 

inhibition is ‘released’ in NCM. Thus, our findings in-line with those of swamp 

sparrows, demonstrating that tutor and BOS selectivity is independent of vocal 

imitation accuracy in adulthood. 

Interestingly, FAD treatments enhanced upstream BOS selectivity in NCM 

compared to control birds. Auditory forebrain neurons (including NCM) are 

typically selective for conspecific vocalizations over synthetic noises (e.g. tones) 

(Stripling et al., 1997; Stripling et al., 2001), and have been noted for having a 

subpopulation of BOS-selective cells (Janata and Margoliash, 1999; Grace et al., 

2003; Amin et al., 2004; Yanagihara and Yazaki-Sugiyama, 2016). In particular, 

NCM contains experience-dependent tutor song and dual tutor song/BOS 

selective neurons during development (Yanagihara and Yazaki-Sugiyama, 2016). 

Auditory responses in NCM are rapidly modulated by estrogens in adult 

(Remage-Healey et al., 2010b; Remage-Healey and Joshi, 2012) and developing 

zebra finches (Vahaba et al., 2017). Therefore, in agreement with our findings in 

HVC with tutor song, acute manipulations of E2 in NCM during development 

appear to be important for changing representations of birds’ own song as well. 

  No study is without its limitations and ours is no exception. It is worth 

noting that our treatments were presented unilaterally, and there is thus a strong 

likelihood that contralateral NCM can compensate for depressed E2 production in 

our study, leading to robust tutor song memory and proper song imitation in 

adulthood. While NCM appears to have lateralized function both natively 
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(Moorman and Nicol, 2014), and with regards to E2 (Remage-Healey et al., 

2010b; De Groof et al., 2017), there is scant evidence for lateralized expression 

of aromatase (Saldanha et al., 2000; Ikeda et al., 2017). Relatedly, there is the 

additional possibility that either acute (microdialysis) or chronic (systemic) 

administrations may lead to homeostatic increases in aromatase production 

and/or activity (e.g. Saldanha et al., 2000), or upregulation of E2 from other 

sources (e.g. gonadal; adrenal). For example, estrogen-suppressed adult zebra 

finches have increased aromatase protein levels in the hippocampus, but not 

NCM (Saldanha et al., 2000). As the hippocampus is not involved in vocal 

learning (Bailey et al., 2009), this is unlikely to explain our findings. Lastly, it is 

possible that cannulation-induced injuries across control and FAD treated 

subjects obscured any potential differences in song learning outcomes. That is, 

since guide cannulae dissociated on their own, brain injury from the cannula may 

lead to similarly poor song learning outcomes as with FAD treatment. However, 

this is unlikely to be true as both microdialysis and systemically-treated birds 

yielded comparable song similarity rates in adulthood.  

Song learning is gated by experience 

Our study also replicates the finding that experience with social partners, 

in addition to age, can regulate the closure of the critical period. Importantly, the 

lack of song crystallization by 130 dph was independent of treatment, further 

emphasizing that unilateral estrogen synthesis in NCM does not participate in 

modulating critical period plasticity in contrast to androgens which prematurely 

crystallize song and related neural circuits (reviewed above). Others have also 
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noted abnormal song in adulthood in lab-tutored songbirds (Eales, 1985, 1987; 

Morrison and Nottebohm, 1993; Slater et al., 1993; Jones et al., 1996; Zann, 

1996; Deregnaucourt et al., 2013), and found similar changes such as dropped 

syllables, reduced syllable lengths, and increased stereotypy once abnormal 

singing birds were exposed to other adult males. While further bioacoustic 

analysis is required to unpack the current findings, our work highlights the 

important limitation of controlled lab tutoring paradigms, namely that it is both 

quality and quantity of experience that dictate the closure of critical period song 

plasticity. 

Recent auditory experience consolidation is insensitive to estrogen 
synthesis blockade in adult NCM 

Our results in adult animals build on a well-established paradigm in which 

recent auditory experience is encoded in adult and developing NCM (Chew et al., 

1995; Stripling et al., 1997; Smulders and Jarvis, 2013; Miller-Sims and Bottjer, 

2014; Ono et al., 2016). We find that auditory recognition in adult songbirds is 

unimpaired by unilateral inhibition of E2 synthesis post-training. Repeated 

exposures of a single conspecific song leads to neural ‘recognition’ up 48 hours 

later (Chew et al., 1995), which is impaired when global estrogen production is 

dampened (Yoder et al., 2012). Our findings suggest that while E2 is important 

for spatial memory consolidation in the hippocampus of both birds and rodents 

(Frick, 2015; Bailey et al., 2017), as well as chemosensory memories in the 

olfactory bulb (Dillon et al., 2013), this role does not extend to auditory cortex. In 

rodents, E2 is rapidly upregulated in dorsal hippocampus immediately following 
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an object recognition training session (Tuscher et al., 2016b). In contrast, 

repeated song exposure in male and female zebra finches leads to immediate 

increases in estrogen levels which tapers off following song playback or social 

exposure cessation (Remage-Healey et al., 2008; Remage-Healey et al., 2012). 

Therefore, a lack E2 production following acoustic communication exposure in 

adults may explain the lack of a role for E2 in NCM for consolidating the auditory 

experience. 

Conclusion 

Here, we demonstrate that estrogens exert a complex role in the auditory 

cortex of developing male songbirds. Our findings show the capacity to 

synthesize neuroestrogens remains high throughout development alongside 

substantial age- and subregion-dependent changes in NCM cell density. 

Systemic estrogen synthesis blockade led initially to suppressed singing behavior 

in juveniles following tutoring. Further, the data indicate that while song 

memorization is unimpaired by acute inhibition of E2 production following training 

in developing and adult songbirds, early life E2 manipulations in auditory 

forebrain lead to altered neural selectivity of autogenous and tutor song in NCM 

and downstream HVC in adulthood, respectively. Taken together, this study 

expands our understanding of the role of brain-derived estrogens in learning and 

memory. Historically, studies on rapid E2 signaling and learning have been 

largely focused on adults and hippocampal-dependent learning. Therefore, in 

addition to continuing to study the role of brain-derived estrogen signaling across 

a diverse range of animals (Remage-Healey et al., 2017), it remains important to 
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test its function across different ages (Gresack et al., 2007a, b) and brain 

regions. 
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CHAPTER VI 
 

DISCUSSION 

In this dissertation, I examined the role of peripheral and brain-derived E2 

in complex acoustic signal processing and memorization, as well as changing 

neural architecture and aromatase expression, across the lifespan in male zebra 

finches. Findings from the experiments provide a new understanding for the role 

of aromatase activity and neuroestrogen signaling during the critical period for 

vocal learning. Specifically, I first demonstrated that auditory coding is enhanced 

in sensory-aged birds, and that acute E2 signaling exerts a lateralized, and age-

dependent effect on communication processing. Then, I showed that the capacity 

to synthesize E2 in NCM is comparable across development, as is the 

abundance of parvalbumin interneurons; however, neuronal density decreases 

with age and is highest in dorsal vs. ventral NCM. Further, I found evidence that 

aromatase inhibition reduces song production, but does not impact tutor song 

memorization. In contrast, I obtained neurophysiology results establishing that 

early life, central E2 synthesis blockade enhances long-term neural 

representations of autogenous and tutor song in adulthood. Finally, experiments 

in adult songbirds confirmed that, as with juveniles, post-training unilateral 

inhibition of E2 synthesis in NCM is not required for consolidating recent auditory 

experiences. 

From my initial experiments, I found that NCM undergoes a developmental 

‘switch-point’ initiated once birds begin producing their own developing song. In 

contrast to sensorimotor-aged birds, auditory encoding and classification is 
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elevated in sensory-aged birds, suggesting that NCM is highly attuned to salient 

social communication signals during the auditory memorization phase of song 

learning (Vahaba et al., 2017). It would be interesting to know whether this 

‘switch-point’ finding extends to female zebra finches, who also encode and 

memorize their fathers’ song during development, which they use to evaluate a 

potential mate’s song (Miller, 1979), and may be localized to the auditory 

forebrain as well (Terpstra et al., 2006). I also found that rapid E2 signaling in 

NCM yields a lateralized and age-dependent effect on sensory coding. Auditory 

responses are dampened by E2 in sensory-aged birds across hemispheres, 

whereas sensorimotor-aged birds show either an enhanced or inhibitory auditory 

response to E2 depending on hemisphere. Adults show a rapid, large-scale 

increase in auditory response with local E2 administration (Remage-Healey et 

al., 2010b; Remage-Healey and Joshi, 2012), which may be functionally 

significant for audition and song recognition (Remage-Healey et al., 2010b). 

Further, the enhancing effects of E2 in the auditory lobule of songbirds appears 

to left-lateralized (Remage-Healey et al., 2010b; De Groof et al., 2017). 

Lateralized E2 effects in development may be important for song discrimination 

and/or auditory memory acquisition, as others have described (Moorman and 

Nicol, 2014). 

While changes in juvenile auditory responses were more modest in 

contrast, future work should attempt to test the role of rapid E2 signaling in more 

ethologically-relevant (e.g. awake, freely-behaving animals) to better understand 

its role in a more naturalistic context. GABAergic tone is enhanced in 
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anesthetized birds, which along with state (i.e. sleep or awake), gates auditory 

selectivity and response profiles in adult and developing songbirds (Schmidt and 

Konishi, 1998; Cardin and Schmidt, 2003; Vallentin et al., 2016; Yanagihara and 

Yazaki-Sugiyama, 2016). Therefore, we still have a limited understanding of how 

natural fluctuations of E2 in songbird auditory cortex influence communication 

encoding. 

In subsequent experiments, I described how central and circulating E2 

regulates behavior, singing, and song learning, and found that, as with adults, E2 

synthesis protracts song production (Alward et al., 2016b), independent of its 

effect on song learning. Moreover, I also found that while a bird’s ability to imitate 

a model song is unimpaired by acute estrogen suppression in development, 

neural selectivity is affected and persists into adulthood. Specifically, aromatase 

inhibition led to enhanced BOS representation in NCM and tutor song in HVC. 

NCM is a broadly-selective auditory forebrain region that responds more to 

natural songs (e.g. song) over synthetic noises (e.g. tones) and more to 

conspecific over heterospecific song (Mello and Clayton, 1994; Stripling et al., 

1997), which is modulated by E2 (Maney et al., 2006). One proposed role for 

NCM in adults is individual recognition (Chew et al., 1996; Gentner, 2004), which 

may also be modulated by E2: estrogen synthesis inhibition in NCM abolishes 

males’ innate preference for their own song (Remage-Healey et al., 2010b). More 

recently, Yanagihara and Yazaki-Sugiyama (2016) described both BOS- and 

TUT-selective neurons in developing NCM. Therefore, NCM appears to have E2-

sensitive representation of birds’ own song. Blocking E2 production in 
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development may increase the distribution of neuronal selectivity to compensate 

for delayed and/or suppressed song production. I found that systemic FAD 

treatment decreased singing rates in developing animals. As such, if these 

findings extend to microdialyzed subjects, there may be a ‘catch-up’ period 

where previously inhibited E2 in NCM leads to decreased song production, 

resulting in either more rehearsal in development or increased song replay in 

HVC (Dave and Margoliash, 2000), which has putative reciprocal connections 

with NCM (Lynch et al., 2013). Increased hearing of BOS and/or replay may then 

translate to increased BOS representation in NCM in adulthood to compensate 

for a delayed song learning trajectory as observed in systemically-treated FAD 

birds. 

In contrast to NCM, previous studies on HVC have established strong 

BOS-selectivity in anesthetized birds (Margoliash, 1983; Margoliash and Konishi, 

1985; Margoliash, 1986), which is enhanced by E2. Administration of E2 in NCM 

enhances downstream BOS-selectivity in the HVC of adult songbirds (Remage-

Healey and Joshi, 2012), suggesting that aromatase inhibition in the NCM of 

developing songbirds might trans-synaptically transform TUT selectivity in HVC . 

Tutor selectivity is observed in HVC during development (Volman, 1993; Nick 

and Konishi, 2005a, b) and in adulthood (Prather et al., 2010; Moseley et al., 

2017). Therefore, my finding that formerly neuroestrogen-suppressed birds show 

an enhanced TUT response in HVC suggests reduced E2 levels in NCM 

translates to an elevated representation of song or songs learned during 

development. Thus, downregulation of E2 signaling in NCM during learning in 
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development may improve learning accuracy, in contrast with a permissive 

learning role in adults. 

Alongside my finding that auditory memorization and recognition is 

similarly unimpaired in adult NCM, results in juveniles converge on the idea 

despite E2’s role in auditory processing, unilateral estrogen synthesis in NCM is 

insufficient to modify auditory recognition and consolidation across the lifespan. 

These findings extend our understanding of estrogens and cognition to include a 

critical period-dependent, and ethologically-relevant learning task (song learning) 

in sensory cortex (NCM). Much of what is known about estrogens and cognition 

come from studies on adult hippocampus in rodents (Packard and Teather, 

1997a; Zhao et al., 2010; Boulware et al., 2013; Tuscher et al., submitted) and 

birds (Bailey et al., 2013; Rensel et al., 2013; Bailey and Saldanha, 2015; Rensel 

et al., 2015; Bailey et al., 2017), and have generally shown an enhancing role for 

estrogens in cognition. It is interesting to note, however, that when older rodents 

are administered E2 following a training task, there does not appear to be a 

similar improved memory as with younger rodents (Gresack et al., 2007a, b). 

Therefore, in addition to testing a novel, aromatase-rich and E2-sensitive cortical 

brain region, we also expand our understanding of E2 and cognition to include 

ontogenetic learning in songbirds. One caveat is that all aromatase inhibition in 

this set of studies was presented unilaterally. Therefore, it remains to be tested 

whether bilateral estrogen synthesis blockade is sufficient to drive changes in 

auditory memorization in order to rule out a potential compensatory role of 

contralateral NCM.  
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Finally, the last set of experiments detailed changes in cell density in 

NCM, as well as quantified the expression of estrogen-synthesizing neurons and 

a sub-class of GABAergic cortical interneurons (PV+). While the capacity for E2 

production and PV+ expression remain comparable across development, 

neuronal density peaks in sensory-aged birds, as well as across ages in dorsal 

NCM.  While my findings are in contrast to previous reports on cell density in 

NCM across development, which suggests NCM is adult-like by 20-dph (Stripling 

et al., 2001), they do provide a potential explanation for elevated auditory 

responses in sensory-aged birds as I reported in Vahaba et al. (2017). In contrast 

to the well-described synaptic pruning that occurs during brain development, 

these results suggest a ‘cellular’ pruning in NCM with age.  Alternatively, as the 

volume of NCM has not been formerly assessed, it may be that as the auditory 

lobule expands, cell density decreases, however this idea remains to be tested. 

The initial impetus to carry out experiments on the role of E2 in developing 

auditory cortex originated from an exciting set of findings from our lab. Chao et 

al. (2015) found that when juvenile male zebra finches were presented with tutor 

song playbacks, E2 levels declined during the tutoring session, and were 

subsequently elevated above baseline levels immediately after the song learning 

session. While the finding that neuroestrogen synthesis increases following 

learning (as in adult rodent hippocampus Tuscher et al., 2016b) sparked the 

various experiments carried out in the dissertation, the suppression of E2 in NCM 

during song playback may provide a better context for the finding that E2 

suppresses auditory response in sensory-aged birds. This result, in combination 
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with the finding that tutor memorization is impervious to E2 synthesis blockade, 

contrasts with work in adult songbirds and rodents (Remage-Healey et al., 

2010b; Remage-Healey et al., 2012; Frick, 2015), and highlights the fact that 

estrogenic action and synthesis is not a uniformly positive signal and varies 

greatly depending on age, neural structure, and learning task (Korol and Pisani, 

2015). In particular, the results suggest that brain-derived or administered E2 

interferes within the auditory cortex in development, despite the high abundance 

of aromatase, and it may be functionally significant to down-regulate E2 in NCM 

to permit proper auditory encoding and consolidation. This idea complements the 

finding that acute and systemic aromatase inhibition in development leads to 

enhanced neural representation of autogenous and tutor song in auditory song 

nuclei (HVC and NCM). However, these ideas are highly speculative and warrant 

further investigation. 

In summary, this dissertation has thoroughly tested the pleiotropic role of 

E2 production and signaling across the lifespan of adult male zebra finches. This 

work is important both in it of itself as a basic set of scientific experiments, as 

well as having potential translational value.  Gene mutations for aromatase are 

linked to language impairments in humans (Anthoni et al., 2012). Further, E2 

levels in 5-month old human infants are an early, positive predictor of eventual 

language ability (Wermke et al., 2014; Quast et al., 2016), as with song learning 

in sparrows (Marler et al., 1987).  As various cognitive disorders are linked to 

impaired social communication, such as in autism spectrum disorder, studying 

how neuroestrogens regulate socially learned vocal communication early in 
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development may provide key insights into similar mechanisms in other vocal 

learning animals, such as humans. 
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