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ABSTRACT

SPARSITY IN MACHINE LEARNING:
AN INFORMATION SELECTING PERSPECTIVE

MAY 2019

SIWEI FENG

B.Sc., SOOCHOW UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Marco F. Duarte

Today we are living in a world awash with data. Large volumes of data are ac-

quired, analyzed and applied to tasks through machine learning algorithms in nearly

every area of science, business, and industry. For example, medical scientists analyze

the gene expression data from a single specimen to learn the underlying causes of

disease (e.g. cancer) and choose the best treatment; retailers can know more about

customers’ shopping habits from retail data to adjust their business strategies to bet-

ter appeal to customers; suppliers can enhance supply chain success through supply

chain systems built on knowledge sharing. However, it is also reasonable to doubt

whether all the genes make contributions to a disease; whether all the data obtained

from existing customers can be applied to a new customer; whether all shared knowl-

edge in the supply network is useful to a specific supply scenario. Therefore, it is

crucial to sort through the massive information provided by data and keep what we
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really need. This process is referred to as information selection, which keeps the

information that helps improve the performance of corresponding machine learning

tasks and discards information that is useless or even harmful to task performance.

Sparse learning is a powerful tool to achieve information selection. In this thesis, we

apply sparse learning to two major areas in machine learning – feature selection and

transfer learning.

Feature selection is a dimensionality reduction technique that selects a subset of

representative features. Recently, feature selection combined with sparse learning

has attracted significant attention due to its outstanding performance compared with

traditional feature selection methods that ignore correlation between features. How-

ever, they are restricted by design to linear data transformations, a potential draw-

back given that the underlying correlation structures of data are often non-linear.

To leverage more sophisticated embedding than the linear model assumed by sparse

learning, we propose an autoencoder-based unsupervised feature selection approach

that leverages a single-layer autoencoder for a joint framework of feature selection and

manifold learning. Additionally, we include spectral graph analysis on the projected

data into the learning process to achieve local data geometry preservation from the

original data space to the low-dimensional feature space.

Transfer learning describes a set of methods that aim at transferring knowledge

from related domains to alleviate the problems caused by limited/no labeled training

data in machine learnig tasks. Many transfer learning techniques have been pro-

posed to deal with different application scenarios. However, due to the differences in

data distribution, feature space, label space, etc., between source domain and target

domain, it is necessary to select and only transfer relevant information from source

domain to improve the performance of target learner. Otherwise, the target learner

can be negatively impacted by the weak-related knowledge from source domain, which

is referred to as negative transfer. In this thesis, we focus on two transfer learning
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scenarios for which limited labeled training data are available in target domain. In the

first scenario, no label information is avaible in source data. In the second scenario,

large amounts of labeled source data are available, but there is no overlap between

the source and target label spaces. The corresponding transfer learning technique to

the former case is called self-taught learning, while that for the latter case is called

few-shot learning. We apply self-taught learning to visual, textal, and audio data.

We also apply few-shot learning to wearable sensor based human activity data. For

both cases, we propose a metric for the relevance between a target sample/class and a

source sample/class, and then extract information from the related samples/classes for

knowledge transfer to perform information selection so that negative transfer caused

by weakly related source information can be alleviated. Experimental results show

that transfer learning can provide better performance with information selection.

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Unsupervised Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Self-Taught Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Few-Shot Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Single-Layer Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Long-Short Term Memory Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Sparse Learning-Based Unsupervised Feature Selection . . . . . . . . . . . . . . . 12
2.5 Self-Taught Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Human Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Few-Shot Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. UNSUPERVISED FEATURE SELECTION . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Parameter Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.4 Feature Selection Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.5 Clustering Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.6 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4. SELF-TAUGHT LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Knowledge Transfer and Relevance Measure . . . . . . . . . . . . . . . . . . 41

4.2.1.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Classifier Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2.1 Source Domain Sample Reweighting . . . . . . . . . . . . . . . . . 49
4.2.2.2 Pseudo-Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2.3 Classifier Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Parameter Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.4 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.5.1 The Effect of Local Data Structure Preservation . . . . . . . 62
4.3.5.2 The Effect of Source Sample Selection . . . . . . . . . . . . . . . 63

5. FEW-SHOT LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Basic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Dataset Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

viii



5.3.2 Source/Target Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.4 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

ix



LIST OF TABLES

Table Page

3.1 Details of datasets used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Details of datasets used in our experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Performance stability of GASTL in classification with respect to
balance parameters λ and γ. Classification accuracy mean (%)
and standard deviation (%) are presented. . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Performance of GASTL and competing feature selection algorithms
in classification on Caltech101 with SIFTBOW as feature.
Classification accuracy (%) is used as the evaluation metric. . . . . . . . . 59

4.4 Performance of GASTL and competing feature selection algorithms
in classification on Caltech101 with VGG19 as feature.
Classification accuracy (%) is used as the evaluation metric. . . . . . . . . 60

4.5 Performance of GASTL and competing feature selection algorithms
in classification on IMDB. Classification accuracy (%) is used as
the evaluation metric. TS = Training sample number in each
target class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Performance of GASTL and competing feature selection algorithms
in classification on Twitter. Classification accuracy (%) is used as
the evaluation metric. TS = Training sample number in each
target class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Performance of GASTL and competing feature selection algorithms
in classification on ESC-50. Classification accuracy (%) is used as
the evaluation metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Source/target split for activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Network Structure for Both Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

x



LIST OF FIGURES

Figure Page

3.1 Performance variation of the GAFS w.r.t. dimensionality of subspace
m and the percentage of features selected p (%). . . . . . . . . . . . . . . . . . . 31

3.2 Performance variation of the GAFS w.r.t. balance parameters λ and
γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Feature selection illustration on Yale. Each row corresponds to a
sample human face image and each column refers to percentages
of features selected
p ∈ {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 100%} from left to
right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Clustering illustration of data embeddings on hidden layers when
hidden layer size is 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Classification accuracy w.r.t different unsupervised feature selection
algorithms and the percentage of features selection p (%) . . . . . . . . . . 37

3.6 Clustering accuracy w.r.t different unsupervised feature selection
algorithms and the percentage of features selection p (%) . . . . . . . . . . 38

3.7 Normalized mutual information w.r.t different unsupervised feature
selection algorithms and the percentage of features selection p
(%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Performance of GASTL in classification as a function of the hidden
layer size m for varying sizes of the autoencoder hidden layer m.
Classification accuracy (%) is used as the evaluation metric. . . . . . . . . 57

4.2 Comparison of GASTL performance when γ = 0 and optimal GASTL
performance. Classification accuracy (%) is used as the evaluation
metric. Optimal values for γ are shown. . . . . . . . . . . . . . . . . . . . . . . . . . 64

xi



4.3 Comparison of GASTL performance when all source samples are used
for classifier training and optimal GASTL performance.
Classification accuracy (%) is used as the evaluation metric.
Optimal values for p are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Basic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Comparison of CDHAR performance with OPP dataset. Source data
and target data are generated from the same participant.
Subfigures in the left column show results when each target class
provides one training sample for target network training.
Subfigures in the right column shows results when each target
class provides five training samples for target network training.
Classification accuracy (%) is used as the evaluation metric. . . . . . . . 78

5.4 Comparison of CDHAR performance with OPP dataset. Source data
and target data are generated from the different participants.
Subfigures in the left column show results when each target class
provides one training sample for target network training.
Subfigures in the right column shows results when each target
class provides five training samples for target network training.
Classification accuracy (%) is used as the evaluation metric. . . . . . . . 79

5.5 Comparison of CDHAR performance with PAMAP2 dataset. Source
data and target data are generated from people from the same
group. Subfigures in the left column show results when each target
class provides one training sample for target network training.
Subfigures in the right column shows results when each target
class provides five training samples for target network training.
Classification accuracy (%) is used as the evaluation metric. . . . . . . . . 80

5.6 Comparison of CDHAR performance with PAMAP2 dataset. Source
data and target data are generated from people from the different
groups. Subfigures in the left column show results when each
target class provides one training sample for target network
training. Subfigures in the right column shows results when each
target class provides five training samples for target network
training. Classification accuracy (%) is used as the evaluation
metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xii



CHAPTER 1

INTRODUCTION

Machine learning practitioners are always yearning for training data with large

volume and variety since it is believed that those can help train models with more

useful information characterized and thus leading to better task performance. How-

ever, in practice a large dataset is not always a guarantee for good machine learning

task performance since there may exist samples and/or features that are redundant

or irrelevant to specific machine learning tasks. In other words, models learned with

these data may contain useless or even harmful information that negatively affect task

performance. To alleviate the negative influence brought by such “bad” information,

feature/sample selection is a necessary preprocessing step. Within the significant

literatures on feature/sample selection, sparse learning based approaches play an im-

portant role due to the selecting nature of sparse learning. In this thesis, sparse

learning in unsupervised feature selection and transfer learning is investigated.

1.1 Unsupervised Feature Selection

In recent years, high-dimensional data can be found in many areas such as com-

puter vision, pattern recognition, data mining, etc. Hign dimensionality enables data

to include more information. However, learning high-dimensional data often suffer

from several issues. For example, with a fixed number of training data, a large data

dimensionality can cause the so-called Hughes phenomenon, i.e., a reduction in the

generalization of the learned models due to overfitting during the training procedure

compared with lower dimensional data [1]. Moreover, high-dimensional data tend to
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include significant redundancy in adjacent features, or even noise, which leads to large

amounts of useless or even harmful information being processed, stored, and trans-

mitted [2, 3]. All these issues present challenges to many conventional data analysis

problems. Moreover, several papers in the literature have shown that the intrinsic

dimensionality of high-dimensional data is actually small [4–6]. Thus, dimensionality

reduction is a popular preprocessing step for high-dimensional data analysis, which

decreases time for data processing and also improves generalization of learned models.

Feature selection [7–12] is a set of frequently used dimensionality reduction ap-

proaches that aim at selecting a subset of input dimensions1. Feature selection has

the advantage of preserving the same feature space as that of raw data. Feature selec-

tion methods can be categorized into groups based on different criteria summarized

below; refer to [13] for a detailed survey on feature selection.

• Label Availability. Based on the availability of label information, feature

selection algorithms can be classified into supervised [7–9], semi-supervised [10–

12], and unsupervised [14–30] methods. Since labeled data are usually expensive

and time-consuming to acquire [31, 32], unsupervised feature selection has been

gaining more and more attention recently and is the subject of our focus in this

work.

• Search Strategy. In terms of selection strategies, feature selection meth-

ods can be categorized into filter, wrapper, and embedded methods. Wrapper

methods [33, 34] are seldom used in practice since they rely on a repetition

of feature subset searching and selected feature subset evaluation until some

stopping criteria or some desired performance are reached, which requires an

exponential search space and thus is computationally prohibitive when feature

dimensionality is high. Filter feature selection methods, e.g. Laplacian score

1In the sequel, we use “feature” to replace “input dimension” for convenience in description.
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(LapScore) [14] and SPEC [15], assign a score (measuring task relevance, re-

dundancy, etc.) to each feature and select those with the best scores. Though

convenient to computation, these methods are often tailored specifically for a

given task and may not provide an appropriate match to the specific application

of interest. Embedded methods combine feature selection and model learning

and provide a compromise between the two earlier extremes, as they are more

efficient than wrapper methods and more task-specific than filter methods. We

focus on embedded feature selection methods.

In recent years, feature selection algorithms aiming at selecting features that pre-

serve intrinsic data structure (such as subspace or manifold structure) [16–30] have

attracted significant attention due to their good performance and interpretability [13].

In these methods, data are linearly projected onto new spaces through a transforma-

tion matrix, with fitting errors being minimized along with some sparse regulariza-

tion terms. Feature importance is usually scored using the norms of corresponding

rows/columns in the transformation matrix. In some methods [20–25, 28–30], the

local data geometric structure, which is usually characterized by nearest neighbor

graphs, is also preserved in the low-dimensional projection space. However, one basic

assumption of these methods is that the data to be processed lie in or near a com-

pletely linear low-dimensional manifold. However, this is not always true in practice,

in particular with more sophisticated data.

We propose a novel algorithm for graph and autoencoder-based feature selection

(GAFS). In this method, we integrate three objective functions into a single optimiza-

tion framework: (i) we use a single-layer autoencoder to reconstruct the input data;

(ii) we use an `2,1-norm penalty on the columns of the weight matrix connecting the

autoencoder’s input layer and hidden layer to provide feature selection; (iii) we pre-

serve the local geometric structure of the data through to the corresponding hidden

layer activations. Extensive experiments are conducted on image data, audio data,
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text data, and biological data. Many experimental results are provided to demon-

strate the outstanding performance achieved by the proposed method compared with

other state-of-the-art unsupervised feature selection algorithms.

The key contributions are highlighted as follows.

• We propose a novel unsupervised feature selection framework which is based on

an autoencoder and graph data regularization. By using this framework, the

information of the underlying data subspace can be leveraged, which loosens

the assumption of linear manifold in many relevant techniques.

• We present an efficient solver for the optimization problem underlying the pro-

posed unsupervised feature selection scheme. Our approach relies on an iterative

scheme based on the gradient descent of the proposed objective function.

• We provide multiple numerical experiments that showcase the advantages of

the flexible models used in our feature selection approach with respect to the

state-of-the-art approaches from the literature.

1.2 Transfer Learning

Supervised learning has excelled in many machine learning tasks such as classifi-

cation [3, 35] and regression [36, 37]. However, the success of a supervised learning

algorithm requires large-scale labeled training datasets and that both training and

testing data sharing the same label and feature space.2 These conditions limit the

applications of supervised learning methods in practical scenarios since it is expensive

to collect eligible training data [38, 39].

Several techniques have been proposed to tackle the limitations of supervised

learning methods. Semi-supervised learning [40–42] algorithms use both labeled and

2“Training data” is used in the sequel to denote data used for model learning.
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unlabeled data to improve performance when labeled training data are limited. How-

ever, many semi-supervised learning algorithms assume that unlabeled data and la-

beled data have the same distribution [40, 41] or class labels [42]. The success of

semi-supervised learning highly depends on the validity of these assumptions. How-

ever, it is still difficult to gather unlabeled data which satisfy these preconditions.

In order to further loosen the restrictions on training data, many transfer learning

approaches [43, 44] have been proposed. Transfer learning methods use the knowledge

obtained from a source domain to improve the performance on target domain tasks.

We mainly focus on two transfer learning techniques: self-taught learning and few-

shot learning.

1.2.1 Self-Taught Learning

Self-taught learning [45–53] is the type of transfer learning techniques most simi-

lar to semi-supervised learning, which also employs unlabeled data with the attempt

to improve supervised learning performance when labeled training data are limited.

However, compared with semi-supervised learning, self-taught learning methods have

fewer restrictions on unlabeled data, as they allow the label spaces and marginal

probability distributions of unlabeled and labeled data to be different. In self-taught

learning, unlabeled data are used as source from which the knowledge learned is ap-

plied to tasks performed on labeled target data. Such a loose restriction on unlabeled

data significantly simplifies learning due to the huge volume of unlabeled data we

can access. However, the easily obtained unlabeled data inevitably contain samples

with weak relation to the labeled training data, which may even harm the supervised

learning performance if we treat them equally as other unlabeled samples during

knowledge transfer. This is known as negative transfer. Therefore, it is necessary to

select samples that are related to the labeled data to reduce the impact caused by

negative transfer.
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We propose a novel algorithm for self-taught learning with unlabeled source data

which are related to labeled target data to be selected. The algorithm leverages a

linear mapping, a k-nearest neighbor (kNN) graph and a single-layer autoencoder to

obtain a metric for cross domain sample relevance. We refer to this method as graph

and autoencoder-based self-taught learning (GASTL). The framework of GASTL in-

cludes two modules: a source sample re-weighting module and a classifier training

module. In the first module, we assign each unlabeled source sample a weight that

indicates its relevance to labeled target samples.3 In the second module, source sam-

ples with large weights are selected to combine a training set with target data to

train a classifier. Each selected source sample is assigned a pseudo-label from the

target domain label space to be used during classifier training. The weights of source

samples are also used during classifier training. The trained classifier is then used to

predict labels of unseen target samples.

The key contributions are as follows:

• We propose a novel metric for the relevance of each source sample to the target

domain in the scenario of self-taught learning based on an autoencoder and

graph data regularization. To the best of our knowledge, we are the first to

measure source and target sample relevance for self-taught learning problems.

• We propose a novel classifier training scheme with both selected source samples

and target samples as training dataset with the relevance of each source sample

to target domain being considered. We are not aware of existing self-taught

learning approaches that integrate cross domain sample relevance into classifier

training.

3The setting of self-taught learning requires source samples to be unlabeled and target samples
to be labeled. Therefore in the sequel we do not specify the availability of label information for both
source and target samples.
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• We present an efficient solver for the knowledge transfer optimization problem

described above that relies on an iterative scheme based on the gradient descent

of the proposed objective function. This solver shows advantages when the

model complexity is large.

• Multiple experimental results are provided to demonstrate the performance im-

provements in terms of classification accuracy and insensitivity to parameters

achieved by the proposed method compared with state-of-the-art self-taught

learning methods and other relevant techniques.

1.2.2 Few-Shot Learning

Few-shot learning [54–56] assumes availability of labeled training data in the tar-

get domain as in self-taught learning. Unlike self-taught learning, few-shot learning

problems require large amounts of labeled source data whose label spaces have no

overlap with that of target domain. Negative transfer also needs to be alleviated in

this scenario.

We do not perform few-shot learning on multiple types of data as what we do

with self-taught learning. Instead, we focus on human activity recognition with data

obtained from wearable sensors such as a smartphone or wristband, which predicts

activity type (e.g. walking, swimming, etc.) from the sensor outputs. Human activity

recognition has been applied in many tasks such as sleep state detection [57] and smart

home sensing [58].

In order to have a better discrimination of different types of activities, models need

to be trained with large amounts of data from a diversity of sources. Unfortunately,

in practice we do not always have enough data for each activity type. For example, a

wearable health care system needs to be retrained if the previously collected activity

data are not representative of the new activity type, and it is not likely for users

to provide large amount of data for a single activity type. However, there may exist
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relevance between new and existing activity data. Therefore, relevant knowledge from

exisiting activity data can be used in model training with new data.

The algorithm we propose to perform few-shot learning on human activity recog-

nition leverages a deep neural network and a linear mapping to obtain a metric for

cross domain class relevance. The framework includes a feature extraction module

and source class weighting module. In the first module, we use the a neural network

to extract features for both source and target samples. In the second module, cross

domain class similarities are measured with the features obtained in the first module

and parameters of relevant source classes are used for target domain classifier train-

ing. The trained classifier is then used to predict the activity type of unseen target

samples.

1.3 Outline

The thesis is organized as follows.

Chapter 2 provides notations for this thesis, the concept of single-layer autoen-

coder which plays an important role in algorithms described in Chapter 3 and Chapter

4, and a brief literature review of sparse learning-based unsupervised feature selection,

self-taught learning, and few-shot learning. Chapter 3 presents our proposed unsu-

pervised feature selection approach. Chapter 4 presents our proposed self-taught

learning approach. Chap 5 presents our proposed few-shot learning approach for hu-

man activity recognition. Finally, we conclude with a summary of our findings and a

discussion of ongoing work in Chapter 6.
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CHAPTER 2

BACKGROUND

2.1 Notations

Vectors are denoted by bold lowercase letters while matrices are denoted by bold

uppercase letters. The superscript T of a matrix denotes the transposition operation.

For a matrix A, A(q) denotes the qth column and A(p) denotes the pth row, while

A(p,q) denotes the entry at the pth row and qth column. The `r,p-norm for a matrix

W ∈ Ra×b is denoted as

‖W‖r,p =

 a∑
i=1

(
b∑

j=1

|W(i,j)|r
)p/r

1/p

. (2.1)

The trace of a matrix L ∈ Ra×a is defined as Tr(L) =
∑a

i=1 L(i,i). We use 1 and 0 to

denote an all-ones and all-zeros matrix or vector of the appropriate size, respectively.

We use X = [X(1),X(2), · · · ,X(n)] ∈ Rd×n to denote sample sets, where X(i) ∈ Rd is

the ith sample in X for i = 1, 2, · · · , n, and where d and n denote data dimensionality

and number of samples in X, respectively.

For notations in transfer learning, we use D to denote a domain and T for a task.

A domain D consists of a feature space X and a marginal probability distribution

P (X) over a sample set X. A task T consists of a label space Y and an objective

predictive function f(X,Y) to predict the corresponding labels Y of a sample set X.

We use Dsrc = {Xsrc, P (Xsrc)} and Tsrc = {Ysrc, f(Xsrc,Ysrc)} to denote the source

domain and task, and use Dtrg = {Xtrg, P (Xtrg)} and Ttrg = {Ytrg, f(Xtrg,Ytrg)} for

the target domain and task.
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2.2 Single-Layer Autoencoder

A single-layer autoencoder is an artificial neural network that aims to learn a

function h(x; Θ) ≈ x with a single hidden layer, where x ∈ Rd is the input data,

h(·) is a nonlinear function, and Θ is a set of parameters. To be more specific, the

workflow of an autoencoder contains two steps:

• Encoding: mapping the input data x to a compressed data representation y ∈

Rm:

y = σ(W1x + b1), (2.2)

where W1 ∈ Rm×d is a weight matrix, b1 ∈ Rm is a bias vector, and σ(·) is

an elementary nonlinear activation function. Commonly used activation func-

tions include the sigmoid function, the hyperbolic tangent function, the rectified

linear unit, etc.

• Decoding: mapping the compressed data representation y to a vector in the

original data space X̄ ∈ Rd:

X̄ = σ(W2y + b2), (2.3)

where W2 ∈ Rd×m and b2 ∈ Rd are the corresponding weight matrix and bias

vector, respectively.

The optimization problem brought by the autoencoder is to minimize the difference

between the input data and the reconstructed/output data. To be more specific,

given a set of data X = [X(1),X(2), · · · ,X(n)], the parameters W1, W2, b1, and b2

are adapted to minimize the reconstruction error
∑n

i=1 ‖X(i) − X̄(i)‖22, where X̄(i)

is the output of autoencoder to the input X(i). The general approach to minimize
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the reconstruction error is by selecting the parameter values via the backpropagation

algorithm.1

The data reconstruction capability of the autoencoder makes it suitable to capture

the essential information of the data while discarding information that is not useful

or redundant.

2.3 Long-Short Term Memory Network

A long-short term memory (LSTM) network [60] is a type of recurrent neural

network (RNN) which processes time series signals by taking as their input not just the

current inputs but also what they have processed earlier in time. Each RNN contains

a loop (repeating modules) inside the network structure that allows information to

be passed from one step of the network to the next.

RNNs show their limitations when long-term dependencies are needed to be cap-

tured. Consider the task of predicting the last word in the text “I come from Jiangsu,

a province in China. The closest noun “province” suggests that the last word is proba-

bly the name of a country, but if we want to know which country, we need information

from further back. When the gap between the position of relevant information and

the point where it is needed becomes large, RNNs show their incapabilities to connect

in practice.

LSTMs are a special kind of RNN, which are famous for their capabilities to cap-

ture long-term dependencies. Compared with the simple repeating modules of most

RNNs, which sometimes only contans a single tanh layer, the repeating modules of

LSTMs include more complicated interacting layers in their structures. The work-

flow of LSTM can be briefly described as follows. The first step is to determine the

importance of previous information, which is to decide a status between “completely

1For more details on the backpropagation algorithm, refer to the survey paper [59].
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forget about this” and “completely keep this”. The next step is to decide what new

information to store in the cell state and then replace the old state with a new state.

Finally, we decide the information to output.

A stacked LSTM model [61] is a LSTM model with multiple amultiple hidden

LSTM layers where each layer contains multiple memory cells. By stacking LSTM

hidden layers, a LSTM model can be deeper that makes it capable of tackling more

complex problems.

2.4 Sparse Learning-Based Unsupervised Feature Selection

Many unsupervised feature selection methods based on subspace structure preser-

vation have been proposed in the past decades. For cases missing class labels, un-

supervised feature selection methods select features that are representative of the

underlying subspace structure of the data [16]. The basic idea is to use a transforma-

tion matrix to project data to a new space and guide feature selection based on the

sparsity of the transformation matrix [17]. To be more specific, the generic framework

of these methods is based on the optimization

min
W
L(Y,WX) + λR(W), (2.4)

where Y = [Y(1),Y(2), · · · ,Y(n)] ∈ Rm×n (m < d) is an embedding matrix in which

Y(i) ∈ Rm for i = 1, 2, · · · , n denotes the representation of data point X(i) in the

obtained low-dimensional subspace. L(·) denotes a loss function, and R(·) denotes a

regularization function on the transformation matrix W ∈ Rm×d. The methods differ

in their choice of embedding Y and loss and regularization functions; some examples

are presented below.

Multi-cluster feature selection (MCFS) [18] and minimum redundancy spectral

feature selection (MRSF) [19] are two long-standing and well-known subspace learning-

based unsupervised feature selection methods. In MCFS, the embedding Y ∈ Rm×n
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of each data X is first learned based on spectral clustering. After that, all data

points are regressed to the learned embedding through a transformation matrix

W ∈ Rm×d = [W(1); W(2); · · · ; W(m)]. The loss function is set to the Frobenius

norm of the linear transformation error and the regularization function is set to the

`1,1 norm of the transformation matrix, which promotes sparsity. Thus, MCFS can

be formulated mathematically as the set of separate optimization problems

min
W(q)
‖Y(q) −W(q)X‖22 + λ‖W(q)‖1, (2.5)

where W(q) ∈ Rd and Y(q) ∈ Rn are the qth rows of W and Y, respectively, for

q = 1, 2, · · · ,m. A score for each feature is measured by the maximum absolute value

of the corresponding row of the transformation matrix:

MCFS(q) = max
p=1,2,··· ,d

|W(p,q)| = ‖W (q)‖∞, (2.6)

This score is then used in a filter-based feature selection scheme. MRSF is an exten-

sion of MCFS that changes the regularization function to an `2,1-norm that enforce

column sparsity on the transformation matrix. Ideally, the selected features should

be representative enough to keep the loss value close to that obtained when using all

features. In order to achieve feature selection, we expect that W holds a sparsity

property with its columns, which means only a subset of the columns are nonzeros.

We use the `2-norm of a W column to measure the importance of the corresponding

feature, leading to an `2,1-norm regularization function. Furthermore, MRSF ranks

the importance of each feature according to the `2-norm of the corresponding column

of the transformation matrix. Both MCFS and MRSF are able to select features that

best preserve the subspace structure of the data due to the application of spectral

clustering. However, the performance of these two methods is often degraded by the

separate nature of subspace learning and feature selection [29]. In order to address
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this problem, many approaches on joint subspace learning and feature selection have

been proposed. For example, in Gu et. al. [20] data are linearly projected to a low-

dimensional subspace with a transformation matrix, and the local data geometric

structure captured by a nearest neighbor graph is preserved in data embeddings on

low-dimensional subspace. In the meanwhile, an `2,1−norm is performed on transfor-

mation matrix to guide feature selection simultaneously. That is, subspace learning

and feature selection are not two separate steps but combined into a single framework.

Studies like [21–25] made further modifications to [20]: besides combining subspace

learning and feature selection into a single framework, these methods also exploit the

discriminative information of the data for unsupervised feature selection. For exam-

ple, in unsupervised discriminative feature selection (UDFS) [21], data instances are

assumed to come from c classes. UDFS uses local data geometric structure, which is

based on the k-nearest neighbor set of each data point, to incorporate local data dis-

criminative information into a feature selection framework. Like MCFS and MRFS,

UDFS also assumes the existence of a transformation matrix W ∈ Rm×c that maps

data to a low-dimensional space. The objective function of UDFS is

min
WT W

Tr(WTMW) + α‖W‖2,1, (2.7)

where M is an elaborate matrix that contains local data discriminative information;

see [21] for details. One drawback of these discriminative exploitation feature selection

methods is that the feature selection performance relies on an accurate estimation of

number of classes.

Instead of projecting data onto a low-dimensional subspace, some approaches

consider combining unsupervised feature selection methods with self-representation.

In these methods, each feature is assumed to be representable as a linear combination

of all (other) features, i.e., X = WX+E, where W ∈ Rd×d is a representation matrix

and E ∈ Rd×n denotes a reconstruction error. That is, the data are linearly projected
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into the same data space so that the relationships between features can be gleaned

from the transformation matrix. This type of method can be regarded as a special case

of subspace learning-based feature selection methods where the embedding subspace is

equal to the original space. Zhu et. al. [26] proposed a regularized self-representation

(RSR) model for unsupervised feature selection that sets both the loss function and

the regularization function to `2,1-norms on the representation error E (for robustness

to outlier samples) and transformation matrix W (for feature selection), respectively.

RSR can therefore be written as

min
W
‖X−WX‖2,1 + λ‖W‖2,1. (2.8)

RSR has been extended to non-convex RSR [27], where the regularization function

is instead set to an `2,p-norm for 0 < p < 1. Unsupervised graph self-representation

sparse feature selection (GSR SFS) [28] further extends [27] by changing the loss

function to a Frobenius norm, as well as by considering local data geometric structure

preservation on embedding WX through spectral graph analysis. GSR SFS can be

written in the following formulation

min
W

1

2
||X−WX||2F + λ1Tr(XTWTLWX) + λ2||W||2,1, (2.9)

where L is the graph Laplacian matrix. L can be calculated through L = D−A, where

A is the adjacency matrix which stores the similarities between vertices, and D is the

degree matrix which is a diagonal matrix containing information about the degree of

vertices. Self-representation based dual-graph regularized feature selection clustering

(DFSC) [29] considers the error of self-representation for both the columns and the

rows of X (i.e., both for features and data samples). Moreover, spectral graph analysis

on both domains is considered. Subspace clustering guided unsupervised feature

selection (SCUFS) [30] combines both self-representation and subspace clustering
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with unsupervised feature selection. In addition, SCUFS also exploits discriminative

information for feature selection.

2.5 Self-Taught Learning

Transfer learning methods can be classified as homogeneous and heterogeneous.

Homogeneous transfer learning methods assume Xsrc = Xtrg while heterogeneous

transfer learning methods assume Xsrc 6= Xtrg. We focus on homogeneous transfer

learning.

Self-taught learning can be categorized into the group of inductive transfer learn-

ing methods [43], in which Ttrg 6= Tsrc while the domains can be either same or

different. The idea of self-taught learning was first proposed by Raina et. al. [45] and

implemented through dictionary learning and sparse coding.2 To be more specific, a

dictionary is learned using source samples:

min
D,Asrc

‖Xsrc −DAsrc‖2F + β
nsrc∑
i=1

‖A(i)
src‖1,

s.t. ‖D(j)‖ ≤ 1, 1 ≤ j ≤ s,

(2.10)

where D ∈ Rd×s is a dictionary with each column as a dictionary element, and

where each column in Asrc ∈ Rs×nsrc represents the sparse coefficient vector of the

corresponding unlabeled source sample from Xsrc ∈ Rd×nsrc . After the dictionary D

is obtained, a new labeled training set {Atrg,Ytrg} in the target domain is computed

through

min
Atrg

‖Xtrg −DAtrg‖2F + β

ntrg∑
i=1

‖A(i)
trg‖1, (2.11)

where each column in Atrg ∈ Rs×ntrg represents the sparse coefficient vector of the

corresponding labeled target sample from Xtrg ∈ Rd×ntrg . Finally, a classifier is learned

2We use abbreviation STL to denote the method of [45] in the sequel, while we use the full name
“self-taught learning“ for the class of learning problems.
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on the new labeled training set by applying a supervised learning algorithm. The

idea of self-taught learning has been applied in scenarios such as clustering [46],

visual tracking [47], object localization [48, 49], hyperspectral image classification

[50], wound infection detection [51], etc.

Wang et. al. [52] propose robust and discriminative self-taught learning (RDSTL)

as an extension to STL. Compared with STL, two changes are made in order to

increase the robustness of the learning model and make use of supervision information

contained in target samples. The first is to replace the `1-norm loss function used in

STL with an `2,1-norm loss function because the latter is claimed to be more robust

to noise and outliers. The second is to take advantage of label information of target

samples during learning. Assume Xk ∈ Rd×nk and Ak ∈ Rs×nk denote the samples

and corresponding sparse codes belonging to the kth class. We refer to source samples

as belonging to the 0th class and assume that the dataset X is arranged by classes

so that X = [X0,X1, · · · ,XK ], where K is the total number of classes in the target

samples, with A following the same setup. Then RDSTL can be written as the

following optimization problem:

min
D,A
‖X−DA‖2F + β

K∑
k=0

‖AT
k ‖2,1,

s.t. ‖D(j)‖ ≤ 1, 1 ≤ j ≤ s.

(2.12)

Another advantage of imposing `2,1-norm regularization on the representation coef-

ficients is that it makes the learning process insensitive to the dictionary size. This

is because sparsity on rows of A helps select basis vectors in D: a basis vector

contributes little to data representation if the `2-norm value of its corresponding co-

efficient vector is close to 0. Therefore, the final task performance should not be

sensitive to the dictionary size once it is large enough.
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Li et. al. [53] proposes a self-taught low-rank (S-Low) coding framework which is

suitable for both clustering and classification tasks in visual learning. By imposing

a low-rank constraint onto the sparse coefficient matrix, S-Low coding is claimed to

be able to characterize the global structure information in the target domain. The

objective function of S-Low coding is

min
D,Asrc,Atrg,

Esrc,Etrg

‖Atrg‖γ1 + λ1Mγ2(Esrc) + λ2Mγ2(Etrg) + λ3‖Asrc‖2,1,

s.t. Xsrc = DAsrc + Esrc, Xtrg = DAtrg + Etrg,

(2.13)

where ‖ · ‖γ1 denotes the matrix γ-norm with parameter γ1 and Mγ2(·) denotes the

minimax concave penalty norm with parameter γ2. We refer readers to [53] for more

details on the roles and definitions of these two norms.

Though the self-taught learning approaches mentioned above use different schemes

for knowledge transfer, they all use the whole source sample set without considering

their relevance to target domain, which makes these methods potentially vulnerable

to negative transfer.

2.6 Human Activity Recognition

Human activity recognition (HAR) is a technique that aims at learning high-level

knowledge about human activities from the low-level sensor inputs [62]. In recent

years, the growing ubiquity of sensor-equipped wearables such as smart wristbands

and smartphones have significantly promoted researches regarding HAR in the field

of pervasive computing [63].

Machine learning algorithms have been widely used in HAR. In the last decade,

traditional machine learning tools such as Markov models [64, 65] and decision trees

[66, 67] have yielded tremendous progress in HAR. However, traditional machine

learning methods suffer from several limitations in HAR using wearables. Most tra-
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ditional machine learning algorithms applied in HAR use manually designed features

including mean, variance, and frequency, which are shallow and heavily rely on hu-

man domain knowledge and experience; furthermore, they are specific to particular

tasks. The drawback of these hand-crafted features is two-fold: 1. shallow features

can only be used to recognize low-level activities like sitting and standing but are

hardly capable for high-level activities like printing papers and attending a seminar

[68]; 2. task-specific features can hardly be transferred to different environments

or tasks. Therefore, traditional machine learning algorithms cannot handle complex

HAR scenarios, and they require one specifically designed model for each task, which

increases the time and labor cost to build HAR systems in terms of both labeled data

collection and model construction.

In recent years, the application of deep learning methods to HAR has significantly

alleviated the drawbacks of traditional machine learning based HAR methods. First,

deep neural network can extract high-level features with little or no human design.

Second, deep learning models can be reused for similar tasks, which makes HAR

model construction more efficient. Different deep learning models such as deep neu-

ral networks [69, 70], convolutional neural networks [71, 72], autoencoders [73, 74],

restricted Boltzmann machines [75, 76], and recurrent neural networks [77, 78] have

been applied in HAR. We refer readers to [62] for more details on deep learning based

HAR.

2.7 Few-Shot Learning

Few-shot learning (FSL) is a transfer learning technique that applies knowledge

from existing data to data from unseen classes which do not have sufficient labeled

training data for model training. For example, if we are performing a task of recog-

nizing bird species from images, the number of data for some rare species of birds may

be insufficient to be used for training. Then the knowledge of existing bird species
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can be borrowed for the learning of new species. In this case, the machine learning

problem with a classifier for bird images with insufficient amount of training data is

treated as a FSL problem. If there is only one image of a bird species, this would be

a one-shot learning problem.

The first work for FSL is [79], in which a variational Bayesian framework is pro-

posed to represent visual object categories as probabilistic models. Existing object

categories, denoted as prior knowledge, is represented as a probability density func-

tion on the parameters of these models. While unseen categories, denoted as the

posterior model, is obtained by updating the prior with one or more observations.

Lim et al. [80] propose a sample-borrowing method for multiclass object detection

that adds selected samples from similar categories to the training set in order to

increase the number of training data.

In recent years, deep learning based FSL has become the mainstream of FSL due

to their unparalleled performance. Initialization based methods [54, 81, 82] focus

on the fine-tuning process for new tasks. Finn et al. [81] aims to learn a good

initialization for new tasks. Ravi et al. [54] and Munkhdalai [82] replace the weight-

update process with an external memory. Hallucination based methods [83–85] learn

a data generator from the base classes and use the learned generator to hallucinate

data for new classes. Hariharan et al. [83] transfers variance from base class data

to new classes. Antoniou et al. [84] uses generative adversarial networks to transfer

style from base classes to new classes. Wang et al. [85] integrate the generator into

a meta-learning framework for transfer learning purposes. Distance metric learning

based methods [55, 56, 86, 87] measure the distance between two images and take

advantage of the distance to classify unseen images. Examples of distance metrics

include cosine similarity [56], Euclidean distance [55], CNN-based relation module

[86], and graph neural network [87].
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CHAPTER 3

UNSUPERVISED FEATURE SELECTION

3.1 Introduction

Feature selection is a dimensionality reduction technique that selects a subset

of representative features from highdimensional data by eliminating irrelevant and

redundant features. Recently, feature selection combined with sparse learning has

attracted significant attention due to its outstanding performance compared with tra-

ditional feature selection methods that ignores correlation between features. These

works first map data onto a low-dimensional subspace and then select features by

posing a sparsity constraint on the transformation matrix. However, they are re-

stricted by design to linear data transformation, a potential drawback given that the

underlying correlation structures of data are often non-linear. To leverage a more

sophisticated embedding, we propose an autoencoder-based unsupervised feature se-

lection approach that leverages a single-layer autoencoder for a joint framework of

feature selection and manifold learning. More specifically, we enforce column sparsity

on the weight matrix connecting the input layer and the hidden layer, as in previous

work. Additionally, we include spectral graph analysis on the projected data into the

learning process to achieve local data geometry preservation from the original data

space to the low-dimensional feature space. Extensive experiments are conducted on

image, audio, text, and biological data. The promising experimental results validate

the superiority of the proposed method1.

1Contents presented in this chapter have been published as a journal paper [88].
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3.2 Proposed Method

In this section, we introduce our proposed graph autoencoder-based unsupervised

feature selection (GAFS). Our proposed framework performs broad data structure

preservation through a single-layer autoencoder and also preserves local data geo-

metric structure through spectral graph analysis. In contrast to existing methods

that exploit discriminative information for unsupervised feature selection by impos-

ing orthogonal constraints on the transformation matrix [21] or low-dimensional data

representation [22, 23], GAFS does not include such constraints. More specifically,

we do not add orthogonal constraints on the transformation matrix because feature

weight vectors are not necessarily orthogonal with each other in real-world appli-

cations [89], allowing GAFS to be applicable to a larger set of applications [17].

Furthermore, methods posing orthogonal constraints on low-dimensional data repre-

sentations makes a good estimation of number of classes necessary to obtain reliable

label indicators for those algorithms; such estimation is difficult to achieve in an

unsupervised framework.

3.2.1 Objective Function

The objective function of GAFS includes three parts: a term based on a single-

layer autoencoder promoting broad data structure preservation; a term based on

spectral graph analysis promoting local data geometric structure preservation; and

a regularization term promoting feature selection. As mentioned in Chapter 2.2, a

single-layer autoencoder aims at minimizing the reconstruction error between output

and input data by optimizing a reconstruction error-driven loss function:

L(Θ) =
1

2n

n∑
i=1

‖X(i) − h(X(i); Θ)‖22 =
1

2n
‖X− h(X; Θ)‖2F , (3.1)

where Θ = [W1,W2,b1,b2], h(X; Θ) = σ (W2 · σ(W1X + b1) + b2); we use the

sigmoid function as the activation function: σ(z) = 1/(1 + exp(−z)).
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Since W1 is a weight matrix applied directly on the input data, each column of W1

can be used to measure the importance of the corresponding data feature. Therefore,

R(Θ) = ‖W1‖2,1 can be used as a regularization function to promote feature selection

as detailed in Chapter 2.4. The objective function for the single-layer autoencoder

based unsupervised feature selection can be obtained by combining this regularization

function with the loss function of (4.2), providing us with the optimization

min
Θ

1

2n
‖X− h(X; Θ)‖2F + λ‖W1‖2,1, (3.2)

where λ is a balance parameter.

Local geometric structures of the data often contain discriminative information of

neighboring data point pairs [18]. They assume that nearby data points should have

similar representations. It is often more efficient to combine both broad and local data

information during low-dimensional subspace learning [90]. In order to characterize

the local data geometric structure, we construct a k-nearest neighbor (kNN) graph G

on the data space. The edge weight between two connected data points is determined

by the similarity between those two points. We choose cosine distance as similarity

measurement for its simplicity. Therefore the adjacency matrix A for the graph G is

defined as

A(i,j) =


X(i)TX(j)

‖X(i)‖2‖X(j)‖2
if X(i) ∈ Nk(X(j)) or X(j) ∈ Nk(X(i)),

0 otherwise,

(3.3)

where Nk(X(i)) denotes the k-nearest neighborhood set for X(i), and X(i)T refers to

the transpose of X(i). The Laplacian matrix L of the graph G is defined as L =

D−A, where D is a diagonal matrix whose ith element on the diagonal is defined as

D(i,i) =
∑n

j=1 A(i,j).
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In order to preserve the local data geometric structure in the learned subspace (i.e.,

if two data points X(i) and X(j) are close in original data space then the corresponding

low-dimensional representations Y(i) and Y(j) are also close in the low-dimensional

embedding space), we set up the following minimization objective:

G(Θ) =
1

2

n∑
i=1

n∑
j=1

‖Y(i) −Y(j)‖22A(i,j)

=
1

2

n∑
i=1

n∑
j=1

(Y(i)TY(i) −Y(i)TY(j) −Y(j)TY(i) + Y(j)TY(j))A(i,j)

=
n∑
i=1

Y(i)TY(i)D(i,i) −
n∑
i=1

n∑
j=1

Y(i)TY(j)A(i,j)

= Tr(Y(Θ)DY(Θ)T)− Tr(Y(Θ)AY(Θ)T) = Tr(Y(Θ)LY(Θ)T),

(3.4)

where Tr(·) denotes the trace operator, Y(i)(Θ) = σ(W1x(i) + b1) for i = 1, 2, · · · , n

(and we often drop the dependence on Θ for readability), and Y(Θ) = [Y(1)(Θ),Y(2)(Θ), · · · ,Y(n)(Θ)].

Therefore, by combining the single-layer autoencoder based feature selection ob-

jective (3.2) and the local data geometric structure preservation into consideration,

the resulting objective function of GAFS can be written in terms of the following

minimization with respect to the parameters Θ = [W1,W2,b1,b2]:

Θ̂ = arg min
Θ
F(Θ) = arg min

Θ
L(Θ) +R(Θ) + G(Θ)

= arg min
Θ

[
1

2n
‖X− h(X; Θ)‖2F + λ‖W1‖2,1 + γTr(YLYT)

]
,

(3.5)

where λ and γ are two balance parameters. Filter-based feature selection is then

performed using the score function GAFS(q) = ‖W(q)
1 ‖2 based on the weight matrix

W1 from Θ̂.

3.2.2 Optimization

The objective function of GAFS shown in (4.6) does not have a closed-form so-

lution. In this work, we implement the L-BFGS algorithm [91] using the minFunc
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toolbox [92] to solve the GAFS optimization problem. The solver requires the gradi-

ents of the objective function in (4.6) with respect to its parameters Θ.

The gradients for the loss term L(Θ) can be obtained through a back-propagation

algorithm. We defer the details for the derivation of the gradients of the error term,

which are standard in the formulation of backpropagation for an autoencoder. The

resulting gradients are as follows:

∂L(Θ)

∂W1

=
1

n
∆2XT ,

∂L(Θ)

∂W2

=
1

n
∆3YT ,

∂L(Θ)

∂b1

=
1

n

n∑
i=1

∆2
(i) =

1

n
∆21,

∂L(Θ)

∂b2

=
1

n

n∑
i=1

∆3
(i) =

1

n
∆31.

(3.6)

Each column ∆
(i)
2 and ∆

(i)
3 of ∆2 ∈ Rm×n and ∆3 ∈ Rd×n, respectively, contains the

error term of the corresponding data point for the hidden layer and the output layer,

respectively, having entries as follows:

∆
(p,i)
3 = (X̄(p,i) −X(p,i)) · X̄(p,i) · (1− X̄(p,i)),

∆
(q,i)
2 =

(
d∑
p=1

W
(q,p)
2 ∆

(p,i)
3

)
·Y(q,i) · (1−Y(q,i)),

(3.7)

for p = 1, 2, · · · , d, q = 1, 2, · · · ,m, and i = 1, 2, · · · , n, and where X̄ denotes the

reconstructed data output of the autoencoder. Equation (3.7) can also be rewritten

in matrix form as

∆3 = (X̄−X) • X̄ • (1− X̄),

∆2 = (WT
2 ∆3) •Y • (1−Y),

(3.8)

where • denotes the element-wise product operator. In the sequel, we use 1 and

0 to denote an all-ones and all-zeros matrix or vector with of the appropriate size,

respectively.
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The regularization term R(Θ) = ‖W1‖2,1, whose derivative does not exist for its

ith column W
(i)
1 when W

(i)
1 = 0 for i = 1, 2, · · · , d. In this case,

∂R(Θ)

∂W1

= W1U, (3.9)

where U ∈ Rd×d is a diagonal matrix whose ith element on the diagonal is

U(i,i) =


(
‖W(i)

1 ‖2 + ε
)−1

, ‖W(i)
1 ‖2 6= 0,

0, otherwise.
(3.10)

where ε is a small constant added to avoid overflow [29]. Since ‖W1‖2,1 is not dif-

ferentiable at 0, we calculate the subgradient for each element in W1 in that case.

That is, for each element in W1, the subgradient at 0 can be an arbitrary value in

the interval [−1, 1], and so we set the gradient to 0 for computational convenience.

In summary, the gradients for the regularization term is:

∂R(Θ)

∂W1

= λW1U,

∂R(Θ)

∂W2

= 0,

∂R(Θ)

∂b1

= 0,

∂R(Θ)

∂b2

= 0,

(3.11)

The gradients of the graph term G(Θ) = γTr(YLYT) can be obtained in a

straightforward fashion as follows:

∂L(Θ)

∂W1

=
∂Tr(γYLYT)

∂Y
· ∂Y

∂Z
· ∂Z

∂W1

= 2γ (YL •Y • (1−Y)) XT ,

∂L(Θ)

∂b1

=
∂Tr(γYLYT)

∂Y
· ∂Y

∂Z
· ∂Z

∂b1

= 2γ (YL •Y • (1−Y)) 1,

∂L(Θ)

∂W2

= 0,

∂L(Θ)

∂b2

= 0.

(3.12)
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To conclude, the gradients of the GAFS objective function with respect to Θ =

[W1,W2,b1,b2] can be written as

∂F(Θ)

∂W1

=
1

n
∆2XT + λW1U + 2γ (YL •Y • (1−Y)) XT ,

∂F(Θ)

∂W2

=
1

n
∆3YT ,

∂F(Θ)

∂b1

=
1

n
∆21 + 2γ (YL •Y • (1−Y)) 1,

∂F(Θ)

∂b2

=
1

n
∆31

(3.13)

3.3 Experiments

In this section, we evaluate the feature selection performance of GAFS in terms of

both supervised and unsupervised tasks, e.g. clustering and classification, on several

benchmark datasets. We also compare GAFS with other state-of-the-art unsupervised

feature selection algorithms. To be more specific, we first select p representative

features and then perform both clustering and classification on those selected features.

The performance of clustering and classification is used as the metric to evaluate

feature selection algorithms. We perform experiments on eight benchmark datasets,2

including three image datasets (MNIST, COIL20, Yale), three text datasets (PCMAC,

BASEHOCK, RELATHE), one audio dataset (Isolet), and one biological dataset

(Prostate GE). Detailed properties of those datasets are summarized in Table 4.1.

3.3.1 Evaluation Metric

We perform both supervised (i.e., classification) and unsupervised (i.e., cluster-

ing) tasks on datasets formulated by the selected features in order to evaluate the

effectiveness of feature selection algorithms. For classification, we employ softmax

classifier for its simplicity and compute the classification accuracy as the evaluation

2All datasets are downloaded from http://featureselection.asu.edu/datasets.php
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Dataset Features Instances Classes Type
MNIST 784 60000 10 Image
COIL20 1024 1440 20 Image
Yale 1024 165 15 Image
PCMAC 3289 1943 2 Text
BASEHOCK 4862 1993 2 Text
RELATHE 4322 1427 2 Text
Prostate GE 5966 102 2 Biology
Isolet 617 1560 26 Audio

Table 3.1. Details of datasets used.

metric for feature selection effectiveness. For clustering, we use k-means clustering

on the selected features and use two different evaluation metrics to evaluate the clus-

tering performance of all methods. The first is clustering accuracy (ACC), defined

as

ACC =
1

n

n∑
i=1

δ(gi,map(ci)),

where n is the total number of data samples, δ(·) is defined by δ(a, b) = 1 when a = b

and 0 when a 6= b, map(·) is the optimal mapping function between cluster labels

and class labels obtained using the Hungarian algorithm [93], and ci and gi are the

clustering and ground truth labels of a given data sample xi, respectively. The second

is normalized mutual information (NMI), which is defined as

NMI =
MI(C,G)

max(H(C), H(G))
,

where C and G are clustering labels and ground truth labels, respectively, MI(C,G)

is the mutual information between C and G, and H(C) and H(G) denote the entropy

of C and G, respectively. More details about NMI are available in [94]. For both

ACC and NMI, 20 clustering processes are repeated with random initialization for

each case following the setup of [18] and [21], and we report the corresponding mean

values of ACC and NMI.
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3.3.2 Experimental Setup

In our last experiment, we compare GAFS with LapScore3 [14], SPEC4 [15],

MRSF5 [19], UDFS6 [21], and RSR7 [26]. Among these methods, LapScore and SPEC

are filter feature selection methods which are based on data similarity. LapScore uses

spectral graph analysis to set a score for each feature. SPEC is an extension to Lap-

Score and can be applied to both supervised and unsupervised scenarios in which

schemes of constructing graphs used for data similarity measurement are different.

Details on MRSF, UDFS, and RSR can be found in Chapter 2.4. Besides the five

methods, we also compare GAFS with the performance of using all features as the

baseline.

Both GAFS and compared algorithms include parameters to adjust. In this exper-

iment, we fix some parameters and tune others according to a “grid-search” strategy.

For all algorithms, we select p ∈ {2%, 4%, 6%, 8%, 10%, 20%, 30%, 40%, 50%,

60%, 70%, 80%} of all features for each dataset. For all graph-based algorithms,

the number of nearest neighbor in a kNN graph is set to 5. For all algorithms pro-

jecting data onto a low-dimensional space, the space dimensionality is set in the

range of m ∈ {10, 20, 30, 40}. In GAFS, the range for the hidden layer size is set to

match that of the subspace dimensionality m,8 while the balance parameters are given

ranges λ ∈ {10−4, 10−3, 10−2, 10−1, 1} and γ ∈ {0, 10−4, 5× 10−4, 10−3, 5× 10−3}, re-

spectively. For UDFS, we use the range γ ∈ {10−9, 10−6, 10−3, 1, 103, 106, 109}, and λ

3Available at http://www.cad.zju.edu.cn/home/dengcai/Data/code/LaplacianScore.m

4Available at https://github.com/matrixlover/LSLS/blob/master/fsSpectrum.m

5Available at https://sites.google.com/site/alanzhao/Home

6Available at http://www.cs.cmu.edu/ yiyang/UDFS.rar

7Available at https://github.com/guangmingboy/githubs doc

8We will alternatively use the terminologies subspace dimensionality and hidden layer size in
descriptions of GAFS.
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is fixed to 103. For RSR, we use the range λ ∈ {10−3, 5×10−3, 10−2, 5×10−2, 10−1, 5×

10−1, 1, 5, 10, 102}.

For each specific value of p on a certain dataset, we tune the parameters for each

algorithm in order to achieve the best results among all possible combinations. For

classification, we report the highest classification accuracy. For clustering, we report

the highest average values for both ACC and NMI from 20 repetitions.

3.3.3 Parameter Sensitivity

We study the performance variation of GAFS with respect to the hidden layer

size m and the two balance parameters λ and γ. We show the results on all the 8

datasets in terms of ACC.

We first study the parameter sensitivity of GAFS with respect to subspace di-

mensionality m. Besides the aforementioned manifold dimensionality range m ∈

{10, 20, 30, 40}, which are common for both proposed and comparing algorithms, we

also conducted experiments with hidden layer size values of m ∈ {100, 200, 300, 400}

to investigate the performance change for a larger range of reduced dimensionality

values. The results in Fig. 4.1 show that the performance of GAFS is not too sensi-

tive to hidden layer size on the given datasets, with the exception of Yale, where the

performance with hidden layer size of m ∈ {10, 20, 30, 40} is apparently better than

that with reduced dimensionality m ∈ {100, 200, 300, 400}, while the performance

variations are small in the latter set. One possible reason behind this behavior is that

for a human face image dataset like Yale, the differences between data instances can

be subtle since they may only lie in a small area of relevance such as eyes, mouth,

nose, etc. Therefore, in this case a small subspace dimensionality can be enough

for information preservation, while a large subspace dimensionality may introduce

redundant information that may harm feature selection performance.
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Figure 3.1. Performance variation of the GAFS w.r.t. dimensionality of subspace
m and the percentage of features selected p (%).
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We also study the performance of GAFS on balance parameters λ and γ, with

fixed percentage of selected features and hidden layer size. We set p = 20%, as

Fig. 4.1 shows that the performance stabilizes starting at that value of p. For subspace

dimensionality, we choose m = 10 since Fig. 4.1 shows that the performance of GAFS

is not sensitive to the value of m. The performance results are shown in Fig. 3.2,

where we find that different datasets present different trends on the ACC values

with respect to λ and γ. However, we also find that the performance differences

on PCMCA, BASEHOCK, and RELATHE are not greater than 0.8%, 0.8%, and

0.4%, respectively. Therefore we cannot make any conclusion on the influence from

two balance parameters on ACC based on these 3 datasets. For the parameter λ,

which controls the column sparsity of W1, we can find that for Yale the performance

monotonically improves as the value of λ increases for each fixed value of γ, even

though the number of selected features m is fixed. We believe this is further evidence

that a small number of selected features receiving large score (corresponding to large

λ) is sufficient to obtain good learning performance, while having a large number of

highly scoring features (corresponding to small λ) may introduce irrelevant features

to the selection. We also find a similar behavior for Prostate GE and Isolet. For both

MNIST and COIL20, we can find that the overall performance is best when λ = 10−2

and both smaller and larger values of λ degrade the performance. This is because

the diversity among instances of these two datasets is large enough: a large value of

λ may remove informative features, while a small value of λ prevents the exclusion

of small, irrelevant, or redundant features. For the parameter γ, which controls local

data geometric structure preservation, we can find that both large values and small

values of γ degrade performance. On one hand, we can conclude that local data

geometric structure preservation does help improve feature selection performance to

a certain degree. On the other hand, large weights on local data geometric structure

preservation may also harm feature selection performance.
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(a) MNIST (b) COIL20

(c) Yale (d) PCMAC

(e) BASEHOCK (f) RELATHE

(g) Prostate GE (h) Isolet

Figure 3.2. Performance variation of the GAFS w.r.t. balance parameters λ and γ.
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3.3.4 Feature Selection Illustration

We randomly select five samples from the Yale dataset to illustrate the choices

made by different feature selection algorithms. For each sample, p ∈ {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 100%}

features are selected. Figure 3.3 shows images corresponding to the selected features

(i.e., pixels) for each sample and value of p, with unselected pixels shown in white.

The figure shows that GAFS is able to capture the most discriminative parts on

human face such as eyes, nose, and mouse.

Figure 3.3. Feature selection illustration on Yale. Each row corresponds to a sample
human face image and each column refers to percentages of features selected p ∈
{10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 100%} from left to right.

3.3.5 Clustering Illustration

We show a toy example of clustering from the low-dimensional data representation

(i.e., the hidden layer features) when the hidden layer size is set to m = 2 in Fig. 3.4,

with circles of different colors representing data embeddings corresponding to different

digits for MNIST and different classes for COIL20; we focus on these two datasets
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Figure 3.4. Clustering illustration of data embeddings on hidden layers when hidden
layer size is 2.

due to space constraints. In this experiment, we empirically set the parameters {λ =

10−2, γ = 10−3} for MNIST and {λ = 10−3, γ = 5×10−3} for COIL20 for autoencoder

training. In order to present a clear illustration, we show the clustering results of digits

from 0 to 4 for MNIST instead of 0 to 9 and 5 randomly selected classes for COIL20

instead of all 20 classes, respectively. From Fig. 3.4 we can find that for COIL20 the

5 classes are well separated, while for MNIST the digits 0 and 1 are will separated

from other digits.

3.3.6 Performance Comparison

We present the classification accuracy, ACC, and NMI results of GAFS and the

comparison feature selection algorithms on all datasets in Fig. 3.5, Fig. 3.6, and

Fig. 3.7, respectively. From these figures, we can find that GAFS performs better

than other compared algorithms in most cases. Comparing the performance of GAFS

with that of using all features, which is represented by a black dashed line in each

figure, we can find that GAFS can always achieve better performance with far less

features. In the meanwhile, with fewer features, the computational load in correspond-

ing classification and clustering tasks can be decreased. These results demonstrate
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the effectiveness of GAFS in terms of removing irrelevant and redundant features in

classification and clustering tasks.
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Figure 3.5. Classification accuracy w.r.t different unsupervised feature selection
algorithms and the percentage of features selection p (%)
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Figure 3.6. Clustering accuracy w.r.t different unsupervised feature selection algo-
rithms and the percentage of features selection p (%)
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(f) RELATHE

10 20 30 40 50 60 70 80

4

6

8

10

12

p (%)

N
M

I 
(%

)

 

 

GAFS
LapScor
MRSF
RSR
SPEC
UDFS
All Features
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Figure 3.7. Normalized mutual information w.r.t different unsupervised feature
selection algorithms and the percentage of features selection p (%)
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CHAPTER 4

SELF-TAUGHT LEARNING

4.1 Introduction

Self-taught learning is a technique that uses a large number of unlabeled data as

source samples to improve the task performance on target samples. Compared with

other transfer learning techniques, self-taught learning can be applied to a broader

set of scenarios due to the loose restrictions on source data. However, knowledge

transferred from source samples that are not sufficiently related to the target domain

may negatively influence the target learner, which is referred to as negative transfer.

In this paper, we propose a metric for the relevance between a source sample and tar-

get samples. To be more specific, both source and target samples are reconstructed

through a single-layer autoencoder with a linear relationship between source samples

and target samples simultaneously enforced. An `2,1-norm sparsity constraint is im-

posed on the transformation matrix to identify source samples relevant to the target

domain. Source domain samples that are deemed relevant are assigned pseudo-labels

reflecting their relevance to target domain samples, and are combined with target

samples in order to provide an expanded training set for classifier training. Local

data structures are also preserved during source sample selection through spectral

graph analysis. Promising results in extensive experiments show the advantages of

the proposed approach1.

1Contents presented in this chapter are available in [95].
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4.2 Proposed Method

In this section, we introduce our proposed GASTL approach. The basic frame-

work of GASTL is to reconstruct both source and target samples through a single-layer

autoencoder, while simultaneously enforcing a linear relationship between source sam-

ples and target samples. Both global and local data structures are preserved through

a single-layer autoencoder and spectral graph analysis, respectively. We develop a

metric for the relevance between each source sample and target samples, which is

used for source sample selection so that only samples with high relevance are selected

for knowledge transfer. Meanwhile, a weight is assigned to each source sample reflect-

ing its relevance to the target samples for the subsequent classifier training, during

which each selected source sample is assigned a pseudo-label from the target domain

label space and combined with target samples to build the classifier training sample

set. Source sample weights are also considered during classifier training. Finally, the

trained classifier is used to predict labels of unseen target samples.

4.2.1 Knowledge Transfer and Relevance Measure

In this section we present the problem formulation of our knowledge transfer

scheme as well as the corresponding optimization. We also propose a measure for

relevance between each source sample and target samples.

4.2.1.1 Objective Function

The objective function of GASTL includes four parts: a data reconstruction term,

a domain mapping term, a regularization term for sample selection; and a term based

on spectral graph analysis for local data structure preservation. The details of these

four terms are described below.

Many transfer learning methods perform knowledge transfer from a source domain

to a target domain by finding a mapping between them, that is, h1(Xtrg) = h2(Xsrc)A,

where h1(·) and h2(·) are two transformations, while A is a matrix that linearly maps
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transformed source samples h2(Xsrc) into transformed target samples h1(Xtrg). More

specifically, the mapping is obtained from the optimization:

min
Θ,A
M(Θ,A) + λR(A), (4.1)

where Θ is a set of parameters used for the nonlinear mappings h1, h2, whileM(Θ,A) =

L (h1(Xtrg), h2(Xsrc)A) denotes a cost function for domain mapping, where L(·, ·) is

a loss function and R(·) corresponds to a regularization function on A to avoid over-

fitting.2

A simple way to achieve domain mapping is to assume a linear mapping between

source and target data, which is Xtrg = XsrcA. This requires the cost M(Θ,A) =

L(Xtrg,XsrcA). The use of a linear mapping in knowledge transfer is often compu-

tationally efficient. However, the success of this knowledge transfer scheme relies on

an assumption that Xtrg ∈ span(Xsrc) [96]. Due to the ubiquitous large discrepancy

between source and target domain in self-taught learning scenarios, Xtrg is usually

not in the span of Xsrc, and hence a linear reconstruction scheme can hardly do well

in knowledge transfer. Therefore, we need to find a non-linear reconstruction scheme

that can decrease the discrepancy between source and target domains. One possible

way to do this is to find a nonlinear transformation on Xtrg, and recover the output

of this transformation as a linear transformation of source samples which are relevant

to the target samples. That is, h(Xtrg) = XsrcA, where h(·) is a nonlinear transfor-

mation. Furthermore, due to the possible large diversity of source samples compared

with target samples, we can assume that the feature space shared by both source and

target domains can be separated into several clusters: the source samples lie near a

union of many clusters, while the target samples concentrate near a single cluster.

2We empirically found that regularizating Θ did not affect the performance of knowledge transfer
much. Therefore, we do not pursue such regularization.
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Intuitively, negative transfer can be alleviated through using source samples close to

target samples for knowledge transfer.

As mentioned in Chapter 2.2, a single-layer autoencoder aims at minimizing the

reconstruction error between output and input data. We use X = [Xsrc Xtrg] as the

input to a single-layer autoencoder by optimizing a reconstruction error-driven loss

function:

L(Θ) =
1

2n
‖X− h(X; Θ)‖2F , (4.2)

where n = nsrc+ntrg, Θ = [W1,W2,b1,b2], and h(X; Θ) = g (W2 · f(W1X + b1) + b2).
3

We use the sigmoid function as the activation function: f(z) = g(z) = 1/(1+exp(−z)).

In Eq. (4.2), both source and target samples share the same parameters to train an

autoencoder, which makes the reconstructed source and target samples lie in the

same submanifold under the learned parameters Θ. Meanwhile, we use the following

minimization problem for the purpose of domain mapping:

C(Θ,A) =
1

2ntrg

‖XsrcA− h(Xtrg; Θ)‖2F . (4.3)

That is, we enforce the target samples in the autoencoder output to be reconstructed

by a linear combination of the source samples. While it is feasible to separate the

optimization of Eq. (4.2) and Eq. (4.3), we observed that a joint framework is able

to provide better knowledge transfer performance. Due to the nonlinear nature of

transformation featured by a single-layer autoencoder, the distribution gap can be

ameliorated through minimizing C(Θ,A) with respect to Θ and A. Therefore, we

define the mapping cost

M(Θ,A) = L(Θ) + µC(Θ,A), (4.4)

3We often drop the dependence on Θ for readability, i.e. we use h(X) to denote h(X; Θ) when
no ambiguity is caused.
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where µ is a balance parameter, to obtain a nonlinear mapping between source samples

and target samples.

Since each row of A indicates the importance of the corresponding source sample

in reconstrucing transformed target samples, we use the `2-norm of each row of A to

measure the relevance between a source sample and target samples. This leads to an

`2,1-norm regularization function R(A) = ‖A‖2,1 that enforces row sparsity on the

transformation matrix A.

Data transformation based on autoencoders only guarantees broad data structure

preservation, which does not take pair-wise relationship between data points into

consideration. Therefore, we need to include local data geometric structures into our

objective function. Local geometric structures of the data often contain discriminative

information of neighboring data point pairs [18]. They assume that nearby data points

should have similar representations. In order to characterize the local data structure,

we construct a k-nearest neighbor (kNN) graph G on the data space. The edge

weight between two connected data points is determined by the similarity between

those two points. We define the adjacency matrix S for the graph G as follows: for

a data point X(i), its weight S(i,j) 6= 0 if and only if X(i) ∈ Nk(X(j)) or X(j) ∈

Nk(X(i)), where Nk(X(i)) denotes the k-nearest neighborhood set for X(i); otherwise,

S(i,j) = 0. We use cosine distance to determine nonzero weight given by S(i,j) =

(X(i)TX(j))/(‖X(i)‖2‖X(j)‖2). The Laplacian matrix L of the graph G is defined as

L = D−S, where D is a diagonal matrix whose ith element on the diagonal is defined

as D(i,i) =
∑n

j=1 S(i,j). With these definitions, we set up the following minimization

objective for local data structure preservation:

44



G(Θ) =
1

2

n∑
i=1

n∑
j=1

‖Z(i) − Z(j)‖22S(i,j)

=
n∑
i=1

Z(i)TZ(i)D(i,i) −
n∑
i=1

n∑
j=1

Z(i)TZ(j)S(i,j)

= Tr(ZDZT)− Tr(ZSZT) = Tr(ZLZT),

(4.5)

where Z(i) = f(W1X
(i) + b1) for i = 1, 2, · · · , n, and Z = [Z(1),Z(2), · · · ,Z(n)].

The final objective function of source sample selection can be written in terms of

the following minimization with respect to the parameters Θ = [W1,W2,b1,b2] and

A:

{Θ̂, Â} = arg min
Θ,A
L(Θ) + µC(Θ,A) + λR(A) + γG(Θ), (4.6)

where µ, λ, and γ are balance parameters.

4.2.1.2 Optimization

The closed form solution of the optimization problem in Eq. (4.6) is hard to obtain

due to the `2,1-norm regularization term. We employ an alternating optimization

scheme to solve this problem with Θ and A being iteratively updated, until the

objective function value in Eq. (4.6) converges or a maximum number of iterations

is reached.

When A is fixed, Eq. (4.6) becomes

Θ̂ = arg min
Θ
F1(Θ) := arg min

Θ
L(Θ) + µC(Θ,A) + γG(Θ). (4.7)

Following [97], we use a limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

algorithm to solve Eq. (4.7). The L-BFGS algorithm has low computational cost,

making it possible to use the whole dataset for optimization and provide more sta-

ble performance than commonly used stochastic gradient descent algorithms. For

example, the dimensionality of the parameter Θ is the sum of the dimensionalities
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of W1 ∈ Rm×d, W2 ∈ Rd×m, b1 ∈ Rm, and b2 ∈ Rd, which is 2md + d + m. Com-

pared with the conventional BFGS algorithm, which requires computing and storing

of (2md+ d+m)× (2md+ d+m) Hessian matrices, the L-BFGS algorithm saves the

past l updates of Θ and corresponding gradients. Therefore, denoting the number of

iterations in the optimization by t, the corresponding computational complexity of

L-BFGS is O(tlmd). We refer readers to [91] for more details on L-BFGS algorithm,

which we implement using the minFunc toolbox [92]. The solver requires the gra-

dients of the objective function in Eq. (4.7) with respect to its parameters Θ. The

gradients for both L(Θ) and C(Θ,A) can be obtained through a back-propagation

algorithm. We skip the details for the derivation of the gradients of both L(Θ) and

C(Θ), which are standard in the formulation of backpropagation for an autoencoder.

The resulting gradients for L(Θ) are:

∂L(Θ)

∂W1

=
1

n
∆L2X

T ,
∂L(Θ)

∂W2

=
1

n
∆L3Y

T ,

∂L(Θ)

∂b1

=
1

n
∆L21,

∂L(Θ)

∂b2

=
1

n
∆L31,

(4.8)

where each column of ∆L2 ∈ Rm×n and ∆L3 ∈ Rd×n contains the error term of the

corresponding sample for the hidden layer and the output layer, respectively:

∆L3 = (h(X)−X) • h(X) • (1− h(X)),

∆L2 = (WT
2 ∆L3) •Y • (1−Y),

with • denoting the element-wise product operator. The gradients for C(Θ,A) are:

∂C(Θ,A)

∂W1

=
1

ntrg

∆C2(XsrcA)T ,
∂C(Θ,A)

∂W2

=
1

ntrg

∆C3Y
T
trg,

∂C(Θ,A)

∂b1

=
1

ntrg

∆C21,
∂C(Θ,A)

∂b2

=
1

ntrg

∆C31.

(4.9)

Both ∆
(i)
L2 and ∆

(i)
L3 in Eq. (4.8) play same roles as ∆

(i)
C2 and ∆

(i)
C3 in Eq. (4.9). Their

definitions are:

46



∆C3 = (h(Xtrg)−XsrcA) • h(Xtrg) • (1− h(Xtrg)),

∆C2 = (WT
2 ∆C3) •Ytrg • (1−Ytrg),

where Ytrg = f(W1Xtrg + b1). The gradients of the graph term G(Θ) = Tr(YLYT)

can be obtained in a straightforward fashion as follows:

∂G(Θ)

∂W1

=
∂Tr(YLYT)

∂Y
· ∂Y

∂W1

= 2 (YL •Y • (1−Y)) XT ,

∂G(Θ)

∂W2

= 0,

∂G(Θ)

∂b1

=
∂Tr(YLYT)

∂Y
· ∂Y

∂b1

= 2 (YL •Y • (1−Y)) 1,

∂G(Θ)

∂b2

= 0.

To conclude, the gradients of the objective function in Eq. (4.7) with respect to

Θ = [W1,W2,b1,b2] can be written as

∂F1(Θ)

∂W1

=
1

n
∆L2X

T +
µ

ntrg

∆C2(XsrcA)T + 2γ (YL •Y • (1−Y)) XT ,

∂F1(Θ)

∂W2

=
1

n
∆L3Y

T +
µ

ntrg

∆C3Y
T
trg,

∂F1(Θ)

∂b1

=
1

n
∆L21 +

µ

ntrg

∆C21 + 2γ (YL •Y • (1−Y)) 1,

∂F1(Θ)

∂b2

=
1

n
∆L31 +

µ

ntrg

∆C31.

When Θ is fixed, Eq. (4.6) becomes

Â = arg min
A
F2(A) := arg min

A
µC(Θ,A) + λR(A). (4.10)

Following [23], we use the scheme described below to optimize A. The regularization

term R(A) = ‖A‖2,1 and its derivative do not exist for its ith column A(i) when

A(i) = 0. In this case, we calculate the values of elements in AU to approximate the
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derivative of R(A) with respect to A, where U ∈ Rd×d is a diagonal matrix whose

ith element on the diagonal is

U(i,i) =


(
‖A(i)‖2 + ε

)−1
, ‖A(i)‖2 6= 0,

0, otherwise,
(4.11)

where ε is a small constant added to avoid overflow. Since R(A) = ‖A‖2,1 is not

differentiable when the `2-norm of a certain row in A is 0, we calculate the subgradient

for each element in A for that case. That is, for each element in A, the subgradient

at 0 can be an arbitrary value in the interval [−1, 1], and so we set the gradient to

0 for computational convenience. In this way, the subgradient of F2(A) with respect

to A is:

∂F2(A)

∂A
=

µ

ntrg

[XT
srcXsrcA−XT

srch(Xtrg)] + λAU. (4.12)

That is, when U is fixed, an optimal value of A can be obtained through

Â = (µXT
srcXsrc + ntrgλU)−1µXT

srch(Xtrg). (4.13)

Therefore, we can update U through Eq. (4.11) when A is fixed and update A

through Eq. (4.13) when U is fixed with an iterative scheme until the value of F2(A)

converges.

4.2.2 Classifier Training

The next step is to use source samples combined with target samples to train a

classifier, which can then be applied to unseen samples in the target domain for classi-

fication. Since source samples have different relevance levels with the target domain,

we propose a scheme to assign weights to source samples that reflect their relevance.

Source domain samples with large weights are kept while others are discarded. Subse-

quently, a classifier is trained using both target samples and selected source samples.
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For each source sample, pseudo-labels that indicate the transferability of the source

sample to different target classes are used as true labels during classifier training,

where transferability [98] reflects the possibility of transfering a source sample to

a target domain class. The transferability values of source samples are stored in a

matrix Tr ∈ Rnsrc×nctrg , where nctrg is the cardinality of Ytrg. Two pseudo-labeling

schemes are proposed for comparison. Additionally, source sample weights are taken

into consideration in classifier training. For each pseudo-labeling scheme, we evaluate

both soft and hard classification with the softmax classifier.

4.2.2.1 Source Domain Sample Reweighting

As mentioned in Chapter 4.2.1.1, the `2-norm value of each row of A can be

used to measure the relevance between the corresponding source sample and target

samples. We propose a scheme to assign a weight to each source sample based on

the corresponding row in A. The weight for a source sample X
(i)
src|nsrc

i=1 is set as the

`2-norm value of the corresponding row in A. That is, for a source sample X
(i)
src, its

weight vector Wt ∈ Rnsrc has entries Wt(i) = ‖A(i)‖2/maxj
(
‖A(j)‖2

)
. Note that the

vector Wt is normalized with the maximum entry value being 1. In addition, during

classifier training, all target training samples are given weight 1.

4.2.2.2 Pseudo-Labeling

Two transferability measure schemes are proposed and pseudo-labels are assigned

to source samples based on transferability values.

Scheme A: For a given source sample X
(i)
src, its transferability to a target class

c(j) is measured by the square of the `2-norm of a subvector consisting of elements

in the corresponding row of A that belong to target samples of c(j). That is,

Tr(i,c
(j)) = ‖A(i,J

c(j)
)‖22, where Jc(j) denotes the columns in A that correspond to

class c(j).
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Scheme B: By following [98], we adopt the isometric Gaussian probability [99]

computed on the hidden layer representation of the trained single-layer autoencoder

as the transferability of a given source sample X
(i)
src to a target class c(j). More

concretely, the transferability is

Tr(i,c
(j)) = N (Z(i)

src|Z̄c(j)

trg , σ
2I), (4.14)

where Z
(i)
src ∈ Rm is the hidden layer representation of the source sample X

(i)
src,

and Z̄c(j)

trg ∈ Rm is the mean of the hidden layer representation of target samples

belonging to class c(j). As such, the transferability is measured by the probability

that the source sample belongs to a target class given the auxiliary information

Z̄c(j)

trg .

The pseudo-labels of source samples consist of a matrix L ∈ Rnsrc×nctrg . We assign

pseudo-labels to source samples based on their transferability values to different target

domain classes. Given a source sample X
(i)
src, for a hard classifier, we set L(i,j) = 1

if target class c(j) provides the largest transferability value; otherwise L(i,j) = 0.

For a soft classifier, the normalized transferability values are used as pseudo-labels

so that pseudo lables reflect the likelihood of transfering source samples to target

domain classes: L(i,j) = Tr(i,c
(j))/

∑nctrg

k=1 Tr(i,c
(k)). Compared with hard classifiers, soft

classifiers may help improve knowledge transfer performance since it is able to capture

the relationship between each single source sample and multiple target categories

instead of one. This is especially necessary for image classification tasks since there

usually exists commonalities between image categories.

4.2.2.3 Classifier Training

We employ softmax classfier due to its simplicity and capability to do soft classi-

fication. The training data weights are included in classifier training, which leads to

the following cost function:
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J(Θc) = − 1

n

[
n∑
i=1

Wt(i)

nctrg∑
j=1

L(i,j)log
eΘc

(j)T X(i)∑nctrg

l=1 eΘc
(l)T X(i)

]
,

where Θc = [Θc
(1),Θc

(2), · · · ,Θc
(nctrg)] is the classifier parameter to be optimized.

We use an L-BFGS algorithm to compute the optimal value of Θ. The gradients
needed for optimization are given by

∂J(Θc)

∂Θc
(j)

= − 1

n

n∑
i=1

[
Wt(i)X(i)

(
L(i,j) − eΘc

(j)T X(i)∑nctrg

l=1 eΘc
(l)T X(i)

)]
.

4.3 Experiments

In this section, we evaluate the knowledge transfer performance of GASTL. Exper-

iments are conducted on four benchmark datasets covering computer vision, natural

language processing, and speech recognition. We also compare GASTL with other

relevant state-of-the-art transfer learning techniques. To be more specific, we first

select p source samples which are the most relevant to the target domain, and then

use those selected source samples combined with labeled target samples to train a

classifier. The classification rates on target testing samples are then used as metric

to evaluate knowledge transfer performance.

4.3.1 Dataset Preparation

We introduce the information of datasets we use in our experiments. We first pro-

vide the overall information of each dataset. After that we introduce the source/target

domain setup.
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• Dataset Information: We employ four benchmark datasets in our experiments,

including one visual dataset (Caltech1014), two natural language datasets (IMDB5

and Twitter,6 both for sentiment analysis), and one audio dataset (ESC-507). In

order to eliminate the side effects caused by imbalanced classes, we set the number

of samples from each class to be the same within each dataset through random

selection. For Caltech101, we keep 30 images for each class. For both IMDB and

Twitter, we only consider texts with no more than 10 words. The ESC-50 dataset

already has an even class setup with each class containing 40 audio clips. The

properties of these datasets are summarized in Table 4.1.

• Feature Extraction: Data in raw feature space cannot be used for knowledge

transfer due to possible dimensionality inconsistence. For example, images may

have different sizes and texts may have different lengths, Therefore, it is necessary

to do feature extraction on each dataset to make knowledge transfer feasible. For

Caltech101, we employ two types of features. The first one is the 1,000-dimensional

SIFT-BOW feature8 proposed in Gehler et. al. [100]. The second one is the 4,096-

dimensional output of the last fully connected layer of the pre-trained VGG-19

model [101]. In our experiments we use the Keras tool9 to compute the VGG-19

4Dataset downloaded from: http://www.vision.caltech.edu/Image_Datasets/Caltech101/.
The Caltech101 dataset contains both a “Faces“ and “Faces easy“ class, with each consisting of
different versions of the same human face images. However, the images in “Faces“ contain more
complex backgrounds. To avoid confusion between these two similar classes of images, we do not
include the “Faces easy“ images in our experiments. Therefore, we keep 100 classes for Caltech101.

5Dataset downloaded from: https://drive.google.com/file/d/

0B8yp1gOBCztyN0JaMDVoeXhHWm8/.

6Dataset downloaded from: https://www.kaggle.com/c/twitter-sentiment-analysis2/

data

7Dataset downloaded from: https://github.com/karoldvl/ESC-50

8Dataset downloaded from: http://files.is.tue.mpg.de/pgehler/projects/iccv09/.

9We refer readers to https://github.com/keras-team/keras for more information on Keras.
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Dataset Features Samples Classes Type
Caltech101 (SIFT-BOW) 1,000 3,000 100 Image

Caltech101 (VGG-19) 4,096 3,000 100 Image
IMDB 3,000 6,500 2 Text

Twitter 3,000 6,500 2 Text
ESC-50 2,592 2,000 50 Audio

Table 4.1. Details of datasets used in our experiment.

features.10 For both IMDB and Twitter, we use the method from [102]11 to do

feature extraction. By using a convolutional neural network model with publicly

available WORD2VEC vectors, we get a 300 × 10 matrix for each text, which

forms a 3,000-dimensional feature vector after column concatenation. We denote

this feature as WORD2VEC in the sequel. For ESC-50, by following [103], we use

the librosa package [104] to compute mel-frequency cepstral coefficients (MFCC)

for each clip. After discarding the 0th coefficient, the first 12 MFCCs are whitened

and used as feature for each clip. Therefore, we get a 12×216 matrix for each clip,12

which forms a 2,592-dimensional vector after column concatenation. These 2,592-

dimensional vectors are used as features for audio clips. We denote this feature as

MFCC in the sequel.

• Source/Target Split: For Caltech101, we randomly separate the 100 classes into

5 groups with 20 classes in each group. Five independent self-taught learning ex-

periments were conducted on Caltech101: in each experiment samples in one group

are used as target samples and those in the remaining four groups are used as source

samples. For each class in the target domain, 15 samples were used for training

and 15 samples were used for testing. For the two natural language datasets, we

10In the sequel, we use VGG-19 to denote the feature generated by VGG-19 models.

11Codes downloaded from: https://github.com/yoonkim/CNN_sentence

12Each MFCC contains 216 frames in our experiments.
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used one as source and the other one as target. That is, when IMDB was used as

target, then Twitter was used as source and vice versa. For computational conve-

nience, we did not use the entire datasets when either IMDB and Twitter is used

as the source. We randomly selected 3,000 samples as source for both IMDB and

Twitter. For each class in the target domain, 10, 100, 1000 samples were used for

training and 750 samples were used for testing. The audio clips in ESC-50 dataset

are separated into 5 groups with each group containing 10 classes. The 5 groups

are: animal sounds; natural soundscapes and water sounds; human, non-speech

sounds; interior/domestic sounds; and exterior/urban noises. Like Caltech101, we

conducted five independent self-taught learning experiments on ESC-50 that in each

experiment samples in one category were used as target and those in the other four

categories were used as source. For each class in the target domain of ESC-50, 5,

10, 15, 20 samples were used for training and 20 samples were used for testing.

4.3.2 Experimental Setup

We performed classification on the target testing samples in order to evaluate

the effectiveness of the self-taught learning algorithms and two sample selection/re-

weighting based domain adaptation methods. The three self-taught learning methods

are STL [45], RDSTL [52], and S-Low [53] introduced in Chapter 2.5. The two domain

adaptation methods are kernel mean matching (KMM) [105] and multiscale land-

marks selection (MLS) [106]. These two domain adaptation methods were tailored to

the scenario of self-taught learning. We also compute the classification performance

without knowledge transfer.

Both GASTL and the compared algorithms include parameters to adjust. In this

experiment, we fix some parameters and tune others through a grid search strategy.

For algorithms requiring source sample selection/re-weighting, we select the num-

ber of source samples p ∈ {10, 20, 30, · · · , 100, 150, 200, 250, · · · , 500, 1000, 1500, nsrc}.
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In GASTL, the range of hidden layer sizes is set to m ∈ {10, 50, 100, 200}, while

the balance parameters are given ranges of λ ∈ {10−4, 10−3, 10−2, 10−1, 1} and γ ∈

{0, 10−4, 10−3, 10−2, 10−1}. The value of µ is set to 1. The number of nearest neighbor

in a kNN graph is set to 5. The value of σ2 is set to 1.

All three self-taught learning methods (STL, RDSTL, and S-Low) are based on

dictionary learning, and sparse code vectors were used as features for classification.

For STL, we first performed PCA on each training sample since the features listed in

Table 4.1 have high dimensionalities and require large dictionary sizes, which would

cause prohibitive training time. Following [45], we kept the number of principal com-

ponents to preserve approximately 96% of the training sample variance. We also found

empirically that small dictionary sizes provide poor performance and large dictionary

sizes result in unfeasibly long training times. In this experiment, we empirically set

the dictionary size as the training set size, which are 2,400 for Caltech101, 3,000 for

both IMDB and Twitter, and 1,600 for ESC-50, for their acceptable training time

and good performance.

The balance parameter β in Eq. (4) and Eq. (2.11) is sampled from β ∈

{10−6, 10−5, 10−4, 10−3, 10−2, 10−1}. For both RDSTL and S-Low, we observed that

their performance was not very sensitive to dictionary sizes but quite dependent on

balance parameters. Therefore, we use the following parameter adjustment scheme.

For RDSTL, we first use grid search for parameter β with the range {10−9, 10−8, · · · , 10−1, 1}.

The parameter value leading to the highest classification accuracy, denoted by β̂1, is

kept for the next round. Assume β̂1 = a1×10b1 , then the second round of grid search

is of the range {a1 − 0.4, · · · , a1 − 0.1, a1 + 0.1, · · · , a1 + 0.5} × 10b1 . The parame-

ter value that resulted in the best classification performance in the second round is

denoted as β̂2. Assume β̂2 = a2 × 10b2 , then the third round of grid search is of the

range {a2− 0.04, · · · , a2− 0.01, a2 + 0.01, · · · , a2 + 0.05}× 10b2 . The parameter value

that resulted in the best classification performance in the third round is denoted as
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β̂3, which is the final optimal β value. For S-Low, both λ1 and λ2 are set to 0.02

and we also use a three-round scheme to adjust the value of λ3. The initial range of

λ3 is {10−5, 10−4, · · · , 10−1, 1}. Due to the large time consumption during parameter

adjusting, we also perform PCA with the same scheme that are used for STL.

For both KMM13 and MLS14, we first obtained weights for the source samples,

which are also assigned pseudo-labels. Between the two pseudo-labeling schemes de-

scribed in Chapter 4.2.2, only Scheme B is applicable since Scheme A is dependent

on the transformation matrix A, and these two domain adaptation methods do not

generate one. We use the features listed in Table 4.1 in Eq. (4.14) instead of autoen-

coder activations as we did in GASTL. Subsequent steps were exactly the same as

those for GASTL. For the optimization of GASTL with L-BFGS, we set the number

of iterations t to be 400 and the number of storing updates l to be 100.

4.3.3 Parameter Sensitivity

We study the performance variation of GASTL with respect to the hidden layer

size m and the two balance parameters λ and γ reflected by classification accuracy

on target testing samples. We show the results on all four datasets.

We first study the parameter sensitivity of GASTL with respect to the hidden layer

size m. Due to limited space, we only present a small portion of our experimental

results in Fig. 4.1,15 where “Soft“ and “Hard“ refer to whether a soft or hard classifier

is used, while “A” and “B” refer to the pseudo-labeling schemes. Note that although

13Codes downloaded from: http://www.gatsby.ucl.ac.uk/~gretton/covariateShiftFiles/

covariateShiftSoftware.html

14Codes downloaded from: https://github.com/jindongwang/transferlearning/tree/

master/code

15For Caltech101, we use the results of one set out of five with SIFTBOW features as antoencoder
inputs. For both IMDB and Twitter, we use the results with each target data having 10 training
samples. For ESC-50, we use the results of one set out of five with each target data having 10
training samples.
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Figure 4.1. Performance of GASTL in classification as a function of the hidden layer
size m for varying sizes of the autoencoder hidden layer m. Classification accuracy
(%) is used as the evaluation metric.

we train classifiers with multiple choices of source sample numbers, the classification

results in Fig. 4.1 are the highest classification accuracy among all available choices.

The results show that the performance of GASTL is not too sensitive to hidden layer

size on the given datasets.

We also study the parameter sensitivity of GASTL with respect to the balance

parameters λ and γ, under a fixed hidden layer size. In order to do this, with all

other parameters being fixed, we record the classification accuracy corresponding to
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Scheme
Dataset

Caltech101
(SIFT-BOW)

Caltech101
(VGG-19)

IMDB Twitter ESC-50

SoftA 48.92± 1.53 94.48±
0.47

58.22±
0.60

55.79±
0.47

21.54±
1.38

HardA 44.20± 1.17 92.84±
1.45

57.91±
0.98

55.41±
1.13

20.06±
2.15

SoftB 48.75± 1.65 94.44±
0.51

58.08±
0.54

55.76±
0.47

21.68±
1.46

HardB 44.27± 1.45 94.39±
1.20

57.79±
0.86

55.06±
1.29

20.58±
2.11

Table 4.2. Performance stability of GASTL in classification with respect to balance
parameters λ and γ. Classification accuracy mean (%) and standard deviation (%)
are presented.

each parameter combination, which consists of a 5 × 5 matrix. We then calculate

the mean and standard deviation of these 25 elements, and parameter sensitivity

can be evaluated through the ratio between standard deviation and mean value. We

choose hidden layer size m = 10 as Fig. 4.1 shows that the performance of GASTL

is not sensitive to the value of m. The results are listed in Table 4.3.3, where we

can find that the performance of GASTL is quite stable with respect to the balance

parameters λ and γ for Caltech101, IMDB, and Twitter. For ESC-50, the standard

deviation values are relatively large compared with the mean values.

4.3.4 Performance Comparison

We present the classification accuracy results of GASTL and baselines on all

datasets in Tables 4.3 to 4.7, corresponding to Caltech101 (SIFT-BOW), Caltech101

(VGG-19), IMDB, Twitter, and ESC-5016, respectively. Note that “No Transfer” de-

notes the method that performs classification on target samples without knowledge

transfer. In Tables 4.3, 4.4, and 4.7 each column corresponds to one subset, while in

16Due to limited space, for ESC-50 we only perform results with 10 training samples for each
target class.
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Method
Set ID

1 2 3 4 5

No Transfer 42.33 61.67 42.33 48.33 46.00
STL 46.00 64.33 48.33 46.33 56.00

RDSTL 36.67 51.33 37.00 39.67 42.00
S-Low 35.00 51.00 36.67 34.33 36.67

KMM-Soft 48.67 66.00 47.33 52.67 56.33
KMM-Hard 43.67 63.67 43.33 47.67 48.33
MLS-Soft 47.33 66.33 47.67 51.67 53.33
MLS-Hard 45.33 62.00 42.00 46.00 47.67

GASTL-SoftA 53.00 67.67 51.67 56.00 58.67
GASTL-HardA 47.67 64.33 47.67 48.67 52.33
GASTL-SoftB 52.33 68.00 51.33 53.33 58.67
GASTL-HardB 48.00 64.00 46.33 49.33 51.00

Table 4.3. Performance of GASTL and competing feature selection algorithms in
classification on Caltech101 with SIFTBOW as feature. Classification accuracy (%)
is used as the evaluation metric.

Tables 4.5 and 4.6, each column corresponds to one training sample number in each

target class. We highlight the best two performances in each experiment given that

we find in many cases the best two (or even more) performance are very close to each

other.

We first provide an overall description on the comparison between GASTL and

the competitors on each dataset. We can find that in Tables 4.3 and 4.4 the best

performances are claimed by GASTL methods. In Tables 4.5 and 4.6, RDSTL is

comparable to GASTL in a few cases, while in Table 4.7, the advantages of GASTL

over RDSTL are sometimes small. In other words, GASTL provides the best overall

performance. We can also find that the classification performance of the two pseudo-

labeling schemes are quite similar to each other in almost every case in the five tables.

Our next analysis focuses on the comparison between performance generated by soft

classifiers and hard classifiers.

In Table 4.3, it is obvious that GASTL methods with soft classifiers provide the

best performance. For image datasets such as Caltech101, it is unusual for the rel-
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Method
Set ID

1 2 3 4 5

No Transfer 94.33 95.67 93.00 94.33 93.67
STL 95.00 95.33 92.00 94.67 94.33

RDSTL 91.67 93.00 85.67 90.00 89.33
S-Low 91.33 90.67 87.00 89.67 89.33

KMM-Soft 95.33 96.00 93.33 93.67 94.67
KMM-Hard 94.33 95.33 92.33 94.00 93.67
MLS-Soft 94.00 95.33 92.67 94.00 93.67
MLS-Hard 95.00 95.67 93.00 94.33 93.67

GASTL-SoftA 95.67 97.00 93.67 95.00 96.00
GASTL-HardA 95.00 97.00 94.67 95.67 96.00
GASTL-SoftB 96.00 97.00 93.67 94.67 96.00
GASTL-HardB 96.00 96.67 94.67 95.67 95.67

Table 4.4. Performance of GASTL and competing feature selection algorithms in
classification on Caltech101 with VGG19 as feature. Classification accuracy (%) is
used as the evaluation metric.

evance between one source sample and a particular target class to be much larger

than for other target classes. A soft classifier is able to characterize the relationship

between a source sample and each target class during pseudo-labeling, while a hard

classifier only selects the most similar class to each source sample and ignores other

target classes, which may degrade knowledge transfer performance due to the possible

useful information from other classes. This can also be validated by the results of

KMM and MLS in Table 4.3, which shows the advantages of soft classifiers over hard

classifiers. However, the classification rates listed in Table 4.4 are quite large and

similar to each other. Therefore, these results cannot provide significant information

on validating the advantages of soft classifier over hard classifier on image datasets.

On the other hand, the performance increase brought by knowledge transfer also de-

pends on the difficulty of the classification problem. For example, the performance

increase of Caltech101 using the SIFT-BOW features is much larger than using the

VGG-19 features.
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Method
TS

10 100 1000

No Transfer 57.60 68.20 73.27
STL 58.80 69.53 73.73

RDSTL 60.53 70.47 73.47
S-Low 59.93 64.87 73.07

KMM-Soft 57.13 69.13 73.53
KMM-Hard 58.00 68.60 73.33
MLS-Soft 56.40 68.47 72.87
MLS-Hard 56.80 68.80 72.53

GASTL-SoftA 59.80 69.33 74.60
GASTL-HardA 60.73 70.47 77.67
GASTL-SoftB 60.33 69.27 74.47
GASTL-HardB 60.53 70.60 77.67

Table 4.5. Performance of GASTL and competing feature selection algorithms in
classification on IMDB. Classification accuracy (%) is used as the evaluation metric.
TS = Training sample number in each target class.

In Tables 4.5 and 4.6, hard classifiers consistently provide slightly better per-

formance than soft classifiers for GASTL methods, while for KMM and MLS, the

differences are smaller. According to our experimental setup, IMDB and Twitter

play interchangable roles as source and target. Therefore, in each experiment both

source and target domains share a label space with two labels (“positive sentiment”

and “negative sentiment”). Therefore, in this case it is better to use hard classifier

than soft classifier since the two labels indicate two multually exclusive categories.

It is difficult to interpret the results in Table 4.7. The overall performance of

hard classifier based methods is better than soft classifier based ones for groups 1

to 4, while group 5 provides opposite results. We believe that the results reflect the

complexity of this dataset.
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Method
TS

10 100 1000

No Transfer 55.47 58.93 77.80
STL 53.67 58.93 76.93

RDSTL 58.60 59.93 63.13
S-Low 55.87 59.47 64.47

KMM-Soft 56.27 61.20 78.27
KMM-Hard 57.47 60.33 78.47
MLS-Soft 56.27 59.40 77.93
MLS-Hard 57.27 60.40 78.13

GASTL-SoftA 56.67 61.93 78.20
GASTL-HardA 57.87 62.73 78.53
GASTL-SoftB 56.67 62.00 78.20
GASTL-HardB 58.67 61.93 78.60

Table 4.6. Performance of GASTL and competing feature selection algorithms in
classification on Twitter. Classification accuracy (%) is used as the evaluation metric.
TS = Training sample number in each target class.

4.3.5 Discussion

4.3.5.1 The Effect of Local Data Structure Preservation

As mentioned in Chapter 4.2.1.1, local data structure preservation provides similar

representation for nearby data points. Intuitively, local data structure preservation

applied in the hidden layer of the autoencoder is likely to improve knowledge transfer

performance because it is able to reduce hidden layer representation distortion as

they are involved in data reconstruction and pseudo-labeling. In order to measure

the effect of local data structure preservation on knowledge transfer, we compare

the classification performance when γ = 0 with the optimal one. In Fig. 4.2, the

comparions on one set of Caltech101 with both SIFTBOW and VGG19 as the input

to autoencoder, both IMDB and Twitter with each target data having 10 training

samples, and one set of ESC-50 are displayed. We can find that in most cases setting

γ = 0 cannot achieve the optimal performance. Exceptions appear in the cases of

“HardA” on Caltech101 with SIFTBOW features and both “HardA” and “HardB”

on Twitter. Due to our observations on complete comparisons, classification rates
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Method
Set ID

1 2 3 4 5

No Transfer 20.50 25.00 20.00 19.00 20.00
STL 19.00 19.00 16.00 18.00 20.50

RDSTL 26.00 28.00 25.50 26.50 26.50
S-Low 17.00 15.50 16.00 17.50 15.00

KMM-Soft 21.00 28.00 20.00 22.00 25.00
KMM-Hard 24.00 28.50 23.00 22.00 20.00
MLS-Soft 22.50 26.00 21.00 19.50 25.00
MLS-Hard 23.00 27.50 22.50 22.50 22.00

GASTL-SoftA 26.00 27.50 23.00 23.00 26.00
GASTL-HardA 26.00 30.50 23.50 24.50 24.50
GASTL-SoftB 26.50 28.00 23.50 23.50 26.50
GASTL-HardB 26.00 29.50 24.50 25.00 24.50

Table 4.7. Performance of GASTL and competing feature selection algorithms in
classification on ESC-50. Classification accuracy (%) is used as the evaluation metric.

resulted from the situation of γ = 0 are consistently lower than those resulted from

the situations of γ 6= 0. Therefore, the former exception can be regarded as a subtle

outlier. However, we found that the advantages in classification accuracy contributed

by local data structure preservation are not obvious on Twitter. One possible expla-

nation is that the local data structures in the space of WORD2VEC feature cannot

provide discriminative information for samples in Twitter dataset. Therefore, local

data structure preservation negatively affected the knowledge transfer performance

refected by classification accuracy on unlabeled target samples.

4.3.5.2 The Effect of Source Sample Selection

We claim that transferring knowledge from source samples indiscriminately may

cause negative transfer since there is no guarantee that all source samples have suffi-

cient relevance with target domain. In order to demonstrate the advantages of source

sample selection, we compare the classification accuracy for three different cases: the

optimal value of p found with GASTL, p = 0 (i.e., no transfer learning), and p = nsrc

(i.e., no sample selection). The results shown in Fig. 3 demonstrate not only that
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Figure 4.2. Comparison of GASTL performance when γ = 0 and optimal GASTL
performance. Classification accuracy (%) is used as the evaluation metric. Optimal
values for γ are shown.
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Figure 4.3. Comparison of GASTL performance when all source samples are used
for classifier training and optimal GASTL performance. Classification accuracy (%)
is used as the evaluation metric. Optimal values for p are shown.

significant performance gains are obtained via GASTL, but also that in many cases

the blind consideration of all source samples can in fact result in negative transfer,

as seen by the reduced performance obtained with p = nsrc versus p = 0.
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CHAPTER 5

FEW-SHOT LEARNING

Few-shot learning is a technique that feeds a learning model with a very small

amount of labeled training data. Compared with traditional machine learning meth-

ods which use large amounts of training data, few-shot learing methods can signifi-

cantly save the time and labor cost in training data collection. In this chapter, we

propose a few-shot learning method for wearable sensor based human activity recog-

nition, which can be treated as a type of pattern recognition problem that seeks

high-level human activity knowledge from low-level sensor inputs. Due to the high

costs to obtain human generated activity data and the ubiquitous similarities between

activity modes, it would be more economical to borrow information from existing ac-

tivity data than to collect more data and train a new model for new activities with

only a few data at hand. To be more specific, in this chapter we consider knowledge

transfer between domains which do not have identical labels.

5.1 Introduction

Studies in human activity recognition (HAR) have been attracting increasing at-

tentions in recent years due to their potential applications in human health care [107],

indoor localization [108], smart hospital [109], and smart home [58]. HAR is a tech-

nique that aims at predicting people’s activities from the low-level sensor inputs. In

recent years, the application of wearable devices such as smart wristbands and smart

phones in HAR significantly facilitates HAR research due to their small sizes and low
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power consumption [110], as well as the capability of real-time information capturing

[111].

Traditional machine learning (ML) methods such as support vector machine and

decision trees had significantly promoted the development of HAR studies during the

past few decades. However, limitations such as heavy reliance on human domain

knowledge [112] and shallow feature extraction impede these ML methods to provide

satisfying results in most daily HAR tasks [62]. During recent years, deep learning

methods have been continuously providing marvelous peroformance in many areas

such as computer vision and natural language processing [113]. The capability to

automatically extract high-level features makes deep learning methods largely allevi-

ated from the drawbacks of conventional ML methods. There have been many deep

learning based HAR works proposed in recent years [71, 73, 75, 114]. However, the

training time and the amount of data required for deep learning systems are always

much larger than that of traditional ML systems. Furthermore, the large time and

labor costs makes it difficult to build a large-scale labeled dataset with high quality.

Therefore, it is necessary to find a way to alleviate these problems of deep learning.

Few-shot learning (FSL) [55] is a type of transfer learning technique [43] aiming

at learning a classifier to recognize unseen classes (target domain) with only a small

amount of labeled training samples by using knowledge from existing models on rel-

evant classes (source domain). In this paper, we propose a novel deep FSL method

for unseen activity recognition. We first transfer structures and parameters of front

layers (feature extractor) from a trained neural network to make use of the general

knowledge among similar tasks they contain, then we calculate similarities between

source classes and target classes and train a target classifier. Our contribution is

two-fold:

• We design a deep neural network for HAR.
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• We propose a few-shot learning framework to transfer knowledge from exisiting

classes to new classes.

To the best of our knowledge, this is the first work of deep learning based few-shot

learning on HAR.

5.2 Proposed Method

In this section, we introduce our proposed cross-domain human activity recog-

nition (CDHAR) approach. We follow the standard deep learning based transfer

learning procedure for our CDHAR model. Below is a framework for our proposed

CDHAR method. We first train a deep neural network with source data.

5.2.1 Basic Framework

Figure 5.1. Basic Framework

The basic framework for CDHAR is illustrated in Fig. 5.1. We first train a source

network with source domain samples to get the source feature extractor f(θsrc), with

parameters θsrc, and the source classifier C(·|Wsrc), with parameters Wsrc ∈ Rcsrc×d,
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where csrc is the number of source classes and d is the dimensionality of encoded

features fed into the source classifier. We empirically use a stacked LSTM with two

hidden layers as feature extractor and two fully connected layers followed by a softmax

predictor as classifier for both source and target networks. We use LSTM as feature

extractor with the purpose of taking advantages of the temporal dependencies within

the HAR data, as the layout of an LSTM layer forms a directed cycle, where the

states of the network in current timestep depends on those of the network in the

previous timestep. The network structure for both the source domain and the target

domain is shown in Fig. 5.2.

Figure 5.2. Network Structure

For a deep neural network, features in the lower layers are generic while features

in upper layers are more specific to tasks. For transfer learning purposes, we use

the source feature extractor parameters θsrc as the initialization of the target feature

extractor parameters. With generic features being transferred, the next step is to

transfer information in source classifier to target classifier. However, since informa-

tion in a classifier is highly specific to the task, it is necessary to pick information

relevant to the target task from the source classifier in order to avoid negative trans-
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fer. In our problem scenario, we focus on the class-wise similarities between the

source and target domain samples. In this paper, we use the magnitudes of the re-

construction coefficients to measure cross-domain class-wise similarity. We assume a

linear mapping between source domain samples and target domain samples, that is,

f1(Xtrg) = ATf2(Xsrc), where A ∈ Rnsrc×ntrg is a reconstruction matrix with element

values indicating cross-domain sample-wise similarity, and f1(·) and f2(·) are two ap-

propriate networks to embed Xtrg and Xsrc, respectively. In our problem scenario, the

functions f1(·) = f2(·) are the source feature extractor. We first solve the following

minimization problem to get a reconstruction matrix A:

min
A

1

2ntrg

‖ATf(Xsrc)− f(Xtrg)‖2F + λ‖A‖2,1, (5.1)

where λ is a balance parameter and f(·) denotes the source feature extractor. Since

each row of A indicates the importance of the corresponding encoded source sample

in reconstrucing encoded target samples, we use the `2-norm of each row of A to

measure the relevance between an encoded source sample and encoded target samples,

which leads to the `2,1-norm regularization term in (5.1) that enforces row sparsity

on the transformation matrix A for similarity measure. Since transferring knowledge

from source samples that are inversely correlated with target samples may cause

negative transfer, we multiply each element in A with the rectified linear unit (ReLU)

activation function so that A only contains similarity measure between positively

correlated source and target domain samples. With the reconstruction matrix A, we

sum up the element values within each source-target class pair to get a class-wise

similarity matrix O ∈ Rncsrc×nctrg . That is,

O(p,q) =
∑

i ∈ class p

∑
j ∈ class q

A(i,j) (5.2)
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We then propose two schemes to get a normalized class-wise similarity matrix W ∈

Rncsrc×nctrg .

• Scheme A: Soft normalization

W(p,q) =
O(p,q)∑ncsrc

p=1 O(p,q)
(5.3)

• Scheme B: Hard normalization

W(p,q) =


1 O(p,q) = {maxi O

(i,q)}ncsrc
i=1

0 Otherwise

(5.4)

The initialization of target classifier weights is a linear combination of the trained

source classifier weights based on the normalized class-wise similarity matrix W,

which is Wtrg = WTWsrc. Compared with hard normalization, soft normalization

may help improve knowledge transfer performance since it is able to capture the

relationship between each single target class and multiple source classes instead of

one. This is important for HAR tasks since there sometimes exists commonalities

between activity categories.

Both θsrc and Wtrg are used as initialization for feature extractor and classifier

parameters in target network. Given the pre-trained network, the final target feature

extractor parameter θ∗trg and classifier parameter W∗
trg are obtained through fine-

tuning.

5.2.2 Implementation

We used PyTorch [115] to implement the described framework. Network parame-

ter optimization was performed via Adam [116]. We employ the method proposed in
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[117]1 to solve the optimization problem (5.1) , which efficiently solves an an `2,1-norm

optimization problem by reformulating it as two equivalent smooth convex optimiza-

tion problem.

5.3 Experiments

In this section, we evaluate the knowledge transfer performance of CDHAR. Ex-

periments are conducted on two benchmark human activity datasets. We also com-

pare CDHAR with other relevant state-of-the-art transfer learning techniques. As

mentioned in Section 5.2.1, we first train a neural network solving a source domain

classification task. After that, we build a network for target domain with the same

structure as that for the source domain. We use the feature extractor weights from

the source network as the initialization of feature extractor weights and a weighted

linear combination of source classifier based on a class-wise similarity measure be-

tween source and target domains as the initialization of classifier weights to train a

target neural network. The classification rates on target testing samples are used as

metric to evaluate knowledge transfer performance.

5.3.1 Dataset Information

We first provide the overall information of each dataset and introduce the source/target

domain setup. We perform experiments on two benchmark datasets: the the oppor-

tunity dataset (OPP) [118] and the PAMAP2 dataset (PAMAP2) [119]. The oppor-

tunity dataset (OPP) [118] consists of common kitchen activities from 4 participants

with wearable sensors. Data from 5 different runs are recorded for each participant

with activities being annotated with 18 mid-level gesture annotations. Following

[114], we only keep data from sensors without any packet-loss, which includes ac-

1Codes available at: https://github.com/jundongl/scikit-feature/blob/master/

skfeature/function/sparse_learning_based/ls_l21.py
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celerometer data from the upper limbs and the back, and complete IMU data from

both feet, so that the resulting dataset has 77 dimensions. The PAMAP2 dataset

(PAMAP2) [119] consists of 12 household and exercise activities from 9 participants

with wearable sensors. The dataset has 53 dimensions. In order to eliminate the side

effects caused by imbalanced classes, we set the number of samples from each class to

be the same within each dataset through random selection. We keep 202 samples and

129 samples for OPP and PAMAP2, respectively. Following [114] for frame-by-frame

analysis, a sliding window with a one-second duration and 50% overlap is performed

and the resulting data are used as inputs to the system for both datasets. After

preprocessing, each sample is represented in the form of a matrix.

5.3.2 Source/Target Split

We test the knowledge transfer performance in two scenarios, i.e. transferring

knowledge from other activities on same people and transferring knowledge across

both activities and individuals. In both scenarios, we split the activities into two

groups on each dataset for knowledge transfer purpose. Details on the source/target

split for the different activities are listed in Table 5.1. For knowledge transfer across

both activities and individuals, the individuals are partitioned into different groups

for the source/target split. In OPP, the target domain includes target activities of

one individual and the source domain includes source activities of the remaining indi-

viduals. In PAMAP2, individuals are first partitioned into three groups. The target

domain includes target activities of one group and the source domain includes source

activities of the remaining groups. We repeat experiments until all individuals/groups

have the chance to be employed as both source and target domain in each dataset.
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Dataset
Split

Source Activities Target Activities

OPP Open Door 2 Open Door 1
Close Door 2 Close Door 1
Close Fridge Open Fridge
Close Dishwasher Open Dishwasher
Close Drawer 1 Open Drawer 1
Close Drawer 2 Open Drawer 2
Close Drawer 3 Open Drawer 3
Clean Table
Drink from Cup
Toggle Switch

PAMAP2 Lying Sitting
Standing Cycling
Walking Nordic Walking
Running Descending Stairs
Ascending Stairs Ironing
Vacuum Cleaning
Rope Jumping

Table 5.1. Source/target split for activities

5.3.3 Baselines

We compare CDHAR with the following five baselines. Note that all baselines are

performed with the network structure described in Section 5.2.1. The parameters for

neural networks are listed in Table 5.2.

• No Transfer , which trains the designed network with target training data from

scratch, without any knowledge transfer from source network.

• Half Transfer , which only transfers the source feature extractor weights as ini-

tialization for target feature extractor weights. The target classifier is trained

from scratch using the target training data.

• CDHAR-NGD , which uses normalized Google distance (NGD) to measure cross-

domain class-wise similarity in a semantic way [120], with other steps the same

as CDHAR.
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Parameters OPP PAMAP2
LSTM Layer 2 2
LSTM Hidden Size 64 50
FC1 Size 64 50
FC2 Size 64 25

Table 5.2. Network Structure for Both Datasets

• CDHAR-Cls , which first trains networks for both source and target domain

from scratch and then calculates the cosine value between classifier weights of

each source-target-class-pair as the cross-domain class-wise similarity measure

[121], with other steps the same as CDHAR.

• CDHAR-Corr , which uses cosine similarity as cross-domain sample-wise simi-

larity measure [56], with other steps the same as CDHAR.

5.3.4 Performance Comparison

We present the classification accuracy results of CDHAR and baselines on both

datasets in Fig. 5.3-5.6, including different combinations of datasets (OPP or PAMAP2),

whether source data and target data being generated from the same participant/groups

of participants or not, and number of training samples from each target class (1 or

5). Each number is an average of results from 100 repetitions with varying target

training data. Analysis on these results is provided as follows.

• Transfer Learning and Negative Transfer : We can find that most transfer learn-

ing based methods perform bettern than “No Transfer” and “Half Transfer”,

except for “CDHAR-Cls”. However, we also see negative transfer when only the

source feature extractor weights are transferred. We conjecture that the possible

reason is that the weights we transferred are generated from all source domain

samples without any regard for similarity measure and selection. Therefore

source samples with different relevance with target domain make equal con-
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tributions to the weights and those with weak relevance may provide harmful

information during training. The consistent poor performance of “CDHAR-Cls”

also results from negative transfer. The severe insufficiency of target training

samples make the trained target classifier suffer significantly from overfitting.

Therefore, the similarity between the weights of the target classifier and the

source classifier is very likely to deviate from the true cross-domain class-wise

similarity.

• Number of Training Samples : Increasing the number of training samples for each

target class from 1 to 5 can bring an increase about 10% to 15% in performance

for each method. It is also obvious that gap between “No Transfer”, baseline

without knowledge transfer and other transfer learning methods shrinks. We

believe that by as the number of target training samples increase, the gap

between performance of “No Transfer” and transfer learning based methods

will keep shrinking, which decreases the necessity of transfer learning.

• Source Data: For OPP, using source data from the same participant consis-

tently provides better performance than that of using source data from different

participants. Our method assumes that data from the same participants may

have similar marginal distribution, though they have different conditional dis-

tribution due to disjoint label space between source domain and target domain.

However, this is not true for PAMAP2. We conjecture that the combination of

3 participants into a group may introduce incompatibility in marginal distribu-

tion, which may leads to negative transfer.

• Soft Normalization vs. Hard Normalization: It is obvious that soft normaliza-

tion does better than hard normalization in most cases. For activity data, each

activity may be related with multiple other activities instead of only a specific

one another. Soft normalization is able to characterize the relationship between
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a target activity with source activities during similarity measure, while hard

normalization only selects the most similar source activity to each target ac-

tivity, which may degrade knowledge transfer performance due to the possible

useful information from other source activities.

• Cross-Domain Class-Wise Similarity Measures : For OPP, we find that “CDHAR-

l21” and “CDHAR-Corr” provides similar performance in almost all cases.

When each target class provides only one sample for training, “CDHAR-NGD”

does better than both “CDHAR-l21” and “CDHAR-Corr” while when five sam-

ples are used, these three methods performs similarly. Due to the source/target

split scheme we use for OPP, it is easy for NGD to find similarities between

source and target classes using the semantic information in their labels. This

also explains the fact that the advantages of “CDHAR-NGD” is not significant

for PAMAP2.
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(a) Participant 1, one-shot (b) Participant 1, five-shot

(c) Participant 2, one-shot (d) Participant 2, five-shot

(e) Participant 3, one-shot (f) Participant 3, five-shot

(g) Participant 4, one-shot (h) Participant 4, five-shot

Figure 5.3. Comparison of CDHAR performance with OPP dataset. Source data
and target data are generated from the same participant. Subfigures in the left column
show results when each target class provides one training sample for target network
training. Subfigures in the right column shows results when each target class provides
five training samples for target network training. Classification accuracy (%) is used
as the evaluation metric.
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(a) Participant 1, one-shot (b) Participant 1, five-shot

(c) Participant 2, one-shot (d) Participant 2, five-shot

(e) Participant 3, one-shot (f) Participant 3, five-shot

(g) Participant 4, one-shot (h) Participant 4, five-shot

Figure 5.4. Comparison of CDHAR performance with OPP dataset. Source data
and target data are generated from the different participants. Subfigures in the left
column show results when each target class provides one training sample for target
network training. Subfigures in the right column shows results when each target class
provides five training samples for target network training. Classification accuracy (%)
is used as the evaluation metric.

79



(a) Group 1, one-shot (a) Group 1, five-shot

(a) Group 2, one-shot (a) Group 2, five-shot

(b) Group 3, one-shot (b) Group 3, five-shot

Figure 5.5. Comparison of CDHAR performance with PAMAP2 dataset. Source
data and target data are generated from people from the same group. Subfigures
in the left column show results when each target class provides one training sample
for target network training. Subfigures in the right column shows results when each
target class provides five training samples for target network training. Classification
accuracy (%) is used as the evaluation metric.
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(a) Group 1, one-shot (a) Group 1, five-shot

(a) Group 2, one-shot (a) Group 2, five-shot

(b) Group 3, one-shot (b) Group 3, five-shot

Figure 5.6. Comparison of CDHAR performance with PAMAP2 dataset. Source
data and target data are generated from people from the different groups. Subfigures
in the left column show results when each target class provides one training sample
for target network training. Subfigures in the right column shows results when each
target class provides five training samples for target network training. Classification
accuracy (%) is used as the evaluation metric.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we have applied information selection in three different machine

learning problems.

In Chapter 3, we proposed a graph and autoencoder-based unsupervised feature

selection (GAFS) method. Unlike similar existing techniques that combine sparse

learning and feature selection, the proposed method projects the data to a lower-

dimensional space using a single-layer autoencoder, in contrast to the linear transfor-

mation used by most existing methods. With our proposed framework, we bypass the

limitation of existing methods with linear dimensionality reduction schemes, which

may lead to performance degradation for datasets with richer structure that is pre-

dominant in modern datasets. Experimental results demonstrate the advantages of

GAFS versus methods in the literature for both classification and clustering tasks.

In Chapter 4, we propose a graph and autoencoder based self-taught learning

(GASTL) method. The main innovations in our self-taught learning methodology

with respect to the literature can be summarized as (a) leveraging relevance metrics

to select a subset of source samples in transfer learning; (b) considering cross domain

relevance for classifier training; and (c) developing our method for hard as well as soft

classification problems. With our proposed framework, we decrease negative transfer

and improve knowledge transfer performance in many scenarios. Experimental results

demonstrate the advantages of GASTL versus methods in the literature.
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In Chapter 5, we propose a few-shot learning framework for human activity recog-

nition. The main contributions in this proposed approach is three-fold. First, we pro-

pose a way to transfer feature extractor and classifier from the source network to the

target network based on cross-domain class relevance. Second, the proposed frame-

work is a general framework where different cross-domain class relevance measure can

be embedded. With the proposed framework, satisfying human activity recognition

results can be achieved even when only very few training samples are available for

each class. Experimental results show the advantages of the framework over methods

with no knowledge transfer or that only transfer knowledge of feature extractor.

6.2 Future Work

There are still many problems that are worth exploring regarding the three appli-

cations of information selection proposed in our thesis.

For unsupervised feature selection, the work we present here is our first attempt

to leverage autoencoders for unsupervised feature selection purposes. Therefore, we

use the most standard setting for the construction of the autoencoder, e.g., there is no

desired or particular structure to the activations or the reconstruction error. In the

future, we plan to explore the effectiveness of more elaborate versions of an autoen-

coder for feature selection purposes. Furthermore, by employing label information,

we can also extend our work to a supervised feature selection framework.

For self-taught learning, our work can be easily extended from a single-layer

autoencoder-based design to one based on deep neural networks. We also plan to

integrate discriminative information of target samples into our framework.

For few-shot learning, we may combine statistical ways and semantic ways to

measure cross-domain class-wise similarity instead of separating them. It is also

worth trying to find a way to combine source data from both same and different
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participants from the target participant to see if knowledge transfer performance can

be improved.
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[78] M. Edel and E. Köppe, “Binarized-blstm-rnn based human activity recogni-
tion,” in IPIN, 2016, pp. 1–7.

[79] F.-F. Li, B. Fergus, and P. Perona, “A Bayesian Approach to Unsupervised
One-Shot Learning of Object Categories,” in ICCV, 2003, pp. 1134–1141.

[80] J. J. Lim, R. R. Salakhutdinov, and A. Torralba, “Transfer Learning by Bor-
rowing Examples for Multiclass Object Detection,” in NIPS, 2011, pp. 118–126.

[81] C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks,” in ICML, 2017.

[82] T. Munkhdalai and H. Yu, “Meta Networks,” in ICML, 2017.

90



[83] B. Hariharan and R. Girshick, “Low-Shot Visual Recognition by Shrinking and
Hallucinating Features,” in ICCV, 2017.

[84] A. Antoniou, A. Storkey, and H. Edwards, “Data Augmentation Generative
Adversarial Networks,” in ICLR Workshops, 2018.

[85] Y.-X. Wang, R. Girshick, M. Hebert, and B. Hariharan, “Low-Shot Learning
from Imaginary Data,” in CVPR, 2018.

[86] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to Compare: Relation Network for Few-Shot Learning,” in CVPR,
2018, pp. 1199–1208.

[87] V. Garcia and J. Bruna, “Few-Shot Learning with Graph Neural Networks,” in
ICLR, 2018.

[88] S. Feng and M. F. Duarte, “Graph Autoencoder-Based Unsupervised Feature
Selection with Broad and Local Data Structure Preservation,” Neurocomputing,
vol. 312, pp. 310–323, 2018.

[89] M. Qian and C. Zhai, “Robust unsupervised feature selection,” in IJCAI, 2013,
pp. 1621–1627.

[90] L. Bottou and V. Vapnik, “Local learning algorithms,” Neural Comput., vol. 4,
no. 6, pp. 888–900, 1992.

[91] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large
scale optimization,” Math. Program., vol. 45, no. 1, pp. 501–528, 1989.

[92] M. Schmidt, “minFunc: Unconstrained differentiable multivariate optimiza-
tion in matlab,” Available at: http://www.cs.ubc.ca/∼schmidtm/Software/
minFunc.html, 2005.

[93] H. W. Kuhn, “The Hungarian method for the assignment problem,” Nav. Res.
Logis., vol. 2, no. 1–2, pp. 83–97, 1955.

[94] A. Strehl and J. Ghosh, “Cluster ensembles – A knowledge reuse framework
for combining multiple partitions,” J. Mach. Learn. Res., vol. 3, no. Mar, pp.
583–617, 2002.

[95] S. Feng and M. F. Duarte, “Autoencoder Based Sample Selection for Self-
Taught Learning,” arXiv preprint arXiv:1808.01574, 2018.

[96] M. Shao, D. Kit, and Y. Fu, “Generalized Transfer Subspace Learning through
Low-Rank Constraint,” Int. J. Comput. Vis., vol. 109, no. 1–2, pp. 74–93, 2014.

[97] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng, “On
Optimization Methods for Deep Learning,” in ICML, 2011, pp. 265–272.

91



[98] Y. Guo, G. Ding, J. Han, and Y. Gao, “Zero-Shot Learning with Transferred
Samples,” IEEE Trans. Image Proc., vol. 26, no. 7, pp. 3277–3290, 2017.

[99] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, “Zero-shot Learning through
Cross-Modal Transfer,” in NIPS, 2013, pp. 935–943.

[100] P. Gehler and S. Nowozin, “On Feature Combination for Multiclass Object
Classification,” in ICCV, 2009, pp. 221–228.

[101] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” arXiv preprint arXiv:1409.1556, 2014.

[102] Y. Kim, “Convolutional Neural Networks for Sentence Classification,” in
EMNLP, 2014, pp. 1746–1751.

[103] K. J. Piczak, “ESC: Dataset for Environmental Sound Classification,” in MM.
ACM, 2015, pp. 1015–1018.

[104] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg,
and O. Nieto, “librosa 0.6.1,” http://dx.doi.org/10.5281/zenodo.1252297, May
2018.

[105] J. Huang, A. Gretton, K. M. Borgwardt, B. Schölkopf, and A. J. Smola, “Cor-
recting Sample Selection Bias by Unlabeled Data,” in NIPS, 2007, pp. 601–608.

[106] R. Aljundi, R. Emonet, D. Muselet, and M. Sebban, “Landmarks-Based Ker-
nelized Subspace Alignment for Unsupervised Domain Adaptation,” in CVPR,
2015, pp. 56–63.

[107] H. Lin, J. Hou, H. Yu, Z. Shen, and C. Miao, “An Agent-Based Game Platform
for Exercising People’s Prospective Memory,” in WI-IAT, vol. 3, 2015, pp. 235–
236.

[108] H. Xu, Z. Yang, Z. Zhou, L. Shangguan, K. Yi, and Y. Liu, “Indoor Localization
via Multi-Modal Sensing on Smartphones,” in UbiComp, 2016, pp. 208–219.

[109] D. Sánchez, M. Tentori, and J. Favela, “Activity recognition for the smart
hospital,” IEEE Intell. Syst., vol. 23, no. 2, pp. 50–57, 2008.

[110] C. Hu, Y. Chen, X. Peng, H. Yu, C. Gao, and L. Hu, “A Novel Feature Incre-
mental Learning Method for Sensor-Based Activity Recognition,” IEEE Trans.
Knowl. Data Eng., 2018.

[111] R. Saeedi and A. Gebremedhin, “A Signal-Level Transfer Learning Framework
for Autonomous Reconfiguration of Wearable Systems,” IEEE Trans. Mob.
Comput., 2018.

[112] Y. Bengio, “Deep Learning of Representations: Looking Forward,” in SLSP,
2013, pp. 1–37.

92



[113] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Natural, vol. 521, no.
7553, pp. 436–444, 2015.

[114] N. Y. Hammerla, S. Halloran, and T. Ploetz, “Deep, Convolutional, and Re-
current Models for Human Activity Recognition Using Wearables,” in IJCAI,
2016, pp. 1533–1540.

[115] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic Differentiation in PyTorch,” in
NIPS Workshop, 2017.

[116] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[117] J. Liu, S. Ji, and J. Ye, “Multi-Task Feature Learning via Efficient `2,1-Norm
Minimization,” in UAI, 2009, pp. 339–348.

[118] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Tröster, J. d. R.
Millán, and D. Roggen, “The Opportunity Challenge: A Benchmark Database
for On-Body Sensor-Based Activity Recognition,” Pattern Recognit. Lett.,
vol. 34, no. 15, pp. 2033–2042, 2013.

[119] A. Reiss and D. Stricker, “Introducing a New Benchmarked Dataset for Activity
Monitoring,” in ISWC, 2012, pp. 108–109.

[120] S. Sukhija, “Label Space Driven Heterogeneous Transfer Learning with Web
Induced Alignment,” in AAAI, 2018, pp. 8165–8166.

[121] N. Murrugarra-Llerena and A. Kovashka, “Asking Friendly Strangers: Non-
Semantic Attribute Transfer,” in AAAI, 2018, pp. 7268–7275.

93


	Sparsity in Machine Learning: An Information Selecting Perspective
	Recommended Citation

	tmp.1553715627.pdf.TPHFC

