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ABSTRACT 
 

TROPOMYOSIN-BASED EFFECTS OF ACIDOSIS ON THIN-FILAMENT 

REGULATION DURING MUSCLE FATIGUE 

MAY 2019 
 

BRENT D. SCOTT, B.S., BELMONT UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Edward P. Debold 
 
 

Skeletal muscle fatigue is defined as a loss in the force/velocity generating capacity of a 

muscle. A portion of the loss in function is attributable to effects of acidosis (i.e. low pH) 

on the regulatory proteins, troponin and tropomyosin (Tm), which regulate the binding of 

myosin and actin in a calcium (Ca++) dependent manner. However, the relative role of 

troponin and Tm on myosin-actin function during acidosis is not clear, nor are the 

mechanisms underlying these effects. PURPOSE: To determine the role of Tm in the 

acidosis-induced depression of muscle function using isolated muscle proteins in an in 

vitro motility assay. METHODS: Three mutant constructs of Tm were expressed by 

replacing the two amino acid (histidine) residues most likely affected by low pH with 

alanine residues (H153A, H276A, H153A/H276A). These mutant constructs were 

compared to wild-type Tm (wt-Tm) in order to test whether the acidosis-induced charge 

change of the histidine amino acid governs the pH-dependent alteration of tropomyosin 

and therefore the decrease in maximal RTF velocity and Ca++-sensitivity. The effect of 

acidosis on regulated thin filament (RTF) function was determined by assessing the 

impact of low pH (pH 6.8) versus neutral pH (pH 7.4) on myosin’s ability to move RTFs 

in the motility assay as a function of increasing levels of Ca++. This was done separately 
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for the wt-Tm and each structural variant. RESULTS: A two-way ANOVA (pH x Tm 

construct) revealed that acidosis significantly (p<0.05) depressed the maximal sliding 

velocity of the RTFs across all versions of Tm, but that the magnitude of the depression 

was similar among the wt and all of the Tm mutants. Acidosis did not significantly 

depress the sensitivity to Ca++ under the unloaded conditions of this assay (p>0.05). 

CONCLUSIONS: These data suggest that the histidine residues in tropomyosin do not 

mediate the acidosis-induced depression in contraction velocity observed during muscle 

fatigue. However, since these residues may be more important in mediating the 

depression of force, we are currently testing the impact of the three mutant Tm constructs 

on the acidosis-induced depression in Ca++-sensitivity using a loaded in vitro motility 

assay. 
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CHAPTER 1 

INTRODUCTION 

1.1 – The Importance of Understanding Skeletal Muscle Fatigue 
 

Skeletal muscle fatigue is the decrease in the maximum force or power generating 

capacity of a muscle in response to repeated stimulation (37) and has both performance 

and clinical implications. Athletic performance is limited by the muscle’s ability to 

function normally after prolonged use and maximal exertion, but more importantly 

fatigue is a common disease symptom affecting patients’ ability to complete normal 

activities of daily living and live independently, subsequently decreasing their quality of 

life. In fact, skeletal muscle fatigue has been identified as an early predictor for and 

hallmark symptom of chronic heart disease (15, 16, 58). Considering heart disease is the 

leading cause of death in the U.S. (56), it becomes evident that there is a high prevalence 

of patients suffering from symptoms of skeletal muscle fatigue. While metabolic acidosis 

has been identified as a putative fatiguing agent (19) it remains unclear how acidosis 

affects the molecular regulation of muscle function that leads to the overall decrease in 

muscular performance. 

1.2 – The Problem is in the Muscle 
 

Muscle fatigue is an extremely complex issue that can result from a disruption in 

central nervous stimulation to the muscle, or as a result of local metabolic perturbations 

affecting the contractile components of the muscle (9, 12). Seminal research by early 

muscle physiologists provide strong evidence that factors of fatigue reside within the 

muscle itself (52). In fact, it has been suggested that 80% of the overall effects of fatigue 

are due to the local effects on the contractile components (36). There are multiple 
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on (Figure 1.1). 

fatiguing factors thought to be at play locally in the muscle that work in conjunction to 

depress muscle function during fatigue. Of those, acidosis is thought to have significant 

impact as whole muscle studies using magnetic resonance spectroscopy have identified 

an association between fatigue and acidosis (38), and single muscle fiber experiments 

confirm and establish causal link between the two (6, 39). The resulting effects of 

acidosis on the muscle are a small decrease in maximal isometric force, a large decrease 

in unloaded contraction velocity, and a substantial decrease of the calcium sensitivity (21, 

39, 57). Coupling these events together result in less force and velocity at the same Ca2+ 

concentrati 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: The effects of acidosis on the force-pCa curve from single 
muscle fibers. Down arrow represents the effects of acidosis on myosin. 
The right arrow indicates the effects on Ca2+-sensitivity – it takes more 
stimulation (and energy) to generate the same relative force during 
acidosis. Adapted from Fabiato & Fabiato 1978. 

 
 

The goals of recent work have been to identify the steps in the cross-bridge cycle 

that are affected by pH changes as well as to investigate the role of the regulatory 

proteins during fatigue-induced acidosis (10, 12). However, despite these recent efforts 
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the complete effects of acidosis on the Ca2+ sensitivity of muscle remains unknown. The 

focus of this study was on the depression in calcium activation observed with acidosis 

and more particularly on investigating a mechanism underlying the rightward shift in the 

pCa curve as shown in Figure 1. A part of this calcium insensitivity can be attributed to a 

decrease in the amount of Ca2+ released from the sarcoplasmic reticulum (1) or to a 

decrease in troponin’s Ca2+ affinity (61), but there is also evidence that tropomyosin has a 

role since Tm mediates the pH dependence of active tension in single muscle fibers (20). 

This study by Fujita & Ishiwata (1999) suggests tropomyosin has a significant role in 

determining the effects of acidosis on a muscle’s activation. However, the underlying 

molecular mechanisms responsible for tropomyosin’s role during the depressive effects 

of acidosis remain unknown. The goal of this study was to identify a molecular 

mechanism and Tm’s role in the acidosis-induced depression in Ca2+-sensitivity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2: The presence of tropomyosin in a muscle fiber contributes to the 
effects of acidosis on a muscle fiber. Bars represent relative tension produced at 
pH 6.0 in control skeletal and cardiac fibers, cardiac fibers with actin only, and 
cardiac fibers with actin and skeletal or cardiac tropomyosin (sTm or cTm). 
Representative data from Fujita & Ishiwata (1999). 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 – Regulation of Muscle Activation 
 

Tropomyosin’s functional role as a sarcomere protein is to aid in the local 

regulation of muscle activation. While there is a cascade of highly coordinated events that 

need to occur within the neuromuscular system to allow any human movement to occur, 

the scope of this proposal is on tropomyosin and its role in regulating actomyosin 

interaction. Consequently, this literature review was focused on tropomyosin’s structure 

and function as it relates to regulating actomyosin interactions. 

The actin filament is decorated with regulatory proteins, troponin and 

tropomyosin, that work in conjunction with one another to regulate muscle contraction. 

Tropomyosin (Tm) is a long coiled-coiled protein that lies on the surface of actin and 

serves as the gate-keeper to control actomyosin interactions. Its position on actin is 

governed by both troponin and myosin which bias Tm into positions that either prevent or 

promote myosin binding. However, Tm does not exist as a binary on/off switch, but 

instead has a three-state equilibrium and is activated via a highly cooperative process 

(49). 

There are four different states Tm has been identified as occupying on the surface 

of actin. Three of them correspond to functional states Tm can reside in as it regulates 

actomyosin binding. These are termed “blocked-state”, “closed-state”, and “open-state”. 

The fourth state indicates the position of isolated Tm on the surface of actin without the 

biasing influence of troponin or myosin, termed “apo” (i.e. Greek for “free from”) (66). 

When incorporated into a thin filament on actin, the presence of troponin constrains Tm 
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into its “blocked-state” when no Ca2+ is present. This state prevents exposure of myosin 

binding sites on actin and prevents any actomyosin interactions from occurring. Troponin 

is a three sub-unit complex that consists of a Ca2+ binding region (TnC), a tropomyosin 

binding unit (TnT), and an inhibitory unit (TnI) that attaches to actin and this is 

responsible for constraining Tm in the “blocked-state” in the absence of Ca2+. When Ca2+ 

binds to troponin it creates an intramolecular reaction within troponin that causes TnI to 

release actin in favor of a hydrophobic bond with TnC and leaves Tm free from the 

constrain of troponin (Figure 2.1). 

 
 
 

Figure 2.1: Schematic of Tn and Tm interaction and the changes induced 
by Ca2+ binding allowing for movement of Tm over actin. Blue “A” boxes 
represent actin monomers. The two different Tm colors represent two 
different Tm molecules. From Gordon et al. 2001. 

 
 
 

When TnI releases Tm it is free to explore the surface of actin and moves to the “closed- 

state” which is in close proximity to its apo state. In the “closed-state”, there is partial 

exposure of myosin binding sites on actin and increases myosin’s binding rate 50-fold 
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(46). Upon the initial formation of actomyosin bonds, the myosin head pushes Tm to its 

“open-state” which results in fully exposed myosin strong binding sites. Since Tm 

polymerizes in a head-to-tail overlap it creates a continuous cable that assists in 

accelerating neighboring myosin heads to bind up to 400 nm from the initial binding 

location (46). This three state model of Tm is depicted in Figure 2.3 (23). Biochemical 

solution studies have quantified the amount of time that Tm spends in each of its three 

unique dynamic equilibrium states under both no Ca2+ and saturating Ca2+ levels. Briefly, 

with no Ca2+ tropomyosin spends 95% of time in the “blocked-state” and less than 5% of 

time in either the “closed-state” or “open-state”. Under saturating Ca2+ conditions, Tm’s 

average time share between states is shifted and Tm spends 70-80% in the “closed-state” 

and 20-30% in the “open-state” (49). 

 
 

Figure 2.2: Tm three state model. Light gray = actin, dark grey = Tm, 
blue = weak myosin binding sites, red = strong myosin binding sites. “A” 
shows actin and myosin binding sites without Tm. Adapted from Gordon 
et al. 2001. 

BLOCKED CLOSED OPEN 



7  

2.2 – The Role of Electrostatic Interactions in Tm 
 

The structure and interactions of the molecular muscle proteins, and ultimately 

their functions are governed by electrostatic interactions. For Tm, its position on actin is 

loosely held in place by sparse, weak electrostatic interactions. There is also a role for 

electrostatic interactions in the stability of the Tm coil structure. Since an amino acids 

overall charge is dependent upon the pH of the cellular environment, these basic 

electrostatic interactions are susceptible to exercise induced acidosis. The next section of 

the review will focus on the role of electrostatic interactions in Tm’s structure and 

function to highlight the effects of acidosis-induced amino acid charge change. 

2.2.1 – Tm isoforms 
 

The Tm isoform present in a muscle depends on the type of muscle (cardiac, fast 

skeletal, slow skeletal). In striated muscle, the TPM1 and TPM2 genes encode α and β 

Tm isoforms (63). These two Tm isoforms can dimerize in the form of alpha-alpha (α2), 

alpha-beta (αβ), or beta-beta (β2). Tm isoforms preferentially arrange into the αβ and α2 

isoforms. Fast muscle has an α:β ratio of about 4:1, whereas slow muscle has an α:β ratio 

close to 1 (7, 47). Tm is a unique protein in which cardiac muscle expresses the isoform 

associated with fast muscle (α). While a given muscle type is generally characterized by 

the α:β ratio, there is a variable distribution of α and β isoforms throughout the muscle. 

The α and β Tm isoforms have the same amino acid sequence in both cardiac and skeletal 

muscle (63), and differ from each other by 39 residues, all having the same amino acid 

classification except for two, giving the beta subunit a slightly more negative charge (47). 

In the present study we will only be studying α2 Tm as it is the predominate isoform in 

fast skeletal muscle. 
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2.2.2 – Tm structure 
 

Tm is a 42 nm long coiled-coil protein and one subunit spans over seven actin 

monomers. Tm consists of 284 amino acids and is subdivided into a seven amino acid 

motif that is repeated throughout the entire amino acid sequence and generally follows 

the sequence, hydrophobic – polar – polar - hydrophobic – charged – polar – 

charged (H-P-P-H-C-P-C) (Figure 2.4). The “a” and “d” nonpolar positions (usually 

alanine) make-up the inner core of the Tm molecule and help determine its coiled 

structure. The acidic “b”, “c”, and “f” positions are usually charged, most conserved to 

the outside of the Tm cable, and can interact with the surface of actin (3). The “e” and 

“g” positions make ionic “e-g” pairs that help stabilize the Tm structure and protect the 

hydrophobic core from the aqueous solution. This characteristic seven amino acid charge 

motif is interrupted in a select few locations where an amino acid within the heptad 

repeat is replaced by one with a different charge characteristic. These non-canonical 

amino acids have important structural implications for Tm since they impart flexibility 

allowing Tm the ability to twist and find optimal orientation to the surface of actin (41). 

Additionally, these non-canonical residues contribute to determining Tm’s 423nm 

persistence length as a monomer (44). This distance would span half of the thin filament 

if the persistence length is unchanged when polymerized on an actin filament indicating 

that Tm can behave like a flexible rod allowing for more actomyosin interaction to occur 

as the result of an initial myosin binding event pushing Tm to the “open-state” (i.e. 

cooperativity). 
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known to contact actin Color Key - residues 
acidic residues (-) 

basic residues (+) 

polar residues 

nonpolar residues 

 
 

C 

 
a b c d e f g 

1 M D A I K K K 

8 M Q M L K L D 

15 K E N A L D R 

22 A E Q A E A D 

29 K K A A E E R 

36 S K Q L E D E 

43 L V A L Q K K 

50 L K G T E D E 

57 L D K Y S E S 

64 L K D A Q E K 

71 L E L A D K K 

78 A T D D E S E 

85 V A S L N R R 

92 I Q L V E E E 

99 L D R A Q E R 

106 L A T A L Q K 

113 L E E A E K A 

120 A D E S E R G 

127 M K V I E S R 

134 A Q K D E E K 

141 M E I Q E I Q 

148 L K E A K H I 

155 A E E A D R K 

162 Y E E V A R K 

169 L V I I E G D 

176 L E R A E E R 

183 A E L S E S K 

190 C A E L E S E 

197 L K T V T N N 

204 L K S L E A Q 

211 A E K Y S Q K 

218 E D K Y E E E 

225 I K V L T D K 

232 L K E A E T R 

239 A E F A E R S 

246 V T K L E K S 

253 I D D L E D E 

260 L Y A Q K L K 

267 Y K A I S E E 

274 L D H A L N D 

281 M T S I    

 
 
 

Figure 2.3: Tm’s amino acid sequence with known actin binding sites and 
coiled-coil helical arrangement. A) Tm’s amino acid sequence in striated 
chicken muscle. Known residues that contact actin are color coded. B) 
Cross-sectional view of the arrangement of the coiled-coil structure. C) 
Relating how the primary structures of each chain would correspond 
considering the helical organization. White arrows show “e-g” pairs and 
black arrows indicate “a-d” hydrophobic core interaction. Adapted from 
Brown & Cohen 2005; Li et al. 2011. 
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2.2.3 – Tm’s pseudo-repeats and interactions with actin 
 

Tm’s amino acid sequence is subdivided into seven ~40 amino acid long pseudo- 

repeats with each pseudo-repeat being further divided into an α-band and β-band (Figure 

2.5). Only the amino acids in the α-bands make contact with actin in the “blocked-state”, 

while the β-band residues make contact in the “closed-state” and “open-state” (28, 50, 

64). The slight curve in Tm’s shape ultimately permits Tm to bind with actin by aligning 

the seven α-bands that contain acidic residues with the basic residues in actin (45). Figure 

2.4 describes Tm’s amino acid sequence, organization, and actin binding characteristics 

(3). Roughly 6% of Tm amino acids are involved in actin binding and the majority of the 

Tm/actin interaction is from negatively (-) charged residues on Tm interacting with 

positively (+) charged residues on the surface of actin. Furthermore, troponin and myosin 

influence the way in which Tm lies on actin with energy landscapes revealing that Tn 

constrains Tm in the “blocked-state” in the absence of Ca2+, and that Tm is highly 

unlikely to achieve its “open-state” without a myosin induced movement (59). 
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122 BROWN AND COHEN 

Fig. 1.    Periodic features of tropomyosin are displayed at various levels. (A) Tropo- 
myosin amino acid sequences (including the chicken striated-muscle isoform shown  
[P02559]) display a short-range seven-residue long (heptad) motif where the a and d 
positions are generally apolar and located in the core of the a-helical coiled-coil. There is 
also a long range periodicity where features in roughly 40-residue long segments (each 
one divided into an a [shaded] and subsequent b zone [unshaded]) are repeated seven 
times in the tropomyosin molecule (McLachlan and Stewart, 1976). The repeats of 
certain surface (b and f position) acidic residues (in black squares) appear most regular 

Figure 2.4: Tm primary structure showing actin binding α-band (shaded) 
and β-band (unshaded). Dark black lines in primary sequence indicate 9 
exons that encode the protein. Adapted from Brown & Cohen 2005. 
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2.2.4 – Tm head-to-tail overlap 
 

Electrostatic interactions are not only involved in Tm’s interactions with actin 

both also in Tm polymerization and stability. Tm polymerization occurs by a head-to-tail 

overlap with one Tn positioned over this overlap zone. The head-to-tail formation is 

made from a 10 residue overlap of the N-terminus that fits into the splayed C-terminus 

that are rotated 90° from each other (Figure 2.6). Most of the intermolecular interactions 

between the two termini are hydrophobic in nature with ionic interactions occurring 

intramolecularly which has been suggested to help stabilize the individual Tm chains 

(25). Additionally, the head-to-tail overlap region is an amino acid sequence that 

contributes to Tm’s overall stability by imparting a rigidity between each Tm molecule 

(62). A stable connection between Tm molecules is an important for allowing myosin 

induced “open-state” activation signals to be transmitted throughout the thin filament. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5: Tm head-to-tail overlap models. Two Tm (yellow & green) 
molecules form a head-to-tail overlap on actin (multi-color spheres). 
Adapted from Orczechowski et al. 2014. 



13  

2.3 – Fatigue-Induced Acidosis: Changes in pH 
 

While there are other fatiguing agents, this study only focuses on the effects 

caused by acidosis, and consequently it was the only element of fatigue reviewed. The 

cause of metabolic acidosis has been debated recently and this section will briefly touch 

on the common explanations. For the purposes related to this study, the fact is that 

metabolic acidosis does occur. Moreover, the interests of this study are to investigate the 

effects of acidosis on the contractile proteins regardless of the origins of the increase in 

H+ ions that leads to the decreased pH in the muscle. 

Fatigue-induced acidosis has been linked to both direct and indirect by-products 

of ATP hydrolysis when ATP production from oxidative phosphorylation needs to be 

supplemented with ATP from anaerobic respiratory pathways (34, 67). Historically, the 

accumulation of the metabolic intermediate, lactate, was suspected to play a major role 

during muscle fatigue. However, while lactate accumulation is a useful indirect method 

for measuring fatigue-induced acidosis, it is not itself a fatiguing agent, which is common 

misconception (34, 67). Rather, the H+ produced during lactate formation was identified 

as a potential contributor to the low muscle cell pH leading to fatigue (34). ATP 

hydrolysis itself was also proposed to provide additional H+ ions to the cellular 

environment (67). Regardless, the resulting drop in pH from the increase in H+ decreases 

intramuscular pH levels from 7.1 to 6.5 in humans consistently (4, 5, 38). 

2.3.1 – pH changes protein surface charge 
 

When the intramuscular pH drops during acidosis it signifies that there is an 

increased number of H+ ions in the cellular environment. These protons can not only 

interfere with the cross-bridge kinetics and calcium dynamics, but also are able to interact 
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and change the average structural surface charges of the muscle proteins themselves. The 

Brønsted-Lowry definition of acid/base chemistry denotes the tendency for a substance to 

donate or receive a proton. The pKa is a measure of the relative strength of an acid or a 

base that indicates the pH that a substance will lose or gain a proton at. A pH less than the 

pKa (pH < pKa) indicates a substance will gain a proton from the environment (i.e. 

protonate). Amino acids’ functional groups each have a unique pKa and pH-induced 

charge change alters the surface charge of a protein when environmental pH changes 

cause functional groups to gain or lose protons (Figure 2.6). 

Figure 2.6: Example of pH-induced change of protein surface charge with 
human ubiquitin. Blue represents positive surface charges and red negative 
surface charges. As pH is decreased from right to left the protein 
protonates and the surface charge is increased. From Biochemistry: 
Concepts and Connections. 

 
Consequently, these charge changes affect the electrostatic interactions that dictate 

protein structure, interactions, and function. A common example of pH-induced amino 

acid charge change affecting function is the Bohr Effect that showcases the greater ability 

for hemoglobin to release oxygen when blood plasma pH decreases. The bicarbonate 

reaction decreases blood pH that causes the protonation of histidine’s (amino acid) 
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imidazole side chain. This new positive charge added to the side chain creates an 

intramolecular charge interaction that stabilizes the hemoglobin to an alternate protein 

form that promotes oxygen release (8). 

2.3.2 – Exercise-induced acidosis causes His protonation 
 

Interestingly, histidine is the only amino acid with a side chain pKa within 

physiological relevancy (pH 6.5) which coincides with intramuscular pH levels observed 

during exercise-induced acidosis. At resting intramuscular pH levels (pH 7.1), histidine 

side chains are deprotonated and possess a neutral charge. As intramuscular pH 

approaches pH 6.5 during acidosis the histidine side chain protonates and changes the 

residue’s overall net charge from neutral to positive (Figure 2.7A). Additionally, a 

localized micro-environment can change the pKa of an amino acid suggesting that other 

residues could contribute to pH-induced charge change as well. However, since there are 

two histidine residues in a single Tm molecule (Figure 2.7B) this study is focused on 

these specific residues. An acidosis-induced Tm His side chain protonation could change 

both the intermolecular interactions Tm makes with actin along with the intramolecular 

interactions Tm makes with itself especially considering the specific location of H276 in 

the head-to-tail overlap domain (Figure 2.7B). Previous studies show how a single charge 

change can have a large effect on protein function as single-point mutations on the 

surface of actin have been shown to change the Tm/actin interaction. The D292V 

mutation strengthens the Tm/actin interaction and induces a “blocked-state” stabilization 

(51, 55, 59). The consequences of a “blocked-state” stabilization is a decrease in Ca2+- 

sensitivity as Tm remains covering myosin binding sites on actin. As a result, the 

possibility of Tm’s His protonation altering Tm function seems plausible since these 
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single charge changes on the surface of actin can disrupt Tm’s position within its 

dynamic equilibrium. 
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Color Key - residues kn 

acidic residues (-) 

basic residues (+) 

polar residues 
 

nonpolar residues 

H153 

H276 

 a b c d e f g 
1 M D A I K K K 

8 M Q M L K L D 

15 K E N A L D R 

22 A E Q A E A D 

29 K K A A E E R 

36 S K Q L E D E 

43 L V A L Q K K 

50 L K G T E D E 

57 L D K Y S E S 

64 L K D A Q E K 

71 L E L A D K K 

78 A T D D E S E 

85 V A S L N R R 

92 I Q L V E E E 

99 L D R A Q E R 

106 L A T A L Q K 

113 L E E A E K A 

120 A D E S E R G 

127 M K V I E S R 

134 A Q K D E E K 

141 M E I Q E I Q 

148 L K E A K H I 

155 A E E A D R K 

162 Y E E V A R K 

169 L V I I E G D 

176 L E R A E E R 

183 A E L S E S K 

190 C A E L E S E 

197 L K T V T N N 

204 L K S L E A Q 

211 A E K Y S Q K 

218 E D K Y E E E 

225 I K V L T D K 

232 L K E A E T R 

239 A E F A E R S 

246 V T K L E K S 

253 I D D L E D E 

260 L Y A Q K L K 

267 Y K A I S E E 

274 L D H A L N D 

281 M T S I    

 

 

 

 

 
 
 
 
 

 

Figure 2.7: Acidosis induced histidine protonation, His location within 
Tm primary sequence, and position in the heptad repeat A) Histidine gains 
a positive charge during acidosis. B) Location of His residues in Tm. Top 
left: General location in Tm relative to the actin/Tm/Tn interface. Right: 
Precise location of His residues in Tm primary sequence. Bottom left: His 
position in the Tm coil. The residues face the outside environment 
allowing them to interact with other Tm resides or proteins. Adapted from 
Brown & Cohen 2005; Li et al. 2011. 

A 
Deprotonated 
Histidine 

Protonated 
Histidine 

B 
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2.3.3 – Henderson-Hasselbach calculations 
 

The Henderson-Hasselbach equation can be used to determine the ratio of 

protonated to deprotonated His residues at both rest (pH 7.1) and during fatigue (pH 6.5): 

1)   pH = pKa + log10([A-]/[HA]) 
 

2)   log10([A-]/[HA]) = pH – pKa 
 

3) [A-]/[HA] = 10pH - pKa 

 
pH 7.1: 107.1 – 6.5 = 3.98 

 
pH 6.5: 106.5-6.5 = 1 

 
At rest, there is ~4x more deprotonated histidine than protonated, and the slight decrease 

in pH during fatigue changes the proportion to an equal deprotonated to protonated ratio. 

These calculations indicate that there has been a large change in histidine protonation that 

changed the residues from a neutral to positive charge. 

2.4 – Specific Aim & Hypothesis 
 

Acidosis depresses the Ca2+-sensitivity of muscle and Tm has been shown to 

modulate the pH dependent response of muscle during activation. Tm regulates muscle 

activation by working in conjunction with Tn to sterically block myosin from binding to 

actin. When Ca2+ binds Tn during the initiation of muscle activation Tm is freed to 

explore other positions on actin. When unconstrained by Tn in the “blocked-state”, Tm’s 

position on actin is determined weakly by sparse electrostatic interactions. Not only are 

electrostatic interactions involved in Tm actin binding, they are also involved in making 

intramolecular contacts within the Tm molecule. A decrease in pH (i.e. acidosis) can alter 

the surface charge of a protein altering the structure and changing the protein’s function. 

In physiological relevant pH ranges observed during exercise induced acidosis, histidine 
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is the only amino acid with a relevant side chain pKa. Histidine’s side chain pKa 

indicates that histidine side chain protonation can occur during skeletal muscle fatigue. 

There are two His in Tm structure that could change from a neutral to positive charge 

during acidosis. This charge change could affect the electrostatic interactions Tm makes 

with actin and itself that could ultimately alter its function. Since the purpose of this 

study was to find a mechanism underlying Tm’s role during the depressive effects of 

acidosis we have focused in on the effects of Tm’s histidine protonation during muscle 

activation. 

 
2.4.1 – Specific Aim 

 
The aim of this thesis was to determine if histidine removal from Tm affects its ability to 

regulate actomyosin interactions during acidosis. In a collaboration with the Lab of Dr. 

Jeffrey Moore we expressed mutant Tm molecules that altered the charge distribution at 

pH levels associated with fatigue by replacing histidine residues that have physiologically 

relevant side chain pKas with the neutral, non-protonatable residue, alanine. We 

examined four different Tm molecules as described in Table 2.1: 

Tropomyosin Mutation Potential charge changes at low 
pH 

eWT Control (wild-type) +2 
 

H153A 
Single His at position 153 replaced w/ 

Ala 
 

+1 
 

H276A 
Single His at position 276 replaced w/ 

Ala 
 

+1 
H153A/H276A Both His replaced w/ Ala 0 

 
Table 2.1: Tm molecules, the mutations performed, and their charge 
changes at low pH. His: Histidine, Ala: Alanine. 
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After expression, regulated thin filaments (RTFs) were constructed by reconstituting 

actin filaments with the expressed Tm variants along with Tn. The RTFs’ sliding 

velocities (VRTFs) were compared with an in vitro motility assay under pH values 

representing rest (7.4) and fatigue-induced acidosis (6.8) in a variety of different 

Ca2+concentrations ranging from 10 (absence of Ca2+) to 4 (saturating Ca2+). 

 
 

2.4.2 - Hypothesis 
 

A location independent removal of a histidine from Tm will exacerbate the effects of pH 

on VRTFs and the removal of two histidines will decrease VRTF more than a single 

removal suggesting that the histidine residues attenuate the depressive effects of acidosis 

by destabilizing the “blocked-state” (Figure 2.10). 

 

 
Figure 2.8: Representation of hypothesis – histidine residues help mitigate 
the depressive effects of acidosis. Velocity measured by in vitro motility. 
Black lines represent velocity-pCa measured at pH 7.4, and red lines at pH 
6.8. No changes expected at pH 7.4. It is predicted one His removal will 
shift the WT pH 6.8 curve to the right, and the removal of both His 
residues will further shift the curve to the right. 

 
Hypothesis Rationale: 

 
The hypothesis is His residues in Tm serve as a protective mechanism during 

exercise-induced acidosis by mitigating the depressive effects of low pH on Ca2+- 
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sensitivity. The hypothesis is thought to be mediated through His protonation altering 

Tm’s relative position within its dynamic equilibrium as a result of the newly gained 

positive charges affecting the electrostatic interactions the residues in Tm are involved 

with. A previous study reported that low pH increases the dissociation temperature of the 

Tm/actin interaction (71). This result is interpreted as acidosis increasing the Tm/actin 

affinity in the “blocked-state” under no Ca2+ conditions as the presence of troponin 

constrains Tm in the “blocked-state”. During activation when Ca2+ binds Tn releasing 

Tm, the low pH-induced Tm/actin stabilization would slow the movement of Tm out of 

the “blocked-state” limiting activation; however, the new charges on the His side chain 

might interfere with the existing electrostatic interactions between Tm and actin 

weakening them. The effects of His protonation interfering with the Tm/actin interaction 

counteracts the low pH-induced Tm/actin stabilization and allows Tm to more easily 

move out of the “blocked-state”. Removing the His residues from Tm removes this 

protective mechanism as there are no residues changing charge to destabilize the 

“blocked-state”. This mechanism seems possible since the location of the H153 residue is 

in between Glu-142 and Glu-163 which both make contact with basic residues on actin 

(45). These electrostatic interactions could be directly affected by His protonation if the 

newly gained positive charge interferes with these interactions. The His charge change 

could also indirectly alter these interactions by affecting change to the local Tm structure 

around these residues. This is further evidenced by the results of previous studies on 

single point actin mutations. These studies suggest a change in surface charge can affect 

Tm’s position within its dynamic equilibrium since the D292V mutation induces a 

“blocked-state” stabilization (51, 55, 59) when an additional positive charge is added to 



22  

actin. Additionally, H276 could also have effects through an alternative mechanism. 

H276 lies in the C-terminus head-to-tail overlap domain and could alter the 

polymerization and stability of the Tm polymer since H276 has been shown to form an 

intramolecular salt bridge with other residues at pH 6.5 (25) and this is an interaction that 

would not be present under in vivo resting conditions (pH 7.1). Furthermore, the 

experimental protocol allows for the determination for the relative contribution of each 

histidine residue. 

 
 
 

 
 

  
 
 
 

Figure 2.9: Cartoon representation of hypothesis rationale of histidine residues 
protonation interfering with the Tm/actin interaction that would destabilize the 
“blocked-state”. 
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CHAPTER 3 

METHODS 

3.1 – Protein Preparations 
 

3.1.1 – Expression and purification of Tm 
 

The Tm variants used were made using a bacterial system to express α- 

Tropomyosin from mouse heart RNA in collaboration with the Lab of Dr. Jeff Moore 

(42). Briefly, cDNA was obtained from the mouse heart RNA using a cDNA synthesis kit 

and protocol and cloned using a PCR kit. Bacterially expression in E. Coli. was 

completed using a pET-24 vector system (Novagen, Madison, Wisconsin) as previously 

described (42). This vector system contains a T7 promotor, lac operator, and kanamycin 

resistant gene used as a part of the expression of the tropomyosin. Additionally, all 

bacterially expressed tropomyosin contain Met-Ala-Ser residues added to the N-terminus 

to mimic the acetylation process that is required for Tm head-to-tail polymerization and 

subsequent actin binding in bacterially expressed tropomyosin (53). Histidine mutations 

were added using a site directed mutagenesis kit, and DNA sequencing was performed to 

verify the presence or absence of histidine residues and the Ala-Ser motif. α-Tm was 

extracted, purified, and precipitated and stored into final storage buffer containing 50mM 

KCl, 15mM BES, 4mM MgCl2, and 1mM DTT at pH 7.3. Final protein purity was 

assessed by SDS PAGE. 

3.1.2 – Other proteins 
 

Myosin was purified from chicken pectoralis muscle as described originally by 

Margossian & Lowey (48), with minor modifications (Debold et al. 2011). Chicken 

pectoralis muscle is predominately comprised of fast myosin isoform (2). After isolation 
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and purification, the myosin was stored in glycerol at -20°C, or snap frozen and stored at 
 

-80°C. A “deadhead spin down” was performed on the day of experimentation to expel 

any non-functioning myosin heads (i.e. dead heads). For the spin down 200ug/mL of 

myosin stock is mixed with 100 ug/mL unlabeled actin, and 1mM ATP for a final volume 

of 400 uL. Solution was spun at 95,000 RPM for 20 minutes. During the spin, active 

myosin interacted with actin and cycled through cross-bridge formation while any 

“deadheads” simply bound to the actin and formed a precipitate. Functioning myosin was 

pulled from the supernatant and diluted to 100 ug/mL for use in the motility assay. 

Actin was isolated and purified as previously described (60) form the same 

chicken pectoralis muscle. Previous studies report the origin of actin has no effects on 

sliding velocity in the in vitro motility assay (40). Actin was either kept unlabeled or 

fluorescently labeled with TRITC/phalloidin (Sigma-Aldrich, St. Louis, MO) as 

described by Debold et al. (2011) which allowed for visualization under the light 

microscope. 

Purified Troponin ITC complex from fast skeletal from rabbit psoas muscle was 

purchased from Life Diagnostics (West Chester, PA) aliquoted into 5uL stocks in storage 

buffer, snap frozen, and stored at -80°C (Debold et al. 2011). 

3.2 – Data Collection 
 

3.2.1 – Regulated in vitro motility assay 
 

An in vitro motility assay was used to investigate our hypothesis that removal of 

histidine exacerbates the effects of acidosis on VRTF, and our aim to find a mechanism 

underlying Tm’s ability to modulate actomyosin interaction under acidic conditions. 

Motility is a gliding assay where a fix field of myosin on a microscope coverslip propels 
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actin through solution (Figure 9). The advantage of the motility assay is that it allowed 

for exact manipulations of the experimental conditions in all aspects: [myosin], [RTF], 

[ATP], pH, pCa, and temperature. This allowed for effective experimentation simulating 

fatigue and resting control conditions. 

 
 
 

 
 

Figure 3.1: Cartoon representation of the regulated in vitro motility assay. 
Orange myosin are fixed to the coverslip and propel RTF across the 
surface. 

 
 
 

The protocol for the motility preparation was followed as originally described by 

Kron and Spudich (40) with modifications as previously described by Debold et al. (13, 

14). Briefly, 100 ug/mL myosin was injected into the flow cell, allowed to incubate for 

30 seconds, and then 0.5 mg/mL BSA (Bovine Serum Albumin, a lipoprotein, i.e. non- 

actin binding) was flown in to cover the remainder of the surface not inhabited by 

myosin. This was allowed to incubate for one minute. After, 1 uM unlabeled actin is 

added that bound to any non-functioning myosin heads to prevent them from acting as a 

molecular brake during the assay. Following the 30 second incubation of the unlabeled 

actin coat, 1 mM ATP was introduced and incubated for 30 seconds allowing brief cross- 

bridge cycling to occur excluding any dead heads bound to the unlabeled actin. 
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Fluorescently labeled actin was added and incubated for 1 minute, and was free to bind to 

active myosin, before the addition of the reconstitution solution containing the regulatory 

proteins. The slide was incubated for 7 minutes before the addition of the final motility 

buffer containing the desired pH, Ca2+, and ATP. The seven minute reconstitution has 

been developed and verified as adequate time for reconstitution of RTF using a myosin 

rigor bond using specific concentrations of actin, Tn, and Tm (29, 31). 

3.2.2 – Experimental conditions and equipment 
 

For this thesis, two different pH levels were utilized: 1) 7.4, and 2) 6.8. This 

modest drop in pH has shown previously to correlate to a 50% reduction in VRTF at pCa 4 

(13) and correlates with modest levels of fatigue. Ca2+ was assayed at 10, 7, 6.5, 6, 5.5, 5, 

4 pCa levels with 10 being the absent of Ca2+. Successful regulation of thin filaments was 

indicated by no movement of RTFs at pCa 10. There were 4 Tm molecules used to 

reconstitute the thin filament: 1) WT, 2) H153A, 3) H276A, 4) H153A/H276A. 

Once the flow cell was prepped it was transferred to a Nikon Ti-U inverted 

microscope with a 100X, 1.4 NA CFI Plan Apo oil-coupled objective, and temperature 

maintained at 30°C. The sliding velocity of the regulated thin filaments (VRTF) were 

captured with an intensified digital camera (Stanford Photonics, Palo Alto, CA) and 

frame grabber (Epix, Buffalo Garden, IL) used with PIPER Control software (version 

2.5.11, Stanford Photonics). Three to four, 30 seconds videos were captured per slide at 

different flow cell locations to ensure a variety of sampling variation (considered n=1). 

These techniques have been validated in detail earlier by Debold et al. (13, 14). 

Video analysis was completed with an automated filament-tracking plugin for 

ImageJ, WRMTRK, a program designed to track and record filament size, velocity, and 
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total distance travelled. Analysis parameters were set to only include real filament signal 

and exclude arbitrary bright spot noise or unbound proteins. This included a lower limit 

for both filament length (0.5 microns), and distance traveled (4 microns over 30sec). This 

ensured that all movement and velocities recorded are from real actomyosin interactions, 

and not just filaments floating in solution. RTF filtering was crucial at lower pCa values 

and helped distinguish between a properly regulated thin filament, and unwanted noise. 

Each video contained on average 50-100 filaments. The 3-4 videos for each condition 

average of VRTF on a given day are then averaged together to get the total day VRTF 

average and considered n=1 for that condition. After each day (n=1) the Hill equation 

was fit to the data and parameters generated for each condition. Construction of the total 

final velocity vs pCa curve was complete by averaging each of the day’s average so each 

data point represented the mean velocity of all days with error bars representing between 

day variation of means. The percent of filaments moving was also calculated from the 

velocity output data by taking the total number of moving filaments (above lower limit 

threshold) and divided by the total number of filaments observed. 

3.3 – Data Analysis 
 

3.3.1 - Graphing and statistical analysis 
 

Data was plot as velocity-pCa graphs and fit with the Hill equation that generated 

parameter estimation for the maximal sliding velocity (Vmax), pCa50, and Hill 

coefficient (n) using SigmaPlot 11.2. The pCa50 and Hillslope parameters provide useful 

insight into overall calcium sensitivity and degree of cooperativity. The pCa50 and 

hillslope (n) parameters generated from the fit of the hillslope equation details the 

calcium concentration that elicits half of the theoretical maximal sliding velocity of the 
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RTFs (pCa50) and the slope of the curve (n), with an increased slope indicating there is a 

higher degree of cooperativity exhibited. 

The percent of moving filaments was calculated for each recorded video by taking 

the number of moving filaments and dividing by the total number of filaments (# 

moving/total), and a filament was considered moving if it moved farther than 4 microns. 

Data were then plotted against the Ca2+ concentration to construct fraction moving – pCa 

graphs. The resulting scatterplot was curve fit with the Hill equation and the same three 

parameters Vmax, pCa50, and hillslope parameters were generated. 

Additional statistics were conducted using SigmaPlot 11.2 and R on the fits of 

Hill equation to each individual experiment day giving multiple values for mean Vmax, 

pCa50, and hillslope which can be used as a repeated measure. As a result, a two-way 

repeated measures ANOVA was performed and was used to identify main effects of both 

the pH and type of Tm, or any interaction that occurred. Sample size estimation 

conducted using G*Power 3.1 (18) determined 7-10 experiments per condition is 

necessary to determine mutant differences on VRTF with an effect size of 1.5, alpha level 

of 0.05, and power of 0.80. For my hypothesis to hold true, either the max VRTF or pCa50 

would have to be significantly lower in each of the histidine removal mutants compared 

to the WT to show that histidine residues help attenuate the depressive effects of acidosis. 
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CHAPTER 4 

RESULTS 

4.1 – Velocity results from in vitro motility 
 

Regulated actin filament velocity was measured in an in vitro motility assay 

(IVM) at two pH levels (7.4 and 6.8) with regulated thin filaments (RTF) reconstituted 

with four distinct Tm variants. The average velocity recorded at each Ca2+ concentration 

([Ca2+]) from each experimental trial was plotted as a pCa-velocity scatterplot and fit 

with the Hill equation. 

 
 
 
 
 
 

Fitting data from the in vitro motility (IVM) experiments to the Hill equation generated 

parameters describing each experimental trial’s maximal sliding velocity (Vmax), [Ca2+] 

that elicited half of the maximal velocity (pCa50), and the steepness of the slope of the 

curve (Hillslope, n), which represents the cooperativity of the myosin heads (a steeper 

slope indicates a higher degree of cooperativity, Table 4.1). A scatterplot of the average 

velocities vs. pCa values demonstrated a reduction in Vmax for RTFs from all Tm variants 

(Figure 4.1). 

Hill Equation: y = min + 
max -min

 
1 + 10 (logEC50 – x) Hillslope 
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Table 4.1: Hill equation parameters generated from the fit of the Hill 
equation to velocity-pCa plots. Vmax is a measure of maximal sliding 
velocity, pCa50 a measure of Ca2+-sensitivity, and n indicates cooperativity 
(higher value indicates increased cooperativity). Values displayed are 
means ± SEM. *Indicates significant difference (p<0.05) vs. each Tm’s 
7.4 control value. 



 

 
 
 

 
 
 
 
Figure 4.1: Velocity-pCa scatterplot graphs fit with the Hill equation. Scatterplot points represents mean velocity and 
bars represent SEM. Lines represent the fit from the Hill equation (see description in Methods). 
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* 
* * 

* 

4.1.1 – RTF maximal sliding velocity 
 

The average Vmax value for each of the four Tm variants at both pH levels was 

calculated by taking the average of all Vmax values generated by the fit of the Hill 

equation to each experimental trial (Figure 4.2). As expected, lowering the pH from 7.4 

to 6.8 resulted in a 43% average drop in the maximal sliding velocity of all the RTFs. 

This decrease is similar in direction and magnitude to previous findings for WT Tm (13, 

68, 69). The drop in pH elicited significantly slower maximal sliding velocities for each 

variant of Tm used, with a 44% decrease for eWT, 46% for H153A, 36% for H276A, and 

46% for H153A/ H276A shown in Figure 4.2. A two-way (pH x Tm) repeated-measures 

ANOVA of the data indicated that all Tm variants experienced a significant decrease in 

velocity from pH 7.4 to 6.8 (p < 0.001), but the magnitude of the decrease was similar 

among all the variants of Tm based on a non-significant pH x Tm interaction term (p = 

0.569). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2: Bar graph of the mean Vmax values calculated by averaging the 
Vmax from each experimental trial. Bars are mean values ± SEM. 
*Indicates significant slower velocity vs each Tm’s 7.4 control (p<0.001)* 
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4.1.2 – Relative change in maximal sliding velocity from pH 7.4 to 6.8. 
 

The relative change in maximal sliding velocity from pH 7.4 to pH 6.8 was 

calculated by the equation: 

(6.8 Vmax – 7.4 Vmax) / 7.4 Vmax * 100 
 

The calculated relative change values were tested for significant differences using a one- 

way ANOVA. The results indicate decreases in velocity caused by lowering pH from 7.4 

to 6.8 was similar across the different Tm variants (p = 0.522, Figure 4.3). The negative 

relative change values indicate the maximal sliding velocity of the RTFs were slower at 

pH 6.8 compared to 7.4 across all Tm variants. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3: Percent change in the maximal sliding velocity of RTFs from 
pH 7.4 to 6.8. Negative values indicate the Vmax at pH 6.8 was less than pH 
7.4. Bars represent the mean value with SEM. No significant differences 
reported. 
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4.1.3 – pCa50 of velocity 
 

The pCa50 parameter provides a measure of the calcium sensitivity of the RTFs. 

Higher pCa50 values correspond to higher calcium sensitivity and indicate that it required 

less free Ca2+ to activate the RTF to half of its Vmax. A two-way repeated measures 

ANOVA indicated the pCa50 values were not significantly affected by acidosis (p = 

0.541), and the differences did not depend on the variant of Tm (interaction term pH x 

Tm, p = 0.781, Figure 4.4). However, there was a significant main effect of Tm variant (p 

= 0.039) and a Tukey post-hoc test identified the double mutant as having a significantly 

lower pCa50 compared to the H153A single mutant at pH 7.4 but not pH 6.8 (p = 0.042). 

This result indicates that while the Ca2+--sensitivity of all RTFs were unaffected by 

acidosis, the H153A/H276A double mutant required more Ca2+ to achieve half of its 

maximal velocity at pH 7.4 compared to the H153A single mutant. 

Figure 4.4: Bar graph of the average pCa50 calculated from the average of 
the pCa50 values from each experiment trial. Bars are mean values ± SEM. 
*Significant decrease relative to H153A at pH 7.4. 

* 
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4.1.4 – Effects on hillslope coefficient (n) 
 

There were no effects on the n of the velocity-pCa curves between the RTFs 

reconstituted with each of the four Tm variants. A two-way repeated measures ANOVA 

comparison indicated no significant differences between pH (p > 0.05), Tm (p > 0.05), or 

the interaction term (p > 0.05, Figure 4.5). This result suggests that the mutations or 

acidosis did not alter the cooperativity of myosin binding. The high variation in the data 

is due to inconsistencies in the fit of the Hill equation to each experimental trial. 

 

 

Figure 4.5: Bar graph of the average hillslope coefficient (n) values calculated 
from the average of n obtained from each experimental trial. Bars are mean values 
± SEM. No significant differences reported. 
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4.2 – Percentage of Moving Filaments Data 
 

Scatterplots of the percentage of filaments moving vs pCa were also fitted with 

the Hill equation. As a result, the Hill parameters were generated and used for 

comparison in statistical testing similarly to methods used for the velocity data analysis 

(Figure 4.6). The parameter values generated from the fit of the Hill equation to the 

percentage of moving filaments data are shown in Table 4.2. 

 

 
Table 4.2: Hill equation parameters generated from the fit of the Hill 
equation to percentage of moving filaments-pCa plots. Mean values ± SEM. 
# Indicates significant interaction of pH and Tm (p<0.05). Values shown 
were generated from the Hill equation fit in Figure 4.6. 



 

 
 
 
 
 

 
 

Figure 4.6: Percentage of moving-pCa scatterplot graphs fitted with the Hill equation. Scatterplot points 
represent mean velocity and bars show SEM. Lines represent the fit from the Hill equation (see description 
in Methods). 
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4.2.1 – The effects of pH and tropomyosin on the percentage of moving filaments 
 

The results of a two-way repeated measures ANOVA indicated no significant 

differences in the maximal percentage of moving filaments (Tm variant p = 0.16, pH p = 

0.058, Tm x pH, p = 0.773). This measurement shows that pH affects the maximal 

sliding velocity of the RTFs without changing the percentage of moving filaments. 

 
 

 
 

Figure 4.7: Average percentage of moving filaments. Bars are mean 
values ± SEM. No significant differences. 
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4.2.2 – pCa50 of the percent of moving filaments 
 

A two-way repeated measures ANOVA indicated a significant interaction (Tm x 

pH, p = 0.025) in the pCa50 of the percent moving data. A Tukey post-hoc analysis 

identified that the H153A/H276A double mutant had a significantly lower pCa50 at pH 

6.8 compared to the other three Tm variants (Figure 4.8). The pCa50 of percentage 

moving indicates that the H153A/H276A double mutant required a higher concentration 

of Ca2+ to achieve half of the maximal number of filaments moving. Additionally, both 

the eWT and H153A/H276A double mutant had significantly lower pCa50 values at pH 

6.8 compared to their respective pH 7.4 control. These results suggest that the double 

mutant may be more susceptible to acidosis (i.e. decrease in pH) than the other three 

Tms. 

 
 

* 
 
 
 
 

*# 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8: pCa50 of the percentage of moving filaments. This 
measurement represents the Ca2+ concentration required to get half the 
filaments moving. Bars are mean values ± SEM. *Significant difference vs 
7.4 control. #Significant difference vs all other Tm at pH 6.8. 
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4.2.3 – Relative change in pCa50 of the percent moving 
 

A calculation of the relative change in the pCa50 values between pH 7.4 and 6.8 

for the percentage moving data was made using the following formula: 

% change = (6.8 pCa50 – 7.4 pCa50)/7.4 pCa50 * 100 
 

These calculated relative change values were analyzed in a one-way ANOVA which 

identified a significant difference in relative change of the pCa50 of the percentage of 

moving filaments data (p<0.05). A Tukey post-hoc test indicated that the H153A/H276A 

had a greater decrease in the pCa50 compared to both the H153A and H276A single 

mutants (p<0.05) suggesting the double mutant Tm was more affected by the drop in pH 

than either of the single Tm mutants. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* 
* 

Figure 4.9: Relative change in pCa50 from the percentage of moving 
filaments data. Negative values indicate the pCa50 at pH 6.8 was less than 
pH 7.4. Bars are mean values ± SEM.. *Indicate significant differences 
from Tukey multiple comparisons of means test* 
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4.2.4 – Hillslope coefficient of percentage moving 
 

Lastly, the n values from the percentage moving data were compared using a two-way 

repeated measures ANOVA and the results indicated no significant effects of pH (p = 

0.695), Tm (p =0.45), or interaction (pH x Tm, p = 0.52, Figure 4.10). Therefore, a 

similar cooperativity of myosin binding under all conditions was observed. The high 

variation in the data is due to inconsistencies in the fit of the Hill equation to each 

experimental trial. 

 
 
 
 

Figure 4.10: Average hillslope coefficient from the percentage of moving 
filaments data. Bars are mean values ± SEM. No significant differences 
reported. 
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CHAPTER 5 

DISCUSSION 

Tropomyosin has previously been implicated to be an important modulator of the 

pH-dependence of active tension in muscle fibers (20). This observation helped motivate 

the present study with the purpose to elucidate the mechanism underlying this effect. To 

address this, two His residues in Tm’s structure were identified as potential targets 

because of their physiological relevant side chain pKa of ~6.5. By replacing one or both 

His residues in the Tm structure we were able to test whether an acidosis-induced charge 

change of His residues or the location of the amino acids were depicting the Tm response. 

We hypothesized that this would alter function under acidic conditions and that it may be 

more pronounced based on the location of the mutation. However, our current findings 

suggest that there are no effects of His charge change or location on the Vmax, pCa50, and 

hillslope parameters of velocity. Additionally, the His charge and location had no effects 

on the maximal percentage of moving filaments or the hillslope of the percent moving 

data. The only significant result occurred in the pCa50 of the percentage moving data (pH 

x Tm interaction). A Tukey post-hoc test identified that the double mutant had a 

significantly lower pCa50 of the percentage moving data at pH 6.8 indicating more Ca2+ 

was required to get half of the filaments moving during acidosis compared to the other 

three Tm variants. However, due to the majority of non-significance results in five of the 

six parameters tested, it is possible that there was a type-1 error falsely reporting a 

significant result. Overall, the results from this study provide evidence that Tm’s His 

residues play no role in mediating the pH-dependent effects of acidosis on muscle 

velocity. 
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5.1 – pH affects the maximal sliding velocity of RTFs equally across the Tm variants 
 

The results from the statistical analyses indicate that the differences in the 

maximal sliding velocities of RTFs are not dependent on the number of His residues 

present in Tm, the charge, or their location. We saw dramatic differences in the maximal 

sliding velocity of all RTFs as a result of decreasing the pH from 7.4 to 6.8. However, 

this large drop in maximal sliding velocity in response to acidosis was expected and prior 

observations show the unloaded shortening velocity (a measure similar to Vmax (72)) of 

muscle fibers is reduced by up to 25% in cardiac muscle fibers (pH 6.6), 25% in type I 

fibers (pH 6.2), and 32% in type II fibers (pH 6.2) from control conditions (37, 64). 

Additionally, decreases in the maximal sliding velocity of actin filaments in previous 

IVM assays show a 25-50% reduction in the filament sliding speed when the pH of the 

final motility buffer is lowered (11, 13, 26). Our data is consistent with these previously 

reported effects of acidosis on muscle velocity as we observed an average 43% decrease 

in the Vmax of the RTFs at pH 6.8 relative to pH 7.4. This large decrease in velocity has 

largely been attributed to a direct effect of acidosis on myosin as acidosis is believed to 

slow the rate of ADP release (11). The effects on myosin are also thought to be the main 

contributor to the acidosis-induced depression in maximal velocity as there are 

comparable changes in the relative decrease in velocity that occur as a result of acidosis 

with both regulated and unregulated RTFs in IVM (11, 13, 26). Together, these results 

suggest that the removal of one or both His residues from Tm, and by association the 

charge change potential, has little or no effect on the maximal sliding of RTFs in an 

unloaded in vitro motility assay. Therefore, this suggests that the majority of the decrease 

in velocity is due to the depressive effects of acidosis on myosin function. 
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5.2 – His residues in Tm and pH have no effect on the pCa50 or Hill coefficient 
 

We originally hypothesized that His residues would attenuate the pCa50 of the 

maximal sliding velocity. However, the pCa50 of the velocity was unaffected by acidosis 

in this study. While this has been observed before (13), in the context of IVM with our 

Tm variants an unchanged pCa50 indicates that His residues do not have any effects on the 

acidosis-induced depression in Ca2+-sensitivity of muscle velocity. Furthermore, this 

shows that unloaded velocity measurements at pH 6.8 are not the best indicator of the 

severe effects that acidosis can have on the Ca2+ sensitivity of the thin filament. While 

significant effects of acidosis on the Ca2+-sensitivity of RTFs have been reported before 

in IVM at pH 6.8 (64), the data were collected at a lower temperature (25°C) than the 

present data (30°C). Moreover, lowering temperature was shown to decrease Ca2+- 

sensitivity in the same study (68). The unchanged pCa50 of velocity-pCa is in stark 

contrast to the large decrease in Ca2+-sensitivity that acidosis has on the force-pCa 

relationship measured in muscle fibers, Figure 1.1 (17) and is most likely the result of the 

combined effects of several factors. First, an increase in tension has been observed in 

muscle fibers incorporated with NEM-S1 myosin when compared to control fibers (20). 

This indicates that an increase in strongly bound myosin heads increases thin filament 

activation. Furthermore, it has been suggested that acidosis prolongs myosin’s attachment 

lifetime under acidic conditions (11). This would increase thin filament activation during 

acidosis resulting from an increase in strongly bound myosin heads due to the increase in 

ton. However, instead of an increased Ca2+-sensitivity, we observed no change in the 

pCa50 of RTF velocity showing that acidosis is a complicated and multi-faceted issue. 

The current data suggests that the increase in thin-filament activation from the H+ 
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induced prolongation of myosin attachment lifetime counteracts the depressive effects of 

acidosis on thin filament Ca2+-sensitivity (Figure 5.1) that results in an unchanged pCa50 

of velocity-pCa. 

5.3 – No effects of Tm or pH on the maximal percentage of moving filaments 
 

There were no significant decreases in the maximal number of moving filaments 

caused by either the Tm variant or pH in this study (see Figure 4.7). These results differ 

from what was previously reported from our lab as Debold et al. 2012 showed a 

significant decrease in their percentage of RTFs moving in IVM as a consequence of 

lowering the pH to 6.8 from 7.4. However, those experiments included an additional pH 

factor level (6.5). Consequently, this increased their sample size and increased their 

statistical power to detect the small change in the percentage of moving filaments that 

results from changing pH from 7.4 to 6.8. Overall, the percentage of moving filaments 

data calculated for our Tm variants indicates that acidosis did not significantly affect the 

maximal activation of the RTFs, even though acidosis had prominent effects on the 

maximal sliding velocity. This suggests that acidosis slows all the RTFs equally (see 

Figure 4.1). This notion is further supported by examining a histogram of individual 

filament velocities at both pH 7.4 vs. 6.8 (Figure 5.2). 
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Figure 5.1: Histogram of individual filament velocities at both pH 7.4 
(red) and 6.8 (blue). Each bar represents a 0.5 um/s range relative 
frequency bin. Data collected on RTFs with eWT Tm at pCa 4. 

 
Acidosis caused a leftward shift in the distribution of the relative frequency of filament 

velocity histogram. As a result, this accounts for the overall slower average velocity 

without increasing the relative frequency of slow or non-moving filaments and provides 

an explanation for the preserved percentage of moving filaments value (see Figure 4.6). 

Therefore, the acidosis-induced depression in velocity is not likely to be mediated 

or involve protonation of the His residues. Indeed, maybe Tm is not involved in these 

effects at all since the magnitude of the depression in RTF velocity observed during 

acidosis in our experiments is similar to what has been observed with unregulated actin 

filaments (11, 13). This suggests that the depressive effects that acidosis has on muscle 

velocity results primarily from effects on myosin. 

(0.5 um/s) 
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5.4 – Possible explanations for the non-significant effects of the Tm mutations 
 

The results of this study suggest that the His residues present in Tm do not 

mediate or modulate the depressive effect of pH effects on muscle velocity observed 

during exercise-induced acidosis, contradictory to my original hypothesis which was that 

histidine residues mitigate the depressive effects of acidosis. This hypothesis was 

proposed based on the assumption that Tm’s position on actin is dictated by sparse and 

weak electrostatic interactions (27) when not constrained by Tn in the “blocked-state”. 

This was coupled with reports that acidosis increased the temperature required to 

dissociate Tm from actin (71), and was interpreted as acidosis stabilizing Tm in the 

“blocked-state”. However, the results suggest that this is not the case, at least for 

velocity under the conditions we tested. There are several potential reasons why these 

data were not consistent with the hypothesis. 

5.4.1 – Histidine residues do not interact with actin in the “blocked-state” 
 

Figure 2.11 (pg. 21) depicts a model to explain the original hypothesis. The 

schematic was drawn to be consistent with known Tm/actin interactions (45) and based 

upon tropomyosin spanning the distance of seven actin monomers and periodically 

interacting with actin via small clusters of positively charged amino acid residues on the 

actin surface. My hypothesis was that sparse and weak electrostatic interactions occur 

between the negatively charged surface of Tm with the positively charged residues on 

actin, and therefore that a His charge change, as would occur when the pH was decreased, 

could affect the Tm/actin interaction and result in a change in its relative position within 

its dynamic equilibrium. While originally it appeared that the position of H153 and H276 

were near known actin binding sites, Glu-142 and Glu-263 (45) it seemed plausible for 
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His charge change to affect these interactions by adding a nearby positive charge that 

would destabilize the “blocked-state” allowing Tm to more readily shift between its 

“blocked-state” to “closed-state” upon Ca2+ binding Tn mitigating some of the depressive 

effects of acidosis, but this does not seem to have been the case. 

The structure and organization of Tm’s primary structure was detailed in Figure 
 

2.4 (pg. 9). Despite the close positional proximity to known actin binding sites, both His 

residues lie within the β-zone of its pseudo-repeat. Only the amino acids in the α-bands 

are believed to make contact with actin in the “blocked-state”, while the β-band residues 

are thought to make contact in the “closed-state” and “open-state” (28, 50, 64). Since the 

two His residues are in the β-band of their respective pseudo-repeats they are not thought 

to make contact with the surface of actin in the “blocked-state” indicating that their 

charge change could not destabilize the “blocked-state” as originally hypothesized. 

Further information detailing known actin binding sites in both the α- and β- bands is 

shown in Figure 5.3. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 5.2: Primary sequence of Tm organized into seven pseudo-repeats 
divided into α- & β- bands. Red arrows indicate known actin binding sites From 
Redwood & Robinson 2013. 
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The division of each pseudo-repeat into α- & β- bands is more important than 

originally thought. A more accurate hypothesis of the Tm/actin interaction including the 

division of the α- and β-bands of the pseudo-repeats suggests that His charge change 

would not affect the Tm/actin interaction in the blocked state (Figure 5.4). Therefore, it is 

possible no changes were observed in the Hill equation parameters because the location 

of His residues prevented the charge from affecting Tm/actin interaction. 
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Figure 5.3: Updated cartoon model of how histidine residues do NOT make 
contact with actin. Histidine protonation still occurs but most likely would not 
have any intermolecular effects. 

 
 

5.4.2 – pH 6.8 did not cause the majority of His residues to protonate dampening the 
full effect of His charge change 

 
While the location of histidine residues in the β- bands may prevent them from 

interacting with actin in the “blocked-state”, another alternative explanation for the non- 

significant results is that pH 6.8 did not elicit the majority of His residues to change 

charge which limited the extent of any observable effects of the charge change. It was 

previously discussed that the His location prevents it from affecting the intermolecular 

contacts Tm makes with actin, but the effects of His charge change could still change 

intramolecular interactions within the Tm molecule which are important determinants of 

Rest (pH 7.1) Low pH (histidine protonated) 

+ + + + + + + + + + + + + + 

Actin Actin 

α-zone 
β-zone  α-zone 

β-zone 
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Tm’s shape, flexibility, and head-to-tail stability (44, 62). H276 lies in the head-to-tail 

overlap region within an amino acid sequence that contributes to Tm’s overall stability by 

imparting a rigidity between each Tm molecule allowing the whole Tm polymer to 

translocate upon myosin binding providing myosin cooperativity, and H153 lies in a less 

stable amino acid sequence that contributes to Tm’s flexibility which determines Tm’s 

ability to allosterically regulate myosin cooperativity (54, 62).  Since Tm’s “e-g” pairs 

and head-to-tail overlap involve ionic interactions (23,39), changes in His charge could 

have effects on those interactions that were undetectable at the pH we experimented with. 

The IVM assays were performed at pH levels that simulated rest (pH 7.4) and 

moderate levels of fatigue (pH 6.8), but pH 6.8 is above the pKa of the His side chain. A 

pH greater than the His side chain pKa indicates that the majority of the His residues are 

deprotonated. The Henderson-Hasselbach equation can be used to estimate the fraction of 

His residues that are protonated at each pH level used in this experiment: 

1)   pH = pKa + log10([A-]/[HA]) 
 

2)   log10([A-]/[HA]) = pH – pKa 
 

3) [A-]/[HA] = 10pH - pKa 

 
pH 7.4: 107.4 - 6.5 = 7.94 

 
By taking the reciprocal of the solution from the pH 7.4 Henderson-Hasselbach 

calculation above, the ratio of protonated to deprotonated His residues is estimated to be 

about 1:8. This proportion indicates that 11% of His residues would be protonated at pH 

7.4. These calculations can also be made for pH 6.8: 
 

pH 6.8: 106.8 - 6.5= 2.00 
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By taking the reciprocal of the solution from the pH 6.8 calculation above, the ratio of 

protonated to deprotonated His residues is estimated to be about 1:2. This proportion 

indicates that 33% of His residues would be protonated at pH 6.8. By changing the pH 

from 7.4 to 6.8, the percentage of protonated His residues increased from 11% to 33%. 

This small change in the percentage of protonated His residues may have limited our 

ability to detect differences in function resulting from effects of His charge change. 

While our results show that pH 6.8 did not elicit a large change in His protonation 

it was chosen because it causes a large decrease in Vmax, as shown by our ~43% reduction 

in unloading sliding velocity observed in the present experiments. Seemingly, by 

decreasing the pH to levels below the His side chain pKa of 6.5 we could increase the 

percentage of protonated His residues providing better resolution for the effects of His 

charge change on RTF velocity. 

pH 6.2: 106.2-6.5= 0.5 
 

By taking the reciprocal of the solution from the pH 6.2 calculation above, the 

ratio of protonated to deprotonated His residues is estimated to be about 2:1. This 

proportion indicates that a majority 66% of His residues would be protonated at pH 6.2. 

A larger number of His residues that are protonated should correspond to more 

pronounced effects of His charge change on the Hill equation parameters. However, 

previous results show that IVM conducted at pH 6.5 have too large of a depressive effect 

on RTF sliding velocity and only extremely slow motility can be observed at saturating 

Ca2+ levels (12). This results in unreliable estimates of the pCa50 and n as the velocity- 

pCa curves lose their defining sigmoidal curve as shown in Figure 5.5. As for the current 

data, an explanation for our non-significant results is that pH 6.8 did not cause a large 
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enough increase in the percentage of protonated His residues that prevented the full effect 

of His charge change to be observed by our measurements. 

 
Figure 5.4: In vitro motility at pH 6.5. Almost all motility is stopped 
except for saturating Ca2+ levels. Adapted from Debold et al. 2012. 

 
 
 

5.4.3 –Vmax is independent of Tm under the detachment limitations of IVM 
 

For this project, we measured unloaded sliding velocity of our RTFs and 

not the force generating capacity. IVM is similar to the unloaded shortening 

velocity measurement used in muscle fiber experiments, and as a result, we were 

studying the effects of His protonation at one extreme of the force/velocity and 

load/power relationships (Figure 5.6). 
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Figure 5.5: IVM is at the left extreme of the load-power curve. 
Consequently, we studied the effects of His protonation in determining 
unloaded velocity. Adapted from Karabina et al. 2015. 

 
In the IVM for this study, the myosin that were fixed to the glass coverslips were 

producing a negligible amount of force. Any load would result as a combination of the 

mass of the actin filaments and the viscous drag imposed on the filaments as they glide 

through the motility buffer. As a result, we sampled the effect of His protonation under 

unloaded conditions and concluded that the number of His residues, their location, and 

their charge have no effect on muscle velocity at either pH 7.4 or 6.8. It is possible the 

detachment limitation of IVM limited the ability for us to observe changes in Tm 

function. The following equation defines the molecular determinants of IVM max 

velocity (Vmax) (32, 33). 

Peak power 

Max Velocity 
i.e. IVM 

Max Force 
i.e. isometric tension 
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Velocity = d/ton (detachment limited) 
 

Velocity is dependent on the distance that the myosin lever arm rotation can 

displace the actin filament and is inversely proportional to the myosin attachment lifetime 

(ton). Higher velocities can be achieved by increasing the displacement of each lever arm 

rotation or by decreasing ton. Moreover, most changes in velocity as a result of acidosis 

are solely dependent on changes in ton as the distance of lever arm rotation is conserved to 

~10nm during productive events at low pH (11) indicating that myosin detachment is the 

main determinant of IVM velocity. 

In IVM, the successive binding of myosin heads is necessary to continually propel 

the RTFs at maximal velocity. In fact with regulated RTFs, once sufficient Ca2+ levels are 

reached to ensure multiple heads are bound to the RTFs allowing for continual movement 

velocity becomes independent of [Ca2+] (29). Examination of histograms of the relative 

frequency of RTF velocity across a range of pCa values indicates pCa 6 as the critical 

[Ca2+] threshold needed to allow for continual movement of most RTFs through solution 

(Figure 5.7). 



56  

 

Figure 5.6: Histogram of individual filament velocities separated by pCa value. 
Each bar represents a 0.5 um/s bin. Data collected on RTFs with eWT Tm. 

 
 

Once sufficient Ca2+ levels are obtained (pCa 6) that allows for multiple myosin 

heads to be attached and continually move RTFs, the role of Ca2+ in determining velocity 

and Vmax is diminished leaving myosin detachment as the largest determinant of velocity. 

Indeed, the regulatory proteins have been shown to increase the sliding speed of actin 

filaments in IVM compared to naked actin alone, but this effect has largely been 

attributed to the presence of Tn with Tm showing no effect on cross-bridge cycling at 

high myosin surface densities as was used in the present experiments (29, 73). 

Ca2+ independence threshold 

Velocity becomes independent of Ca2+ 
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Considering Tm function is dependent upon Ca2+ binding Tn, if Vmax is independent of 

Ca2+, then it must also be independent of Tm, or in our case Tm variant. This is further 

evidenced by the similar relative drop in IVM velocity during acidosis exhibited in both 

unregulated and regulated actin filaments (10, 12) indicating that while the regulatory 

proteins increase velocity acidosis is mostly affecting the myosin. As a result, the 

detachment limitations of muscle velocity could explain the results of our Tm mutations 

having no effect on the maximal sliding velocity of our RTFs. 

5.5 – Conclusion 
 

Despite our non-significant results, the current data is informative in 

understanding the mechanisms underlying the depressive effects of acidosis and leaves 

new avenues of research to explore. While we provided an answer to the proposed 

research question with these experiments showing His protonation has no role in 

mediating the pH-dependent effects of mild acidosis (pH 6.8) on muscle velocity. It is 

unknown how extreme levels of acidosis (< pH 6.5) might affect Tm function through 

imparting larger changes in His protonation. Additionally, the current data cannot further 

explain the Tm based pH dependence of active tension in muscle fibers as originally 

observed by Fujita & Ishiwata (1999). Tm may not play a role in mediating the pH 

dependence of muscle velocity, but it remains unknown whether or not His protonation is 

the underlying mechanism that determines Tm’s ability to mediate the pH-dependent 

behavior of myosin force-generating capacity and the Ca2+-sensitivity of force. 
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5.6 - Potential Future Directions to Test Alternative Hypotheses 
 

5.6.1 - Do the Tm mutations affect the Ca2+-sensitivity of force? 
 

A future direction is to test the hypothesis that His protonation mediates the pH 

dependence of active force production providing a mechanism underlying the effect 

originally observed by Fujita & Ishiwata (1999). The addition of α-actinin, an actin 

binding protein that forms the z-discs in the muscle’s sarcomeres, to the IVM assay 

imposes a frictional load that the myosin must work against in order to move RTFs (24). 

As a result, active force production and power output can be measured in IVM under both 

normal and fatiguing pH levels (24, 35). Higher α-actinin concentrations are 

representative of a higher load in the IVM and require myosin to produce more force to 

move the RTFs relative to lower concentrations. As a result, the velocity measures of the 

RTFs in this loaded IVM would require some of the attachment limited considerations 

that determine the development of force. It is possible the effects of His protonation are 

conserved to active force production since force is attachment limited instead of being 

detachment limited like velocity (22): 

Force = # of attached XBs * force per XB (attachment limited) 

Force production is proportional to the number of attached cross-bridges and the force 

produced by each individual attached cross-bridge. Higher force output can be achieved 

by either increasing the number of strongly bound heads, increasing the force per cross- 

bridge, or a combination of both these factors. The role of Ca2+ in thin filament activation 

is to increase the number of attached cross-bridges (30). Since Ca2+ effects are in part 

mediated through Tm’s position on actin, testing our Tm mutants under the attachment 

limitations of force production may produce different results of His location and charge 
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change on Tm function during acidosis since the force-pCa and velocity-pCa 

relationships are determined by different limiting factors (13, 30). 

5.6.2 - Would a lower pH elicit a Tm-mediated effect on velocity? 
 

We are interested in measuring the effects of acidosis on Tm, but the debilitating 

effects of acidosis on myosin’s ability to propel RTFs in IVM is a major limiter in our 

present attempts to explore the role of Tm in acidosis (see Figure 5.5). Henderson- 

Hasselbach calculations show that pH 6.2 would elicit 66% of His residues to change 

charge and would provide more pronounced and detectable effects. Seemingly, if we 

could alleviate some of the depressive effects of acidosis off of the myosin by increasing 

RTF sliding velocity and restore the defining sigmoidal curve of the velocity-pCa 

relationship, changes in Ca2+-sensitivity and RTF cooperativity could become detectable 

even at extremely low pH levels. Interestingly, Pi has been shown to increase the 

unloaded velocity of RTFs in IVM and could be used to sample at low pH by providing a 

significant increase in velocity (13). 
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Figure 5.7: Pi recovers velocity in IVM at low pH and could be used to help 
experiment with lower pH levels by increasing velocity at most Ca2+ levels. From 
Debold et al. 2012. 

 
 

A caveat of sampling in a combination of low pH and high Pi would be the inherent 

change in the type of experiment being conducted. The addition of Pi would not allow us 

to answer our original research question about defining the role that Tm has in acidosis as 

these new results would be confounded by the presence of Pi, and we would be unable to 

definitively attribute any results solely to the effects of acidosis. 

In order to align experimental goals to solely investigating the effects of pH, 

another possibility that could increase IVM velocity at low pH would be with the 

incorporation of dATP (deoxyadenosine triphosphate). dATP has been shown to increase 

the rate of the cross-bridge cycle and the velocity of IVM (65) and could provide the 

increase in velocity needed to study Tm function during extreme acidosis. 
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