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ABSTRACT 

A COMPUTATIONAL SIMULATION MODEL FOR PREDICTING 

INFECTIOUS DISEASE SPREAD USING THE EVOLVING CONTACT 

NETWORK ALGORITHM 

 

MAY 2019 

 

BUYANNEMEKH MUNKHBAT, B.A., MOUNT HOLYOKE COLLEGE 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Chaitra Gopalappa 

 

Commonly used simulation models for predicting outbreaks of re-emerging 

infectious diseases (EIDs) take an individual-level or a population-level approach to 

modeling contact dynamics. These approaches are a trade-off between the ability to 

incorporate individual-level dynamics and computational efficiency. Agent-based network 

models (ABNM)  use an individual-level approach by simulating the entire population and 

its contact structure, which increases the ability of adding detailed individual-level 

characteristics.  However, as this method is computationally expensive, ABNMs use 

scaled-down versions of the full population, which are unsuitable for low prevalence 

diseases as the number of infected cases would become negligible during scaling-down. 

Compartmental models use differential equations to simulate population-level features, 

which is computationally inexpensive and can model full-scale populations. However, as 

the compartmental model framework assumes random mixing between people,  it is not 

suitable for diseases where the underlying contact structures are a significant feature of 

disease epidemiology. Therefore, current methods are unsuitable for simulating diseases 

that have low prevalence and where the contact structures are significant.  
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The conceptual framework for a new simulation method, Evolving Contact 

Network Algorithm (ECNA), was recently proposed to address the above gap. The ECNA 

combines the attributes of ABNM and compartmental modeling. It generates a contact 

network of only infected persons and their immediate contacts, and evolves the network as 

new persons become infected.  

 The conceptual framework of the ECNA is promising for application to diseases 

with low prevalence and where contact structures are significant. This thesis develops and 

tests different algorithms to advance the computational capabilities of the ECNA and its 

flexibility to model different network settings. These features are key components that 

determine the feasibility of ECNA for application to disease prediction. Results indicate 

that the ECNA is nearly 20 times faster than ABNM when simulating a population of size 

150,000 and flexible for modeling networks with two contact layers and communities. 

Considering uncertainties in epidemiological features and origin of future EIDs, there is a 

significant need for a computationally efficient method that is suitable for analyses of a 

range of potential EIDs at a global scale. This work holds promise towards the development 

of such a model.  
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CHAPTER 1 

1 INTRODUCTION 

As there are occurrences of new and re-emerging infectious disease outbreaks, there 

is a need for tools to predict dynamics as accurate as possible and as efficient as possible 

so that public health officials can implement optimal intervention methods at the initial 

stages of outbreaks. Simulation models offer such tools for estimating the characteristics 

of a specific disease outbreak. There exist different models, such as compartmental or 

agent-based, for estimating the spread of the disease for diseases with different disease 

dynamics. 

The traditional differential-equation-based compartmental model was first 

introduced by Kermack and McKendrick (Kermack and McKendrick 1927), and this model 

forms the basis of modern quantitative epidemiology. Compartmental models are based on 

compartmentalization of individuals based on their disease status and the transmission 

between states are defined by differential equations (Anderson and May 1991; Diekmann 

and Heesterbeek 2000). Though this model tracks the changes in compartments of 

individuals, it does not specify which individual was involved within the compartment. 

The basic compartmental model is the susceptible-infectious-recovered (SIR) model, and 

all compartmental models follow the non-stationary Markov processes structure and 

assume that the host population is homogeneously mixed. There exist different 

compartmental model structures depending on the disease characteristics. For example, the 

SIR model is most suitable for diseases that confer lifelong immunity, such as measles, and 

the susceptible-infectious (SI) model is suitable for diseases that do not have treatment at 

the moment such as human immunodeficiency virus (HIV) and Ebola virus (Keeling and 
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Eames 2005). While these models allow us to gain insight into disease transmission process 

and to study threshold quantities such as basic reproduction number 𝑅0 (Paulinevan den 

Driessche 2017), they do not model a contact-network structure of the human network to 

study disease transmission (Simon, Taylor, and Kiss 2011). 

 Although the homogeneously mixed equation-based compartmental model is 

suitable for simulating the spread of highly contagious diseases that are easily spread at 

large scale, it creates prediction error when it applies to diseases that have a lower number 

of daily contacts or in highly clustered population (Smieszek, Fiebig, and Scholz 2009). 

Real-world human networks tend to be highly clustered, and the spread of infectious 

diseases that are transmitted through close-contact such as Ebola or HIV depends on 

heterogenous mixing within the population. This mixing takes numerous individual 

information such as population size and density (Suryaprasad et al. 2013), the age structure 

of the population (Merli and Hertog 2010), the composition of household (Adams 2016; 

Cauchemez et al. 2009), and demographic and cultural practices (Alexander et al. 2015) 

into account. Therefore, it is important to incorporate different communities or groups 

based within the network and their mixing between the groups when simulating such 

diseases where the community structure is important.  

Agent-based network models (ABNM) are well suited to handle these individual-

level complexities by focusing on the interactions among agents. ABNM can represent 

modeling of disease spread in a realistic contact network, and it simulates persons at the 

individual level, this gives the flexibility to model specific close contact network. However, 

this extra complexity of ABNM models significantly increases computational requirements 
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and often requires scaling down the actual population size due to limited time and resources 

(Rahmandad and Sterman 2008; Goodreau et al. 2012). 

 Current models use these extreme simulation techniques that have a trade-off 

between increased modeling capacity and computational time complexity. ABNM is 

problematic for low prevalence diseases as the number of infected persons becomes 

negligible or vanishes when scaling-down the population size. Further, as ABNM generates 

the full population contact structure at the start of the simulation, it is impractical to use for 

simulating disease spread at a global scale in real-time decision-making environments. 

Thus, there is no suitable method that can model the spread of diseases that transmit 

through close contact and have a low prevalence or are widespread geographically.  

 The conceptual framework for a new simulation technique Evolving Contact 

Network Algorithm (ECNA) was recently proposed to address this computational 

challenge of simulating diseases with low prevalence (Eden et al. 2018). This thesis 

presents an empirical analysis of the ECNA to test its accuracy, computational efficiency, 

and flexibility to different network types and population settings. The ECNA integrates 

individual-level modeling capacity of agent-based network models for simulating infected 

individuals and contacts, with computation efficiency of compartmental models for 

simulating uninfected contacts at population-level. During disease transmission, the social 

contacts between susceptible and infected persons are significant, whereas contacts 

between uninfected persons are not significant. The overview of this algorithm is building 

a contact network as people become infected at each simulation step by generating only 

infected persons and their close contacts. The main advantage of this algorithm is 
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computational efficiency when simulating disease outbreak with low prevalence in a large 

population.  

 Chapter 2 presents a literature review on epidemic models, current research gaps 

and research objective as well as a technical background that is needed for the algorithm 

development. Chapter 3 describes the algorithm and the models that were developed for 

this study. Chapter 4 then presents the results of the models on the accuracy, computational 

efficiency, and the flexibility of the algorithm. Chapter 5 discusses limitations and 

conclusions of the study. 
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CHAPTER 2 

2 BACKGROUND 

2.1 Epidemic Models  

 Epidemic models are powerful tools that help to understand and predicting 

infectious disease transmissions. With the ever-changing history of infectious disease types 

and patterns, the effective control system and predictive modeling of infectious disease 

have been rapidly improving (Hethcote 1994; Cohen 2000). Remarkable progress has been 

made in population-level compartmental models that incorporate homogeneous mixing 

within each subpopulation.  For example, the Global Epidemic and Mobility (GLEaM) has 

been used to access international travel restrictions during 2009 influenza and 2014-2016 

Ebola outbreak (Tizzoni et al. 2012; Bajardi et al. 2011; Poletto et al. 2014; Balcan et al. 

2010). These population-level models divide the population into compartments based on 

their disease state and assume homogenous mixing between contacts (Ajelli et al. 2010). 

This assumption is suitable for highly infectious diseases like flu, measles, or dengue fever 

(Coburn, Wagner, and Blower 2009; Derouich, Boutayeb, and Twizell 2003). Not only the 

compartmental models with homogenous mixing assumptions are not able to model a 

relationship between individuals, but also they overestimate the number of infections of 

the diseases that transmit through close-contact (Drake et al. 2015). 

 Agent-based models used to simulate at individual-level and these models will 

provide a more accurate epidemic prediction for diseases where the contact structure is 

important. Siettos et al. applied an agent-based model with small-world network structure 

assumption to model 2014 Ebola outbreak in Liberia and Sierra Leone, and their estimate 

best fitted the Ebola outbreak data reported by WHO (Siettos et al. 2015). This model 
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showed a strong argument for modeling diseases that transmit through close contact using 

an agent-based model.  

 Moreover, Willem et al. did a systematic review of agent-based models for 

infectious disease publications that were published between 2006 and 2015 (Willem et al. 

2017). They filtered and reviewed 698 papers, and they found that agent-based modeling 

application to infectious disease model is increasing each year (38 to 115 from 2006 to 

2015). They noted that most papers among the selected papers are on agent-based modeling 

for close-contact diseases (27%), followed by influenza (23%). This study concluded that 

there is an availability of individual-level data as well as rising interest in precision 

modeling (Willem et al. 2017). 

 The pattern of epidemics, which transmits diseases from one person to another, is 

determined by not only the disease characteristics such as its infectiousness and recovery 

rate but also by the network structures within the population (Potterat et al. 2002; Keeling 

2005; Rocha, Liljeros, and Holme 2011). The act of disease spreading is one kind of 

dynamic process that takes place on networks, and this process is often referred as 

cascading behavior or social contagion (Bauch and Galvani 2013; Jiang et al. 2014).  

Studying characteristic patterns of a structure at the network level helps to facilitate 

infectious disease spreading, particularly ones that transmit through close-contact.   

 For many agent-based social network simulation models, an underlying social 

network – the collections of social ties among friends or family – is required and this social 

network can be represented as a graph (Newman 2006; Rahmandad and Sterman 2008; 

Hamill and Gilbert 2009).  
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2.2 Computational Models 

 Eubank et al., one of the pioneers of applying social network to epidemic modeling, 

explored dynamic bipartite graphs to model movements of individuals between specific 

locations (Eubank et al. 2004). They have built an agent-based simulation tool EpiSims 

that combines realistic estimates of population mobility with parameterized models for 

simulating the progress of disease within an agent and of transmission between agents 

(Eubank et al. 2004). They found that contact network among people is clustered, but the 

locations graph is scale-free from their case study in smallpox spread in Portland, Oregon. 

Eubank et al. concluded that a scale-free locations graph suggest that efficient outbreak 

detection system can be done by placing sensors in locations with high degrees and targeted 

vaccination could be more effective than mass vaccination during epidemics. EpiSims 

simulates the disease spread on the network after producing the social networks and 

people’s movement with the help of TRANSIMS, the transportation analysis system that 

produces estimates of a social network based on transportation infrastructures (Eubank et 

al. 2004), whereas the ECNA proposes to generating the social network as the disease 

spread on the network.  

 There are simulation models including EpiSimdemics, which is a more advanced 

version of EpiSims, that use a scalable parallel algorithm to simulate the diseases in a large 

population at individual levels (Barrett et al. 2008; Ferguson et al. 2003; Longini 2005). 

However, the common challenges of these models are limited by supercomputer storages 

that deals with a large amount of social network data and this could be a bottleneck during 

an outbreak in remote places.  

 Infectious disease modeling at individual-level in a smaller population with realistic 

social network information researches have been done using patient contact tracing 
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methods (Read, Eames, and Edmunds 2008; Mossong et al. 2008; Le Polain de Waroux, 

Oliver et al. 2018). For example, Andre et al. reinforced this analogy and examined 

Tuberculosis (TB) contact investigation procedures during the outbreak (Andre et al. 

2011). They collected TB patient data and traced the close contacts of the patients by 

interviewing them (Figure 2-1). Willem et al. show the network of TB patients and their 

contact (Willem et al. 2017). They concluded that a network-informed approach helped to 

focus on TB control much effectively and helped to analyze the disease spread.  

  

 

Figure 2-1: The spread of the tuberculosis. Image from (Andre et al. 2011) 

2.3 Current Gaps and Research Question 

 There have been an increasing number of agent-based models in epidemic 

spreading with the help of increasing computational power, availability of specific data, 

and an awareness of the limitations of homogenous mixing models (Bansal Shweta, 

Grenfell Bryan T, and Meyers Lauren Ancel 2007; Enright and Kao 2018). However, these 
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models often require a full contact network information, which needs high computational 

power, before simulation the epidemic over (Volz et al. 2011; Siettos et al. 2015) or scaling 

down the population into a smaller sample, which will also scale down the final prevalence. 

  A model that requires full contact information is may not be suitable during the 

event of an outbreak where rapid epidemic forecasting is needed for public health decision 

making. Siettos et al. investigated the epidemic dynamics of Ebola Virus Disease in Liberia 

and Sierra Leone using an agent-based model whose dynamics evolve on small-world 

networks where its size matches the demographics of each country (C. Siettos et al. 2015). 

Though this model estimated the incidence with high accuracy, the model required to 

generate a contact network with millions of nodes and simulated the infection over the full 

network. This requirement makes the model computationally expensive and the 

computation time increases when population size increases.  

 The population size is often scaled down to computationally feasible size to avoid 

the high computational cost of modeling the entire population. Although this technique 

saves computational cost, this would result in estimation error when it is applied to an 

epidemic with low prevalence. For example, the prevalence of the 2014 Ebola outbreak in 

three West African countries Guinea, Liberia, and Sierra Leone yielded to be 0.12 percent. 

This prevalence was computed based on the total cumulative cases of 28,616 (Center for 

Disease Control 2016) and the total population size of 23.28 million of three countries 

(“Data for Sierra Leone, Liberia, Guinea | Data” n.d.). Therefore, simulating 100,000 

persons, representative of the three countries, will yield a total of 120 infected cases of the 

virus. Considering the infection number is 120 at the peak of the epidemic, we would not 

have a sample that is statistically significant to simulate at the initial stages of the outbreak. 
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Therefore, agent-based models face the challenge of simulating diseases with low 

prevalence in a large population at a lower computational cost.  

 Agent-based contact network models often generalize contact types into a single 

layer contact by averaging degree, clustering coefficients or other network structures 

(Danon et al. 2011). Another challenge in agent-based modeling for infectious disease is a 

rarity of the availability of reusable open-source code for these computational models. 

However, ComplexNetworkSim (“Welcome to ComplexNetworkSim’s Documentation! 

— ComplexNetworkSim v0.1.2 Documentation” n.d.) in Python package, EpiModel and 

SimInf in R (Widgren et al. 2016) allow to simulate disease on a simple contact network, 

which is generated using already existing random graph generators, rather than from 

explicitly specified network contacts (Enright and Kao 2018). 

 The Evolving Contact Network Algorithm (ECNA) is proposed to fill these gaps 

and aims to generate the contact network while simultaneously simulating the epidemic 

which results in similar infection prediction as simulating over a full-network at a lower 

computational cost. This thesis focuses on the formulation and empirical validation of the 

ECNA and its implementation that results in computational efficiency over existing agent-

based models that require the full network before simulating the infection. The ECNA 

generates the contact network while simulating the disease and allows us to consider 

multiple contact types between individuals and multiple communities within the 

population.  
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2.4 Graph Theory 

A simple graph 𝐺(𝑉, 𝐸) consists of a non-empty finite set 𝑉 =  {𝑣1, 𝑣2 … , 𝑣𝑛 }  of 𝑛 

elements called node where |𝑉| = 𝑛, 𝑛 > 0 and a finite set 𝐸 =  {𝑒1, 𝑒2, … , 𝑒𝑚  } of 𝑚 

distinct pairs of distinct elements of 𝑉 called edge where  𝐸 ⊆ 𝑉 × 𝑉, |𝐸| = 𝑚, 𝑚 ≥ 0,   

𝑒𝑘 = (𝑣𝑖 , 𝑣𝑗), ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗 (Wilson 1998). 

 In a social network, a node in a graph represents a person, and an edge between two 

nodes represents a relationship between two persons that would allow for disease 

transmission. In graph theory, edges can represent directional interaction between two 

nodes such that there are undirected and directed graphs (Newman 2010). Figure 2-2 and 

Figure 2-3 show undirected and directed random graphs. From an epidemiological point of 

view, the direction of a graph is essential since it possesses information and restrictions on 

how the disease transmits. In this paper, we assume disease can transfer between any 

connected close individuals. Therefore, we are concerned with generating simple 

undirected graphs, i.e., no loops or multiple edges are allowed since we assume each 

susceptible person will be prone to infected from any of its infected contacts. 

 A giant component is a fully connected component that contains a finite fraction 

of the entire graph’s nodes (Newman 2010). If a disease starts in the giant component, the 

prevalence of the disease increases with the network size, while if the disease starts outside 

of the giant component, the total number of infected people will be limited. In our case, we 

are interested in simulating a disease that starts in a giant component in which it needs a 

rapid projection of the epidemic and makes decisions.  
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Figure 2-2: An undirected random 

graph 

 

Figure 2-3: A directed random graph 

 

2.5 Graph Representation 

 There are two main graph representations: the adjacency matrix and the adjacency 

list (Newman 2010). 

2.5.1 Adjacency Matrix 

An adjacency matrix is a square |𝑉| × |𝑉| matrix A with elements 𝑎𝑖𝑗 is 1 if node 𝑖 

and 𝑗 are connected and zero otherwise. The elements of this square matrix describe if a 

pair of nodes are adjacent (connected) or not in the graph. If a graph is undirected, the 

adjacency matrix is symmetric.  

 

 0 1 2 3 

0 0 1 1 1 

1 1 0 1 0 

2 1 1 0 0 

3 1 0 0 0 
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1
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2.5.2 Adjacency List 

 A more space-efficient way to implement a graph is an adjacency list that is a 

collection of unordered lists. Each list corresponds to a node 𝑣 and contains the set of 

adjacent nodes of 𝑣 in the graph. An adjacency list representation is more compact for a 

graph is sparsely connected.  

 
  

2.5.3 Comparison 

 It is vital to understand the trade-offs between two graph representations before 

implementing algorithms and models that are based on graphs. Table 2-1 contains the space 

and time complexities of the Adjacency Matrix and Adjacency List representations.  

 

Table 2-1: Space and time complexities of representations 

 Space Checking if 

(𝑣𝑖 , 𝑣𝑗) is an edge 

Identifying all 

edges 

Adjacency Matrix Θ(|𝑉|2) Θ(1) Θ(|𝑉|2) 

Adjacency List Θ(𝑉 + 𝐸) Ο(deg (𝑣𝑖) Θ(𝑉 + 𝐸) 

 

2.6 Graph Properties 

 There is a large number of graph properties that have been defined to characterize 

different aspects of the complex networks. The ECNA focuses on simulating the diseases 

0
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where the spread of infection is not random but via close-contact., i.e., the more infected 

contacts, the more chances of being infected. Therefore, the degree and clustering 

coefficient properties of a graph, which contain such direct contact information among 

other graph metrics, are used to evaluate a graph that is generated by ECNA. 

The number of infected people at each time step is used for validation of 

epidemiological property.  The average degree infected population in the network are used 

for comparison of network properties with other existing models.  

• Degree: The 𝑑 number of edges that are originated from node 𝑖 in an undirected 

network is the degree of node 𝑖, and we write it as 𝑑𝑖, i.e., 𝑘𝑖 = ∑ 𝑎𝑖𝑗𝑗 . The 

average degree of the network 〈𝑘〉 is the average of the value 𝑘𝑖  over all nodes in 

the network.  

• Degree distribution: In the undirected network, the degree distribution 𝑃(𝑘) 

represents the probability that a random node has degree 𝑘.  

• Degree correlation: Two-node degree correlation can be measured by means of 

the conditional probability 𝑃(𝑘′|𝑘) that an edge from a node of degree 𝑘 is 

connected to a vertex of degree 𝑘′.  

• Clustering coefficient: The clustering coefficient 𝑐𝑖 of node 𝑖 is defined as the ratio 

between the number of existing triads that is originated at node 𝑖, and the number 

of all possible such triangles at node 𝑖. The average clustering coefficient of the 

network 〈𝑐〉 is the average of the value 𝑐𝑖 over all nodes in the network.   
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2.7 Basic network generating models 

 There exist different real-world network structures that are characterized by 

variability in their graph metrics and statistical properties. The network is not limited by 

social network, but it includes information network, food webs, as well as citation 

networks, neural networks and more. Therefore, the existence of network classification has 

motivated a theoretical research effort in the field of studying different network generation 

models (Pastor-Satorras et al. 2015). The basic and broad generalization of these models 

that are reviewed in this section is in Table 2-2. Plus, exponential random graph model 

(ERGM) and preferential attachment are discussed.  

 As a real-world human contact network tends to be highly clustered and the number 

of contacts of a person is dependent on the person, the graphs with clusters and dependent 

edges are needed to be used as a base model to validate the ECNA. Also, it is observed that 

a network of human sexual contacts is scale-free that its degree distribution follows power-

law with an exponent between 2 and 3 (Liljeros et al. 2001; Barabási, Ravasz, and Vicsek 

2001; Schneeberger et al. 2004). 

 In this study, we developed models to generate random graphs with high clustering 

and non-random graphs without clustering using the ECNA. We adopted the configuration 

model technique for generating random graphs and the preferential attachment model 

technique for generating non-random graphs in the algorithm.   

Table 2-2: Basic generalization of network model 

 Independent edges Dependent edges 

Identical nodes Random graph: 𝐺(𝑛, 𝑝) Random graph: 𝐺(𝑛, 𝑚) 

Non-identical nodes Chung-Lu model Configuration model 
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2.7.1 Random graphs 

 The most basic probabilistic network model is called the random graph or 

sometimes referred to the Erdős–Rényi random graph (Paul Erdős,  Alfréd Rényi 1960). 

This graph generating model is typically denoted 𝐺(𝑛, 𝑝) and the model starts with 𝑛 nodes 

and 𝑝 the probability that an edge 𝑒 = (𝑣𝑖 , 𝑣𝑗)  exists, for all 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉, and this creates a 

random graph with approximately (𝑛
2

)𝑝 edges. Therefore, the average degree of a node is 

〈𝑘〉 = (𝑛 − 1)𝑝. Here the degree distribution is in binomial form, and binomial distribution 

approaches the Poisson distribution 𝑃(𝑘) = 𝑒−〈𝑘〉 〈𝑘〉𝑘

𝑘!
  When the network is large (𝑛 → ∞). 

 Alternatively, 𝐺(𝑛, 𝑚) random graph takes a fixed 𝑛 number of nodes and 

generates 𝑚 number of edges with equal probability. The average degree of a network is 

〈𝑘〉 =
2𝑚

𝑛
. Classical random graphs have Poisson distributions, which has a rapid decay 

because of the large factorial in the denominator. But the degree distributions of real-world 

networks decay much slower (Sergey Dorogovtsev 2010).   

 The clustering coefficient of a random graph decays to zero in the limit of a large 

graph. The calculation of the clustering coefficient is derived from the following: 

〈𝑐〉 =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑠)
 ∝  

(
𝑛
3

) 𝑝3

(
𝑛
3

) 𝑝2
= 𝑝 =

〈𝑘〉

𝑛 − 1
 

  where 〈𝑘〉 is the desired average degree of a network and the average degree of an 

individual will be negligible compared to the total population in the large network.  

 All nodes in random graphs are iid because all nodes have the same chance of being 

selected to link with one another, but edges in 𝐺(𝑛, 𝑝) are independent while edges 

in 𝐺(𝑛, 𝑚) are dependent because of a limited total number of edges.  
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2.7.2 Configuration model 

 As it was shown in empirical studies, most real-world networks follow power-law 

distribution while a random graph follows a Poisson distribution when the graph is sparse. 

One way of improving this aspect of the random graph is by using a model called the 

configuration model (Bender and Canfield 1978; Molloy and Reed 1995). This model takes 

a fixed degree distribution as an input to construct the network in contrast to a traditional 

random graph takes a fixed average degree as an input.  

Its construction is as follows:  

 Each node is pre-assigned to the degree that is drawn from a given degree 

distribution 𝑃(𝑘), subject to the conditions 𝑚 ≤ 𝑘𝑖 ≤ 𝑁, where 𝑚 is the desired minimum 

degree and ∑ 𝑘𝑖𝑖  is an even number. The reason why the total number of degrees in a 

network is an even number is that we randomly match a pair of nodes by their pre-assigned 

“stubs” together. Thus, a random graph with any given degree distribution can be 

constructed with this model by taking a uniformly matching on the “stubs” attached to 

nodes. Figure 2-4 shows a simple representation of the construction of the configuration 

model on a graph of N=6 with each node has stubs of 2, 4, 2, 1, 3, 5 and its “stubs-

matching” using configuration model. After each stub is linked, the degree distribution is 

still preserved.  
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Figure 2-4: Configuration model stub matching mechanism 

2.7.3 Chung-Lu model 

 The Chung-Lu model is a random graph model that is most closely related to the 

configuration model (Chung and Lu 2002). Instead of being generated by a fixed degree 

sequence like configuration model, the Chung-Lu model is parametrized by 𝑤 =

(𝑤1, … , 𝑤𝑛) and 𝑤𝑖 > 0 where 𝑤𝑖  is an expected degree of 𝑖. The model correctly samples 

graphs with a given degree sequence for most well-behaved degree sequence.  

2.7.4 Exponential Random Graph Models 

 The Exponential Random Graph Models (ERGM), also known as ‘p* models,’ are 

useful for generating networks with its network properties are close to a given set of 

properties. This model allows the user to generate a network based on which network 

property the user is concerned more. 

It suggests that even though networks could evolve into different structural realizations, 

they should have some basic features in common.  

This kind of common feature concept is called a statistical ensemble of network, 𝒢 = {𝐺}, 

plus probability distribution 𝑃(𝐺), over 𝒢. Here, 𝑃(𝐺) ∝  𝑒𝐻(𝐺), that is exponential in the 
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so-called graph Hamiltonian, 𝐻(𝐺), which determines various network properties within 

the ensemble. 

2.7.5 Preferential Attachment  

The randomly connected Erdős–Rényi (ER), or reconnected Watts-Strogatz (WS) 

models not only do not represent real networks which follows a power-law degree, but also 

fail to incorporate two key features of real networks: growth and preferential connectivity. 

Those static networks provide a good approximation when the properties of the dynamical 

processes evolve faster than the structure of the network changes. In traditional epidemic 

models have applied static network models to provide predictive analytics on epidemics 

under assumptions of the diseases are highly infectious and the host population is 

homogenously mixed and fully susceptible. However, the class of growing network has 

been useful for modeling epidemics in a non-homogenous network.  

The Barabasi-Albert (BA) power-law preferential attachment model allows 

creating a network with power-law distribution (Barabasi and Albert 1999). This model 

differs from the configuration model by its growth characteristics, in which nodes and links 

are added over time.  

 BA model follows a rule that newly added edges will tend in general to be 

connected to nodes chosen via some preferential attachment. The simplest of these rules 

are defined as follows:  

i) It starts with a small number 𝑚0 of connected nodes, and introduce a new node 

with 𝑚(≤ 𝑚0) edges that link the new node to 𝑚 different nodes that are 

already present in the system at every time step to incorporate the growing 

feature of a real network. 
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ii) In contrast to the random network models, this model incorporates preferential 

connectivity by choosing node 𝑖 to link to the new node with probability 

∏(𝑘𝑖) =
𝑘𝑖

∑ 𝑘𝑗
𝑁
𝑗=1

, where 𝑘𝑖  is the current degree of 𝑖. Thus, the nodes that have 

higher degree will have a higher chances of getting linked to more nodes. 

This model evolves into a scale-free network that has 𝑘 edges following a power-law with 

an exponent 𝛾 = 3 (i.e., (𝑃(𝑘)~𝑘−3 ) (Barabasi and Albert 1999; Sergey Dorogovtsev 

2010).   

 Different from random graphs, non-random graphs including scale-free networks 

provide a degree-correlation of neighbors information (Fotouhi and Rabbat 2013). This 

information is especially crucial for ECNA (when it generates a scale-free network) since 

the degree of an infected person, and its contacts degree should be available as soon as the 

person added to the network. The conditional degree distribution, 𝑃(𝐿 = 𝑙|𝑘) where 

probability distribution of 𝐿 given specific degree 𝑘, determines the distribution of the 

degrees of all neighbors of a node of degree 𝑘. Fotouhi and Rabbat studied the conditional 

degree of scale-free networks and presented the analytical model (Fotouhi and Rabbat 

2013). Based on the previous study (Eden et al., in review), developed an alternative 

numerical model to estimate the conditional degree of scale-free networks using a non-

linear neural network.  
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CHAPTER 3  

3 METHODS  

 The Evolving Contact Network Algorithm (ECNA) generates the contact network 

of only infected persons and their immediate contacts, as such, evolves as more people 

become infected (Eden et al. 2018). It maintains the network properties at each time step 

when more nodes are added to the network.  

 A real contact network is a combination of different contact types and communities. 

This thesis focuses on the validation of the algorithm and implementation of its application 

to different models where different network structures are considered. Among various 

validation techniques, a combination of animation and comparison to other models 

techniques was used to validate the models that use ECNA to simulate epidemic. The 

animation technique provides model results graphically during the simulation run, and 

comparison to other models compare the proposed model result with other existing models  

(Sargent 2010).  

The objective of the ECNA is obtaining comparable accuracy over traditional 

computational agent-based models while minimizing space and time consumption when 

simulating diseases that have a low prevalence. Specifically targeting for a low prevalence 

disease requires the ECNA have increased accuracy in the early stage of the epidemic are 

comparable to the projections that were produced by traditional agent-based models.   
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3.1 Notations 

 

• Contact types and population 

Ω 

 

A set of contact types that are not random but static, e.g., household 

family and social contacts 

𝑘 

 
A contact type. 𝑘 ∈ Ω 

𝑁 Population size  

𝑛 Number of initially infected nodes 

𝑀𝑡 The number of people in the network at time 𝑡; 𝑀𝑡 ≤ 𝑁 

 

• Adjacency Matrix representation of contact types  

𝒜𝑘,𝑡 

A binary matrix for a contact type 𝑘 of size 𝑁 × 𝑁 at time 𝑡. Here only  

𝑀𝑡𝑥𝑀𝑡 matrix will have information at time t, and the rest of the matrix 

is zeros because they will not be generated yet. (Expanding matrix size 

at each 𝑡 is computationally more expensive than having fixed size.)  

𝑎𝑘,𝑖𝑗 

An element of 𝒜𝑘,𝑡 in row 𝑖 and column 𝑗, then 𝑎𝑘,𝑖𝑗 = 1, if 𝑖 and 𝑗 

are contacts, and 0 otherwise. 

 

• Infection status  

ℋ𝑡 A one-dimensional row matrix of size 1 × 𝑁 at time 𝑡  

ℎ𝑖 An element of ℋ𝑡 at index 𝑖, then ℎ𝑖 = 1, if 𝑖 is infected, 0, otherwise 
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• Adjacency List representation of contact types 

𝒢𝑘,𝑡 

A list of 𝑀𝑡  rows with size of each row equal to the number of contacts 

of type 𝑘 at time 𝑡. Adjacency List can be stored with only size 𝑀𝑡 

because it can be stored as Hash Table, which allows arbitrary 

insertions and deletions at constant average cost per operation. 

𝑔𝑘,𝑖𝑗 

An element of 𝒢𝑘,𝑡 in row 𝑖 and column 𝑗, then 𝑔𝑘,𝑖𝑗 = 𝑏, where 𝑏 ∈

{1, 2, … , 𝑖 − 1, 𝑖 + 1, … , 𝑁} 

• Properties of a contact network 

𝑑𝑘,𝑖 A degree (i.e., number of contacts) for contact type 𝑘 ∈ Ω for person 𝑖 

𝐶𝑘,𝑖 
A clustering coefficient (to represent transitivity) for contact type 𝑘 ∈

Ω for person 𝑖 

𝑡𝑖 Number of triads that corresponds to person 𝑖 

𝑃(𝑑𝑘) Degree distribution for contact type 𝑘 ∈ Ω 

𝑃(𝑡|𝑑) Conditional distribution of number of triads given the degree 

3.2 Algorithm  

Overview: Only currently or previously infected persons and their immediate contacts 

(𝑀𝑡 number of people) are tracked individually as agent-based at time 𝑡. All other 𝑁 − 𝑀𝑡 

susceptible persons are modeled as a compartmental model. When contacts of infected 

persons become newly infected, their immediate contacts are generated using the algorithm 

below, such that, over time 𝑇, under the assumptions of a fully connected world and no 

recoveries or mortalities from infection, 𝑀𝑡 → 𝑁 as 𝑡 → ∞. Figure 3-1 shows simple 

illustration of ECNA.  
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Table 3-1: The Evolving Contact Network Algorithm 

Step 1: Pre-assign degrees 𝒅𝒌,𝒊 for each node 𝒊 ∈ {𝟏, 𝟐, … , 𝑵}  from the distributions 

𝑷(𝒅𝒌) 

 

Step 2: Determine the initial infected contacts 𝒏 in agent-based and update 𝓗𝟎 

 

Step 3: Generate close-contacts: For each newly infected person 𝒊, generate close 

contacts of each contact type 𝒌 ∈ 𝛀 by repeating the following  steps.  

1. Determine the number of new contacts of type, �̂�𝒌,𝒊,  𝒌 ∈ 𝛀  to generate   

i) If  𝑪𝒌,𝒊 = 𝟏 (e.g., family contacts), then �̂�𝒌,𝒊 = 𝒅𝒌,𝒊 − ∑ 𝒂𝒌,𝒊𝒋𝒋   

ii) If 𝑪𝒌,𝒊 < 𝟏 and if ∑ 𝒂𝒌,𝒊𝒋 < 𝒅𝒌,𝒊 = 𝑭𝑫
−𝟏(𝑼[𝟎, 𝟏])𝒋 , then �̂�𝒊 = 𝒅𝒊 −

∑ 𝒂𝒌,𝒊𝒋𝒋 , else �̂�𝒊 = 𝟎.  

2. Generate �̂�𝒌,𝒊 contacts for a newly infected person (i.e., update 𝓐𝒌,𝒕 or 𝓖𝒌,𝒕 

depending on the model): 

2.1. Determine eligible persons to be a contact of 𝒊:  

Each of 𝑴𝒕 persons in the agent-based and 𝑵 − 𝑴𝒕 persons in the 

compartmental, who satisfy Constraint 1 and Constraint 2 are eligible.  

 

Constraint 1: Generating contacts that do not change the contact properties of previously 

infected persons, which can be determined as follows.  

i) If  𝑪𝒌,𝒊 = 𝟏 (e.g., family contacts),  𝜷 =  ∑ {𝓗𝒕 + 𝒂𝒎,𝒊} + {𝓗𝒕𝓐𝒌}𝒎∈𝛀 , 

ii) If 𝑪𝒌,𝒊 < 𝟏, 𝜷 = ∑ {𝓗𝒕 + 𝒂𝒎,𝒊} + {(𝓗𝒕 ∘ 𝒂𝒌,𝒊)𝓐𝒌}𝒎∈𝛀 ,  where ∘ is element-

wise multiplication.  

Then 𝜷 will be a vector of size M, with 𝜷𝒋 = 𝟎 if: 

• 𝒋 is not an infected contact (i.e., 𝓗’),  

• not already a direct contact of 𝒊 (i.e., 𝒂𝒊), and 

• not a contact of an infected contact of 𝒊 (i.e., (𝓗′ ∘ 𝒂𝒊)𝓐 for 𝑪𝒌,𝒊 < 𝟏) to ensure 

maintenance of the clustering coefficient of 𝒊, i.e., 𝒄𝒊.  

Therefore, all persons 𝒋 with 𝜷𝒋 = 𝟎 are eligible to form a contact with 𝒊.  

 

Constraint 2: Characteristics of the person match that randomly drawn from a probability 

distribution.  

 

2.2. From among those eligible, choose �̂�𝒊 persons at random.  

To generate contact with one of the 𝑴𝒕 persons in the agent-based, say 𝒋, set 𝒂𝒌,𝒊𝒋 = 𝟏 

and with one of 𝑵 − 𝑴𝒕 persons in compartmental, first generate a new person in agent-

based (increment 𝑴𝒕 -transitioning them from compartmental). 
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3. Generate clustering: For each newly infected person 𝒊, determine number of 

contacts to between uninfected contacts of 𝒊.  

If 𝒅𝒊𝒂𝒈(𝓐𝑼𝓐)𝒊 < 𝒕𝒊, then 𝒕𝒊 = 𝒕𝒊 − 𝒅𝒊𝒂𝒈(𝓐𝑼𝓐)𝒊 where  𝑼 is the upper 

triangular matrix of 𝓐, and 𝒅𝒊𝒂𝒈(𝓐𝑼𝓐)𝒊 is a number of existing triads for 𝒊. 

4. Generate 𝒕𝒊 number of edges (i.e., update 𝓐, 𝓖) between contacts of 𝒊. The 

contacts that are being contacted are randomly drawn and be satisfy  

Constraint 1. 

 

Figure 3-2 illustrates the eligibility for newly infected contact. 

Figure 3-3 illustrates the eligible edges between contacts of a newly infected.  

Step 4: Determine transmissions from infected persons to immediate contacts 

A susceptible person 𝒊 of the 𝑴𝒕 has an infection risk of 𝜽 = 𝟏 − (𝟏 − 𝒑)𝒌    ∀𝒊, where 

𝒑 is the disease transmission risk, and 𝒌 is the total number of infected contacts.  

 

Step 5:  

Update the time step and Go to Step 3. 

 

 

  

Figure 3-1: A schematic representation of the ECNA with 𝑵 = 𝟏𝟐, 𝒏 = 𝟐, 𝒌 = 𝟐.  
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In the figures, the infected, uninfected and people who are in the compartmental model 

are colored in red, blue and gray, respectively. The checkmark indicates it is eligible, 

and the cross mark indicates it is ineligible.  

3.3 Empirical Validation of the Algorithm  

 As our method is attempting to replace ABNM, we use ABNM as a benchmark and 

validate our model by comparing its results with that generated by ABNM. Specifically, 

we compare the following metrics which are key parameters for epidemic prediction:  

i. The number of infections over time: which is a proxy for epidemic predictions  

ii. Average degree: The average number of contacts in the network should match 

population data. In ABNM, this is an input. In ECNA, this is an outcome 

because people are added when their contacts become infected. Thus, as the 

network grows and the full population becomes infected, we would expect that 

the average degree will match that of ABNM. 

The general validation process is illustrated in Figure 3-4, and consists of the following 

steps: 

Figure 3-2: Eligible contacts for 

newly infected 

Figure 3-3: Eligible edges for 

newly infected 
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a) Construct ABNM  

b) Collect empirical network data from ABNM to generate ECNA. Note that, typically, 

network data would be taken from the population under study. However, for this thesis, for 

purposes of testing only, we generate hypothetical data using the ABNM.  

c) Construct ECNA 

d) Extract validation parameters (number of infections, and average degree) from ECNA 

and ABNM. 

e) Compare ECNA results with ABNM 

We compared multiple types of graphs as discussed in the next section.  

 

Figure 3-4: Validation pipeline of the ECNA. It first collects data, which varies 

depending on the model, from ABNM then generate the evolving network while 

simulating the epidemic using the ECNA and compare the results with results from 

ABNM.  

a) 

b) 

c) 

d) 

d) 

e) 
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3.4 Baseline ABNM Model 

 As discussed above, in the application of ECNA, network data needed as inputs to 

the model would be collected from the population under study. However, for this thesis, 

for purposes of testing only, we generate hypothetical empirical data by generating a simple 

ABNM. Specifically, we collect data related to degree distribution. 

3.5 Models 

The algorithm in Section 3.2 is written using an Adjacency Matrix representation of 

a graph, particularly in finding eligible contacts from a population 𝑀𝑡 .  This section 

introduces different implementations of a graph using a different graph representation 

along with ECNA adjustments to each model. Such graphs can be denoted by 𝐺(𝑉, 𝐸), 

where 𝑉 is a set of vertices and 𝐸 is a set of edges.  

The models described below were implemented in MATLAB, Java,  and Python. 

Model 1.0 focuses on a proof of concept of ECNA, by implementing it on a network 

with open degree distribution that has multiple contact layers. This uses Adjacency Matrix 

graph representation which is less error-prone because of its numerical accuracy when 

computing eligible contacts (Step 3 of the Algorithm). Configuration model was used for 

developing the ABNM for comparison. 

Model 1.1 also implements ECNA on a network with open degree distribution that 

has multiple contact layers. However, it focuses on the computational efficiency of the 

algorithm by implementing it on the same network structure as we used on Model 1.0 but 

using hashable Adjacency List graph object in Java instead of adjacency matrix. 

Model 2.0 focuses on the flexibility of the algorithm by implementing it on different 

network type, scale-free networks, and applies it to a multi-community setting. It uses the 
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NetworkX package in Python. Preferential attachment algorithm was used, for generating 

a scale-free network, in an ABNM for comparison. 

3.5.1 Model 1.0: Multi-contact Evolving Network using Adjacency Matrix  

This model provides an implementation of ECNA on a multi-contact network using 

an adjacency matrix representation of a graph. The network has two different contact 

structures: i) The nodes are grouped into fully connected, i.e., clustering coefficient is equal 

to 1, ii) The nodes are grouped with some clustering, i.e., clustering coefficient is less than 

1 but more than 0. 

Figure 3-5 shows a structure of a multi-contact network, where family contact 

(inside circles) is fully connected whereas friends (outside circles) is not. Figure 3-6 

illustrates that each contact type network can be represented as a network layer which 

allows representing each network type with adjacency matrix 𝒜.   

 The friends contact network follow degree distribution 𝑃(𝑑) and has clustering 

coefficient  𝐶𝑘,𝑖 < 1. For simplicity purposes, the household size is assumed to be a fixed 

number, 3 in this model, for each house. However, the household size can follow a degree 

distribution in a more significant expansion of a model.  

 

Figure 3-5: Multi-contact network 
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Figure 3-6: Contact types describe the different types of interactions among agents. 

The dashed lines emphasize that the graphs have the same nodes, but the edges are 

distinct. 

3.5.1.1 Base ABNM 

 There exist many different tools to assist in the development of agent-based models. 

Among these models, NetLogo was used to develop the baseline ABNM model because 

NetLogo provides a graphical tool for quickly constructing interfaces as well as it is highly 

recommended for simple models (M. Berryman 2008; M. J. Berryman and Angus 2010).  

 Therefore, we developed the baseline ABNM for Model 1.0 using NetLogo. The 

NetLogo world is built up of agents that can follow instructions. In our model, a turtle 

agent represents a person, and a link agent visually serves as a line connecting two turtles.  

 The ABNM in NetLogo enables us to enter the network and epidemic properties as 

inputs to the model and provides a constructed network visualization with infection 

dynamics graphics. With given network properties of a number of houses, average 

household size, and average clustering coefficient of friends, it randomly links turtles 

together until it matches its input values. 

 Also, more information such as degree distribution can be printed on the command 

center as well as conveniently stored into CSV files for collecting data for the ECNA 
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models. Figure 3-7 shows a NetLogo graphical user interface (GUI) for the ABNM model 

for constructing a network with two types of contacts of family and friends, then simulating 

the spread of infection over. 

 Though NetLogo provides an interactive GUI and relatively convenient to use and 

learn, its lack of right object-oriented features could make some things difficult, and 

NetLogo is often slow to compare to Java-based platforms such as MASON and Repast 

(M. Berryman 2008).  

 

Figure 3-7: NetLogo graphical interface, where a number of input values can be 

entered, for an ABNM. Red lines represent family contacts, and blue lines represent 

friend contacts.  

3.5.1.2 Objective of the model 

The objective of Model 1.0 for a multi-contact network structure generator is testing 

the accuracy of the ECNA by comparing disease incidence on a network that is generated 
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using the ECNA with the disease incidence on a network that is generated using ABNM 

given the same network. 

3.5.1.3 Model parameters 

 The network properties can be controlled by a user using the model parameters 

summarized in Table 3-2.  

 

Table 3-2: Model 1.0 Parameters 

Parameter Description 

𝑵 ∈ ℕ+ Number of nodes (population) 

𝒏 ∈ ℕ+ Number of initially infected people 

|𝒌|  ∈ ℕ+ The number of contact network types 

𝑷(𝒅𝒌) Degree distributions of the contact networks 

𝑪𝒌 Clustering coefficients of the contact networks 

𝒑𝒑𝒓𝒆𝒗 ∈ [𝟎, 𝟏] The percentage of prevalence 

𝜷 ∈ [𝟎, 𝟏] The disease transmission rate 

 

3.5.1.4 The data structure, complexity, and technology 

 

 Model 1.0 uses an adjacency matrix representation of a graph, which is described 

in 2.5 and aims to do an empirical analysis of ECNA on its both epidemiological and 

network properties by doing a simulation on a small population. This model was developed 

in MATLAB because MATLAB is designed to operate primarily on whole matrices and 

arrays (“Matrices and Arrays - MATLAB & Simulink” n.d.).  

 The algorithm for Model 1.0 is divided into two parts:  

i.  Initializations of the graphs using adjacency matrices and infection state 

matrix (lines 1-2 in Table 4-3). Here it initializes the zero matrices with a 

dimension of 𝑵 × 𝑵 because it is best to preallocate space for the largest matrix 
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that is anticipated to be created using MATLAB (“Creating, Concatenating, and 

Expanding Matrices - MATLAB & Simulink” n.d.). Then, update the elements 

of the matrix when the graph grows from size 𝑛 to 𝑁.  

 Although starting with 𝑵 × 𝑵 sparse matrix is both space and time 

efficient than starting with 𝑛 × 𝑛 then expanding the matrix whenever the graph 

grows, the cost of sparse matrix multiplication is expensive. Model 1.1 was 

formulated to solve this computational challenge, and Section 3.5.2 provides 

detailed information on the model.  

 

Table 3-3: Model 1.0 Algorithm 

Algorithm  

1. Initialize 𝑵 × 𝑵 zero matrices 𝓐𝒌, 𝒌 ∈ 𝛀 

2. Initialize 1× 𝑵 zero matrix 𝓗 

3. Follow algorithm in 3.2 

 

3.5.2 Model 1.1: Multi-contact Evolving Network using Adjacency List  

 Model 1.1 provides an implementation of ECNA on a multi-contact. i.e., family 

and friends, network using an adjacency list representation of a graph. While Model 1.0 

focuses on a numerical validation of infections by directly implementing the algorithm, 

Model 1.1 focuses on a computational efficiency of the algorithm by implementing the 

algorithm with an efficient data structure. 

3.5.2.1 Base ABNM 

The base ABNM is the same model that is used for Model 1.0 using NetLogo. 
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3.5.2.2 Objective of the model 

The objective of Model 1.1 for a multi-contact network structure generator is testing 

the computational efficiency of the ECNA by comparing the computation time of ECNA 

that used the adjacency list of a graph for a single run with the computation time of ABNM 

given the same network for a single run.  

3.5.2.3 Model parameters 

 The same as Model 1.0 in Section 3.5.1.2. 

3.5.2.4 The data structure, complexity, and technology 

 Model 1.1 uses an adjacency list representation of a graph, which is described in 

2.5.2 and aims to do an empirical analysis of ECNA on its epidemiological properties as 

well as computational efficiency by doing a simulation on a larger population. This model 

was developed in Java using 𝐻𝑎𝑠ℎ𝑆𝑒𝑡 class in JAVA because of its constant time 

operations as shown in Table 3-4. Because of Object-Oriented Programming and HashSet 

representation, the formulation of the algorithm and model modified as shown in Table 3-

5. Finding eligible contacts using the Adjacency List has to be changed from matrix 

multiplication form, and the pseudocode is in Table 3-6.  

 

Table 3-4: Java HashSet complexity 

Java 

Collection 

Add Remove Contains Size Data 

Structure 

𝐻𝑎𝑠ℎ𝑆𝑒𝑡 Ο(1) Ο(1) Ο(1) Ο(1) 𝐻𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒 
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Table 3-5: ECNA algorithm using Adjacency List 

Algorithm 1  

1. Initialize empty adjacency list 𝓖𝒌, 𝒌 ∈ 𝛀 

2. Initialize empty sets of integers for 𝒏𝒆𝒘𝒍𝒚𝑰𝒏𝒇𝒆𝒄𝒕𝒆𝒅 and 𝒐𝒍𝒅𝑰𝒏𝒇𝒆𝒄𝒕𝒆𝒅 

3. Follow algorithm in 3.2 with following: 

 

Step 2:  

Determine the initial infected contacts 𝒏 in agent-based and update 𝒏𝒆𝒘𝒍𝒚𝑰𝒏𝒇𝒆𝒄𝒕𝒆𝒅 

Step 3: for 𝒊 in 𝒏𝒆𝒘𝒍𝒚𝑰𝒏𝒇𝒆𝒄𝒕𝒆𝒅: 

                   for 𝒌 in 𝛀: 

                        �̂�𝒌,𝒊 = 𝒅𝒌,𝒊 − 𝓖𝒌,𝒊. 𝒔𝒊𝒛𝒆() 

                         for 𝒋 in �̂�𝒌,𝒊: 

                               𝒆𝒍𝒊𝒈𝒊𝒃𝒍𝒆𝒔 = find 𝒆𝒍𝒊𝒈𝒊𝒃𝒍𝒆 people from  

                                                   the agent-based population (Algorithm 2) 

                               𝓖𝒌,𝒊 += a neighbor from the 𝒆𝒍𝒊𝒈𝒊𝒃𝒍𝒆𝒔, if any 

                               𝓖𝒌,𝒊 += a neighbor from the compartmental population 

                         for 𝒋 in 𝓖𝒌,𝒊: 

                               generate clustering  

                               update 𝓖𝒌,𝒊 accordingly 

Step 4: Determine transmissions 

Step 5: Update time step and go to Step 3 

 

Table 3-6: Finding eligible contacts using Adjacency List 

Algorithm 2  

for 𝒋𝒋 in 𝓖𝒌. 𝒌𝒆𝒚𝒔(). 𝒔𝒊𝒛𝒆(): 

      if  𝒊𝒔𝑬𝒍𝒊𝒈𝒊𝒃𝒍𝒆(𝒋𝒋, 𝒌, 𝒊) 

           update 𝒆𝒍𝒊𝒈𝒊𝒃𝒍𝒆𝒔   

 

𝒊𝒔𝑬𝒍𝒊𝒈𝒊𝒃𝒍𝒆(𝒋𝒋, 𝒌, 𝒊): 
      if (𝒋𝒋 == 𝒊 or 𝒋𝒋 is infected) 

          return false 

      if 𝓖𝒌,𝒋𝒋. 𝒔𝒊𝒛𝒆() >= (𝒅𝒌,𝒋𝒋): 

          return false 

      if 𝒋𝒋 is a contact of an infected contact of 𝒊 

          return false 

      if 𝒋𝒋 and 𝒊 are already contacted 

          return false 

      return true 
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3.5.3 Model 2.0: Multi-communities Evolving Network using NetworkX and 

Preferential Attachment 

 The spread of infectious diseases that transmit through close-contact such as Ebola 

or HIV depends on heterogenous mixing within the population. This mixing takes 

numerous individual information such as population size and density (Suryaprasad et al. 

2013), the age structure of the population (Merli and Hertog 2010), the composition of 

household (Adams 2016; Cauchemez et al. 2009), and demographic and cultural practices 

(Alexander et al. 2015) into account. For example, the vast majority of HIV transmissions, 

approximately 50,000 transmissions per year from 2007 through 2010 in the U.S., were 

from sexual contact (Eubank et al. 2004). CDC classified the HIV transmission category 

as male-to-male sexual contact that includes both homosexual and bisexual contact, and 

heterosexual female contact (CDC, 2012). Therefore, it is important to incorporate 

different sexual behaviors and their mixing between the groups when simulating a sexually 

transmitted disease. Thus, Model 2.0  focuses on applying the ECNA to generate a network 

with two sexual contact groups and testing its flexibility on a multi-community structured 

network when there is mixing between the communities.  

 It is observed that the network of human sexual contacts is scale-free, that is, the 

distribution follows a power-law with an exponent between 2 and 3 (Liljeros et al. 2001; 

Barabási, Ravasz, and Vicsek 2001; Schneeberger et al. 2004). Scale-free networks can be 

formed using a preferential-attachment mechanism (Barabási, Ravasz, and Vicsek 2001). 

 However, preferential-attachment mechanism cannot be directly used for the 

ECNA network generation since it attaches nodes to a node with probability that is 

proportional to its current degree whereas the ECNA requires to know degree of newly 

infected node and its degrees of neighbors as soon as it becomes infected (Eden et al. 2018). 
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Therefore, the previous study (Eden et al. 2018) presented a model that fits a non-linear 

neural network model to data from multiple scale-free networks and integrated to ECNA 

to generate a scale-free network.  

Previous work focused on a single community and  trained a neural network on a 

scale-free network that has a single community. In this thesis, in Model 2.0 we applied 

ECNA to a two-community network.  

3.5.3.1 Base ABNM  

 To test Model 2.0, we need a baseline ABNM model that simulates the infection on 

a network with two sexual contact groups that has some mixing between communities.  

 Therefore, we built a model that generates this hypothetical network with two 

sexual contact groups, each following a power-law, and with mixing between the two 

groups. As an example, the two groups can represent ‘heterosexual men and women’ and 

‘gay men’, and the mixing represents ‘bisexual men’, a categorization typically used for 

HIV modeling. To develop the base ABNM model, we first generated two graphs, 

𝐺1(𝑉1, 𝐸1) and 𝐺2(𝑉2, 𝐸2), using preferential attachment and rewired edges while keeping 

the degree distribution the same to incorporate mixing between two communities. Figure 

4-8 illustrates the rewiring process which follows the algorithm below: 

i. Pick an edge 𝑒𝑘 between nodes (𝑣1,𝑖 , 𝑣1,𝑗 ) that has degrees (𝑑1,𝑖 , 𝑑1,𝑗) where 

𝑒𝑘 ∈ 𝐸1 and 𝑣1,𝑖 , 𝑣1,𝑗 ∈ 𝑉1 

ii. Pick an edge 𝑒𝑙 between nodes (𝑣2,𝑖, 𝑣2,𝑗 ) that has degrees (𝑑2,𝑖 , 𝑑2,𝑗) =

 (𝑑1,𝑗, 𝑑1,𝑖)  where 𝑒𝑙 ∈ 𝐸2 and 𝑣2,𝑖 , 𝑣2,𝑗 ∈ 𝑉2 

iii. Remove 𝑒𝑘  and 𝑒𝑙 from 𝐺1(𝑉1, 𝐸1) and 𝐺2(𝑉2, 𝐸2),respectively 

iv. Create edges between nodes (𝑣1,𝑖 , 𝑣2,𝑗 ) and (𝑣2,𝑖 , 𝑣1,𝑗 )  
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We built this preferential attachment of communities network generator using NetworkX 

package and its in-built preferential attachment graph generator function in Python. Figure 

4-9 shows an example resulting network of |𝑉1|=|𝑉1| = 20 and 10 percent mixing after the 

rewiring process. Figure 4-10 shows a pictorial proof of degree distributions of 𝐺1(𝑉1, 𝐸1) 

and 𝐺2(𝑉2, 𝐸2) stays the same after rewiring and resulting graph 𝐺 is scale-free.  

 

Figure 3-8: Generating a network with two groups where each group is scale-free 

from two independent scale-free networks by removing edges from each network then 

adding edges between networks. 
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Figure 3-9: A final network, the baseline network for ANBM, with two groups where 

each group is scale-free. 

 
Figure 3-10:  Degree distributions of the generated network in Figure 3-9 before and 

after rewiring the edges 
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3.5.3.2 Objective of the model  

The objective of Model 2.0, a multi-community network generator using ECNA, is 

testing the flexibility of the ECNA by applying to a network with two-communities that 

has a mixing between communities and by integrating the trained Neural Network model. 

3.5.3.3 Model parameters 

 

Table 3-7: Model 2.0 Parameters 

Parameter Description 

𝑵 ∈ ℕ+ Number of nodes (population) 

𝒏 ∈ ℕ+ Number of initially infected people 

|𝒌|  ∈ ℕ+ The number of communities 

𝝁 ∈ [𝟎, 𝟏] The mixing between communities 

𝑷(𝒅𝒌) Degree distributions of the contact networks 

𝓜𝒌,𝒃 ∈ [𝟎, 𝟏] Mixing probability of each community 

𝒑𝒑𝒓𝒆𝒗 ∈ [𝟎, 𝟏] The percentage of prevalence 

𝜷 ∈ [𝟎, 𝟏] The disease transmission rate 

 

3.5.3.4 The data structure, complexity, and technology  

 Model 2.0  aims to do empirical analysis on the flexibility of ECNA by 

implementing ECNA to a multi-community network along with the neural network model 

that predicts the cumulative distribution of degrees of neighbors of a newly infected person.  

 This model was developed in Python using the NetworkX package which was 

primarily designed for general network analysis as well as a platform for developing new 

algorithm and theory (Hagberg, Swart, and S Chult 2008). This package provides many 

different types of network generators and graph objects that represent both undirected 

graphs, directed graphs and more. The nodes in NetworkX graph is hashable Python object; 
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therefore, it conveniently provides many functions such as getting degree and clustering 

coefficient of a node.  

 Model 2.0  focuses on generating a two-community network with mixing in 

between and integrating the neural network model; the general algorithm of this model is 

modified accordingly. 

Table 3-8: Model 2.0 Algorithm 

Step 1: 

i. Determine the initial infected contacts 𝒏/𝟐 in each community so that transmission 

process on both group and update 𝓗𝟎. 

ii. Determine the degrees of newly infected contacts and the degrees of their neighbors 

 

Step 2: Generate close-contacts: For each newly infected person 𝒊, generate close 

contacts of each community type 𝒌 ∈ 𝛀 by repeating the following steps.  

1. Determine the number of new contacts of type, �̂�𝒌,𝒊,  𝒌 ∈ 𝛀  to generate by 

subtracting current degree from the prescribed degree 

2. Generate �̂�𝒌,𝒊 contacts for a newly infected person from either eligible contacts 

or undiscovered 

3. For each �̂�𝒌,𝒊 contacts of newly infected, find the distributions of degree of 

neighbors  

4. Assign degrees to neighbors of �̂�𝒌,𝒊 contacts 

Step 3: Determine transmissions from infected persons to immediate contacts 

A susceptible person 𝒊 of the 𝑴𝒕 has an infection risk of 𝜽 = 𝟏 − (𝟏 − 𝒑)𝒌    ∀𝒊, where 

𝒑 is the disease transmission risk, and 𝒌 is the total number of infected contacts.  

 

Step 4:  

Update the time step and Go to step 3. 
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CHAPTER 4 

4 RESULTS 

 Our aim was for the ECNA to produce approximately similar results as an ABNM, 

i.e., both epidemiological and network properties converge to that of ABNM as contact 

network evolves into the full population. Simple hypothetical networks were generated for 

each model to test the convergences, and the results after the epidemic process simulated 

by ECNA and ABNM were compared in each model.    

 Model 1.0 tested a proof of concept of the ECNA by implementing it using an 

Adjacency Matrix representation of a graph on small size networks with possible 

parameters.  

 Model 1.1 tested the computational efficiency of the ECNA by implementing it 

using an Adjacency List representation of graph on larger size networks with possible 

parameters. 

 Model 2.0 tested the flexibility of the ECNA by applying it to a multi-community 

structured network with possible parameters.  

4.1 Model 1.0 

 To test a proof of concept of the ECNA in Model 1.0, we simulated two types of 

contacts, which have high clustering, in a population of 100 persons. Then, simulated the 

spread of possible diseases using the ECNA and ABNM under different network properties 

of degree, 𝑑, and clustering coefficient, 𝑐𝑐, for family and friends contacts and different 

transmission probabilities, 𝑝, to represent different diseases. We compared epidemic 

projections on six different scenarios that are a combination of different network properties 
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and transmission probability parameters (Table 4 1). We run 100 simulations using both 

ECNA, ABNM, and a compartmental model to compare the epidemic projections in each 

scenario.  

 We assumed the household size is equal to 3 and the average degree of friends were 

based on a study by Read, Eames, and Edmunds (Read, Eames, and Edmunds 2008). They 

conducted a diary-based survey to study dynamic social network and infectious disease 

spread on the network and found the daily encounters of people (i) all contact types (mean, 

14. 29), (ii) contacts that were conversational only (mean, 12.3) and (iii) contacts that 

included skin-to-skin physical contact (mean, 1.99). The ECNA is for diseases that transmit 

through close-contact; therefore, we used the mean degree of 1.99 of skin-to-skin physical 

contact information from the study and set the average degrees of friends contact network 

to 2 and 4. 

Table 4-1: Network properties of different networks that are used in Model 1.0 

 Population 

(𝑁) 

Initial 

number of 

infected 

persons 

(𝑛) 

Household  

(family) 

size, 𝑐𝑐=1 

Average 

degree (𝑑) 

of 

friends 

contact 

Average 

clustering 

coefficient 

(𝑐𝑐) of friends 

contact 

Transmission 

probability 

(𝑝) 

1 100 1 3 2 0 0.1 

2 100 1 3 2 0 0.5 

3 100 1 3 2 0.2 0.1 

4 100 1 3 2 0.2 0.5 

5 100 1 3 4 0.4 0.1 

6 100 1 3 4 0.4 0.5 
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4.1.1 Epidemic projections and network properties 

 To test the convergence of the ECNA, we compared the results from 100 

simulations of a hypothetical population of 100 persons using the ECNA and ABNM under 

six different scenarios. Shown in individual chart title are 𝑑 and 𝑐𝑐 for friends contacts 

since family contacts properties are the same in each scenario.  

 A deterministic compartmental (population level) model, red dashed line in Figure 

4-1, was also used for simulating infectious disease spread for a demonstration of 

difference with agent-based models (ABNM and ECNA). 

4.1.1.1 Prevalence 

 We have compared the total number of infections at each simulation time step in 

ABNM, ECNA and compartmental models after 100 simulations and their 5th, 50th and 95th 

percentiles. Figure 4-1 shows those epidemic projections by the ECNA result similar to 

ABNM in each scenario. In contrast, the compartmental model overestimates the infection 

cases, and the average is at about the 95th percentile of agent-based models (ECNA, 

ABNM) due to the assumption of random mixing. 
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Figure 4-1: Epidemic projection comparison of the ECNA (Model 1.0), ABNM and 

compartmental model. 5th, 50th, and 95th percentiles of 100 simulations. 

 

4.1.1.2 Incidence  

 We compared the number of newly infected people, at each simulation time step in 

ABNM, ECNA and compartmental models of 100 simulations and their 5th and 95th 

percentiles. Figure 4-2 shows (example two scenarios of the six scenarios) that the trend of 

newly infected is similar in ABNM and ECNA, while the compartmental model reaches 

its peak earlier. 
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Figure 4-2: Incidence projection comparison of the ECNA (Model 1.0) and ABNM. 

5th and 95th percentiles of 100 simulations. 

4.1.1.3 Network Properties 

 Figure 4-3 shows the comparison of network properties, average degrees of infected 

friends contact, at each simulation time step in the ECNA model of 100 simulations and 

their 5th, 50th and 95th percentiles. The ECNA generates only infected people and their 

contacts while simulating the disease transmission while maintaining the network 

properties; the results show that the average degrees of infected people converge to 

population averages in ABNM and the trend shows that people with more contacts have 

higher chances of getting infected as expected.  
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Figure 4-3: Model 1.0 the convergence of average degrees of friend's contact 

 

4.1.1.4 Programming debugging 

 For MATLAB code error diagnosis purposes, we compared the simulated new 

infections, 𝑠𝑡 , and the expected new infections, 𝑒𝑡 , at time 𝑡 using the data that was 

generated using the MATLAB code. Figure 4-4 shows the comparison between simulated 

new infections and the expected new infections using the following equations on the 

network size of 1500 with p=0.1 and overlapping lines suggest that MATLAB code works 

as expected. 

𝑠𝑡 = 𝑖𝑛𝑓𝑡 − 𝑖𝑛𝑓𝑡−1, where 𝑖𝑛𝑓𝑡 is the number of infected persons at time 𝑡.  
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 𝑒𝑡 = (1 − (1 − 𝛽)𝑐𝑖)𝐷𝑡, where 𝛽 is the transmission rate, 𝑐𝑖 is the average 

number of contacts of uninfected person 𝑖 at time 𝑡, and 𝐷𝑡 is the number of 

uninfected persons in the network (people who are discovered/generated) 

 

 
Figure 4-4: Program debugging in MATLAB code  

4.1.2 Computation Time  

 The second hypothesis of Model 1.0 was that this model, which used an adjacency 

matrix representation of a graph, is computationally more expensive than ABNM due to 

large matrix operations when generating and selecting eligible contacts to add to the 

network. We compared the computation time of a single simulation on different networks 

size of 400, 600, 900 and 1500 with transmission probability 𝑝 = 0.01 using both Model 

1.0 (MATLAB) and ABNM (NetLogo) on a standard desktop. Figure 4-5 shows that 

computation time of ECNA on MATLAB increases faster than ABNM on NetLogo when 

the population size increases as expected.  
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Figure 4-5: Computation time comparison of ECNA (Model 1.0) and ABNM 

4.1.3 Graph Visualizations 

 An animation technique, one of the validation technique, provides model results 

graphically during the simulation run. Figure 4-6 shows how the network is being evolved 

using the ECNA and it was plotted using MATLAB. The thicker blue line represents family 

contacts while thinner blue line represents friends contacts and red node indicates infected 

while blue node indicates susceptible person. 

 These graphs show that Model 1.0 successfully generates a network with two 

contact types, family and friends, while simultaneously simulating the transmission of 

infection over the population using the ECNA.   
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Figure 4-6: An evolution of a network with two-contact type using the Evolving 

Contact Network Algorithm. a) An infected contact network at the initial stage of the 

outbreak b) An infected contact network where the epidemic spread over. 

a) N=50, p=0.01, t=1  

b)   N=50, p=0.01, t=15  
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4.2 Model 1.1 

 The purpose of Model 1.1 is to test the computational efficiency of the ECNA in 

using the same algorithm as Model 1.0 but developed in Object-Oriented Programming in 

Java to implement an Adjacency List graph object. Therefore, we compared the 

computation time of a single simulation on different networks sizes using both Model 1.1 

(Java) and ABNM (NetLogo) on the same standard desktop. Also, we included the 

epidemic projections comparison results on a network size of 6000 with a transmission rate 

of 0.01, which was based on HIV transmission risk data (Patel et al. 2014),  as a validation 

of the Java implementation.  

 We have included computation time result based on 20 different sizes of contact 

network. The hypothetical contact networks that are used in this model all have the same 

network properties except the network size of a range of 300 to 150,000. All models start 

with one infected node, and the network properties of average degree and clustering 

coefficients are 2 and 1 for family contact type and 2.5 and 0.2 for friends contact type, 

and the transmission probability is 0.01 in Model 1.1. 

4.2.1 Epidemic projection and network property 

4.2.1.1 Prevalence   

 

 Figure 4-7 shows a result from 100 simulations of a hypothetical population of 6000 

persons using the ECNA, ABNM and compartmental model and their 5th, 50th and 95th 

percentiles of the total number of infections at time step 200. It shows those epidemic 

projections by the ECNA result similar to ABNM. Like Model 1.0, a compartmental model 
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overestimates the infection cases, and the average is at about the 95th percentile of agent-

based models (ECNA, ABNM) as expected. 

 
Figure 4-7: Epidemic projection comparison of the ECNA (Model 1.1), ABNM and 

compartmental model. 5th, 50th, and 95th percentiles of 100 simulations. 

4.2.1.2 Network Properties 

 

 Figure 4-8 shows the comparison of network properties of 100 simulations on a 

network of 6000 population and their 5th, 50th and 95th percentiles. It shows that the average 

degrees of infected people converge to population averages in ABNM and the trend is 

similar as we saw in Model 1.0 (Figure 4-3) that people with more contacts have higher 

chances of getting infected as expected.  

 
Figure 4-8: Model 1.1 the convergence of average degrees of friend's contact 



 

 

53 

4.2.2 Computation Time  

 We compared the computation time of a single simulation until 90 percent of the 

population is infected on different networks sizes from 300 to 150,000 with transmission 

probability 𝑝 = 0.01 using both ECNA Model 1.1 and ABNM (NetLogo). Figure 4-9 

shows that computation time of ECNA in Java (Model 1.1) is considerably faster than 

ECNA in MATLAB (Model 1.0) and significantly faster than ABNM in NetLogo. To 

ensure computational efficiency of Model 1.1, we ran both the ECNA model and ABNM 

on larger networks and compared the computation time. Figure 4-10 shows that the 

computation time in ABNM in NetLogo increases much faster as population size increases 

compare to the ECNA model. 

 The largest population size example that we used here is 150,000, and the ABNM 

computation time is 573 minutes (~9 hours) whereas the ECNA model performs the 

simulation in 32 mins, which is almost 20 times faster.  

 

Figure 4-9: Computation time comparison of ECNA (Model 1.0), ECNA (Model 1.1) 

and ABNM (NetLogo) 
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Figure 4-10: Computation time comparison of ECNA (Model 1.1) and ABNM 

(NetLogo) 

4.3 Model 2.0  

 To test the flexibility of the ECNA in Model 2.0, we generated a network with two 

communities, where each followed power-law, in a population of 400 persons and 

simulated the spread of hypothetical diseases using the ECNA and ABNM. Although the 

core of the ECNA does not change, i.e., it generates only infected contacts, and their 

contacts as the infection spread over the network, in Model 2.0, there were two significant 

difference in Model 2.0 than the previous two models. 

 1. The network consists of two community groups, where each follows power-law, 

with mixing. Therefore, new parameters for mixing were added to the algorithm.  

 2. It integrates the neural network model, which was developed in the previous 

study (Eden et al. 2018), for predicting the distribution of degrees of neighbors of newly 

infected person so that it can generate a network that follows power-law.   
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 Considering those difference in Model 2.0 from the previous two models, the 

algorithm and data collection method was modified accordingly, which led to longer 

computation time when calculating more data. Therefore we simulated the epidemic on the 

small size of networks to test Model 2.0 in this thesis. However, this computational 

inefficiency problem can be improved with more time.  

4.3.1 Epidemic projection  

  Figure 4-11 shows a result from 10 simulations of a hypothetical population of 400 

persons that consists of two community groups, in which 10 percent mixing between 

groups, using the ECNA and ABNM, their 5th, 50th and 95th percentiles of the total 

number of infections at each time step t. The stopping criteria of this simulation were 0.2 

that the simulation stops when 20 percent of the population becomes infected. It shows 

those epidemic projections by the ECNA result similar to ABNM.  

 
Figure 4-11: Epidemic projection comparison of the ECNA (Model 2.0) and ABNM. 

5th, 50th, and 95th percentiles of 10 simulations.  
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4.3.2 Graph Visualization  

  Figure 4-12 shows how the network is being evolved using the ECNA, and it was 

plotted using draw functions in NetworkX. Light blue and pink colors represent uninfected 

persons and undiscovered person if no link connects to it, and deep blue and red colors 

represent infected persons.  

 These graphs show that Model 2.0 successfully generates a network with two 

community types, where each follows power-law, while simultaneously simulating the 

transmission of infection over the population using the ECNA and integrating the neural 

network model.    
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Figure 4-12: An evolution of network with two-communities using the Evolving 

Contact Network Algorithm. a) An infected contact network at the initial stage of the 

outbreak b) An infected contact network where the epidemic spread over. Light blue 

and pink colors represent uninfected persons, deep blue and red colors represent 

infected persons in the network. 

 

 

a) N=40, p=0.01, t=1 

b) N=40, p=0.01, t=15  
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CHAPTER 5 

5 CONCLUSIONS 

5.1 Summary 

 This thesis presents different implementations of a new simulation modeling 

technique, the ECNA, which combines the compartmental model and agent-based 

modeling techniques, for predicting infectious disease spread. The ECNA is primarily 

designed for simulating the diseases that transmit through close-contact and have a low 

prevalence. The network generating mechanism of the ECNA is generating only infected 

persons and their contacts while simultaneously simulating the spread of the disease.  

 The objective of this thesis is developing a computationally efficient 

implementation of ECNA while validating its accuracy of predicting the epidemic and the 

flexibility of capturing the characteristics of the network as well as an outbreak in different 

contact network structure settings.  

 The ECNA is expected to be computational efficient over traditional agent-based 

models where it requires a full network before simulating the disease transmissions. The 

computational efficiency of the algorithm provides multiple advantages when simulating 

epidemic projections whether it is for intervention response during the initial stage of an 

outbreak or studying the spread of a disease that has a low-prevalence.  

 This thesis serves as a preliminary proof of concept testing of the new ECNA 

algorithm, highlighting the promise and significance for more research in this type of 

modeling. 
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5.2 Discussion  

 This thesis features three different models, Model 1.0, Model 1.1, and Model 2.0, 

that utilizes the ECNA for simulating disease progression.   

 Model 1.0 and Model 1.1 uses a configuration model mechanism, where degrees of 

each node is known before the simulation starts, to generate the infected contact network. 

However, Model 1.1 is an upgrade of Model 1.0 with an improvement of computational 

efficiency which obtained by using the Adjacency List representation of a graph instead of 

the Adjacency Matrix representation of a graph. The network structures of the Model 1.0 

and Model 1.1 consist of two types of contacts with high clustering coefficients.  

 Model 2.0 uses a preferential attachment mechanism, which results in a scale-free 

network, to generate the infected contact network. This model shows an application of the 

ECNA in generating a network with communities.   

 Model 1.0 was developed in MATLAB and used an Adjacency Matrix 

representation of graph to test the accuracy of the ECNA, whereas Model 1.1 was 

developed in Java and used an Adjacency List representation of graph to test the 

computational efficiency of the ECNA. These two models were compared to the same 

ABNM that was developed and simulated in NetLogo. When the computation time of the 

ECNA in Model 1.0 and ABNM was compared, even in a small size of networks, the 

computation time of the Model 1.0 was significantly higher than ABNM due to the 

Adjacency Matrix representation of the networks and the operations on them. However, 

Model 1.0 provided proper numerical validation on the accuracy of the model so that we 

were confident to implement the algorithm using a different data structure to improve the 

computational efficiency in the next model.  
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 Model 1.1 was implemented using HashSet class in Java, which has constant time 

performance when getting and setting data, to represent a graph with Adjacency List. This 

implementation improved the computation time of the ECNA. The numerical results of the 

computation time of simulations on the networks of different sizes from 300 to 150,000 

nodes showed that ECNA performs significantly faster. However, we compared the 

computation time of both the ECNA and ABNM until 90 percent of the population was 

infected. In practice, as ECNA simulates only infected people and their immediate contacts, 

the population size for ECNA is dramatically smaller than the full population simulated by 

ABNM, amplifying a greater computational advantage of ECNA over ABNM for 

simulating low prevalence infectious diseases. 

 The last model, Model 2.0, presents an implementation of the ECNA for a network 

that consists of two-community groups, where each community is a scale-free network, 

using the neural network model that was trained to predict the cumulative distribution of 

degrees of neighbors of an infected person. Model 2.0 was developed in Python and used 

the NetworkX package, which provides a hashable Graph object, to test the flexibility of 

the ECNA by applying to different a network with a different structure. This model was 

compared to an ABNM that was developed and simulated in Python. Python was primarily 

chosen for Model 2.0 because of the NetworkX package which offers different data 

structures for representing many types of graphs or network, graph operators and graph 

generators whereas every function is required to be implemented when using MATLAB 

and Java in the previous models.  

 The motivation for Model 2.0 was simulating infectious diseases where community 

structure or behavior is essential such as different sexual behaviors, homosexual and 
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heterosexual, in HIV transmission. Based on literature reviews, the real networks including 

sexual contact networks are scale-free networks, and the preferential attachment is used to 

generate scale-free networks. However, the preferential attachment cannot be used to 

ECNA because the degrees of the infected node and their neighbors should be known as 

soon as the node becomes infected. Therefore, the neural network model was trained on 

data from epidemic projections on multiple scale-free networks in the previous study and 

this model was integrated into this Model 2.0 as an empirical validation. This expansion of 

the ECNA in Model 2.0 successfully projected the epidemic in a small network.  

 The contribution of the computationally efficient implementation of the algorithm 

ensures that the ECNA is suitable for simulating the disease that has a low-prevalence in a 

large population because it eliminates the process of generating the full contact network 

before simulating the infection. Knowing the ECNA performs faster than traditional 

ABNM for simulating the disease with low-prevalence allows researchers to study the 

dynamic of such diseases, where numerous iterations of simulations are required, in a 

significantly shorter simulation time.  

5.3 Limitations 

 This study has several limitations. For simplicity purposes, we tested the validity 

of ECNA models using simple disease progression on simple hypothetical networks. The 

assumptions in simple disease progression include no death and no recovery, a fixed 

population size during the simulation period and hypothetical disease transmission rate of 

0.1 and 0.5 in Model 1.0 and 0.01 in Model 1.1 and Model 2.0. However, the latter 

transmission rate was based on HIV transmission risk data (Patel et al. 2014). The 

assumptions in simple hypothetical networks include a fixed hypothetical household size 
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of three in Model 1.0 and Model 1.1, hypothetical networks with a mixture of 10% between 

communities in Model 2.0. However, the results of this study suggest that the epidemic 

projection using the ECNA is similar to ABNM projections using these hypothetical 

networks and recommend broader expansion of these models using real networks and 

disease data. 

5.4 Conclusion 

 

 The need to perform a simulation with shorter computation time required a new 

algorithm when simulating the spread of diseases that transmit through direct contact and 

have a low-prevalence.  

 The purpose of this thesis was to implement a novel algorithm, the Evolving 

Contact Network Algorithm (ECNA), for predicting the spread of infectious diseases that 

transmit through close-contact and do empirical analysis on accuracy, computational 

efficiency, and flexibility of the algorithm.  

  This thesis presents three different implementations of the ECNA using three 

different programming languages to test the original hypotheses. Model 1.0 implemented 

the ECNA in MATLAB and confirmed the accuracy of the algorithm using small size 

hypothetical networks where an individual can have two types of contacts. Model 1.1 

implemented the same algorithm in Java, and this implementation highlighted the 

computational efficiency of efficient data structures of the Graph object. The underlying 

algorithm used in Model 1.0 and Model 1.1 was the same and aimed to generate a random 

graph with two types of contacts, family and friends, each with predefined degree 

distributions as in configuration models. Finally, Model 2.0  implemented the ECNA using 
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NetworkX package in Python and tested the flexibility of the algorithm for expansion to 

two-communities with degree distribution in each network following a power-law.  

 The key contributions of this thesis are a computationally efficient implementation 

of the ECNA using Object-Oriented Programming as well as the empirical validation of its 

accuracy and flexibility of being applied to networks with different structural properties.  

The contribution of the computationally efficient implementation that uses Adjacency List 

data structure in Java will have a significant impact in the future studies of the spread of 

diseases, where contact structures are important and have a low prevalence. This 

implementation of the algorithm ensures that the ECNA is suitable for simulating epidemic 

projections whether it is for intervention response during at the initial stage of an outbreak 

or studying the spread of a disease that has a low-prevalence. Having the implementation 

of the algorithm developed in Java will be convenient to integrate it with other Java-based 

softwares such as MASON and Repast that provides agent-based simulation environments.  

 Moreover, the ECNA models, in this thesis, for generating both random and non-

random graphs using prescribed degrees (compartmental model) and determining degrees 

of contacts while generating the infected persons and their contacts (neural network model) 

provides promising results for future research in this area for studying further extensions.  

Future work should consider testing of this method for epidemic projections on real 

networks. 
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6 SUPPLEMENT MATERIALS 

 The source codes are available upon request in the following GitHub repositories. 

Sample codes for Graph object representations that are used in the models are included in 

Appendix. 

 

Model 1.0: https://github.com/Buyannemekh/Matlab-MECN  

Model 1.1: https://github.com/Buyannemekh/mecn  

Model 2.0: https://github.com/Buyannemekh/MECN_py  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/Buyannemekh/Matlab-MECN
https://github.com/Buyannemekh/mecn
https://github.com/Buyannemekh/MECN_py
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APPENDIX 

THE SOFTWARE CODE FOR DIFFERENT IMPLEMENTATIONS OF GRAPH 

OBJECT 

 

Model 1.0 code snippet shows Adjacency Matrix representation of graph. The class 

Contact, which contains information of contact matrix and more, represents a graph in the 

MATLAB code. The populate function, which connects to contacts, was presented as 

example in the code.  

 

 

A.1: Model 1.0 in MATLAB 
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Model 1.1 code snippet shows Adjacency List representation of graph. The class 

AdjacencyListContact, which extends abstract class called Contact, represents the graph 

object in the Java code. The connect function, which connects to contacts, is presented as 

example in the code. 

 

A.2: Model 1.1 in Java 
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Model 2.0 code snippet shows Graph object in Python NetworkX package. The in-built 

add_edge function, which connects to contacts, is presented as example in the code. 

 

A.3: Model 2.0 in Python 
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