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ABSTRACT 

DEVELOPMENT AND CROSS-VALIDATION OF A CADENCE-BASED 

METABOLIC EQUATION FOR WALKING 

MAY 2019 

CHRISTOPHER C. MOORE, B.S, UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S, UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Catrine Tudor-Locke 

The ACSM Metabolic Equation is a widely recognized equation for predicting 

metabolic intensity from walking speed. However, an equation that uses an observable 

metric (i.e., cadence [steps/min]), accounts for individual characteristics, and is validated 

across walking conditions may enable more accessible and accurate predictions of 

walking intensity. PURPOSE: To develop metabolic equations that predict metabolic 

intensity (oxygen consumption; mL/kg/min) from cadence using a large treadmill 

walking dataset (Study One) and cross-validate these equations during overground 

unconstrained and cadence-constrained walking conditions (Study Two). METHODS: In 

Study One, 193 adults (21-81 years) completed treadmill walking bouts while oxygen 

consumption was measured with indirect calorimetry (converted to metabolic equivalents 

[METs]; 1 MET=3.5 mL/kg/min=1 kcal/kg/min). Directly-observed step counts divided 

by bout duration produced cadence. The least squares regression of the cadence-intensity 

relationship produced a simple equation and a full equation was developed using best 

subsets regression (additional possible predictors of leg length, body mass, BMI, percent 

body fat, sex, and age). Predictive accuracy and bias of each cadence-based metabolic 

equation and the ACSM Metabolic Equation was evaluated through k-fold cross-
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validation. In Study Two, these three metabolic equations were applied to data collected 

from 20 young adults during overground walking at self-selected paces (unconstrained) 

and with foot-strikes entrained to music tempos (cadence-constrained). RESULTS: In 

Study One, the simple equation predicted walking intensity within 0.5 METs, on average, 

and approximately no bias (<0.01 METs). The full equation had only marginally (<0.1 

MET) greater accuracy, despite including leg length, age, BMI, and sex as predictors. 

During both overground walking conditions (Study Two), the cadence-based metabolic 

equations exhibited similar predictive capacities to treadmill walking (≤0.1 MET 

differences in accuracy). The ACSM Metabolic Equation systematically underpredicted 

walking intensity by ~1 MET during treadmill walking and demonstrated 0.1-0.9 MET 

lower accuracy than the simple equation in each walking condition. CONCLUSIONS: 

The simple equation performed comparably to the full equation (which accounted for 

individual characteristics) and appreciably better than the ACSM Metabolic Equation. 

The simple cadence-based metabolic equation is an improved, user-friendly tool for 

predicting and prescribing walking intensity with reasonable accuracy (within ~0.5 

METs; 45 kcals/hr for the average American). 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Considerable research has demonstrated the beneficial effects of physical activity 

(PA) on health. These studies have provided strong evidence that PA can treat and 

prevent cardiometabolic diseases, reduce cancer risk, improve body weight management, 

attenuate age’s effects on physical function, and enhance cognition and mental health.1 

Metabolic intensity of PA, defined as the rate at which energy is expended (e.g., kcal/hr, 

mLO2/kg/min) when performing a given activity,1 is an essential effect modifier of the 

relationship between PA and longevity.2 A minimum level of PA metabolic intensity is 

also necessary to improve cardiorespiratory fitness3 and several other physiological 

health outcomes.4-6 That being said, there is an inverse relationship between metabolic 

intensity of PA and affect response (i.e., enjoyment).7 Because affect response is a central 

driver of behavior and motivation,8,9 inappropriately high intensity PA programs have 

resulted in decreased exercise program adherence.10 Thus, metabolic intensity is an 

important component of PA to quantify and consider in exercise programming. 

PA guidelines (e.g., in terms of frequency, intensity, duration, etc.) for achieving 

health benefits have been published by the U.S. Department of Health and Human 

Services11 and American College of Sports Medicine (ACSM).12 These guidelines 

operationally define metabolic intensity in several ways, including in terms of absolute 

amounts of oxygen consumed, relative to maximal heart rate, and according to perceived 

exertion.13 Still, oxygen consumption is not a feasible metric for measuring and 

prescribing metabolic intensity of PA in public health. Similarly, heart rate 
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recommendations are often based on percentages of a predicted maximum and may 

ultimately be too complicated and burdensome for individuals in the general population 

to calculate and implement. Because of the subjectivity of perceived exertion, this 

measure of an activity’s metabolic intensity also has reduced accuracy and can be 

confounded by factors like motivation, individual temperament, type of exercise, 

biological sex, and the rating scale used.14 Thus, there is a need for methods of measuring 

and prescribing PA metabolic intensities that are simpler and more practical as well as 

objective and evidence-based. 

Walking is an accessible, easily performed,15 and pleasurable mode of PA.9 It is 

also reported as the most common form of PA in adults globally.16 Numerous studies 

(discussed in more detail below) have attempted to develop equations for quantifying 

walking intensity using speed as the primary predictor. Arguably, the most widely 

recognized of these metabolic equations for walking is that published by the ACSM in 

1980.17 The ACSM Metabolic Equation attempts to use walking speed (S; m/min) and 

grade (G; decimal form) to predict oxygen consumption (VO2; mL/kg/min) with the 

following linear equation:18 

VO2 = [0.1•S] + [1.8•S•G] + 3.5 Eq. 1 

The coefficient for the speed component of this equation [0.1•S] was derived from a 1965 

study of repeated treadmill bouts at various speeds performed by three trained men, 

including two 23-year old participants and the author, 42 years of age.19 The 

homogeneity and small size of this sample calls into question the generalizability and 

external validity of this equation. Additionally, a re-analysis of this study’s data 

determined that the observed speed-VO2 relationship was actually quadratic instead of 
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linear.20 Subsequent validation studies21-23 of the ACSM metabolic equation have 

reported that it systematically and significantly under estimates walking intensity. One of 

these studies21 evaluated the accuracy of the ACSM Metabolic Equation in predicting the 

average walking intensities of 25 participant groups aggregated from 10 studies (409 total 

participants), and reported it under estimated intensity with a standard error of estimation 

(SSE) of 4.5 mL/kg/min. Similarly, another study22 including 459 adults from 20-54 

years of age (divided into four-year age groups) reported that the ACSM Metabolic 

Equation under estimated the intensity of level treadmill walking at 81 m/min (3.0 mph) 

with SEE values of 4.2-5.8 mL/kg/min. The magnitudes of these predictive errors exceed 

1 MET (3.5 mL/kg/min). Such underestimations could lead to walking intensity 

prescriptions that are higher than intended, which may reduce adherence to PA 

programs.7-10 

The application of speed-based metabolic equations for walking, like the ACSM 

metabolic equation (Eq. 1), is further limited by the use of treadmill walking speeds in 

their development. Treadmills facilitate tight control and monitoring of walking speed but 

over-reliance on treadmill protocols impedes the use of such speed-based equations in 

many real-world settings where walking serves as a practical and enjoyable mode of PA.9 

Distance and time are both required to calculate speed. However, walking distance is 

challenging to ascertain if a previously established course has not been laid out. As such, 

monitoring overground walking beyond measured tracks and corridors is challenging. 

Global positioning system (GPS) technology can enable the quantification of walking 

speed, but remains expensive, inaccurate indoors, and not yet incorporated into many PA 

measurement devices.24 Thus, there is also a need to consider a more accessible metric 
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when developing a metabolic equation that may translate between treadmills and the 

overground walking conditions that are more common in daily living. 

Step counting with wearable devices has been embraced in recent decades by 

researchers and the public as a simple and practical method for quantifying walking 

volume expressed as steps/day. Lay public users easily recall steps/day recommendations 

when implemented in public health campaigns25 and PA counseling.26 Still, step counting 

has been criticized for its inability to directly capture the metabolic intensity of walking, 

a central aspect of public health recommendations. To address this limitation, several 

studies have investigated the relationship between walking cadence (steps/minute) and 

intensity in adults.27-43 Tudor-Locke & Rowe42 analyzed the data from five published 

studies and reported a strong correlation (r = 0.93) between cadence and absolutely-

defined intensity (metabolic equivalents; METs; where 1 MET = standardized resting 

metabolic rate of 3.5 mL O2/kg/min44). This strong natural relationship supports using 

cadence as a simple and accessible proxy indicator for walking intensity. Prescribing and 

monitoring cadence may be a practical method for implementing intensity 

recommendations in PA programs. Additionally, the measurement of time-stamped 

patterns of step accumulation with modern accelerometry enables the quantification of 

cadence as a transparent and comprehensive method of measuring PA volume (steps/day) 

and intensity (cadence patterns). 

The studies examining cadence and walking intensity in adults have typically 

used a “threshold approach.” That is, their primary aims were to identify the minimum 

cadence needed to reach an absolutely-defined moderate or vigorous intensity (3 and 6 

METs, respectively). This approach is advantageous for a simple public health translation 
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of PA guidelines and for deriving time spent at these intensities, but it only evaluates 

metabolic intensity of PA as a binary outcome (i.e., reaching or not reaching the 

threshold). A model with walking intensity as a continuous outcome would more 

accurately represent the continuous nature of metabolic intensity, allow for more precise 

and individualized estimations and prescriptions of walking intensity, and may better 

communicate that “more is better.” An additional gap in the existing cadence-intensity 

literature is the comparison and synthesis of results without consideration for the various 

walking conditions that different studies have implemented. For example, studies 

quantifying the relationship between cadence and intensity have examined both 

overground28,30,31,36,43 and treadmill walking.27,29,33,35,36,40 Those conducted during 

overground walking have also implemented constraints on either participants’ walking 

speeds28,30,31,43 or cadences.36 Further, cadence-based walking prescriptions may be 

implemented by constraining cadence to the tempo of a metronome or music. As walking 

at the same speed with different constraints has shown to result in differences in the 

kinematics45,46 and metabolic cost47,48 of walking, more studies are needed to confirm that 

the cadence-intensity relationship does not differ with various walking constraints, or on 

different walking surfaces (i.e., treadmill or overground). Finally, although several 

studies39,41,42 have concluded that a cadence of 100 steps/min is a reasonable heuristic 

(i.e., evidence-based but practical and rounded) value indicative of absolutely-defined 

moderate intensity walking for public health applications, these same studies have also 

acknowledged considerable inter-individual variability in the cadence-intensity 

relationship. This variability has been attributed to additional factors such as height/leg 

length,27,31,36 body mass,39 body mass index (BMI),31,33 biological sex,27,33,40,43 and 
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age.35,39 More research is needed to determine if such anthropometric and demographic 

variables influence the cadence-intensity relationship, and to incorporate their effects into 

cadence-based recommendations to better individualize and enhance predictions of 

walking intensity.  

1.2. Purpose of Thesis 

The purpose of this thesis was to develop metabolic equations that predict 

metabolic intensity (oxygen consumption; mL/kg/min) from cadence using a large 

treadmill walking dataset (Study One) and cross-validate these equations during 

overground unconstrained and cadence-constrained walking conditions (Study Two). 

More specific objectives included to: 1) develop a metabolic equation that uses cadence 

as the only predictor (a simple equation), 2) develop a metabolic equation that uses 

cadence and possible additional predictors including height, leg length, body mass, BMI, 

percent body fat, sex and age (a full equation), and 3) cross-validate these cadence-based 

metabolic equations under different walking conditions (i.e., overground unconstrained 

walking and overground cadence-constrained walking) in an independent sample. 

1.3. Aims & Hypotheses 

Aim 1: Determine if a linear or curvilinear model more accurately describes the 

relationship between cadence and metabolic intensity of treadmill walking, using data 

previously collected from a large sample of men and women across the adult lifespan. 

H1: A curvilinear (quadratic) model will fit the cadence-intensity relationship 

significantly better than a linear model. 
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Aim 2: To develop simple and full cadence-based metabolic equations by calibrating 

regression models that predict metabolic intensity of treadmill walking, using the data 

from this same large sample of men and women across the adult lifespan. 

H2.1: Cadence alone will be a significant predictor of metabolic intensity in the simple 

equation, with root mean square error (RMSE) and mean absolute error (MAE) 

values ≤1 MET when cross-validated within the original sample. 

H2.2: The full equation will minimally include the additional predictor of leg length, 

which will result in increased predictive accuracy. 

Aim 3: To cross-validate these cadence-based metabolic equations under different 

walking conditions (using previously collected unconstrained and cadence-constrained 

overground walking data) and compare their predictive accuracies to that of the ACSM 

metabolic equation. 

H3.1: The cadence-based metabolic equations will remain valid for overground 

unconstrained walking with RMSE and MAE values ≤1 MET, but underpredict the 

metabolic intensity of overground cadence-constrained walking.  

H3.2: The cadence-based metabolic equations will have greater predictive accuracies 

than the ACSM metabolic equation. 

1.4. Summary 

The dose-response relationships between metabolic intensity of PA and various 

health outcomes is well-documented, and thus minimum intensity recommendations are 

extolled in PA guidelines. However, prescribing activities with inappropriately high 

metabolic intensities may compromise PA program adherence. Current approaches to 

expressing intensity for PA prescription and estimation purposes are limited. The 
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popularity and practicality of walking as a mode for achieving PA guidelines has 

supported the development of numerous equations for predicting intensity from walking 

speed. The most popular of these, the ACSM metabolic equation for walking (Eq. 1), has 

demonstrated limited generalizability and systematic bias. Such speed-based metabolic 

equations are also limited in their real-world application by the difficulties of measuring 

and prescribing walking speed.  

Alternatively, step counting has been long embraced as a simple and intuitive 

method for quantifying volume of walking, and more recently, cadence has emerged as a 

reasonable metric for estimating walking intensity. With its simplicity, accessibility, and 

strong correlation with metabolic intensity, cadence is a sensible predictor to be included 

in a walking metabolic equation. A cadence-based metabolic equation would model 

walking intensity as a continuous outcome, in contrast to the “threshold approach” of 

previous studies. This approach may allow for more precise predictions of walking 

intensity and better represent the continuous dose-response relationship between PA and 

health (e.g., walking at a higher cadence even when not reaching the next threshold for 

moderate or vigorous intensity). Additionally, studies examining the cadence-intensity 

relationship have implemented overground speed-constrained, overground cadence-

constrained, and treadmill walking, but have not examined the influence of these various 

walking conditions on the relationship. These studies have also reported substantial inter-

individual variability in walking intensity that is not explained by cadence alone. The 

knowledge gaps collectively call for more research to determine whether or not 

considering anthropometric and demographic predictor variables can individualize and 

enhance the precision of predictions.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Overview 

Considerable research in the fields of exercise physiology and biomechanics has 

investigated the metabolic intensity of walking. The purposes of this literature review are 

to: 1) determine what is known about the effects of anthropometric and demographic 

variables and walking conditions on the metabolic intensity of walking, 2) review the 

methods and theoretical basis used to develop several existing speed-based metabolic 

equations for walking, and 3) summarize all previous studies examining the cadence-

intensity relationship. 

2.2. Metabolic Intensity of Walking 

2.2.1. Walking Mechanics and Metabolic Intensity Determinants  

Walking consists of a repetitive and predictable series of movements 

characterized as a gait cycle. This gait cycle consists of a single-limb support phase, 

where one foot is in contact with the ground while the other leg is in a swing phase, 

followed by a heel-strike of the swing phase foot to begin the double-limb support phase 

(i.e., both feet are momentarily in contact with the ground). The foot initially in stance 

phase then exerts a force against the ground (toe-off) to begin its own swing phase, and 

another phase of single-limb support.49 The mechanics of this gait cycle aids in the 

conservation of energy; the stance leg behaves like an inverted pendulum moving about 

the stance foot and the swing leg behaves like a normal pendulum moving about the 

hip.50 Despite its inverted pendulum-like motion, single-limb support is associated with 

the greatest metabolic cost (i.e., amount of energy expended [kcals, Joules, mLO2]) 
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because of the work done against the ground to raise the body’s center of mass vertically 

(external work). At cadences lower than those self-selected during normal walking, step-

to-step transitions during the double-limb support phase are associated with the second 

greatest metabolic cost, where the body’s center of mass is redirected from a downward 

to an upward trajectory. At cadences higher than those that are self-selected, the second 

greatest metabolic cost is associated with leg and arm swing (internal work).51 

Walking speed is the product of cadence and step length, defined as the anterior-

posterior distance between the left and right foot from one single-limb support phase to 

the next.49 Increasing cadence is the primary strategy used to increase to a preferred 

walking speed49 and up to this walking pace, the relationship between speed and cadence 

is highly linear (R2 = 0.98).52 There is also strong evidence that the ratio of cadence to 

step length, known as the walk ratio (step length / cadence), remains constant during 

treadmill and unconstrained overground walking, at least at speeds of ~60-120 m/min 

(2.2-4.5 mph).53,54 This walk ratio remains at ~7 mm/step/min for men and ~6 

mm/step/min for women,49 and results in a predictable change in step length with changes 

in cadence at these speeds. 

During normal human walking, self-selected walking parameters (e.g., cadence, 

step length, and speed) are strongly influenced by an innate attempt to minimize 

metabolic intensity, termed metabolic optimization.20,45,49,55-57 For example, different 

cadence and step length combinations may be selected to produce a single walking speed. 

Testing these combinations has illuminated a U-shaped relationship between metabolic 

intensity of walking and cadence (or step length) at a constant speed (e.g., on a treadmill). 

For any given speed, humans tend to self-select the cadence and step length combination 
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located at the lowest point of this curve and thus optimize the metabolic intensity of 

walking at a given speed.20,45,58 These self-selected cadences and step lengths result in the 

invariant walk ratio previously discussed, which is believed to be an innate motor 

strategy for minimizing the metabolic intensity of walking.49,57,59 Several factors 

determine the metabolic intensity of a cadence-step length combination and are thus 

simultaneously and inherently considered for metabolic optimization. Notably, the 

metabolically optimal cadence-step length combination must minimize both the external 

work for accelerating the body’s center of mass vertically (lowest with shorter step 

lengths and higher cadences) and the internal work for accelerating the body’s limbs 

(lowest with longer step lengths and lower cadences).55 Additionally, metabolic 

optimization of walking must maximize mechanical efficiency and power (highest at 

intermediate cadences; reportedly ~108 steps/min),60 and account for the cadence at 

which the metabolic cost of leg swing is minimized because it is primarily driven by 

gravity, termed the natural frequency of the leg, which is inversely related to leg length.49  

2.2.2. Predictor Variables for the Speed-Intensity Relationship of Walking 

Many anthropometric and demographic variables, such as body mass, BMI, 

percent body fat, height, leg length, age, and biological sex, have been investigated when 

attempting to understand and model the metabolic intensity of walking, as primarily 

represented by the rate of oxygen consumption measured using indirect calorimetry. 

Including such predictors along with basic gait parameters like walking speed and 

cadence has resulted in models that have explained more than 90% of the variation in 

walking intensity.61-65 A large majority of this literature modeling the intensity of 

walking, beginning as early as 1915,66 has used walking speed as the primary predictor – 
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thus the sections that follow summarize the effects of these variables as reported in 

speed-based studies examining the metabolic intensity of walking. The influence of these 

predictor variables in cadence-based models of walking intensity will be subsequently 

discussed. 

2.2.2.1. Body Mass, BMI, and Percent Body Fat 

Body mass is a measure of the total amount of matter an individual’s body is 

comprised of (kg), including muscle, fat, bone, water, and other tissues and substances. 

Body mass index (BMI) is a metric of body mass in proportion to height (kg/m2) and is 

used as a population-level indicator of overfatness (i.e., to classify individuals as healthy 

weight, overweight, or obese). The utility of BMI for individual-level applications is 

limited because it does not actually measure the proportion of fat mass versus fat-free 

mass, and thus an individual with more muscle mass per unit height is considered more 

overfat. In contrast, direct measures of percent body fat discriminate the proportion of fat 

mass comprising an individual’s overall body mass for a more accurate determination of 

overfatness. These three variables are related. A higher percent body fat signifies excess 

fat mass, increasing body mass and resulting in a higher BMI. 

When metabolic intensity is expressed in units that are not normalized to body 

mass (e.g., L/min, kcal/hr, etc.), body mass alone can explain 40% of the variation in 

metabolic intensity at various speeds,67 and 68-78% of the inter-individual variation in 

metabolic intensity at a single speed.63 This correlation can be largely explained by the 

greater energy requirement for accelerating a larger body mass and for supplying energy 

to more metabolically-active tissue.68 Body mass is thus an important determinant of 
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metabolic cost per step65 and an important variable to consider when predicting such non-

normalized measures metabolic intensity of walking. 

Metabolic intensity expressed in units standardized to body mass (mass-specific 

metabolic intensity; e.g. mL/kg/min, kcal/kg/hr, etc.) is more commonly used in public 

health and exercise testing and programming,11,12,69 and is the form of metabolic intensity 

generally referred to herein unless otherwise indicated. When units of metabolic intensity 

are mass-specific, the effect of body mass on metabolic intensity of walking substantially 

weakens but may still persist. To investigate the influence of body mass on the 

relationship between mass-specific metabolic intensity of walking and speed, Foster et 

al.61 recruited 11 obese subjects (mean body masspre = 104.5 kg) to walk at the same three 

speeds before and after a dietary intervention. Following a 21% reduction in body mass 

(mean body masspost = 83.6 kg), a decrease in metabolic intensity of walking was 

observed even when expressed in mass-specific units (exact magnitude not reported, p 

<0.001). Like body mass, BMI and percent body fat were also significantly reduced and 

associated with the reduction in mass-specific metabolic intensity of walking (mean 

BMIpre = 38.9 kg/m2 versus mean BMIpost = 31.1 kg/m2; mean body fatpre = 45.6% versus 

mean body fatpost = 33.6%). The authors hypothesized that the reductions in body mass, 

BMI, and percent body fat resulted in: 1) less work required to overcome friction 

between the arms and torso and the thighs, 2) less extraneously wide movements when 

swinging the arms and legs because of a smaller torso and thigh, 3) changes in the 

distribution of mass, and 4) improved efficiency in pulmonary function. Similarly, 

Browning et al.70 reported a 10% greater mass-specific metabolic intensity of treadmill 

walking in 19 class II obese (BMI 35.0-39.9 kg/m2) men and women, as compared to 20 
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normal-weight participants. Obese women experienced the highest metabolic intensity of 

walking and had the highest thigh mass-to-body mass ratio, leading the authors to 

hypothesize that the greater internal work required to swing relatively heavier legs at a 

wider angle contributed to this difference. Previous studies have further demonstrated 

that loads carried more distally (e.g., on the lower limbs) result in a higher metabolic 

intensity of walking than the same load carried closer to the body’s center of mass.71 The 

use of mass-specific units of metabolic intensity does not account for such differences in 

walking efficiency and body mass distribution that have been observed with more 

extreme levels of obesity, but considering body mass, BMI, or percent body fat may. 

In individuals of more normal weight status, the evidence has indicated there is no 

influence of body mass, BMI, or percent body fat on the mass-specific metabolic 

intensity of walking. For example, BMI did not contribute significantly to models of 

mass-specific metabolic intensity of walking in two studies by Agiovlasitis and 

colleagues: one72 included 25 individuals with multiple sclerosis (MS) who had a mean ± 

SD BMI of 26.8 ± 6.9 kg/m2 while the other73 had a sample comprised of 61 healthy 

participants and 54 individuals with Down Syndrome (DS), with BMIs of 24.6 ± 5.2 

kg/m2 and 29.8 ± 5.6 kg/m2, respectively. 

Further, the relationship between mass-specific metabolic intensity of walking 

and body mass can be confounded by the tendency for taller individuals to also have a 

greater body mass (i.e., collinearity of body mass and height; r = ~0.9).74 Thus, an effect 

of height (further discussed below) could be the direct cause of a relationship between 

body mass and mass-specific metabolic intensity of walking. For example, Weyand et 

al.75 measured the metabolic intensity of walking in a sample of participants varying in 
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height by a factor of 1.5 and body mass by a factor of 6 (BMIs not provided). After 

dividing their sample into four subgroups with significantly different body masses, they 

demonstrated an inverse relationship between body mass and mass-specific metabolic 

intensity at each treadmill speed. As the body mass-stratified subgroups also had 

corresponding differences in height, the between-group differences in metabolic intensity 

were attenuated when the potential effects of height were mathematically controlled. In 

other words, all participants had a similar metabolic intensity of transporting 1 kg of their 

body mass a distance equal to their height.75 Thus, individuals with a similar percent 

body fat may demonstrate a correlation between body mass and metabolic intensity of 

walking because of differences in height. Such a correlation would therefore not be a 

result of the obesity-related decreases in walking efficiency previously discussed (e.g. 

friction at the arms and thighs, wide arm and leg swings, etc.) and differences in body 

mass distribution.61,70 

The use of BMI and percent body fat may more accurately represent these 

obesity-related influences on the metabolic intensity of walking; BMI inherently 

standardizes body mass by height and percent body fat is a direct measure of overfatness. 

Additionally, fat mass contributes very little to the metabolic rate at rest and substantially 

less than fat-free muscle and organs mass to the metabolic rate during PA.76 Percent body 

fat therefore indicates the proportion of metabolically-inactive tissue in the body. When 

modeling the mass-specific metabolic intensity of walking in 42 men (19-66 years of age, 

BMI and percent body fat values not reported), Pearce et al.77 determined a significant 

interaction between percent body fat and treadmill speed (magnitude and direction not 

reported), although this may have been confounded by a correlation between percent 
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body fat and age. Another study conducted by Hall et al.78 with 12 men and 12 women 

(18-30 years of age) demonstrated a moderately strong correlation between percent body 

fat and the mass-specific metabolic intensity of treadmill and overground walking at 84.6 

m/min and running at 169.2 m/min (r = -0.71 to -0.83, all p <0.01). This suggests that 

measuring metabolic intensity of walking with mass-specific units does not account for 

inter-individual differences in the proportion of metabolically-active muscles mass. Still, 

when metabolic intensity was standardized to fat-free mass, the model reportedly failed 

to account for the additional energy requirement for transporting excessive fat mass in 

individuals with a higher percent body fat.78 Therefore, fat-free mass and fat mass may 

have unique effects on the metabolic intensity of walking and both need to be considered 

using measures like body mass, BMI and percent body fat. 

2.2.2.2. Height and Leg Length 

Height and leg length are strongly collinear (r = 0.90), making considerations of 

their effects in models of walking intensity nearly identical31 both statistically and 

mechanistically. Both of these variables have consistently been shown to influence step 

length and thus the cadence an individual will select at a given speed (reported r-values 

ranging from -0.66 to -0.77).65,75,79,80 This lower cadence selected by taller individuals at 

a given speed was cited by Kramer & Sarton-Miller79 and Steudel-Numbers & Tilkens63 

to explain the inverse relationships they observed between height and walking intensity, 

and significant improvements they observed in their speed-based models of walking 

intensity with the inclusion of leg length (all p <0.01). Workman & Armstrong65 similarly 

reported a negative correlation between height and cadence at each speed of treadmill 

walking in eight men (r = -0.66), and included height in their speed-based metabolic 
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equation to give taller individuals a lower metabolic intensity of walking (in LO2/min) at 

a given speed. Specifically, their equation was comprised of a cadence and a metabolic 

cost per step component ([LO2/min] = [steps/min] • [LO2/step]) and thus included a 

negative effect of height (and positive effect of speed) to predict cadence. A later study 

additionally concluded that the metabolic equation by Workman & Armstrong65 was 

more accurate and robust than others because of its inclusion of height.81 In this model of 

walking intensity (metabolic intensity = cadence • metabolic cost per step),65 an inverse 

height-intensity relationship was mediated by step length and cadence. As proposed, this 

assumes that metabolic cost per step stays relatively constant. This assumption was 

supported by Weyand et al.,23 who divided participants with a broad range of heights 

(1.07-2.11 m) into four groups by stature and reported that they had similar metabolic 

costs per step, despite height-related differences in cadence (and thus step length) and 

intensity of walking at a given speed. These studies provide strong evidence for a lower 

metabolic intensity of walking at a given speed in taller individuals, mainly attributable to 

increases in step length and decreases in cadence with increasing height.63,65,80,82 

Additionally, variations in leg length may result in differences in the metabolic 

cost of leg swing. For example, the mechanical energy required for leg swing is greater 

for a longer and heavier leg.79 Leg length is also inversely related to the natural frequency 

of the leg (i.e., the cadence at which the metabolic cost of leg swing is minimized). 

Therefore, the same enacted cadence in individuals of different leg lengths will result in 

different deviations from their natural frequency, resulting in different metabolic costs of 

leg swing.49 Another potential mechanism for an influence of height was suggested by 

Cotes & Meade80 after they also observed an inverse relationship between metabolic 
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intensity of walking at a given speed and height. They reported that shorter individuals 

would have a theoretically larger angle of excursion between their legs at a given step 

length and thus perform more external (i.e., vertical lift) work and have a higher 

metabolic intensity. These additional mechanisms may also result in an influence of 

height on the metabolic intensity of walking, although their net magnitude and direction 

of effect has not been quantified. 

2.2.2.3. Age 

Compared to young and middle-aged adults, older adults tend to have shorter step 

lengths, reduced control of their hips in the medial-lateral plane resulting in greater step 

widths and step width variability (indicators of instability), increased time between 

contralateral heel strikes (step time), decreases in the spatiotemporal coordination of their 

limbs on opposite sides during walking (gait symmetry), and greater activity in stabilizing 

muscles that oppose the direction of movement (antagonist muscle contraction) during 

walking.54,83,84 Such changes in gait parameters with age may be compensatory motor 

strategies for preserving balance and are related to declines in coordination.83 

Several publications have reported significant effects of age on metabolic 

intensity of walking. In a study comparing eight young (age <30 years) and ten older (age 

≥65 years) adults, Dean, Alexander, and Kuo85 found that the older group had a 26% 

greater metabolic intensity of walking at 66 m/min (2.5 mph), along with a 41% wider 

step width and significantly greater variability in the step width of each step. In a similar 

study of treadmill walking at 42-108 m/min (1.6-4.0 mph), Ortega & Farley86 reported 

that older adults (age = 76 ± 4 years) had a 20% higher metabolic intensity than young 

adults (age = 25 ± 4 years) at each speed, despite performing 10% less external work on 
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average (for accelerating the center of mass upwards) during single-limb support. 

Because this external work component of walking is normally associated with the 

greatest metabolic intensity51 (see section 2.2.1.), mechanical work did not explain the 

observed differences in walking intensity with age. The authors instead attributed their 

findings to balance- and coordination-related factors such as the cost of stabilizing the 

body, antagonist muscle contraction, gait symmetry, and the efficiency of the muscular 

system. Still, apparent differences in step width were not significant (step widths: older 

adult = 15 ± 3 cm, younger adults = 12 ± 3 cm; p = 0.14). In addition, the significantly 

higher cadence selected by older adults at each speed (p = 0.034) indicates they 

performed more internal work, which could further elevate their metabolic intensity of 

walking. The influence of age was also investigated by Pearce et al.77 when developing 

speed-based metabolic equations for walking. They found that age group (young [19-29 

years of age] versus older [55-66 years of age] adults) interacted with speed when 

predicting VO2 of treadmill walking. The speed-based metabolic equations they presented 

therefore predicted greater differences in walking intensity between age groups with 

increasing walking speed, with a 0.13-1.71 mL/kg/min greater metabolic intensity in 

older adults at each speed between 41-120 m/min (1.5-4.5 mph). Thus, there is 

substantial evidence that older adults (≥65 years of age) have an increased walking 

intensity at a given speed, as associated with motor strategies for preserving balance and 

stability (e.g., increases in antagonist muscle contraction, cadence, and step width) and 

declines in coordination (e.g., reduced gait symmetry and muscular efficiency).54,83-86 

These age-related changes may also have a larger effect on metabolic intensity of 

walking at faster walking speeds.77  
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Other studies including only young and middle-aged adults (18-64 years of age) 

have not reported an influence of age on the metabolic intensity of walking. For example, 

age was not a significant predictor of metabolic intensity of walking (expressed as L/min 

but controlling for body mass and speed) in a study conducted by Kramer & Sarton-

Miller79 with 72 participants ranging between 7-59 years of age, and in a later study also 

by Kramer67 with 11 adults 22-52 years of age (p = 0.66). Similarly, metabolic intensity 

of walking at a given speed was not influenced by age in a secondary analysis including 

32 studies and 391 total participants 13-65 years of age,87 and in a sample of 48 

participants 5-32 years of age (results controlled for height).75 The latter of these 

articles75 also included a secondary analysis of previously published data where adults 

≥65 years of age were explicitly excluded from the sample. The authors justified this 

exclusion criteria by citing the study by Ortega & Farley86 discussed previously, and 

stating that adult of this older age “may not walk in a dynamically similar manner.” 

Perhaps the strongest evidence for an influence of age on walking intensity in older but 

not young and middle-aged adults is provided in the study by Grimby & Soderholm88 

which included 14 younger (22-30 years of age), 22 middle-aged (34-46 years of age), 

and 10 older (56-63 years of age) adults. During treadmill walking at 75-98 m/min (2.8-

3.7 mph), there were significant differences in metabolic intensity of walking at a given 

speed between older versus younger and older versus middle-aged adults, but not 

between younger versus middle-aged adults. More specifically, at 75 m/min, the average 

VO2 values of the younger, middle-aged, and older groups were 13.1, 12.7, and 14.6 

mL/kg/min, respectively (p <0.05). The evidence from these studies67,75,79,87,88 suggests 

that middle-aged adults have not begun to suffer from the age-related declines in balance, 
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stability, and coordination that reportedly increase the metabolic intensity of walking in 

older adults. Age is therefore likely not an important predictor to include in predictions of 

walking intensity in these younger populations. 

2.2.2.4. Biological Sex 

There are well-known differences in the average physiological and 

anthropometric characteristics of men versus women, which could contribute to 

differences in their speed-metabolic intensity relationships of walking. Compared to men, 

women have a wider pelvis89 and walk with a greater range of motion and speed of 

rotation at their hip and knee joints.90,91 A wider pelvis can also increase the activity and 

metabolic demand of the hip abductors during walking, in an effort to prevent the trunk 

from rotating away from the stance leg.92 Additionally, women generally have a more 

distal distribution71 and higher percent body fat,70,93 as well as a shorter stature, and a 

lower body mass.94 These factors can theoretically result in sex-based differences in 

metabolic intensity of walking that may be more directly related to anthropometric 

differences between men and women. 

Four studies78,87,95,96 reported a greater metabolic intensity of walking at a given 

speed in men compared with women. In the review and secondary analysis by 

McDonald,87 five studies enrolling a total of 70 men and 44 women were included for 

examining sex-based differences in the relationship between walking speed and 

metabolic intensity. The author reported that the metabolic intensity of walking at 30-105 

m/min (1.1-3.9 mph) was 12% (1.12 kcal/kg/min) greater in men when controlling for 

speed (p <0.001). A potential mechanism for these differences was not provided. Molen 

& Rozendal96 also determined that the metabolic intensity of treadmill walking was 
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greater in men versus women (magnitude not reported) at each speed tested (20-110 

m/min [0.7-4.1 mph]). They attributed these differences in walking intensity to men 

having a higher standing metabolic rate (i.e., the metabolic rate at rest plus that for the 

balance and posture of standing), as opposed to a greater metabolic intensity of the 

walking movement itself. The authors did not provide any rationale for the elevated 

standing metabolic rate they observed in men, but because fat mass is known to 

contribute marginally to the metabolic rate at rest76 (see section 2.2.2.1.), this difference 

may be a result of women having a higher average percent body fat.93 This mechanism is 

further supported by Hall et al.,78 who reported that the 17% higher metabolic intensity 

they observed in men versus women during treadmill and overground walking at 85 

m/min (3.2 mph) was attenuated after controlling for fat-free mass (percent fat: men = 

11.6 ± 1.9%, women = 23.7 ± 2.2%). In another study by Booyens et al.,95 men 

demonstrated a 9% and a 13% higher average metabolic intensity when walking at 91 and 

107 m/min (3.4 and 4.0 mph) respectively, compared to women walking at the same 

speeds (p <0.05). At these speeds of 91 and 107 m/min respectively, the men exhibited 

cadences that were 16% and 20% lower (p <0.001) and step length-to-leg length ratios 

that were 6% and 9% higher (p-value not reported) than the women. As discussed 

previously (see section 2.2.1.), a longer step length results in a greater vertical 

displacement of the body’s center of mass and therefore greater external work.66 The 

lower cadence and higher ratio of step length-to-leg length in the men at each speed 

indicates they took longer steps (even proportionate to their leg length) than the women, 

and the authors thus attributed the observed sex-based differences in metabolic intensity 

of walking to the greater external work performed. 
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In contrast, three other studies70,97,98 provide evidence that the metabolic intensity 

of walking at a given speed is greater in women compared to men. Blessey et al.98 

reported that men and women had the same metabolic intensity when walking at 

cadences of 60 and 120 steps/min, as well as at their self-selected pace where both sexes 

selected an average cadence of 116 steps/min. In each of these conditions where cadences 

were equal, women had lower step lengths and thus significantly slower walking speeds 

than men (speed in self-selected condition: men = 89 ± 11 m/min, women = 74 ± 11 

m/min; p <0.01) but walking intensities were similar (VO2 in self-selected condition: men 

= 13.4 ± 2.3 mL/kg/min, women = 12.5 ± 2.5 mL/kg/min). The women exhibited a 

metabolic intensity equal to that of men when walking at significantly slower speeds, 

indicating a greater metabolic intensity than men at equivalent speeds. In another study 

comparing the metabolic intensity of treadmill walking in 10 obese men and 9 similarly 

obese women (BMI: men = 33.5 ± 2.1, women 33.5 ± 20.3 kg/m2), Browning et al.70 also 

reported that women had a greater metabolic intensity of walking (values not reported, p 

<0.01). The observed difference correlated with the women’s higher thigh-to-body mass 

ratio and percent fat at the shank, indicating a more distal distribution of mass. Similar to 

the research cited earlier to demonstrate that more distally-carried loads (e.g., loads on 

the lower limb) result in a higher metabolic intensity of walking than the same loads 

carried more proximally,71 the authors attributed their findings to the proportionally 

heavier and more distally weighted limbs that these women were required to swing. The 

effect of this mechanism would theoretically increase with increasing speed because 

internal work of walking (i.e., for limb swing) becomes larger at faster walking speeds 

(see section 2.2.1.).51 Interestingly, Browning et al.70 also found that the differences in 



24 

 

walking intensity between men and women were greater at faster walking speeds (i.e., 

significant sex-speed interaction; p = 0.02), therefore providing further support for this 

mechanism. Finally, Howley & Glover97 reported that women had a significantly higher 

mass-specific energy expenditure than men during one mile of treadmill walking at 

similar speeds (0.82 kcal/kg/mile for women, 0.79 kcal/kg/mile for men, p <0.01). This 

difference was attenuated when metabolic intensity was expressed per unit of body 

surface area, and the authors therefore attributed this difference to a greater body surface 

area in men. 

In contrast, men and women may not have significant differences in metabolic 

intensity of walking when anthropometric variables are controlled. Specifically, in the 

two studies conducted by Weyand & colleagues23,75 to develop a speed-based metabolic 

equation for walking (discussed below), no significant sex differences in the metabolic 

intensity of walking were observed when controlling for height (sex-specific heights not 

reported). Their speed-based metabolic equation for walking therefore included height 

but not sex. As men tend to be taller, and height and leg length correlate with step length 

(r-values ranging from 0.55-0.74 depending on the speed),27,36 controlling for height may 

explain the sex-related variability in metabolic intensity of walking that is mediated by 

step length at a given speed. In summary, these studies demonstrate the conflicting 

evidence regarding sex-related differences in the metabolic intensity of walking, and 

whether such differences exist after controlling for height. 

2.2.3. Walking Conditions 

 Walking condition is defined herein as the constraints that are placed on walking 

parameters (e.g., speed, cadence, and step length) and the surface on which walking 
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occurs (i.e., treadmill or overground). Studies examining the metabolic intensity of 

walking generally employ three different walking conditions: 1) overground 

unconstrained walking, where speed, cadence, and step length are self-selected, 2) 

overground cadence-constrained walking, where cadence is controlled by matching heel-

strikes to a rhythmic auditory cue (RAC) such as a metronome or music but step length 

and speed are self-selected, and 3) treadmill walking, where speed is controlled but 

cadence and step length are self-selected. With each of these walking conditions, 

individuals may select different gait parameters, limb kinetics and kinematics, and 

coordination and motor control strategies. The walking condition employed may 

therefore be an important variable to consider when attempting to accurately model the 

metabolic intensity of walking. 

 In overground unconstrained walking, the cadence, step length, and speed that are 

self-selected are strongly influenced by metabolic optimization as discussed in detail 

previously (see section 2.2.1).20,45,49,55-57 This predilection for metabolic optimization is 

evidenced by individuals selecting the cadence with the lowest metabolic intensity for 

walking at a given speed. 20,45,58 It is also characterized by an invariant walk ratio 

resulting from proportional increases in cadence and step length with increasing 

speed.49,53,54 Additionally, a person’s anthropometric and demographic characteristics can 

influence their gait features during overground unconstrained walking. For example, 

taller individuals commonly walk with greater step lengths,65,75,79,80 and older adults tend 

to walk more slowly with greater step widths, shorter step lengths, and potentially greater 

cadences.83 These walking parameters may also be influenced by instruction to walk at a 

slow, normal, or fast pace, particularly in controlled research settings.99 
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In overground walking where cadence is constrained through entrainment to an 

RAC, the resultant speed can still vary according to the selected step length. This allows 

for various possible combinations of cadence, step length, and speed during cadence-

entrained walking. The relationships between these three walking parameters apparently 

differ from those discussed during overground unconstrained walking. Specifically, 

Laurent & Pailhous46 demonstrated that when eight men walked overground with 

cadences entrained to four different RAC tempos set above and below their self-selected 

cadence, the observed increases in speed (percent change = 37%) were driven primarily 

by the increases in cadence (percent change = 27%); step length increased proportionally 

less or did not change at all (percent change = 8%). The walk ratio therefore did not 

remain constant as it does during overground unconstrained and treadmill walking,49,53,54 

but instead decreased with increases in walking speed. Laurent & Pailhous46 suggested 

that a natural tendency for humans to remain at their normal walking speed may have 

prevented expected increases in step length. A study by Bertram & Ruina45 later 

confirmed this finding. Further, they compared the gait parameters of six men and six 

women during treadmill (speed-constrained) walking, overground cadence-constrained 

walking, and overground step length-constrained walking, a walking condition less 

common and practical to implement where the foot placements of each step are set by a 

series of ground markers. Each of these three walking conditions were reported to 

demonstrate unique relationships between cadence, step length, and walking speed. In 

other words, the same participant walking with the same cadence selected a different 

speed in each walking condition. A new hypothesis was proposed by Bertram & Ruina45 

to explain these findings: a common optimization function (e.g., minimizing metabolic 
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intensity per unit distance) drove the selection of gait parameters in each walking 

condition, but the optimal cadence, step length, and speed combinations with each 

constraint differed because of their unique coordination requirements and potential 

effects on gait and posture. This hypothesis, termed constrained optimization, was further 

tested by Bertram47 by collecting metabolic data during 49 different cadence-speed 

combinations and predicting the metabolically optimal cadence at a given speed under 

each constraint, using the constrained optimization hypothesis as a predictive model. 

When participants then performed several bouts under each of the three constraints 

individually, the relationships observed between cadence, step length, and speed differed 

between walking conditions but matched those predicted to be metabolically optimal 

(largely within 5%). This provides strong empirical evidence that the combinations of 

cadence, stride length, and speed that are metabolically optimal and therefore naturally 

selected differs depending on the walking condition, because of the unique effects of each 

constraint on the motor control systems for walking and gait mechanics.47 Such 

differences in gait parameters may influence the relationship between cadence and 

metabolic intensity, making it an important factor to consider when modeling the 

cadence-intensity relationship. 

Even without differences in gait parameters, the specific motor control-related 

demands of unconstrained versus constrained walking can influence metabolic intensity 

of walking. This was demonstrated in a study by Wezenberg et al.48 where participants 

walked on a treadmill under three conditions: 1) with only speed constrained, 2) at that 

same speed with a constant cadence and step length equal to the average of their first trial 

(i.e., no variability), and 3) at that same speed with a real-time copy of their first trial’s 
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cadence and step length (i.e. equal variability). Despite their average gait parameters 

being the same in all three conditions, the second and third conditions elicited metabolic 

intensities that were 8% and 13%, higher than the first condition, respectively. Greater 

variations in center of pressure trajectories measured during these latter two conditions 

lead the authors to attribute their findings to increases in muscle activation for 

maintaining balance after foot placement. They also suggested that the more constrained 

walking conditions would require greater preparatory and antagonistic muscle activation 

for ensuring proper foot placement. Thus, the influences of constraint-specific motor 

control strategies on metabolic intensity of walking may be important considerations 

when modeling the cadence-intensity relationship, even without differences in gait 

parameters. 

Many studies have compared the gait patterns observed in treadmill versus 

overground walking. Some studies have reported changes in the gait kinematics of young 

adults during treadmill walking that indicate walking instability, including increases in 

cadence and step width and decreases in step length and double-limb support times.77,100-

106 Differences in an individual’s ground reaction forces107,108 and muscle activity107,109 

have also been demonstrated during treadmill and overground walking. However, 

minimal to no differences in these same gait variables during the two walking conditions 

have also been reported within these studies and others.77,101,107,109,110 This conflicting 

evidence may reflect studies observing different magnitudes of natural (within-condition) 

variability in walking, and whether this intra-condition variability was too high to be 

exceeded by the differences between conditions.104,110-112 Additionally, some initial 

changes in gait variables during treadmill walking may subside after a six- to ten-minute 
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treadmill habituation period.103,113 Differences between treadmill and overground gait 

variables are also reportedly greater in older compared to younger adults,77 even with 

such habituation periods.114 

In his seminal theoretical analysis theory, Van Ingen115 concluded there should be 

no mechanical differences between treadmill and overground walking. Still, he noted that 

differences may exist if: 1) ambulatory speed is high enough for differences in air 

resistance to be significant (i.e. in sprinting), 2) the surface of the treadmill belt 

influences vertical forces by adhering to the shoe, 3) the treadmill motor cannot 

overcome the forces of heel-strike and the treadmill belt momentarily slows with each 

foot contact, or 4) the differences in visual feedback from the surrounding have 

significant effects on balance and posture. The latter two mechanisms proposed by Van 

Ingen115 for differences in the gait of treadmill walking have been supported empirically: 

first, studies110,116 have reported 3-6% momentary decreases in belt speed during each 

heel-strike of treadmill walking. Second, without actual forward movement (as occurs in 

overground walking), the visual feedback of treadmill walking does not include a focus of 

expansion, where the visual environment in the direction of walking expands towards the 

person from a central point. Walking in the direction of the focus of expansion is the 

predominant strategy for navigation during overground walking; treadmill walking 

instead primarily uses egocentric direction control as a visual control strategy, where the 

individual walks straight while keeping a target in the center of the visual field.117 An 

additional influence on treadmill gait may stem from the lateral constraint on foot 

placement that is inherent for walking on a treadmill belt.110 These variations in treadmill 

belt speed and differences in motor control strategies for treadmill walking may explain 
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its possible kinematic, kinetic, and muscle activity discrepancies from overground 

walking. 

There is mixed evidence as to whether these differences must be accounted for 

when modeling the metabolic intensity of walking. Three studies77,118,119 conducted with 

young, healthy adults have demonstrated 8-9% lower oxygen consumptions during 

treadmill walking, as compared to overground walking at the same speeds (50-100 m/min 

[2.0-3.7 mph]). Although all three of these studies77,118,119 stated that the rationale behind 

the lower intensity they observed during treadmill walking was unclear, they 

hypothesized it may be due to shorter step lengths resulting in decreased external work 

for vertical lift and differences in the walking terrain (treadmill versus asphalt). A study 

of similar design conducted with relatively older adults (age = 60.6 ± 7.4 years)120 

conversely reported a 6% greater metabolic intensity of treadmill walking at their self-

selected normal walking speed (average of 69 m/min [2.6 mph]). Because older adults 

already may have an elevated metabolic intensity of walking because of age-related 

declines in balance and coordination (see section 2.2.2.),54,83-86 walking on a treadmill 

may exaggerate these effects and thus give them a higher walking intensity compared 

with overground walking. However, this study120 found no differences in the kinematic 

gait variables that typically indicate gait instability (shorter step lengths and double-limb 

support times and wider step widths), and therefore did not provide a clear explanation 

for the observed differences in metabolic intensity with each walking condition. It should 

be noted that none of these studies included a treadmill habituation period. In contrast, at 

least three other studies78,81,121 have reported that the metabolic intensity of treadmill 

versus overground walking at a given speed did not differ, all with protocols that also did 
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not include a treadmill habituation period. Additionally, in the secondary analysis 

conducted by Ludlow & Weyand21 of ten publications representing 419 participants, the 

model goodness-of-fits of three speed-based metabolic equations (calibrated during 

treadmill walking) were reportedly similar when applied to mean VO2 values measured 

during overground walking when compared to treadmill walking. In summary, there is 

conflicting evidence as to whether gait and metabolic intensity differ when walking on a 

treadmill versus overground. More research is needed to determine whether such walking 

conditions should be considered when modeling the metabolic intensity of walking, and 

how inherent differences may influence the cadence-intensity relationship. 

2.2.4. Summary of Metabolic Intensity of Walking 

The movements that underlie walking are characterized by the gait cycle, 

comprised of alternating single- and double-limb support phases.49 The greatest 

metabolic intensity during walking is associated with the external work for raising the 

body’s center of mass vertically during single-limb support, followed by the redirection 

of the body’s center of mass during step-to-step transition support (when cadence is 

lower than normally self-selected) or the internal work for leg and arm swing (when 

cadence is higher than normally self-selected).51 Humans tend to naturally select the 

cadence and step length combination at a given speed that minimizes these metabolic 

intensities.20,45,58 One resultant feature of this metabolic optimization is a walk ratio that 

remains constant at normal-to-fast speeds of treadmill and unconstrained overground 

walking.49,53,54 

A large body of literature published over the past century has examined how 

anthropometric and demographic predictor variables may influence the intensity of 
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walking at a given speed. When mass-specific units of walking intensity are used (e.g. 

mL/kg/min), factors like BMI and percent body fat may still have some influence due to 

obesity-related differences in gait mechanics and proportions of metabolically active 

tissue. Such effects may only be observable in individuals with high levels of obesity.61,70 

There is more consistent evidence for an inverse relationship between height/leg length 

and intensity of walking at a given speed, reportedly due to taller individuals exhibiting 

longer step lengths, lower cadences, and thus lower rates of internal work at a given 

speed.65,75,79,80 An influence of age on metabolic intensity of walking is only evident in 

adults ≥65 years of age;77,86 these older adults are thought to employ more metabolically-

taxing motor strategies in an attempt to preserve balance and stability, and to exhibit 

declines in coordination that result in a less efficient gait.54,83-86 Finally, although studies 

have reported mixed results regarding the influence of biological sex on metabolic 

intensity of walking at a given speed,70,78,87,95-98 controlling for sex-related difference in 

other variables (e.g., height, BMI, and percent body fat) can likely attenuate such 

effects.23,36,75 Although there is evidence supporting the consideration of these predictors 

when modeling walking intensity, the support for an effect of each varies in strength, and 

may be dependent on the characteristics of the sample being examined.  

The metabolic intensity of walking may also be influenced by walking condition, 

as defined herein as the constraints that are placed on walking parameters (e.g., speed, 

cadence, and step length) and the surface on which walking occurs (i.e., treadmill or 

overground). In overground unconstrained walking, self-selected gait parameters are 

strongly influenced by metabolic optimization.20,45,49,55-57 When overground walking 

cadence is constrained through use of RACs (e.g., a metronome or music), increases in 
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cadence produce proportionally smaller increases in step length and thus decreases in 

walk ratio and speeds at a given cadence.45-47,122 There may also be an additional 

metabolic intensity of constraining cadence, associated with increased muscle activation 

to ensure proper timing of foot-strikes and maintain balance.48 Walking on a treadmill has 

similarly been shown to result in differences in gait parameters, phase timing,77,100-106 

ground reaction forces,107,108 and muscle activity.107,109 Such changes may subside after a 

treadmill habituation period,103,113 but are reportedly more pronounced in older adults 

even following habituation.77,114 The mechanics of treadmill and overground walking 

should theoretically be the same.115 Empirically-observed differences may still exist 

during treadmill walking due to momentary decreases in belt speed with each heel 

strike,110,116 adaptations in motor navigation strategies for walking without the visual 

feedback provided by forward movement,117 and the lateral constraints on foot placement 

needed for walking on a treadmill belt.110 Investigations into the metabolic implications 

of such differences have had mixed results.77,78,81,118-121 This evidence indicates that 

walking condition can influence metabolic intensity of walking, but more research is 

needed to confirm and further define the differences in walking intensity that may exist 

during overground unconstrained, overground cadence-constrained, and treadmill 

walking. 

2.3. Speed-Based Metabolic Equations for Walking 

 There are many published studies, beginning as early as 1955123, that have 

developed equations to predict the metabolic intensity of walking using speed as the 

primary predictor. Reviewing the methods used to derive these equations and conceptual 

models they are theoretically based on will help to inform the development of cadence-
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based models of walking intensity. In addition, the previously published speed-based 

metabolic equations provide a standard with which to compare the performance of future 

cadence-based metabolic equations. Six speed-based metabolic equations were selected 

for closer examination because of their popularity for use in real-world applications 

and/or reoccurrence in the academic literature examining the metabolic cost of walking. 

They are presented chronologically by year of publication in the sections that follow. 

2.3.1. Cotes and Meade Equation 

 In order to advance the basic understanding of the metabolic intensity of walking, 

Cotes & Meade80 published a 1960 study in which they described multiple relationships 

between gait variables. This is a seminal article that appears to be commonly cited in the 

field of gait mechanics in relation to the metabolic intensity of walking. It also included a 

metabolic equation that uses speed (S; m/min) to predict the energy expenditure of 

walking (EE; kcal/kg/min) as follows:  

EE = 0.0386 • 4.25-5 • S 2 

The data for calibrating this equation was collected from ten male participants (18-32 

years of age, weight 52.9-74.6 kg, height 1.61-1.81 m) during treadmill walking at speeds 

ranging from 27-107 m/min (1.0-4.0 mph). The small size of this sample and its relative 

homogeneity in terms of age, height, and sex limit the generalizability of the reported 

speed-based metabolic equation. 

It appears that Cotes & Meade80 developed this equation by simply calculating the 

least squares regression of the relationship between the square of walking speed and 

energy expenditure. Although this metabolic equation is simple and therefore easy to use, 

no rationale was provided for the use of a quadratic speed-intensity relationship or why 
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no other terms were included, such as an intercept or leg length (which was included in 

other reported analyses from their study). Thus, the development and basic form of their 

equation was not well justified. 

2.3.2. Workman-Armstrong Metabolic Equation 

 The Workman-Armstrong Equation published in 1963 is also commonly 

referenced in the metabolic cost of walking literature and related publications, mainly 

because of the insights and implications provided by its conceptual framework. In its 

simplified form, the Workman-Armstrong Equation predicts oxygen consumption (VO2; 

L/min) from functions of height (H; in) and body mass [M; lb], and two different 

functions of speed [S; mph], in the following equation:65,124  

VO2 = [F(H)•F1(S)] • [F(M)•F2(S)] 

Where: F(H) = [H/(0.0136H - 0.375)] F1(S) = [1.92S 0.176 - 1.445] 

 F(M) = [M • 10-5]    F2(S) = [0.85S2 - 3.94S + 9.66] 

This equation was developed with metabolic data collected from a sample of 8 young 

men during treadmill walking,65 and was revisited by Workman and Armstrong in a later 

publication.124 Exact ages of participants and the treadmill speeds used were not reported. 

In addition, this equation may have reduced external validity because the sample used for 

its calibration was small and of the same sex and age range. 

The conceptual framework of the Workman-Armstrong Equation consists of 

modeling walking intensity as the product of cadence and metabolic cost per step (i.e., 

L/min = [steps/min] • [L/step]). The cadence component (F[H]•F1[S]) is predicted with an 

inverse relationship to height (within the physiological range) and positive relationship to 

walking speed, resulting in taller individuals having a lower cadence and therefore 
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metabolic intensity at a given speed, as discussed earlier (see section 2.2.2.2). The 

metabolic cost per step component of the Workman-Armstrong Equation (F[M]•F2[S]) is 

related directly to both body mass and walking speed.65 The authors of this equation state 

it to be a basic model of walking in relation to metabolic intensity because of its ability to 

predict several walking characteristics (i.e., cadence, metabolic cost per step, and walking 

intensity) and describe how these variables are inter-related through height, speed, and 

body mass.124 Additionally, the relationship between speed and metabolic intensity of 

walking is uncertain because different combinations of cadence and step length can result 

in different metabolic intensities of walking at a single speed.56 The authors therefore 

suggested that the inclusion of height in the Workman-Armstrong Equation makes it 

more versatile, as it enables the prediction of step length and thus cadence at a given 

speed.65 A later study similarly reported the Workman-Armstrong Equation to be more 

accurate and robust than other speed-based metabolic equations because of its inclusion 

of height.81 The inclusion of height in an intuitive conceptual model of walking intensity 

is a strength of the Workman-Armstrong Equation for mechanical and theoretical 

applications. Conversely, the length and complexity of this equation limits its utility in 

health and fitness settings and therefore impedes its wide-spread adoption. 

2.3.3. Van Der Walt and Wyndham Metabolic Equation 

 In 1973, van der Walt & Wyndham64 also published an equation for predicting 

walking intensity that commonly appears in the metabolic cost of walking literature and 

related publications. This metabolic equation relates speed (S; km/h) and body mass (M; 

kg) to oxygen consumption (VO2; L/min) as follows:64 

VO2 = [0.00599•M] + [0.000366•M•S 2] 
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Van der Walt & Wyndham64 derived this equation by applying a least squares regression 

to data they collected from six untrained young men (20-26 years of age) during level 

treadmill walking at 54-134 m/min (2.0-5.0 mph). The speed-based metabolic equation 

they reported, like those discussed above, has questionable generalizability because of the 

small and homogeneous sample used in its calibration. In addition, although their 

treadmill protocol only included walking speeds as slow as 54 m/min (2.0 mph), Van der 

Walt & Wyndham64 extrapolated their predictions of oxygen consumption to 27 m/min 

(1.0 mph). Studies from which other metabolic equations21,80,125 have been developed 

have included speeds ≤27 m/min for enabling accurate intensity predictions at such slow 

walking speeds. 

In the development of this metabolic equation, the potential components 

considered as predictors of oxygen consumption included the main effect of body mass 

(M), the body mass-speed interaction (M•S), and this same interaction with a quadratic 

speed term (M•S2). Van der Walt & Wyndham,64 reportedly considered these three 

potential components because of their inherent likeliness to modify VO2 during walking 

and their use for metabolic intensity predictions by previous authors.64,80,88,126,127 After 

determining that a strong linear relationship existed between VO2 (L/min) and body mass 

at each speed (r-values range = 0.85-0.95), a linear main effect of body mass was 

included (0.00599•M). This component essentially creates an individualized intercept for 

the speed-VO2 relationship based on each participant’s body mass, like a predicted 

standing metabolic rate, equal to 5.99 mL/kg/min. Next, the speed-VO2 interaction with a 

quadratic term (0.000366•M•V 2) was included in the equation because it was found to 

explain 4.2% more of the variation in VO2 than that with a linear speed term. The authors 
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also reported that the inclusion of leg length in the final speed-based metabolic equation 

only explained an additional 0.53% of the remaining variance in VO2 (p >0.05). 

However, this study’s small sample size and narrow range in participant heights (1.68-

1.87 m) may have limited its capacity to identify an effect of leg length. In addition, the 

authors’ justification for considering certain components (M, M•S, and M•S2) while 

excluding others (e.g., S or S2) remains unclear. There also did not appear to be a 

systematic methodology behind the determination of which potential components to 

ultimately include in the final metabolic equation and the order in which they were 

included. Despite lacking this clear rationale, the relative simplicity of the equation by 

Van der Walt & Wyndham64 does make it reasonably feasible for use by the general 

public. 

2.3.4. The Pandolf Equation 

 The Pandolf Equation is frequently used in military applications because of its 

inclusion of terrain and external load as predictors, which may be important 

considerations when estimating metabolic intensity of walking across various landscapes 

(e.g., grass, sand, snow, etc.) while carrying backpacks and weapons. This metabolic 

equation predicts walking energy expenditure (E; Watts), with speed (S; m/s), grade (G; 

fractional grade), body mass (M; kg), external load (L; kg), and a terrain factor (n; terrain-

specific constants derived empirically) in the following equation:125 

E = 1.5•M + 2.0[M+L][L/M]2 + n[M+L][1.5•S 2 + 0.35•S•G]  

This equation was developed in 1977 using data collected during treadmill walking at 

speeds of 13-107 m/min (0.5-4.0 mph), aggregated across four studies71,125,128,129 for a 

combined sample of 38 men 19-33 years of age. Although the Pandolf Equation was 
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developed in a moderately-sized sample, its generalizability is still limited by the 

homogeneity of this sample in regard to participant sex and age. 

As ultimately reported by Pandolf, Givoni, & Goldman,125 the Pandolf equation 

was developed to have four theoretically-based components that comprised the metabolic 

intensity of walking: standing without the load ([1.5•M]), standing with the load 

([2.0(M+L)(L/M)2]), the horizontal cost of walking (n[M+L][1.5•S 2]), and the vertical 

cost of walking at a grade (n[M+L][ 0.35•S•G]). The inclusion of external load and a 

terrain factor as predictors in the Pandolf Equation enhances its utility in military 

applications, where soldiers carry weapons and equipment while walking on various 

terrains. This prediction equation can then be used to estimate heat production, body 

temperatures, fuel requirements, and water requirements during military drills and 

missions.130 This consideration of speed, grade, body mass, additional load, and terrain is 

clear strength of the Pandolf Equation. Still, its complexity and use of an outcome 

variable (Watts) that is not easily converted to metabolic intensity units used in public 

health recommendations (e.g., METs, VO2, kcals, etc.)11,69 limits the utility of the Pandolf 

Equation in applications related to improving health and fitness. 

2.3.5. ACSM Metabolic Equation for Walking 

The most widely recognized and used metabolic equation for walking is that 

which appears to have been first published in the second edition of the ACSM's 

Guidelines for Exercise Testing and Prescription17 in 1980. The ACSM Metabolic 

Equation for Walking was presented previously (see Eq. 1 in section 1.1). To reiterate, at 

walking speeds of 50-100 m/min (1.9 to 3.7 mph), this linear equation is intended to 
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predict oxygen consumption (VO2; mL/kg/min) from walking speed (S; m/min) and grade 

(G; grade in decimal form) as follows:18 

VO2 = [0.1•S] + [1.8•S•G] + 3.5 Eq. 1 

This equation is based on results of two publications.19,131 The study19 used to develop the 

first ([0.1•S]) component of the equation only included three aerobically-trained men 

(two 23 years of age and the author, 42 years of age). The other equation component 

([1.8•S•G]) was derived from a study131 that reported a sample size of about 500 male Air 

Force personnel. Thus, while only the first study is quite limited in its sample size, the 

ACSM Metabolic Equation may not be generalizable to individuals outside the young, 

male demographic that was solely included in its subsequent calibration studies. 

The ACSM Metabolic Equation can be divided into three components: an 

intercept (3.5) to account for resting metabolic rate, a linear speed component ([0.1•S]) 

for the horizontal effects of walking speed, and a speed-grade interaction component 

([1.8 • S • G]) to describe the vertical influence of grade with inclined walking. The 

intercept, which represents the metabolic intensity at a speed of zero (i.e., quiet standing), 

is based on the standardized resting metabolic rate of 3.5 ml/kg/min.44 The speed 

component is derived from a study by Dill19 in which three men walked and ran at 

various speeds between 63-348 m/min (2.4-13.0 mph) on a treadmill. The metabolic 

intensity of walking 1 m/min on a level surface was determined to be 0.1 mL/kg/min, 

thus resulting in the coefficient of the speed component. Finally, the coefficient in the 

speed-grade interaction component of the ACSM Metabolic Equation was derived from a 

study of maximal aerobic capacity by Balke and Ware,131 where ~500 men walked on a 

treadmill at 90 m/min (3.3 mph) while grade increased 1% every minute until voluntary 
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exhaustion. In stating a secondary finding, that is, that oxygen consumption at a given 

workload did not vary between individuals, the authors reported that a coefficient of 1.8 

could be used to approximate the average increase in oxygen consumption for each 

additional meter per minute of vertical work. Thus, the ACSM Metabolic Equation 

multiplies this coefficient by the rate of vertical work (i.e., the product of grade [decimal 

form] and speed [m/min]) to estimate the effect of grade on the metabolic intensity of 

walking. 

The simplicity of the ACSM Metabolic Equation makes it easily implemented by 

the general public in treadmill-based applications and may explain its popularity and 

continued inclusion in the ACSM Guidelines for Exercise Testing and Prescription up 

until the 2014 edition.18 Still, its application is reportedly limited to walking speeds of 50-

100 m/min. Several factors may also reduce the accuracy of the ACSM Metabolic 

Equation. For example, it does not consider the effects of additional anthropometric and 

demographic variables that may affect the metabolic intensity of walking (see section 

2.2.2.). In addition, although the standardized resting metabolic rate (3.5 mL/kg/min) 

appears to be an intuitive value for the intercept of a metabolic equation, it does not 

account for the additional metabolic cost for the balance and posture of standing. This 

additional metabolic cost of standing is further discussed below in the presentation of the 

Height-Weight-Speed Equation21,23 (section 2.3.6.). Finally, the relationship between 

walking speed and metabolic intensity was shown to be curvilinear in a later secondary 

analysis20 of the data published by Dill19 used to calibrate the ACSM Metabolic Equation, 

as well as in several other publications.23,132,133 The accuracy of the ACSM Metabolic 

Equation is therefore also compromised by its linear form. 
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2.3.6. Height-Weight-Speed Equation 

 One of the most recently developed speed-based metabolic equations is the 

Height-Weight-Speed Equation, ultimately published by Ludlow & Weyand21 in 2016. 

This equation is based on a conceptual framework that provides valuable insights 

regarding the components of the metabolic intensity of walking. It predicts oxygen 

consumption (VO2; mL/kg/min) from a measured or predicted resting metabolic rate 

(VO2rest; mL/kg/min), walking speed (S; m/s) and height (H; m) in the following quadratic 

equation:21 

VO2 = VO2rest + 3.85 + 5.97[S2/H]  

The Height-Weight-Speed Equation was first calibrated by Weyand et al.23 but later 

refined in a secondary analysis by Ludlow & Weyand.21 This secondary analysis 

ultimately included data from ten publications representing 409 total participants and 25 

participant groups with wide ranges in mean age (5.2-40.7 years), height (1.0-1.8 m) and 

body mass (18.9-78.0 kg). These participants all completed bouts of treadmill walking at 

speeds ranging from 24-114 m/min (0.9-4.3 mph). In contrast to the metabolic equation 

calibration studies discussed above, the external validity of the Height-Weight-Speed 

Equation is inherently strengthened by the large size of this sample and its diversity in 

relation to participant age and body size. 

The conceptual model for the Height-Weight-Speed Equation consists of three 

components: 1) the resting metabolic rate (VO2rest), 2) an additional minimum metabolic 

rate (3.85), and 3) a speed-dependent contribution to walking metabolic intensity 

(5.97[S2/H]). In this equation’s original calibration studies,21 resting metabolic rate 

(Component 1) was predicted for each participant based on their age, sex, body mass and 
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height using the Schofield Equations.134 The additional minimum walking metabolic rate 

(Component 2) accounts for the increases in metabolic intensity for standing and walking 

at any speed (e.g., balance, posture, increased pulmonary ventilation and blood pressure). 

This component was assumed to remain constant across walking speeds based on prior 

evidence65,75,80 and calibrated using Ludlow & Weyand’s literature-aggregated data set21 

to derive the value of 3.85 mL/kg/min above VO2rest. Finally, the metabolic cost for the 

actual walking movement is represented by the speed-dependent component which 

results in greater metabolic intensities at faster walking speeds (Component 3). In the 

development of the Height-Weight-Speed Equation, Ludlow & Weyand21 reported that 

its predictive accuracy improved significantly by the inclusion of a quadratic (versus 

linear) speed term and height as predictors. Thus, this speed-dependent component results 

in a quadratic speed-intensity and inverse height-intensity relationship in the Height-

Weight-Speed Equation. The use of this simple, rational, and empirically-based 

conceptual model for developing the Height-Weight-Speed Equation could bolster its 

utility in both theoretical and real-world applications. In addition, its consideration of 

height and an individualized resting metabolic rate may improve the accuracy of this 

equation. However, requiring the measurement or estimation of resting metabolic rate 

may reduce its accessibility for use. 

2.3.7. Summary of Speed-Based Metabolic Equations for Walking 

 As the project proposed herein aims to develop a cadence-based equation for 

predicting walking intensity, reviewing previously published speed-based metabolic 

equations has provided insights into their relevant conceptual models and enabled 

identification of their individual strengths and limitations. The intercepts included in 
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some of the equations discussed conceptually represents the resting metabolic rate (as in 

the ACSM Metabolic Equation) or the resting metabolic rate plus the additional 

metabolic costs for standing (as in the Pandolf125 and Height-Weight-Speed Equations21). 

The speed-dependent component included in all equations represents the metabolic 

intensity for the walking movement, which increases with increasing walking speed. The 

ACSM Metabolic Equation18 is the only equation using a linear form for this component, 

while the rest indicate a curvilinear (quadratic21,64,80,125 or exponential124) relationship 

between speed and intensity of walking. In this speed-dependent component, the 

Workman-Armstrong124 and the Height-Weight-Speed Equation21 both include an inverse 

effect of height on metabolic intensity of walking as reported to account for the lower 

cadence (and thus rate of internal work) selected by taller individuals at a given speed. 

All of the metabolic equations discussed, excluding the Height-Weight-Speed 

Equation21, have questionable external validity because they were derived from studies 

with samples that were small (≤10 participants)18,64,65,80 and/or homogeneous (all young 

adult men).18,64,65,80,125 Some of the speed-based equations are also limited in their 

development because they lack a clear conceptual basis or statistical methodology behind 

the variables, components, and model shapes they include.18,64,80 While such rationale is 

notably absent from some equations, others that are based on coherent conceptual 

frameworks have limited utility in health and fitness settings because of their length and 

complexity.124,125 In contrast, the Height-Weight-Speed Equation21 exemplifies a 

metabolic equation that uses a logical and empirically-based conceptual model while 

retaining the simplicity that enables it to be practically used by health professionals and 

members of the public. Still, even this equation is limited in its application because of its 
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reliance on speed-controlled treadmill walking. A cadence-based metabolic equation 

could be more easily implemented during overground walking and thus in the settings 

more common in daily living. 

2.4. Cadence and Metabolic Intensity 

 Although many studies have examined and modeled the relationship between 

speed and intensity of walking, there are currently only 18 studies that examine the 

cadence-intensity relationship in adults, with the first published in 2005.40 Of these 18 

studies, three are review articles39,41,42 one measures the cadence and metabolic intensity 

of self-selected brisk walking in inactive older adults,135 and the remaining 14 quantify 

the relationship between walking intensity and cadence in controlled conditions.27-38,40,43 

The methodologies and results of these 14 studies are compared and contrasted in the 

sections that follow in order to illustrate the discrepancies in their: 1) sample 

characteristics, 2) metabolic testing protocols, and 3) statistical analyses used. These 

study details are also cataloged in Table 1. Considering such methodological 

inconsistencies is vital for comparing and synthesizing the results of these studies and 

identifying knowledge gaps. Next, the influences of anthropometric and demographic 

predictor variables on the cadence-intensity relationship is reviewed. Lastly, the findings 

of the three review articles are summarized. 

2.4.1. Cadence and Absolutely-Defined Intensity 

Of the 14 publications identified that examined the relationship between cadence 

and metabolic intensity in controlled conditions, 12 studies calibrated cadence-based 

models of absolutely-defined intensity by using indirect calorimetry to measure oxygen 

consumption during treadmill or overground walking. One study34 more specifically 
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modeled the relationship between cadence and energy expenditure (kcal/min), while the 

rest27,31-33,36,38-43,135 aimed to determine cadence thresholds associated with absolutely-

defined moderate and vigorous intensity (3 and 6 METs, respectively). The methods and 

results of this subset of articles are compared and contrasted in this section. Further 

details regarding the sample characteristics, metabolic testing procedures, and statistical 

analyses of these 12 studies are provided in Table 1. 

Almost all of these studies used regression analysis to model the cadence-

intensity relationship and determine cadence thresholds. Several studies included 

additional predictors in their regression equations (i.e., height, leg length, BMI) but 

calculated single thresholds by inputting the mean of their sample for the respective 

predictor variable. This confounds direct comparisons between studies because the 

thresholds reported by each are influenced by the characteristics of their sample. To 

therefore control for these variables, the sex-specific average US adult values for height 

and BMI that are provided by the Centers for Disease Control94 were inserted into each 

regression model that considered these predictors. As has been used previously,136 a 

similarly representative measure for leg length was determined using values derived from 

the US Third National Health and Nutrition Examination Survey (NHANES III)137 

collected from 1988-1994 in the following equation: ([average standing height] – 

[average seated height]). In order to avoid extrapolation, 6 MET cadence thresholds were 

only calculated for studies where such a threshold was originally reported, or if the mean 

intensity reached by participants in the highest intensity bout was ≥6 METs. All cadence 

thresholds are presented in Table 2 with indications of whether they were calculated 

using reported regression models and which values were then used. 
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Table 1: Studies Quantifying the Cadence-Intensity Relationship in Controlled 

Conditions. 

Study 

First 

Author 

and Year 

Sample 

Characteristics 
Metabolic Testing Protocol 

Statistical Analysis and Final 

Model Predictor Variables 

Tudor-

Locke 

200540 

50 healthy adults; 

50% women; age 

range 18-49 years 

Treadmill walking at 80.5-

107.2 m/min (3.0-4.0 mph) 

and running at 160.9 m/min 

(6.0 mph) set using a treadmill 

Linear standard regression 

modeling with cadence and sex 

Marshall 

200933 

97 healthy adults; 

59.8% women; 32 ± 

11 years of age 

Treadmill walking at 64-110 

m/min (2.4-4.1 mph) 

ROC analysis 

Linear standard and mixed 

regression modeling with 

cadence and sex 

Beets 

201031 

20 healthy adults; 

55.6% women; 26 ± 

5 years of age 

Overground walking at 30-91 

m/min (1.1-3.4 mph) set using 

a concurrent researcher 

walking to set pace 

Nonlinear (quadratic) mixed 

regression modeling with METs, 

leg length, and BMI 

*outcome variable of cadence 

Abel 

201127 

19 healthy adults; 

52.6% women; 29 ± 

7 years of age 

Treadmill walking at 54-107 

m/min (2.0-4.0 mph) and 

running at 134.1-187.7 m/min 

(5.0-7.0 mph) 

Linear and nonlinear 

(exponential) standard 

regression modeling with 

cadence and sex 

Harrington 

201132  

62 healthy adults; 

100% women; 18.5 ± 

3.4 years of age 

Treadmill walking at 53-117 

m/min (2.0-4.4 mph) 

Validation of linear, cadence-

based MET prediction equation 

used by the activPAL 

accelerometer software 

Nielson 

201134 

100 healthy adults; 

50% women; 23 ± 4 

years of age 

Treadmill walking at speeds 

eliciting cadence of 90-120 

steps/min 

Linear mixed regression 

modeling with cadence, sex, 

BMI, and step length 

*outcome variable of kcal/min 

Rowe 

201136 

75 healthy adults; 

50.7% women; 33 ± 

12 years of age 

Overground walking at same 

cadence measured during 

treadmill bouts at 54-107 

m/min (2.0-4.0) mph, set 

using a metronome 

Linear mixed regression 

modeling with cadence alone 

and with cadence and height 

Agiovlasitis 

201228 

18 adults with DS 

and 22 healthy 

adults; 43% women; 

26 ± 6 years of age 

Overground walking at self-

selected normal pace and 30-

90 m/min (1.1-3.4 mph) set 

using a concurrent researcher 

walking to set pace 

Nonlinear (quadratic) mixed 

regression modeling with 

cadence, height and group (DS 

or healthy) 

Wang 

201343 

226 healthy adults; 

48.2% women; 22 ± 

1 years of age 

Overground walking at 64.4-

107.3 m/min (2.4-4.0 mph) set 

using ground markers and a 

timer 

ROC analysis stratified by sex 

Agiovlasitis 

201429 

24 adults with MS, 

24 healthy adults); 

50% women; 43 ± 12 

years of age 

Treadmill walking at 54 -107 

m/min (2.0-4.0 mph)  

Nonlinear (quadratic) mixed 

regression modeling cadence, 

height, and group (healthy, 

minimal walking impairment, or 

mild-moderate walking 

impairment) 
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Overall, cadence thresholds associated with 3 METs ranged from 74-117 

steps/min. The range for 6 MET cadence thresholds was even greater, at 120-173 

steps/min. It should be noted that adults tend to transition from walking to running at 

cadences >140 steps/min,138 yet running bouts were included in only one40 of these 

studies (which reported 6 MET thresholds of 125-136 steps/min). The substantial 

variability observed in these cadence thresholds may be due to between-study differences 

in sample characteristics, metabolic testing procedures, and statistical analyses used in 

these studies. 

2.4.1.1. Sample Characteristics 

Healthy and relatively young samples (mean ages 21.7-41.0 years) were included 

in 75% (9/12) studies27-29,31,33,34,36,40,43 calibrating cadence thresholds associated with 

absolutely-defined intensity levels. These studies had samples sizes ranging from 19-226 

participants and were ≥41% female. The one study34 modeling the relationship between 

cadence and kcal/min stated that their data supported a minimum cadence threshold of 

Peacock 

201435 

29 healthy older 

adults, 100% women; 

71 ± 12 years of age 

Treadmill walking at a self-

selected slow, normal, and fast 

pace 

Linear mixed regression 

modeling with cadence, sex, and 

age 

Rowe 

201437 

17 adults with a 

unilateral transtibial 

amputation, 11.8% 

women; 52 ± 13 

years of age 

Treadmill walking at 50% 

HRmax and a speed ~1 MET 

higher or lower 

Linear standard regression 

modeling with cadence alone 

Agiovlasitis 

201630 

58 adults with MS, 

82.8% women; 51 ± 

9 years of age 

Overground walking at self-

selected normal pace and 

speeds 13 m/min (0.5 mph) 

slower and 13 m/min faster set 

using a concurrent researcher 

walking to set pace 

Linear mixed regression 

modeling with cadence, height, 

and group (mild, moderate, or 

severe MS) 

Serrano 

201738 

121 healthy older 

adults, 59.5% 

women; 69 ± 8 years 

of age 

Overground walking at 40% 

VO2reserve set using verbal cues 

and real-time monitoring 

Linear standard regression 

modeling with self-selected 

normal cadence and body mass 

*outcome variable of cadence at 

40% VO2reserve 

Note: All models haven an outcome variable of METs unless otherwise noted. 
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100 steps/min for absolutely-defined moderate intensity walking but did not report an 

exact threshold or regression with which one could be determined. The rest reported 

cadence thresholds for 3 METs (or regressions from which they were derived) that  

ranged from 91-120 steps/min. The highest of these thresholds (112 steps/min in men, 

120 steps/min in women) may be artificially inflated because Beets et al.31 had originally 

measured leg length as the distance from the greater trochanter to the floor (with shoes), 

whereas US NHANES III reference mean leg length values were determined as the 

difference between standing and seated height;137 thus the sample mean leg lengths 

reported by Beets et al.31 (men = 92 cm, women = 86 cm) were notably greater than those 

used in the regression (men = 84 cm, women = 77 cm). Considering this, almost all (6/7) 

other articles27-29,36,40,43 reported a 3 MET cadence threshold of 93-108 steps/min (93-104 

steps/min for men, 99-108 steps/min for women). Cadence thresholds for 6 METs could 

be calculated for six studies27,29,33,36,40,43 in young and healthy participants, and these 

values ranged from 120-165 steps/min, with most (4/6)27,29,40,43 ranging from 120-148 

steps/min (127-141 steps/min for men, 130-148 step/min for women). Therefore, the 

exact cadence thresholds found to be associated with 3 METs tended to be 100 ± 8 

steps/min for young healthy adults, while there was more limited data indicating 6 MET 

cadence thresholds of 135 ± 15 steps/min. Additionally, the higher ends of these ranges 

of cadence thresholds were observed in women while the lower ends were observed in 

men (Table 2). 

Participants with a disability or of older age were included in 42% (5/12) 

studies.28-30,35,37 Four studies included participants with a disability and all reported lower 

cadences needed for attaining moderate intensity compared with young and healthy  
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Table 2: Cadence Thresholds with Respective Study Methods/Samples. 

Study 

First 

Author 

and Year 

TM 

or 

OG 

Statistical Analysis Young/healthy, 

Older, or 

Disability 

Status 

Moderate 

Intensity 

Thresholds 

(steps/min) 

Vigorous Intensity 

Thresholds 

(steps/min) 
Regression 

Model 

Form 

Standard 

or Mixed 

Regression Men Women Men Women 

Tudor-Locke 

200540 
TM Linear Standard Young/healthy 96 a 107 a 125 a 136 a 

Marshall 

200933 
TM 

ROC analysis 

Young/healthy 

102 115 NA NA 

Linear 
Standard 92 91 141 163 

Mixed 101 111 130 134 

Beets 

201031 
OG Nonlinear Mixed Young/healthy 112*** 120*** NA NA 

Abel 

201127 
TM 

Linear 
Standard Young/healthy 

97 104 120 130 

Nonlinear 94 99 125 135 

Nielson 
201134 

TM Linear Mixed Young/healthy 
Concur with 

≥100 
NA 

Rowe 

201136 
OG 

Linear b 
Mixed Young/healthy 

101* 108* 158* 165* 

Linear c Overall: 103 Overall: 161 

Agiovlasitis 

201228 
OG Nonlinear Mixed 

Young/healthy 93* 102* NA 

DS Overall: 92** Overall: 132** 

Wang 

201343 
OG ROC analysis Young/healthy 104 107 127 137 

Agiovlasitis 

201429 
TM Nonlinear Mixed 

Young/healthy 96* 107* 141* 148* 

MS minimal 93* 102* 132* 138* 

MS mild-moderate 91* 99* 124* 130* 

Peacock 

201435 
TM Linear Mixed 

Older (65 years) 86* 100* NA NA 

Older (75 years) 75* 91* NA NA 

Rowe 

201437 
TM Linear Standard Unilateral TTA Overall:86 NA 

Agiovlasitis 

201630 
OG Linear Mixed 

MS mild 96* 102* 166* 173* 

MS moderate 85* 91* 155* 162* 

MS severe 74* 80* 144* 151* 

Serrano 

201738 
OG Linear Standard Older 115 d 120 d NA 

Notes: Cadence thresholds were either reported within studies or calculated using reported regression 

models. All are indicative of walking at absolutely-defined moderate or vigorous intensity (3 or 6 METs) 

except where otherwise noted. 

TM = treadmill; OG = overground; DS = Down Syndrome; MS = multiple sclerosis;  

ROC = receiver operating characteristic; TTA = transtibial amputation 

* based on average US adult heights94; ** based on average height of subset of sample with DS28 

*** based on average US adult BMI94 and leg length (NHANES III)139; 

****based on average US adult body masses94 and normative older adult self-selected cadences140 
a threshold determined with data collected during walking and running; 
b model including height and cadence; c model including cadence alone; 
d threshold for relatively-defined moderate intensity (40% VO2reserve) 
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adults. Specifically, in adults with DS,28 unilateral transtibial amputation,37 and MS,29,30 3 

MET cadence thresholds were as low as 92, 86, and 74 steps/min, respectively (Table 2). 

Similarly, the only study35 conducted with older adults (60-87 years of age) reported that 

75-year-old men and women had 3 MET cadence thresholds of 75 and 91 steps/min, 

respectively. All of these cadence thresholds determined with samples of disabled and 

older participants are lower than those with young, healthy adults (i.e., 100 ± 8 steps/min, 

calculate from above). Thus, heterogeneity of study samples may explain some of the 

variability in the cadence-intensity relationship and resulting differences in specific 

thresholds. 

2.4.1.2. Metabolic Testing Protocols 

Of the 12 studies quantifying the relationship between cadence and absolutely-

defined intensity, seven27,29,33-35,37,40 collected metabolic data during treadmill walking 

while the other five28,30,31,36,43 used data collected while walking overground. The walking 

speeds implemented in three of the treadmill-based studies were not controlled across all 

participants (i.e., used self-selected slow, normal, and fast speeds35 or speeds that elicited 

a desired cadence34 or heart rate37). The ranges of speeds used by the remaining four 

treadmill-based studies27,29,33,40 are relatively similar, with slowest and fast speeds of 

speeds of 54-81 m/min (2.0-3.0 mph) and 107-110 m/min (4.0-4.1 mph) respectively. 

Each of the five studies conducted during overground walking constrained either 

walking speed or cadence. Speed was constrained in one study43 using floor markings and 

a timer and in three studies28,30,31 by instructing participants to match the speed of a 

“pacer” who walked ahead of them with a speed-measurement device. Two of these 

overground-based studies28,31 implemented constrained walking speeds that were slower 
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than any of the speeds used in the treadmill-based studies, ranging from about 30-90 

m/min (1.1-3.4 mph). Still, there do not appear to be any systematic differences in 

cadence thresholds reported by overground versus treadmill-based studies, or in those 

that included slower walking speeds (Table 2). 

The one study36 of overground walking that did not constrain speed used an RAC 

method (a metronome) to constrain cadence. This study reported cadence thresholds on 

the higher end of those associated with 3 METs (101 steps/min for men, 108 steps/min 

for women) and 6 METs (158 steps/min for men, 165 steps/min for women; Table 2). 

These greater cadence thresholds indicate a lower metabolic intensity of walking at a 

given cadence, which is an unexpected finding given the evidence that adding constraints 

to gait parameters increases metabolic intensity of walking.47,48 Alternatively, during 

cadence-constrained walking, the rate of increase in step length due to faster RAC tempos 

(i.e., eliciting increases in cadence) was lower than that associated with the same 

increases in cadence during unconstrained or speed-constrained walking. This reduction 

in the walk ratio would result in a lower speed at a given cadence (see section 2.2.3.),45-47 

which could lead to greater cadences needed to attain 3 and 6 METs during cadence-

constrained walking. Although using RACs to entrain cadence may be a useful tool for 

prescribing walking intensities in health and research settings, only one study36 was 

identified that has examined the cadence-intensity relationship under this walking 

condition. Further, the potentially lower walking intensity at a given cadence indicated in 

this study conflicts with what is expected given that constraining gait increases walking 

intensity at a given speed.47,48 In addition, the ability to use cadence as a proxy for 

metabolic intensity would be useful for researchers measuring ambulatory PA levels with 
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accelerometers in the free-living setting. Although all five of these overground-based 

studies have constrained either walking speed or cadence, no studies have examined the 

cadence-intensity relationship during true overground unconstrained walking (e.g., self-

selected slow, normal or fast walking) as would be observed in purposeful walking 

undertaken in a free-living context. Therefore, more research is needed to examine the 

cadence-intensity relationship during overground cadence-constrained and unconstrained 

walking. 

2.4.1.3. Statistical Analyses 

Cadence thresholds associated with absolutely-defined levels of intensity were 

determined in these studies using Receiver Operating Characteristic (ROC) analysis and 

several variants of regression analyses. In this context, threshold determination through 

ROC analysis first entails plotting the true positive rate (i.e., proportion of data points 

predicted to be ≥3 METs when actually ≥3 METs) against the false positive rate (i.e., 

proportion of data points predicted to be ≥3 METs when not actually ≥3 METs) across all 

possible cadence thresholds. The threshold with the highest true positive rate and lowest 

false positive rate is then selected as the optimal cadence threshold, thus maximizing both 

sensitivity and specificity. ROC analysis was the only statistical method used by Wang et 

al.43 and was included in the study by Marshall et al.33 Cadence thresholds for 3 METs 

reported by the former study were 104 and 107 steps/min for men and women 

respectively, while those of the latter study were 102 and 115 steps/min respectively. 

These values are within the upper end of the sex-specific cadence thresholds reported 

across studies for young, healthy adults (Table 2). Further, when Marshall et al.33 used 

standard regression analyses with the same data, the 3 MET cadence thresholds they 
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derived in the original samples of men and women were 92 and 91 steps/min, 

respectively. This provides direct evidence that the determination of cadence thresholds is 

influenced by the statistical analysis used. Specifically, cadence thresholds determined 

using ROC analysis have tended to be higher than those derived from regression analysis, 

with differences of 10-24 step/min reported even when the same data is used.33 

Regression analysis was used in ten studies27-31,33,35-37,40 to determine cadence 

thresholds associated with absolutely-defined levels of intensity. The regression models 

they included differed in their use of a linear30,33,35-38,40 versus curvilinear28,29,31 model. In 

addition, some of these studies27,33,37,40 used standard regression analysis while others28-

31,33-36 used mixed modeling to develop regression models. Mixed modeling can be used 

when the assumption of data independence (required for standard regression analysis) is 

violated, such as when the data include multiple datapoints (i.e., bouts) from each 

participant. By including participant as a “random effect” in a mixed model, the 

nonindependence of the data (e.g., inter-individual variability in the cadence-intensity 

relationship) is accounted for.141 Such inclusion of random effects in regression models is 

important for accurately testing statistical hypotheses and assessing p-values when data 

consist of repeated-measures.142 

The different model shapes and regression analysis types (standard versus mixed) 

used in studies of the cadence-intensity relationship correlate with trends in the goodness-

of-fits (R2 values) they report. In the seven studies30,33,35-38,40 that used linear regression, 

R2 values ranged from 0.23-0.85, indicating a wide range in model performance. Further, 

the variability explained by cadence in studies27,37,40 that used standard linear regression 

analyses (R2 = 0.55-0.85) was greater than when linear mixed modeling was used (R2 = 
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0.23-0.50).30,33-36 Three studies28,29,31 used curvilinear (quadratic) regression analysis after 

the authors visually evaluated the shape of the cadence-intensity relationship. Curvilinear 

(exponential) models were also used by Abel et al.27 because their R2 values were greater 

by 0.08 and 0.06 for men and women, respectively, than models with linear form. These 

studies indicate that the relationship between cadence and walking intensity has a 

curvilinear form. If the cadence-intensity relationship is truly curvilinear then the 

goodness-of-fit of a linear model would (theoretically) be the lowest at more extreme low 

and high cadences. Interestingly, two of the studies27,28 using a curvilinear model were 

also those including the slowest walking speeds (Table 1) and presumably the lowest 

cadences, which may have thus contributed to their decision to use a curvilinear model. 

The R2 values observed by Abel et al.27 with curvilinear regression models (0.91 in men, 

0.79 in women) were also the largest reported in any of these studies. While Abel et al.27 

used standard regression analysis, the curvilinear regression models included in the other 

studies28,29,31 were developed using mixed modeling and reported R2 values ranging from 

0.43-0.68 (or 0.63-0.68 when excluding the study29 with less explained variability 

potentially from including both healthy adults and adults with MS). In summary, because 

the cadence-intensity relationship appears to be curvilinear,27-29,31 the use of a curvilinear 

model may improve the performance of regression models, especially at slow walking 

speeds and cadences. 

The cadence thresholds derived as proxies for levels of metabolic intensity can 

also be affected by the variant of regression analysis used. For example, Abel et al.,27 

used both linear and curvilinear regression analysis to model the same metabolic data. 

The use of a linear model resulted in 3 MET cadence thresholds that were 3 and 5 
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steps/min higher for men and women, respectively, while the curvilinear model derived 6 

MET thresholds that were greater by 5 steps/min for both sexes. Similarly, Marshall et 

al.33 determined 3 MET cadence thresholds in their study using both standard regression 

analysis and mixed modeling. The mixed modeling analysis resulted in consistently 

higher cadence threshold, with magnitudes of 9 and 20 steps/min for men and women 

respectively. These examples provide direct evidence that the variant of regression 

analysis used to model the cadence-intensity relationship can influence the cadence 

thresholds reported. Because this relationship appears to be curvilinear27-29,31 it is 

important for future studies to use curvilinear regression models to most accurately 

represent the relationship between cadence and walking intensity. In addition, mixed 

modeling should be used when testing statistical hypotheses and assessing p-values with 

these models to account for the non-independence of repeated-measures data.141 

2.4.2. Other Studies of Cadence and Intensity in Controlled Conditions 

Two additional publications32,38 have examined the cadence-intensity relationship 

but were not discussed above (section 2.4.1) because they did not report results related to 

the relationship between cadence and absolutely-defined intensity. Instead, Serrano et 

al.38 aimed to determine cadence thresholds associated with a relative measure of 

moderate intensity (i.e., metabolic intensity relative to an individual’s maximal 

capacity),69 defined as 40% VO2reserve (determined from prior fitness testing). In this 

study, 121 healthy older adults (60% women, mean age = 68.6 years) walked overground 

with a portable indirect calorimeter while a researcher monitored their oxygen 

consumption and directed them to walk faster or slower until 40% VO2reserve was reached. 

Participants then maintained this pace and intensity for two minutes while their cadence 
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was determined. The authors reported the best standard regression model (that with the 

highest R2 value) for predicting a participant’s cadence at 40% VO2reserve based on their 

individual characteristics, which ultimately included a linear, inverse effect of body mass 

and linear, positive effect of self-selected walking cadence. The cadence thresholds 

reported herein for this regression model (included in Table 2) are based on the average 

body masses of U.S. adult men and women,94 and sex-specific normative values of self-

selected walking cadence for older adults (with ages comparable to the original study’s 

sample).140 These cadence thresholds associated with relatively-defined moderate 

intensity (115 steps/min for men, 120 steps/min for women) are discernibly higher than 

those associated with 3 METs (100 ± 8 steps/min; Table 2). As the average 40% 

VO2reserve value for these older adults was >3 METs (3.3 ± 0.8 METs in women, 3.9 ± 1.0 

METs in men), it would be expected that a higher cadence would be needed to reach 

relatively-defined moderate intensity. Moreover, the 2011 ACSM Position Stand69 

reported that 40% VO2reserve is generally equivalent to 4.8, 4.0, and 3.2 METs in young, 

middle-aged, and older adults, respectively. Because 40% VO2reserve therefore tends to be 

an intensity >3 METs, cadence thresholds are expected to be higher when associated with 

relatively- versus absolutely-defined intensity, with even greater differences evident in 

younger (and generally more fit) individuals. 

The final study measuring cadence and walking intensity in controlled conditions 

aimed to test the validity of the linear cadence-based equation used by the activPAL 

accelerometer’s software to predict walking intensity (METs). To do so, Harrington et 

al.32 recruited 62 young, healthy female participants (15-25 years of age) and measured 

their oxygen consumption during level treadmill walking at speeds of 53-117 m/min (2.0-
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4.4 mph). A significant difference between indirect calorimetry-measured and activPAL-

predicted METs was reported at every speed tested (all values of p <0.001), with an 

overall mean difference of 0.5 METs (p <0.001). Although the prediction equation used 

by the activPAL was therefore not valid, there was still a significant correlation between 

measured METs and activPAL-measured cadence (r = 0.59, p <0.001). This study 

therefore still supports the ability for cadence to be used to predict metabolic intensity of 

walking. It also demonstrates a potential application of this research – to use the 

measurement of free-living cadence patterns, as enabled by the time-stamped nature of 

accelerometry, to assess levels of ambulatory metabolic intensity in surveillance- and 

intervention-based research. 

2.4.3. Predictor Variables for the Cadence-Intensity Relationship of Walking 

The 14 studies that quantified the cadence-intensity relationship under controlled 

conditions also considered the effects of anthropometric and demographic predictor 

variables. These additional variables included BMI,28,31,33,34,38 height and leg length,28-

31,35-38 disability status,28-30,37 age,29,35,38 and biological sex.27-29,33,34,36,40,43 

2.4.3.1. BMI 

 The effect of BMI on the cadence-intensity relationship was discussed in five 

studies.28,31,33,34,38 Beets et al.31 found BMI to be the strongest predictor of METs at a 

given speed (p <0.05). Their regression included a positive main effect of BMI and 

negative BMI-MET interaction for predicting the cadence (outcome variable) for 

attaining a desired MET level (explanatory variable). This resulted in a relationship 

between BMI and METs that was positive at lower intensities (e.g., 3 METs) and inverse 

at higher intensities (e.g., 6 METs). Similarly, Nielson et al.34 reported that including a 
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positive main effect of BMI and positive BMI-cadence interaction significantly improved 

predictions of walking energy expenditure (both p <0.0001); this model suggests that 

intensity of walking at any given cadence increases with increasing BMI. Still, it is 

important to note that this study used units of metabolic intensity that were expressed in 

terms of kcal/min) and body mass was not controlled for analytically. Evidence for a 

positive relationship between metabolic intensity of walking and BMI was also provided 

by Serrano et al.,38 who reported a significant correlation between the cadence for 

walking at relatively-defined moderate intensity (40% VO2reserve) and participant BMI (r 

= -0.24, p = 0.012). A possible confounding relationship between BMI and fitness (and 

thus the value of 40% VO2reserve) was not assessed, and their prediction equation 

ultimately did not include BMI because body mass was more strongly correlated with 

walking cadence for reaching moderate intensity (r = -0.36). Although none of these 

studies31,34,38 provided rationale for the observed influences of BMI on the cadence-

intensity relationship, mechanisms by which BMI modifies the speed-intensity 

relationship of walking were discussed previously (see section 2.2.2.1). Briefly, 

individuals with a higher BMI have an increased metabolic intensity of walking at a 

given speed because of obesity-related mechanical inefficiencies in gait and changes in 

body mass distribution.61,70 In contrast to these findings, Marshall et al.33 reported 

differences in cadence thresholds stratified by weight status (normal weight, overweight, 

or obese) that were relatively small and inconsistent across the three statistical 

methodologies used. Adding BMI as a predictor also did not significantly improve the 

cadence-based regression model of walking intensity reported by Agiovlasitis et al.28 

which included a subsample of adults with DS. The mixed evidence from these studies 
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indicates more research is needed to determine the significance and direction of BMI’s 

influence on the cadence-intensity relationship. 

2.4.3.2. Height and Leg Length 

As discussed previously, the strong linear relationship between height and leg 

length (r = 0.90)31 makes considerations of their effects in models of walking intensity 

nearly identical (see section 2.2.2.2). Height was included as a predictor in six studies28-

30,35,36,38 and leg length was included in one.31 All of these studies reported that taller 

individuals needed to walk at lower cadences to attain the same levels of absolutely-

defined intensity. More specifically, their regression equations indicated that a 10 cm 

increase in height a would increase intensity at a given cadence by 0.2-0.7 METs, and an 

individual with a 5 cm longer leg length would require a cadence 6 steps/min lower to 

reach the same MET level.31 Both Rowe et al.36 and Peacock et al.35 reported that the 

addition of height to their model explained significantly more variability in VO2 than 

cadence alone (p <0.05 and p <0.01 respectively). This influence of height on the 

cadence-intensity relationship is likely mediated by step length, where the positive 

correlation between height and step length at a given speed (r = 0.55-0.74 depending on 

the speed)27,36 would result in higher cadences and rates of internal work (for limb swing) 

in shorter individuals. Further, when height was not correlated with stride length in adults 

with unilateral transtibial amputations (r = 0.10, p = 0.58), Rowe et al.37 found that 

adding height as a predictor in their model no longer explained more variation in VO2 

than cadence alone (p >0.05). A similar mediating effect of step length was previously 

discussed regarding the influence of height on the speed-intensity relationship (see 

section 2.2.2.2).65,80 In summary, several studies have concluded that accounting for the 
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inverse relationship between height and the cadence needed to attain a specific level of 

walking intensity enables more accurate and individualized cadence prescriptions than a 

single heuristic value (e.g., 100 steps/min for 3 METs), and should be further 

investigated.27,31,36 

2.4.3.3. Disability Status 

Disability status was considered in the three studies by Agiovlasitis and 

colleagues that included adults with either DS28 or MS.29,30 The study28 including adults 

with DS demonstrated that this population is shorter in stature (subsample mean = 154 

cm) than the average US adult (men = 176 cm, women 162 cm).94 As height is a predictor 

in their reported regression equation, the cadence thresholds presented herein for adults 

with DS (Table 2) are based on the mean height of this subsample instead of the average 

US adult, as used previously (see section 2.4.1). Despite the fact that a shorter stature 

normally results in higher cadence-intensity thresholds,31,35,36,38 the 3 MET cadence 

threshold calculated for adults with DS was lower than those derived for non-DS adults 

of average height (a difference of 1 step/min in men and 10 steps/min in women; Table 

2). As indicated in their reported regression model, this result was due to adults with DS 

having a 0.8 MET greater walking intensity than adults without DS when controlling for 

cadence and height. Adults with MS were also reported to have cadence thresholds for 3 

and 6 METs that were 5 and 17 steps/min lower, respectively, than those of healthy 

participants.28 Each increase in MS-related disability status (i.e., mild to moderate or 

moderate to severe level of disability; determined using the Expanded Disability Status 

Scale143) was also associated with a 1.6 MET increase in walking intensity at a given 

cadence.30 In addition, Rowe et al.37 reported that the cadence threshold associated with 3 
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METs in adults with unilateral transtibial amputations was 86 steps/min. Although this 

study did not include a healthy control group for a direct comparison, this cadence 

threshold is considerably lower than the 100 ± 8 step/min thresholds commonly reported 

in studies with young healthy adults.27-29,36,40,43 Thus, an elevated cadence-intensity 

relationship has been observed consistently in studies including populations with 

disabilities, indicating that disability status is an important predictor to include when 

predicting the walking intensity of individuals who are not ostensibly healthy. 

2.4.3.4. Age 

The influence of age on the cadence-intensity relationship was considered in three 

studies29,35,38 examining the cadence-intensity relationship, with contradictory findings. In 

a sample of older adults (60-87 years of age), Peacock et al.35 found a significant positive 

relationship between age and metabolic intensity (METs) at a given cadence (p <0.01). 

Their regression model indicated that 75-year-old men and women have 3 MET cadence 

thresholds of 75 and 91 steps/min respectively, with every 10-year increase in age 

decreasing these thresholds by ~10 step/min. In the study by Serrano et al.,38 a non-

significant negative trend (r = -0.17, p = 0.069) between age and the cadence needed to 

attain relatively-defined moderate intensity (40% VO2reserve) was reported in their sample 

of older adults (≥55 years of age), but the possible confounding effect of age on fitness 

(and thus the value of 40% VO2reserve) was not controlled for in the analysis. Conversely, 

age did not contribute significantly to cadence-based regression models of walking 

intensity in the study conducted by Agiovlasitis and Motl29 with a sample of middle-aged 

adults (mean age = 42 years) who were healthy or had MS. As previously discussed (see 

section 2.2.2.3), studies regarding the speed-intensity relationship of walking have only 
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reported an influence of age with older adults (age ≥65 years).77,85,86 The findings 

reported here similarly support the use of age as a predictor in cadence-based predictions 

of walking intensity in older adults, whereas it likely does not have a significant effect in 

younger adult populations. Because few studies have examined such an influence, future 

research is needed to confirm these findings. 

2.4.3.5. Biological Sex 

The effects of sex were originally considered in five studies27,33,36,40,43 by 

calibrating sex-specific cadence thresholds associated with absolutely-defined intensity 

levels. The thresholds reported within these articles were higher for women versus men, 

with differences ranging from 3-13 steps/min and 10-11 steps/min for 3 and 6 MET 

cadence thresholds, respectively. Despite observing such differences, Marshall et al.33 

still did not support the use of sex-specific cadence thresholds because they found that 

considerable variability remained in the cadence-intensity relationship even after 

controlling for sex. Two studies by Agiovlasitis and colleagues28,29 similarly reported that 

sex did not contribute significantly to their regression models of walking intensity, 

although these models already included height. Conversely, a statistically significant 

effect of sex on cadence thresholds was reported by Abel et al.27 The metabolic intensity 

of walking (VO2 in L/min) at a given cadence from 80-120 steps/min was also reported 

by Nielson et al.34 to be higher in men versus women by 0.20-0.36 L/min. Although this 

was partially related to differences in body mass, men also tended to walk at faster speeds 

at a given cadence (i.e., had greater step lengths) because they were taller and increased 

step length to a greater proportion than female participants, who primarily increased their 

cadence. This greater speed at a given cadence reportedly also contributed to their lower 
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cadence thresholds needed for attaining levels of walking intensity. The notion that 

height and step length mediates sex differences in the cadence-intensity relationship was 

further supported by Rowe et al.36 in a secondary analysis of the data published by Tudor-

Locke et al.40 and Marshall et al.33 In this analysis, it was determined that these studies 

had male-to-female ratios in reported cadence thresholds that were inversely proportional 

to their male-to-female ratios in height. In concurrence with these findings and as 

discussed previously (see section 2.2.2.4.), studies that have developed speed-based 

metabolic equations for walking have reported sex to no longer be a significant predictor 

after controlling for height.23,75 This evidence suggests that the tendency for men to be 

taller than women translates to correspondingly greater step lengths, speeds, and 

metabolic intensities at a given cadence, thereby explaining sex differences in cadence 

thresholds needed for attaining moderate and vigorous intensity walking. 

2.4.4. Cadence Review Articles 

Three review articles are published regarding the relationship between cadence 

and metabolic intensity of walking.39,41,42 The first, published by Tudor-Locke & Rowe,42 

formulated the early evidence for using cadence to represent ambulatory PA patterns in 

free-living adults. A later review article by Slaght et al.39 aimed to provide an updated 

summary of the literature regarding the recommended cadence threshold for reaching 

moderate intensity in adults with an additional focus on the effects of additional predictor 

variables. The most recent review article was published by Tudor-Locke et al.41 in 2018 

to present the state of evidence regarding minimum threshold values associated with 

desired outcomes and cross-sectional reference values for cadence-based metrics. The 

following sections summarize the findings of these three reviews as related to 



65 

 

observational studies of cadence, cadence-based intervention studies, and laboratory-

based studies of the cadence-intensity relationship. 

2.4.4.1. Observational Studies of Cadence 

The reviews by Tudor-Locke & Rowe42 and Tudor-Locke et al.41 included the 

methodologies and results of cross-sectional studies examining associations between 

free-living cadence patterns and health outcomes. Seven accelerometers capable of 

measuring cadence during free-living were reviewed by Tudor-Locke & Rowe 42 for use 

in such studies, and were shown to have generally high accuracy at normal walking 

speeds (mean absolute percent errors <3% at speeds ≥81 m/min [3.0 mph]). The review 

by Tudor-Locke et al.41 also summarized the three metrics used to express free-living 

cadence patterns: 1) mean cadence over 24-hours (deemed inappropriate because of the 

influence of a large amount of time at zero cadence), 2) time at or above cadence 

thresholds (100 steps/min) or in cadence bands (i.e. time at 1-19, 20-39, 40-59, steps/min 

etc.), and 3) peak cadence indicators (7-day average of the highest 1-minute cadence of 

each the day or averages of the highest, not necessarily consecutive, 30 or 60 minutes in 

each day). 

Results of these observational studies reported by Tudor-Locke & Rowe42 

included a weighted average normal walking cadence of 115.2 steps/min from eight 

studies that covertly observed pedestrians, as an indicator of normal purposeful cadence 

in ostensibly healthy adults. Still, it was found that individuals with chronic disease or 

disability may have difficulty walking at 100 steps/min and healthy adults spend much of 

their waking hours (13.5 hrs/day) sedentary (zero cadence) or at low cadences (1-59 

steps/min), with only about seven minutes of their day at ≥100 steps/min.42 The 2018 
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review by Tudor Locke et al.41 presented population-specific values and trends for peak 

cadence indicators from a limited number of observational studies, with the authors 

acknowledging that the state of the evidence was immature. All three reviews39,41,42 

called for future research to further establish normative data for free-living cadence-based 

metrics based on large and diverse samples. Reported limitations of using cadence-based 

metrics to represent free-living PA patterns include the inability to quantify non-

ambulatory PA and the misrepresentation of brief movement patterns (e.g., a cadence of 

100 steps/min maintained for 30 seconds) when analyzing cadence using 1-minute 

epochs of step accumulation.41,42 The use of 1-minute epochs was conversely justified for 

the discrimination of sporadic movements from the persistent patterns of purposeful 

walking or running.41 The observational studies of free-living cadence patterns 

summarized in these reviews demonstrate the feasibility and utility of using cadence-

intensity research in PA measurement applications. 

2.4.4.2. Cadence-Based Intervention Studies 

Three methods for implementing and monitoring cadence-based 

recommendations in interventions were discussed across the three studies: 1) counting 

aggregated steps in a continuous walking bout and dividing by time elapsed,39,41,42 2) the 

use of RAC to entrain cadence, 39,41,42 and 3) monitoring instantaneous (i.e. “real-time”) 

cadence with accelerometer-based technologies.42 In the first review by Tudor-Locke & 

Rowe42 only one PA intervention was identified that monitored cadence, and this 

intervention resulted in an improved heart rate response to exercise. The next review 

published by Slaght et al.39 included two interventions, both of which found that groups 

provided with recommendations pertaining to both volume of steps (steps/day) and 
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cadence (implemented with the aggregated steps divided by time method) had a 

significantly greater increase in moderate-to-vigorous intensity physical activity (MVPA) 

accumulated in >10-min bouts, as compared to a groups with step volume 

recommendations alone. In the most recent review by Tudor-Locke et al.,41 five PA 

intervention studies including cadence recommendations (also implemented by 

aggregating a number of pedometer-counted steps in a certain length of time) were found 

to generally increase participants’ speed of walking and engagement in continuous bouts 

of PA, but not to increase daily step counts or time in MVPA. Additionally, the review 

identified four intervention studies using cadence-based metrics to analyze accelerometer 

data that together provided preliminary evidence that cadence-based metrics are readily 

sensitive to change in PA interventions. 

Although nine cadence-related intervention studies were ultimately identified in 

the most recent review, Tudor-Locke et al.41 reported that these interventions had a 

generally high risk of bias (i.e., flaws in their design, conduct, or analysis that could lead 

to systematic error in their results144). Both this review and that by Slaght et al.39 stated 

that more high-quality intervention studies are still needed to establish effective strategies 

for implementing cadence-based recommendations and determining their long-term 

effects on MVPA. For example, none of these previous intervention studies have 

attempted to use RACs or “real-time” monitoring of cadence to implement cadence 

recommendations. Strengths of using cadence metrics instead of accelerometer activity 

counts as an indicator of metabolic intensity in PA interventions were listed and included: 

1) accessibility and ease of prescribing and measuring cadence, 2) capability for 

monitoring “real-time” cadence for instantaneous feedback and modification of PA 
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metabolic intensity, 3) simplicity of cadence for facilitating the translation of knowledge 

to the public, and 4) the ability to combine steps/day, cadence indices, and time at zero 

cadence to comprehensively monitor PA volume, intensity, and sedentary time.39,41,42 

Thus, these review articles collectively summarize preliminary evidence demonstrating 

the potential for using cadence-based recommendation as an efficacious method for 

prescribing and monitoring walking intensity in PA interventions. 

2.4.4.3. Laboratory-Based Studies of Cadence 

Each of these review articles presented their own syntheses of contemporary 

publications examining the relationship between cadence and metabolic intensity under 

controlled conditions, similar to that previously discussed in detail herein. The initial 

review by Tudor-Locke & Rowe42 aggregated data from five laboratory-based 

studies27,31,33,36,40 that quantified the cadence-intensity relationship in ostensibly healthy 

adults and reported the overall linear correlation to be very strong (r = 0.93). All studies 

that were identified also consistently supported 100 steps/min as a reasonable heuristic 

(i.e., evidence-based, practical, rounded value) threshold indicative of absolutely-defined 

moderate intensity walking.42 This 100 steps/min heuristic threshold for 3 METs (in 

ostensibly healthy adults) was also consistently supported in the later review by Slaght et 

al.,39 and again in the most recent review by Tudor-Locke et al.41 which ultimately 

included nine pertinent laboratory-based studies.27,31,33-36,40,43,135 As previously discussed 

and shown in Table 2, Tudor Locke et al.41 found that moderate intensity cadence 

thresholds not in concurrence with the 100 steps/min heuristic were only reported in a 

study conducted with unilateral transtibial amputees (threshold of 86 steps/min)37 and a 

study where moderate intensity was differentially defined as 40% of VO2reserve (threshold 
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of 115 steps/min).38 Tudor-Locke et al.41 also cited the results of three studies27,40,43 that 

suggested 130 steps/min may be a reasonable heuristic cadence threshold for absolutely-

defined vigorous intensity walking. 

Although consistent evidence was reported for these heuristic cadence thresholds, 

all three review articles acknowledged substantial inter-individual variability in the 

cadence-intensity relationship. The initial review by Tudor-Locke & Rowe42 attributed 

this unexplained variability to differences in age and stature. In addition, Slaght et al.39 

stated that other variables, such as BMI and biomechanically-focused factors (e.g., sway, 

balance, plantar pressure parameters, stance time, etc.), need to be examined in order to 

adequately individualize cadence thresholds for walking at desired intensities. The 

authors strongly supported considering such variables by reporting that only 45% of 

adults in the study by Marshall et al.33 reached 3 METs when walking at 100 steps/min as 

well as citing three studies35,38,145 to support that a cadence threshold greater than 100 

steps/min may be needed for older adults to reach absolutely-defined moderate intensity. 

The most recent review by Tudor-Locke et al.41 conversely concluded that there was not 

enough evidence to suggest that older adults need higher cadences to reach a given level 

of absolute intensity. This section of their review included two of the three studies35,38 

that were originally cited by Slaght et al.39 The age-related study145 not included by 

Tudor-Locke et al.41 reported that older adults had higher cadences during normal 

walking cadence and in free-living, but metabolic intensity was not actually measured. Of 

the two studies of older adults cited by Tudor-Locke et al.,41 one38 concluded that a 

higher cadence threshold (115 steps/min) was associated with relatively-defined 

moderate intensity (40% VO2reserve). A personal communication between Tudor-Locke 
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and co-authors on the other study35 revealed that the exact cadence threshold indicated by 

the data was 99/steps/min.41 Despite stating that there was not enough current evidence to 

suggest an effect of age and recognizing the validity and utility of single heuristic 

cadence thresholds for translating public health guidelines, Tudor-Locke et al.41 still 

acknowledged notable inter-individual variability in the cadence-intensity relationship. 

The authors recommended considering stature-related variables to individually calibrate 

cadence-based recommendations. In summary, all three reviews identified ≥100 

steps/min as a reasonable heuristic value for absolutely-defined moderate intensity 

walking, but also recognized a need for future research to further individualize cadence-

based recommendations. 

2.4.5. Summary of Cadence and Metabolic Intensity 

Although there is extensive literature modeling the speed-intensity relationship, 

there are a limited number of publications quantifying the relationship between walking 

cadence and intensity. Articles aiming to determine cadence thresholds associated with 

absolutely-defined moderate and vigorous intensity have wide ranges in values (74-117 

steps/min and 120-173 steps/min respectively; Table 2). When considering only such 

studies that included young and ostensibly healthy adults (Table 1), most 3 MET cadence 

thresholds are 100 ± 8 steps/min27-29,36,40,43 and most 6 MET cadence thresholds are 135 ± 

15 steps/min.27,29,40,43 The variability in cadence thresholds thus tends to be dramatically 

lower within this limited population. The protocols of studies examining the relationship 

between cadence and absolutely-defined intensity have included treadmill and 

overground walking (Table 1) with only two studies28,31 including speeds as slow as 30 

m/min (1.1 mph). No trends in cadence thresholds appear to be related to these 
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differences in metabolic testing protocols. In the two studies33,43 using ROC analysis, the 

reported cadence thresholds appear to be greater than those derived from the remaining 

studies that used various forms of regression analysis (Table 2). Even when applied to the 

same data, the use of different statistical analyses (i.e., ROC versus regression analysis,33 

standard versus mixed modeling,33 or linear versus nonlinear regressions27) result in 

different values and thus influence variability in cadence thresholds. It is therefore 

important for future studies choosing regression analysis to use a curvilinear model to 

represent the cadence-intensity relationship27-29,31 and mixed modeling when testing 

statistical hypotheses and assessing p-values.141 

The one study36 conducted during overground walking with cadence constrained 

using RAC reported relatively high cadence thresholds for attaining 3 and 6 METs (Table 

2). This finding is unexpected given that the metabolic intensity of walking has shown to 

increase when gait parameters are constrained.47,48 Still, this reduced metabolic intensity 

could be the result of decreases in walk ratio, step length, and thus walking speed at a 

given cadence, as previously reported during RAC-constrained walking.45-47 In addition, 

all of the remaining studies28,30,31,43 conducted during overground walking constrained 

speed. More research is therefore needed to further investigate the cadence-intensity 

relationship during overground cadence-constrained and unconstrained walking. 

Of the anthropometric and demographic predictor variables considered in studies 

of the cadence-intensity relationship, there is the strongest evidence for an influence of 

height and leg length. Taller individuals were again found to select greater step lengths, 

leading them to walk with a lower cadence at a given speed,27,36 and resulting in lower 

cadence thresholds needed for them to attain levels of absolutely-defined intensity.28-
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31,35,36,38 Fewer studies have investigated an influence of BMI when examining the 

cadence-intensity relationship. Those reporting a statistically significant effect have only 

shown weak and possibly confounded evidence,31,34,38 while others have reported no 

influence of BMI.28,33 Studies including adults with disabilities have relatively 

consistently reported lower cadence thresholds associated with 3 METs (74-96 steps/min 

in men, 80-102 steps/min in women),28-30,37 indicating that disability status is an 

important predictor of walking intensity in special populations. Articles27,33,36,40,43 that 

performed sex-specific analyses have also consistently reported that women exhibit 

greater cadences associated with levels of absolutely-defined intensity. Still, such 

differences are likely attenuated after controlling for height.23,36,75 Finally, an influence of 

age on cadence thresholds for absolutely-defined intensity may exist in older adults,35 but 

more evidence is needed to establish this relationship. 

Three review articles39,41,42 have attempted to summarize the results of 

observational, intervention, and laboratory-based studies that examined walking cadence. 

The observational studies they included demonstrate the feasibility and utility of using 

cadence-intensity research in PA measurement applications.41,42 Still, all three 

reviews39,41,42 call for further research to establish normative values for free-living 

cadence-based metrics. Similarly, preliminary evidence was summarized for the efficacy 

of using cadence-based recommendations to prescribe and monitor walking intensity in 

PA interventions, but more high-quality intervention studies are reportedly needed.39,41 

Finally, laboratory-based studies have consistently supported ≥100 steps/min to be a 

reasonable heuristic cadence threshold indicative of moderate intensity walking in 

ostensibly healthy adults. As substantial inter-individual variability was consistently 
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observed in the cadence-intensity relationship, all review articles called for future 

research that advances the individualization of cadence-based recommendations through 

the inclusion of additional predictors.39,41,42 
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CHAPTER 3 

METHODS 

 The purpose of this thesis was to develop metabolic equations that predict 

metabolic intensity (oxygen consumption; mL/kg/min) from cadence using a large 

treadmill walking dataset (Study One) and cross-validate these equations during 

overground unconstrained and cadence-constrained walking conditions (Study Two). 

More specific objectives included to: 1) develop a metabolic equation that uses cadence 

as the only predictor (a simple equation), 2) develop a metabolic equation that uses 

cadence and the possible additional predictors of height, leg length, body mass, BMI, 

percent body fat, sex and age (a full equation), and 3) cross-validate these cadence-based 

metabolic equations under different walking conditions (i.e., overground unconstrained 

walking and overground cadence-constrained walking) in an independent sample. 

 This thesis comprises secondary data analyses from two datasets. The cadence-

based metabolic equations were developed in Study One using a dataset that included a 

larger, more representative sample of adults across the lifespan (21 to 85 years of age). 

As this dataset was collected during treadmill walking, the cadence-based metabolic 

equations were cross-validated under different walking conditions in Study Two using a 

dataset collected with a separate, smaller sample of adults (21 to 40 years of age) during 

overground unconstrained and cadence-constrained walking. The methods used in Study 

One and Study Two are described in sections 3.1 and 3.2, respectively. 

3.1. Study One: Development of Cadence-Based Metabolic Equations 

 Study One, involving the development of simple and full cadence-based 

metabolic equations, was a secondary analysis of the data collected as part of the 
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NIH/NIA funded R01 CADENCE-Adults Study (NCT02650258). Results for the primary 

aim of the CADENCE-Adults Study are published elsewhere.146 

3.1.1. Participants 

 The CADENCE-Adults Study had a planned enrollment of 260 ostensibly 

healthy, ambulatory adults. This sample was intended to be age- and sex-balanced by 

including 10 men and 10 women from each 5-year age group between 21-85 years of age 

(e.g., 21-25 years, 26-30 years, etc.). Data collection was divided into three cohorts for 

logistical purposes over a number of years: Cohort 1 (adults 21-40 years old; n = 80) was 

completed in 2016,146 Cohort 2 (adults 41-60 years old; n = 80) was completed in 2017, 

and recruitment and testing for Cohort 3 (adults 61-85 years old; n = 100) was planned 

for completion in 2019. All data available prior to March 1, 2019 were included in the 

analyses herein. All procedures were approved by the University of Massachusetts 

Amherst Institutional Review Board, and all participants read and signed informed 

consent documents. 

 Exclusion criteria for the Cohort 1 participants were: use of a wheelchair, having 

other impairments that prevented normal ambulation, BMI <18.5kg/m² or >40kg/m², 

current tobacco use, stage 2 hypertension, previous history of cardiovascular disease or 

stroke, conditions or medications that could affect heart rate response to exercise, 

pacemakers or other implanted medical devices, hospitalization for mental illness within 

the previous 5 years, and pregnancy. Exclusion criteria for participants in Cohorts 2 and 3 

additionally included: dizziness or balance impairment at rest or with exercise, shortness 

of breath at rest or during mild exertion, treatment for kidney disease with dialysis, severe 
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liver damage, chronic lung problems that made it difficult to breathe, and treatment of 

cancer with chemotherapy that affected breathing or heart rate. 

3.1.2. Measures 

Biological sex and age were self-reported. Standing height was measured to the 

nearest 0.1 cm with a wall-mounted stadiometer (ShorrBoard Portable Height-Length 

Measuring Board; Weigh and Measure LLC, Olney, Maryland USA). Seated height was 

also measured with a stadiometer to the nearest 0.1 cm while participants were seated on 

a bench with legs and hands hanging freely. Seated height reflects the difference between 

the floor-to-crown measure and the static height of the bench. Leg length was then 

calculated by subtracting seated height from standing height. Body mass was measured to 

the nearest 0.1 kg using a Tanita scale (DC-430U; Tanita Corporation, Tokyo, Japan). 

BMI was then derived by dividing body mass by height squared (kg/m2). Percent body fat 

was also measured by the Tanita scale using bioelectrical impedance analysis, a purpose 

for which it has previously been validated.147 All measures were performed twice, and if 

values differed by ≥0.3 cm for height or ≥0.1 kg for body mass, a third measure was 

taken. The two closest measurements were then averaged. 

Metabolic intensity was determined using a portable indirect calorimeter (Jaeger 

Oxycon Mobile; CareFusion BD Germany 234 GmbH, Höchberg, Germany) which has 

been previously validated against the Douglas bag methods.148 The indirect calorimeter 

was calibrated as recommend by the manufacturer prior to each data collection session. 

Oxygen consumption (VO2; mL/kg/min) measures were collected breath-by-breath and 

transmitted to the Oxycon Mobile receiver unit connected to a laptop, with which values 
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were monitored during testing. A self-reported rating of perceived exertion (RPE) was 

also evaluated in the final minute of each walking bout using the Borg Scale.149 

For a criterion measure of steps (direct observation), a researcher counted the total 

steps taken in each walking bout using a hand-tally counter. High agreement (intraclass 

correlation 0.96-1.0) between hand-counted step counts of two observers has been 

reported previously.150,151 In addition to this real-time count, a video camera was aimed at 

the feet of participant during each bout for backup recording of hand-counted steps. The 

speed output by the treadmill was used to determine walking speed. 

3.1.3. Metabolic Testing Procedure 

 Participants arrived at the laboratory after having fasted for at least four hours. 

Before beginning the protocol, they sat in a chair stationed on the treadmill for a 

minimum of five minutes and stood for at least two minutes in order to establish baseline 

oxygen consumption. Participants then began the treadmill walking protocol by walking 

for five-minute bouts at 0% grade, each separated by at least two minutes of standing 

rest. The treadmill speed of the first bout was set at 13.4 m/min (0.5 mph) and the speed 

of each subsequent bout increased in 13.4 m/min increment. The test was terminated 

following the completion of a bout where participants: 1) naturally selected to run, 2) 

attained a heart rate ≥75% of their age predicted heart rate maximum (220-age), 3) 

indicated a Borg RPE >13, or 4) chose to stop the protocol. The protocol could also be 

terminated if research staff were concerned for the participant’s safety. 

3.1.4. Data Processing 

 Metabolic data for each participant were downloaded from the memory storage 

card located directly in the data exchange unit of the Oxycon Mobile. These data and all 
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values of hand-counted steps were then imported into MATLAB (The MathWorks, 

Natick, MA) for initial data processing and management using custom scripts. The 

metabolic intensity of each five-minute bout was calculated as the average VO2 during 

minutes 2:45-4:45. Hand-counted steps were divided by bout duration in minutes (hand-

count / five minutes) for the criterion measure of cadence. These data and all participant 

characteristic data were exported from MATLAB for conducting the secondary analyses 

conducted herein. 

3.1.5. Statistical Analysis 

 All statistical analyses were performed using R-Studio (version 3.5.1, R 

Foundation for Statistical Computing, Vienna, Austria). Statistical significance was set at 

α ≤0.05. 

Aim 1: Determine if a linear or curvilinear model more accurately describes the 

relationship between cadence and metabolic intensity of treadmill walking, using data 

previously collected from a large sample of men and women across the adult lifespan. 

H1: A curvilinear (quadratic) model will fit the cadence-intensity relationship 

significantly better than a linear model. 

The model that best fits the cadence-intensity relationship should describe the 

within-person pattern of change in VO2 with changes in cadence.142 Thus, the cadence 

(explanatory variable) and VO2 (outcome variable) relationship was first plotted for 

participants individually. Visual inspection of these plots provided a preliminary 

evaluation of the linearity of the cadence-intensity relationship. A likelihood-ratio test 

was then performed to test for significant differences in the goodness-of-fit of a linear 

(VO2 = α + β•[cadence]; null hypothesis) versus quadratic (VO2 = α + β•[cadence] 
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+ λ•[cadence]2
 ; alternative hypothesis) model. This use of a linear or quadratic model 

aligns with those used in previous studies of the cadence-intensity relationship.27-31,33,35-

37,40 Because multiple bouts performed by each participant were included in the data (i.e., 

data points were not independent), the models entered into this likelihood-ratio test were 

developed using mixed modeling with random intercepts.141 This regression modeling 

analysis allowed intercept coefficients (α) to vary between participants, thus accounting 

for the non-independence of data (e.g., inter-individual variability in the cadence-

intensity relationship) when testing statistical hypotheses with the model.142 Random 

intercept models were developed in R using the ‘lmer()’ function of the ‘lme4’ package. 

Aim 2: To develop simple and full cadence-based metabolic equations by calibrating 

regression models that predict metabolic intensity of treadmill walking, using the data 

from this same large sample of men and women across the adult lifespan. 

H2.1: Cadence alone will be a significant predictor of metabolic intensity in the simple 

equation, with root mean square error (RMSE) and mean absolute error (MAE) 

values ≤1 MET when cross-validated within the original sample. 

H2.2: The full equation will minimally include the additional predictor of leg length, 

which will result in increased predictive accuracy. 

The simple cadence-based metabolic equation was derived by fitting the least 

squares regression model that predicted VO2 from cadence. Although mixed modeling 

was used to account for the non-independence of data in the likelihood-ratio test, the 

simple cadence-based metabolic equation was derived by fitting a standard regression 

model. Mixed modeling was necessary when testing statistical hypotheses and evaluating 

models to account for the data having inter-individual and intra-individuals variability.142 
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Standard regression modeling was used to develop the cadence-based metabolic 

equations because: 1) they were used for predictions and not in hypothesis testing, 2) the 

use of standard regression did not have a large influence on the equation coefficients, and 

3) it enabled the full equation to be developed with the model selection procedures 

discussed below. The simple cadence-based metabolic equation was therefore derived by 

using the ‘lm()’ function of the ‘stats’ package in R to fit a standard least squares 

regression model, with the form (linear or quadratic) determined in Aim 1, to the data of 

all participants. The full cadence-based metabolic equation was subsequently developed 

using best subsets regression analysis. This method of model development considers 

every model possible with the specified predictors and selects that with the greatest 

goodness-of-fit.152 Best subsets regression has shown to produce prediction models that 

out-perform those developed using stepwise regression procedures.153 Although 

goodness-of-fit can be evaluated by common criteria such as R2 and residual sum of 

squares, these measures of the model’s fit to the training (i.e., calibration) dataset may not 

reflect its error in a separate testing dataset, which can result in overfitting.154 In contrast, 

the predicted residual sum of squares (PRESS) statistic represents the error of a model 

during cross-validation, where data are divided into separate model training and model 

testing datasets, and better indicates the testing (i.e., predictive) error of a model.152 The 

PRESS statistic was therefore the most appropriate selection criteria for deriving an 

equation for the purpose of predictions.155 Thus, the full-cadence based metabolic 

equation was derived through best subsets regression analysis with the PRESS selection 

criterion, using the ‘bestglm()’ function of the ‘bestglm’ package in R. Height, leg length, 

body mass, BMI, percent body fat, sex and age (main effects and two-way interactions) 
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were included as candidate predictor variables. The resulting full cadence-based 

metabolic equation was then tested for collinearity between its predictor variables by 

ensuring that all variance inflation factors were <10.156 

To obtain an unbiased evaluation of the predictive accuracies of the cadence-

based metabolic equations,152 repeated k-fold cross validation (k = 5, 10 repetitions) was 

performed with the original treadmill-based calibration dataset. In this cross-validation 

technique, participants were first randomly allocated to five groups (folds). The cadence-

based metabolic equation being tested was then trained with participants’ data from four 

of the five folds. The remaining data fold then served as the testing data set. Specifically, 

participants’ cadence data from the remaining fold was inserted into the model and the 

equations measures of predictive error were calculated (specific measures discussed in 

section 3.1.4.1). Four more repetitions of this sequence of training and testing the 

equation was performed so that ultimately all folds served as the testing dataset at one 

point during the process. Randomization of participants to folds and equation training and 

testing were then repeated for nine more repetitions, and accuracy and bias measures 

were averaged across folds and repetitions. This k-fold cross-validation process was 

performed for both cadence-based metabolic equations using custom R scripts. 

The predictive capacity of the ACSM Metabolic Equation was also evaluated 

using the treadmill walking metabolic data. Because the method of cross-validation 

influences the predictive error values observed,157 directly applying this equation to the 

data would not produce results that could be compared with the k-fold cross-validated 

RMSE, MAE, and bias values of the simple and full cadence-based metabolic equations. 

Therefore, k-fold cross-validation (with k = 5 and 10 repetitions) was similarly used to 
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test the ACSM Metabolic Equation. Specifically, the sample was divided into testing and 

training folds in the same manner. Then, instead of calibrating a regression on the 

training folds, the ACSM Metabolic Equation was applied to each testing fold within 

each repetition. 

3.1.5.1. Predictive Error Measures 

 The performance of the simple and full equations and ACSM Metabolic Equation 

were evaluated with several different measures of predictive error. These predictive error 

measures can first be categorized as unscaled or scaled. Unscaled measures of predictive 

error (root mean square error [RMSE], mean absolute error [MAE], and bias) are 

expressed in the original units of VO2 (mL/kg/min) because they were calculated using 

error values calculated as follows: measured VO2 - predicted VO2. Unscaled predictive 

error measures are also presented in METs (1 MET = 3.5mL/kg/min) and were included 

because their units allow unscaled values to be easily interpreted. To further illustrate 

their practical significance, unscaled predictive error measures were also converted to 

kcals/hr (1 MET = 1 kcal/kg/hr) using sex-specific US average body mass values (88.8 

kg for men and 76.4 kg for women).94  

Scaled measures of predictive error (root mean square percentage error [RMSPE], 

mean absolute percentage error [MAPE], and percent bias) are expressed as percentages 

because they were calculated using error values calculated as follows: (measured VO2 - 

predicted VO2) / measured VO2. Scaling predictive error measures (i.e., making them 

relative to the measured VO2 value) can be beneficial because it contextualizes error 

values with the intensity at which they were observed. For example, an unscaled error of 

1 MET may have different implications if observed when walking at 3 METs (scaled 
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error = 33%) versus when exercising at 10 METs (scaled error = 10%). As this example 

demonstrates, an unscaled error value equates to a lower scaled value if is observed at a 

higher intensity versus at a lower intensity.158 

These unscaled and scaled measures also both included are measures of bias and 

measures of accuracy. Bias (bias/percent bias) is used to indicate the direction of error,158 

where the calculation of bias used herein (measured VO2 - predicted VO2) results in 

positive bias values for underpredictions and negative bias values for overpredictions. 

However, the summation of positive and negative bias values can result in a mean bias 

that is lower than the individual error values. For example, if a metabolic equation 

underpredicts intensity by 0.5 METs in one bout (bias = 0.5 METs) and then overpredicts 

intensity by 0.5 METs in the next bout (bias = -0.5 METs) the mean bias will be zero 

([0.5 METs + -0.5 METs] / 2 = 0 METs). For this reason, measures of accuracy 

(RMSE/RMSPE and MAE/MAPE) were also calculated. Accuracy reflects the overall 

difference between measured and predicted values158 by making all error values positive 

(either by using their absolute values [MAE/MAPE] or squaring them [RMSE/RMSPE]) 

and then calculating their average. 

Lastly, there are differences between the two measures of predictive accuracy that 

were evaluated. Because MAE/MAPE is simply calculated by averaging the absolute 

values of error, it gives each error value equal weight. Because RMSE/RMSPE is 

determined by squaring error values, averaging them, and then calculating the square 

root, this measure of accuracy gives errors with a greater absolute value more weight than 

those with smaller absolute values.159,160 It has been recommended that studies report 

both MAE/MAPE and RMSE/RMSPE when evaluating predictive error.159 However, 
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MAE was used as a direct reflection of the average error of metabolic equations (whereas 

RMSE can be greatly influenced by outliers).159,160 

3.2. Study Two: Cross-Validation of Cadence-Based Metabolic Equations 

 In Study Two, the simple and full cadence-based metabolic equations developed 

in Study One were cross-validated using an independent dataset representing 

unconstrained and cadence-constrained overground walking conditions that were 

collected in 2017. A publication reporting the results of the study for which this dataset 

was originally collected was in preparation at the time of this analysis. The purpose of 

this secondary analysis was distinct from that of the original study. 

3.2.1. Participants 

 A sample of 10 men and 10 women 21-40 years of age were recruited for the 

original study. Exclusion criteria for these participants were the same as those for Cohort 

1 of the CADENCE-Adults study (see section 3.1.1.) 

3.2.2. Measures 

 The following measures were obtained for each participant using the same 

equipment and protocols as described above (section 3.1.2.): age, sex, height, leg length, 

body mass, BMI, and percent body fat. The same methods discussed previously were also 

used to measure oxygen consumption, heart rate, RPE, and hand-counted steps (with 

redundant video recording) during metabolic testing. Overground walking speed was 

determined using a portable, pressure-sensitive electronic walkway (GAITRite, CIR 

Systems, Inc., Franklin, NJ, USA), which has been validated against video-based and 

manual (i.e., dividing a measured distance by the time it takes to walk that distance) 

measures of walking speed (intraclass correlations of 0.96 and 0.95, respectively).161 This 
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7 m long, 0.9 m wide electronic walkway was placed on a straightaway of the walking 

course (described later), and speed was averaged over multiple crossings performed by 

participants during each trial. 

3.2.3. Metabolic Testing Procedure 

 The metabolic testing procedure of the original study consisted of three bouts of 

unconstrained overground walking (self-selected slow, normal, and fast walking paces) 

and three bouts of cadence-constrained overground walking with foot-strikes entrained to 

the tempos of music (80, 100, and 125 beats/min). A single song (‘Staying Alive’ by the 

BeeGees) was used for constraining cadence in all trials, with its tempo modulated to the 

desired beats/min using the Tempo Magic (Lolo, LLC) smartphone app. This app 

adjusted the tempo of a song while attenuating changes in pitch, thus controlling for 

potential changes in physiological measures due to song- or pitch-specific responses. 

Participants again arrived at the laboratory after fasting for at least four hours. 

Before beginning metabolic testing, they were briefly orientated to the task of walking 

with a cadence constrained to the tempo of music. To do so, music was played through a 

pair of wireless Bluetooth headphones (Mpow 059, Bluetooth Headphones Over Ear, 

Cheung Sha Wan, Hong Kong) fitted over participants’ ears. They were instructed to 

walk “as normally as possible” during cadence-constrained trials with foot-strikes 

synchronized with the music tempo. A researcher then counted (from one to four) in time 

with the song tempo to indicate when foot-strikes were intended to occur and visually 

demonstrated the synchronization of cadence to the music. 

Prior to overground walking trials, participants completed a five-minute seated 

rest period followed by two minutes of standing rest. They then performed three trials of 



86 

 

unconstrained overground walking at their self-selected slow, normal and fast paces (in 

that order) followed by three trials of walking with cadences constrained to song tempos 

of 80, 100, and 125 beats/min (in a randomized order). The unconstrained walking trials 

were performed in an incremental order to facilitate the intended increases in self-

selected pace. However, increases in cadence during cadence-constrained walking have 

shown to produce smaller increases in walking speed (due to smaller increases in step 

length) than with the same increases in cadence during treadmill or unconstrained 

overground walking.45-47 The order of cadence-constrained walking trials was therefore 

randomized to elicit the naturally selected walking speed with each song tempo, without a 

consistent influence of trial order. Each trial was separated by five minutes of rest that 

began after participants returned to a standardized starting location. The course around 

which participants walked consisted of a 40 m indoor loop in a large, uncarpeted room. 

The corners of the loop were curved to minimize potential effects of turning on walking 

parameters and participants walked over the GAITRite electronic walkway along one of 

the two straightaways located on the loop’s two longer sides. 

3.2.4. Data Processing 

Initial data processing and management were conducted in MATLAB using 

custom scripts. Similar to Study One, metabolic intensity was calculated as the average 

VO2 during minutes 2:45-4:45 of each trial and hand-counted steps were divided by trial 

duration to determine cadence. Walking speed was averaged across all crossings of the 

GAITRite electronic walkway. All VO2, cadence, speed, and participant characteristic 

data were exported from MATLAB for the secondary analyses conducted herein. 
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3.2.5. Statistical Analysis 

Aim 3: To cross-validate these cadence-based metabolic equations across walking 

conditions (using previously collected unconstrained and cadence-constrained 

overground walking data) and compare their predictive accuracies to that of the ACSM 

metabolic equation. 

H3.1: The cadence-based metabolic equations will remain valid for overground 

unconstrained walking with RMSE and MAE values ≤1 MET, but underpredict the 

metabolic intensity of overground cadence-constrained walking. 

H3.2: The cadence-based metabolic equations will have greater predictive accuracies 

than the ACSM metabolic equation. 

 To cross-validate the simple and full cadence-based metabolic equations 

developed in Study One, their ability to predict the metabolic intensity of overground 

unconstrained and cadence-constrained walking was evaluated. Each equation was used 

to determine a predicted value of VO2 for each of these overground walking trials by 

inputting hand-counted cadences and (for the full equation) the respective participant 

characteristics. The ACSM Metabolic Equation (Eq.1) was also used to predict VO2 of 

unconstrained and cadence-constrained walking trials by inputting 0% for grade and the 

walking speeds measured with the GAITRite electronic walkway. The predictive 

accuracy of each metabolic equation was then evaluated by comparing predicted VO2 

values to those measured through indirect calorimetry, and calculating RMSE, RMSPE, 

MAE, and MAPE. Predictive bias (measured - predicted VO2) and percent bias was also 

calculated to determine direction of error. Each metric was determined separately for 

each metabolic equation and walking trial. Predictive accuracy and bias measures were 
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compared between unconstrained and cadence-constrained walking by averaging values 

across trials within each walking condition. Predictive error values were also converted to 

kcals/week (1 MET = 1 kcal/kg/hr) using sex-specific US average body mass values 

(88.8 kg for men and 76.4 kg for women)94 to further depict their practical significance. 

Systematic bias in metabolic equation predictions and their agreement with 

criterion-measured VO2 was also evaluated using Bland-Altman analysis, where the bias 

(i.e., error) for each prediction of metabolic intensity was plotted against the average of 

the predicted and criterion-measured VO2.
162,163 Modified Bland-Altman plots, where 

bias was plotted against criterion-measured (instead of the average of predicted and 

measured) VO2, were used to confirm any observed trends (e.g., increasing bias with 

increasing VO2). This method was not used for the primary analyses, however, because 

these modified Bland-Altman plots will always appear to show a relation between bias 

and measurement magnitude.164 When calculating 95% confidence intervals for bias and 

95% limits of agreement, the necessary modifications were applied to account for 

repeated measures.165 
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CHAPTER 4 

RESULTS 

4.1. Study One: Development of Cadence-Based Metabolic Equations 

At the time of this secondary analysis (March 2018), data collection for the 

CADENCE-Adults Study was still ongoing. The results presented herein are 

representative of the 197 participants with completed data as of that time. 

4.1.1. Analytic Sample 

 Data collected for four participants were invalid due to equipment malfunctions. 

The remaining 193 participants were included in the analyses. The analytical sample was 

comprised of 76 adults from Cohort 1 (21-40 years of age), 80 adults from Cohort 2 (41-

60 years of age) and 37 adults from Cohort 3 (61-85 years of age). The characteristics of 

these participants are further detailed in Table 3. A total of 1456 treadmill walking bouts 

conducted at speeds of 13.4-134.1 m/min (0.5-5.0 mph) were available for analysis. 

Further details describing these treadmill walking bouts are provided in Table 4. 

Table 3: Study One Participant Characteristics. 

 All 

(N = 193) 

Cohort 1 

(n = 76) 

Cohort 2 

(n = 80) 

Cohort 3 

(n = 37) 

Female (%) 52% 50% 50% 62% 

Age 

(years) 

45.9 ± 15.2 

[21-81] 

30.4 ± 5.8 

[21-40] 

50.2 ± 5.9 

[41-60] 

68.5 ± 4.7 

[62-81] 

Height 

(cm) 

170 ± 9 

[149-194] 

171 ± 9 

[149-194] 

171 ± 9 

[150-190] 

166 ± 8 

[151-183] 

Body Mass 

(kg) 

74 ± 14 

[48-129] 

73 ± 14 

[52-119] 

76 ± 14 

[48-129] 

73 ± 13 

[48-103] 

BMI 

(kg/m2) 

25.6 ± 3.8 

[18.6-37.6] 

24.8 ± 3.4 

[19.4-36.9] 

26 ± 4 

[19.0-37.6] 

26.3 ± 3.9 

[18.6-36] 

Leg Length 

(cm) 

80.0 ± 5.4 

[65.7-94.5] 

79.7 ± 5.8 

[65.7-94.5] 

80.7 ± 5.2 

[66.6-92] 

79.2 ± 4.9 

[70.3-91.9] 

Body Fat 

(%) 

27.6 ± 8.8 

[5.2-50.7] 

24.7 ± 7.4 

[8.3-38.6] 

29.0 ± 8.5 

[5.2-47] 

30.7 ± 10.3 

[9.8-50.7] 

Values are presented as mean ± SD [range] 
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4.1.2. Development of Cadence-Based Metabolic Equations 

 Upon visual inspection, participant-level plots of the relationship between 

cadence and metabolic intensity consistently appeared to be curvilinear. This observation 

was confirmed by a likelihood-ratio test. Specifically, the quadratic model provided a 

significantly better fit to the cadence-intensity relationship than the linear model (p 

<0.0001), with marginal R2 values of 0.81 and 0.65, respectively. A quadratic cadence 

term was therefore included in all further models of the cadence-intensity relationship. 

 Fitting a maximal likelihood regression model for predicting oxygen consumption 

(VO2; mL/kg/min) from cadence (C; steps/min) resulted in the following simple cadence-

based metabolic equation: 

VO2 = 13.93 + [-0.25*C] + [0.0022*C2] Eq. 2 

In this equation, cadence alone was a significant predictor of metabolic intensity of 

walking (p <0.0001). Figure 1A shows the fit of the simple cadence-based metabolic 

equation to the treadmill walking metabolic data collected herein. The results of k-fold 

Table 4: Treadmill Walking Bout Descriptions. 

Speed 
n Bouts 

Completed 

VO2 

(mL/kg/min) 

Cadence 

(steps/min) 

Step Length 

(cm) 

13.4 m/min [0.5 mph] 193 7.3 ± 1.2 52 ± 17 28.2 ± 7.4 

26.8 m/min [1.0 mph] 189 8.2 ± 1.2 70 ± 12 39.2 ± 6.2 

40.2 m/min [1.5 mph] 189 9.1 ± 1.2 85 ± 10 47.8 ± 4.8 

53.6 m/min [2.0 mph] 188 10.1 ± 1.1 97 ± 8 55.8 ± 4.2 

67.1 m/min [2.5 mph] 187 11.6 ± 1.3 106 ± 7 63.6 ± 3.9 

80.5 m/min [3.0 mph] 184 13.9 ± 1.5 114 ± 7 70.9 ± 4.0 

93.9 m/min [3.5 mph] 167 17.0 ± 1.9 121 ± 7 77.9 ± 4.5 

107.3 m/min [4.0 mph] 116 21.3 ± 2.4 129 ± 8 83.5 ± 4.9 

120.7 m/min [4.5 mph] 38 26.7 ± 3.6 138 ± 9 87.9 ± 5.4 

134.1 m/min [5.0 mph] 5 31.1 ± 3.8 145 ± 9 92.4 ± 5.4 

Values are presented as mean ± SD unless otherwise noted 
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cross-validation with the simple cadence-based metabolic equation in these data are 

presented in Table 5. 

The performance of best-subsets regression analysis additionally included the 

predictors of sex (Sex; equal to 1 for men and 0 for women), age (A; years), leg length 

(LL; cm), and BMI (BMI; kg/m2), as well as cadence’s interactions with leg length, sex, 

BMI, and age. This resulted in the following full-cadence based metabolic equation: 

VO2 = 10.15 + [93.45*C] + [73.78*C2] + [-0.08*LL] + [-1.01*Sex] + 

[0.08*Age] + [0.0016*C*LL] + [0.0163*C*Sex] + [-0.001*C*BMI] +  

[-0.0011*C*Age] 

Eq. 3 

All coefficients in this model had VIF values ≤5. In the k-fold cross-validation, the full 

cadence-based metabolic equation had a slightly (0.2 mL/kg/min) lower RMSE and MAE 

than the simple cadence-based metabolic equation and a similar magnitude of bias 

(difference <0.01 mL/kg/min). 

Figure 1: Fits of the Simple Equation (1A) and ACSM Metabolic Equation (1B) to 

the Treadmill Walking Data. 

Table 5: Predictive Error of the Metabolic Equations During Treadmill Walking.  

Equation RMSE* RMSPE MAE* MAPE Bias* % Bias 

Simple 2.5 ± 0.3 20 ± 2% 1.8 ± 0.2 14 ± 1% <0.1 ± 0.3 <1 ± 3% 

Full 2.3 ± 0.3 18 ± 2% 1.6 ± 0.2 13 ± 1% <0.1± 0.3 <1 ± 2% 

ACSM 4.2 ± 0.3 33 ± 1% 3.0 ± 0.2 24 ± 1% 3.0 ± 0.2 24 ± 1% 

Note: values determined through repeated k-fold cross-validation (k=5, 10 repetitions)  

Values are presented as mean ± SD 

*Units are mL/kg/min 

Figure 1A Figure 1B 
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 When the ACSM Metabolic Equation (Eq. 1) was applied to the treadmill walking 

dataset through k-fold cross-validation, it demonstrated greater predictive error than both 

cadence-based metabolic equations, especially in regard to bias (Table 5). Specifically, 

the ACSM Metabolic Equation’s RMSE, MAE, and magnitude of bias were greater than 

those of the simple equation by 1.7, 1.3, and 3.0 mL/kg/min, respectively, and those of 

the full equation by 1.9, 1.4, and 3.0 mL/kg/min, respectively. As shown by its fit to the 

treadmill walking data in Figure 1B and the Bland-Altman plot in Appendix A, the 

ACSM Metabolic Equation appeared to underpredict metabolic intensity of walking with 

increasing magnitude as walking speed increased. 

The kcal/hr equivalents of these predictive error values, when converted using 

average US body mass values (88.8 kg for men and 76.4 kg for women),94 are provided 

in Appendix B. The simple equation’s RMSE and MAE values were 64 and 45 kcals/hr, 

respectively, for the average American man, and 55 and 38 kcals/hr, respectively, for the 

average American women. The full equation had a 5 kcal/hr lower RMSE for both men 

and women and MAE values that were lower by 4 kcals/hr for the average American men 

and 3 kcals/hr for the average American women. With the ACSM Metabolic Equation, 

RMSE values for the average American man and woman (106 and 91 kcals/hr, 

respectively) were 36-47 kcal/hr greater than with the simple and full equations, and 

MAE values (77 and 66 kcals/hr, respectively) were greater by 28-36 kcals/hr. 

Additionally, while the biases of the simple and full equations were ~0 kcals /hr, the 

ACSM Metabolic Equation’s biases were equivalent to 75 and 64 kcal/hr for the average 

American man and woman, respectively. 
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4.2. Study Two: Cross-Validation of Cadence-Based Metabolic Equations 

 4.2.1. Analytic Sample 

 All data collected during overground unconstrained and cadence-constrained 

walking were valid for analysis. The study recruitment design was not intentionally age-

balanced and the 10 men and 10 women who participated tended to have ages in the ages 

in the younger end of the 21-40-year-old recruitment range (mean age = 23.7 years, age 

range = 21-29 years). The characteristics of this sample are reported in Table 6. All 

participants had complete data for each overground unconstrained and cadence-

constrained walking trial. 

Descriptions of the gait parameters and metabolic intensities observed during each 

of these trials are provided in Table 7. Increases in average VO2, speed, cadence, and step 

length were observed with each increase in self-selected pace during unconstrained trials 

and song tempo during cadence-constrained trials (Table 7). In addition, the MAPE 

values for the cadences observed during cadence-constrained walking, versus those  

representing perfect entrainment with the music tempos, were 7.5 ± 8.3%, 5.0 ± 4.1%, 

and 3.1 ± 2.4% for trials conducted at 80, 100, and 125 BPM, respectively. 

Table 6: Study Two Participant Characteristics. 

 

All 

(N=20) 

Men 

(n=10) 

Women  

(n=10) 

Age (years) 23.7 ± 2.7 [21-29] 22.7 ± 1.8 [21-27] 24.7 ± 3.1 [21-29] 

Height (cm) 173 ± 9 [161-195] 177 ± 8 [170-195] 168 ± 7 [161-181] 

Body Mass (kg) 72 ± 16 [50-115] 79 ± 18 [60-115] 64 ± 9 [50-78] 

BMI (kg/m2) 23.8 ± 3.9 [18.3-33.2] 24.8 ± 3.9 [19.9-33.2] 22.7 ± 3.7 [18.3-29.4] 

Leg Length (cm) 81.2 ± 5.7 [72.7-95.1] 83.9 ± 5.6 [77.9-95.1] 78.5 ± 4.5 [72.7-88.9] 

Body Fat (%) 23.5 ± 8.3 [6.4-35.7] 17.4 ± 6 [6.4-24.7] 29.6 ± 5.3 [20.2-35.7] 

Values are presented as mean ± SD [range] 
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4.2.2. Cross-Validation Across Walking Conditions 

The cadence-based metabolic equations developed in Study One were cross-

validated across walking conditions by applying them to the data collected during 

overground unconstrained and cadence-constrained walking trials. The ACSM Metabolic 

Equation was similarly applied to this data for comparison. The fit of the simple cadence-

based metabolic equation and ACSM Metabolic Equation to this data are shown in 

Figures 2A and 2B, respectively. Predictive error measures for these three equations are 

Table 7: Unconstrained and Cadence-Constrained Walking Trial Descriptions. 

Walking 

Condition Trial 

VO2 

(mL/kg/min) 

Speed 

(m/min) 

Cadence 

(steps/min) 

Step Length 

(cm) 

Unconstrained 

Slow 10.0 ± 1.5 56.1 ± 10.5 91.7 ± 9.3 60.3 ± 6.1 

Normal 12.4 ± 2.2 75.8 ± 9.0 107.0 ± 5.3 70.5 ± 6.4 

Fast 16.8 ± 2.9 97.1 ± 10.0 118.8 ± 6.8 81.7 ± 7.4 

Cadence-

Constrained 

80 BPM 10.9 ± 1.5 56.1 ± 10.6 86.0 ± 6.7 65.0 ± 8.1 

100 BPM 13.2 ± 1.9 77.1 ± 8.8 105.0 ± 4.1 73.3 ± 6.6 

125 BPM 17.8 ± 2.2 98.8 ± 8.6 125.4 ± 5.0 79.2 ± 7.9 

Values are presented as mean ± SD 

Figure 2: Fits of the Simple Equation (2A) and ACSM Metabolic Equation (2B) to 

the Overground Walking Data. 

CAD-CON = overground cadence-constrained; UNCON = overground unconstrained 

Figure 2A Figure 2B 
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compared between walking conditions in Table 8 and Figures 3A and B, and between 

individual overground walking trials in Table 9. 

4.2.2.1. Trends Between Walking Conditions 

To compare metabolic equation performance during unconstrained versus 

cadence-constrained walking, measures of predictive error were averaged across trials 

within each of these walking conditions. The resulting RMSE and MAE values for the 

simple and full cadence based metabolic equations were 1.7-2.5 mL/kg/min during both 

overground walking conditions (Table 8), which is equivalent to 44-62 and 37-54 kcal/hr 

for the average US man and women, respectively. These predictive error values were 

similar (0.3 mL/kg/min lower to 0.4 mL/kg/min higher) to those observed in Study One 

during treadmill walking (Figure 3A). Scaled measures of predictive accuracy for the 

simple and full equations were also similar between treadmill and overground walking 

conditions (≤4% differences in RMSPE and MAPE; Figure 3B). Whereas the cadence-

based metabolic equations had approximately no bias during treadmill walking, there 

were slight tendencies for the simple equation to underpredict (i.e., had positive bias 

values) and the full equation to overpredict (i.e., had negative bias values) walking 

intensity during both overground unconstrained and cadence-constrained walking (bias 

magnitudes ≤0.9 mL/kg/min and percent bias magnitudes ≤7%). When the ACSM 

Metabolic Equation was applied to the data collected during overground unconstrained 

and cadence-constrained walking, its RMSE and MAE values (2.2-3.3 mL/kg/min; 55-84 

and 48-73 kcal/hr for the average man and women, respectively) and magnitudes of bias 

(2.0-2.7 mL/kg/min; 51-69 and 44-59 kcal/hr for the average man and women, 

respectively) were consistently lower than during treadmill walking (Figure 3A).  
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Figure 3: Unscaled (3A) and Scaled (3B) Measures of Predictive Error for 

Metabolic Equations Walking. 

TM = treadmill; UNCON = overground unconstrained; CAD-CON = overground cadence-constrained 

Figure 3A 

Figure 3B 
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These differences in predictive error were slightly greater between treadmill and  

unconstrained (0.9-1.3 mL/kg/min) versus treadmill and cadence-constrained (0.2-0.9 

mL/kg/min) walking. Similar trends were observed when the ACSM Metabolic 

Equation’s predictive error was assessed using scaled measures, with RMSPE, MAPE, 

and percent bias values that were 8-11% lower during unconstrained and 4-10% lower 

during cadence-constrained walking, as compared to the treadmill walking condition in 

Study One. Therefore, there is no evidence that the cadence-based metabolic equations 

(and ACSM Metabolic Equation) had reduced predictive capacities when applied to the 

data collected during overground unconstrained or cadence-constrained walking. 

When comparing predictive accuracy between the two overground walking 

conditions, RMSE and MAE values were slightly greater during cadence-constrained 

walking for both cadence-based metabolic equations (by 0.1-0.3 mL/kg/min) and the 

ACSM Metabolic Equation (by 0.4-0.6 mL/kg/min). When converted to kcals/hr for the 

Table 8: Predictive Error of Metabolic Equations in Each Walking Condition. 

Cond-

ition 

RMSE (mL/kg/min) MAE (mL/kg/min) Bias (mL/kg/min) 

RMSPE (%) MAPE (%) Percent Bias (%) 

Simple Full ACSM Simple Full ACSM Simple Full ACSM 

TM 
2.5±0.3 2.3±0.3 4.2±0.3 1.8±0.2 1.6±0.2 3.0±0.2 0.0±0.3 0.0±0.3 3.0±0.2 

20±2 18±2 33±1 14±1 13±1 24±1 0±3 0±2 24±1 

UN-

CON 

2.2±2.7 2.4±2.7 2.9±3.9 1.7±1.4 1.9±1.4 2.2±1.9 0.1±2.2 -0.9±2.2 2.0±2.1 

17±20 18±20 22±30 13±10 14±11 17±14 1±17 -7±17 15±16 

CAD-

CON 

2.4±2.4 2.5±2.8 3.3±3.7 2.0±1.3 2.0±1.4 2.8±1.8 0.8±2.2 -0.2±2.5 2.7±1.9 

17±18 18±20 24±26 14±9 14±10 20±13 6±16 -1±18 19±14 

All 

OG 

2.3±2.6 2.4±2.7 3.1±3.8 1.9±1.3 1.9±1.4 2.5±1.9 0.5±2.2 -0.5±2.4 2.3±2 

17±19 18±20 23±28 14±10 14±11 18±14 4±16 -4±17 17±15 

Note: TM values are the same as those reported in Study One 

Values are presented as mean±SD 

TM = treadmill; UNCONS = overground unconstrained; CAD-CON = overground cadence-constrained; 

All OG = all overground 
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average man and women, RMSE and MAE values were greater during cadence-

constrained versus unconstrained walking by 2-7 kcals/hr for the simple and full 

equations and 10-15 kcal/hr for the ACSM Metabolic Equation. This indicates that all 

metabolic equations had lower predictive accuracy during cadence-constrained versus 

unconstrained walking, but only marginally (Figure 3A). Magnitudes of bias were also 

0.7 mL/kg/min higher during the cadence-constrained walking condition for the simple 

equation and ACSM Metabolic Equation, while the full equation had a 0.7 mL/kg/min 

greater magnitude of bias during unconstrained walking. As can be seen in Figure 3A, 

these same (0.7 mL/kg/min) changes in bias during cadence-constrained walking 

accentuated the tendency of the simple equation and ACSM Metabolic Equation to 

underpredict metabolic intensity during unconstrained walking (i.e., made their biases 

more positive) but reduced the tendency of the full equation to overpredict metabolic 

intensity during unconstrained walking (i.e., made its bias less negative). 

The use of scaled predictive error measures appeared to attenuate many of these 

(already small) differences in metabolic equation performance between overground 

walking conditions (Figure 3B). The RMSPE and MAPE of the simple and full equations 

were approximately the same (differences ≤1%) between unconstrained and cadence-

constrained walking. The ACSM Metabolic Equation’s RMSPE and MAPE remained 

marginally greater during cadence-constrained versus unconstrained walking, with 

differences of 2 and 3%, respectively. Differences in percent bias between cadence-

constrained and unconstrained walking conditions mirrored the trends previously 

reported in (unscaled) bias. Specifically, magnitudes of percent bias during cadence-

constrained walking were greater (4-5% more positive) with the simple equation and 
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ACSM Metabolic Equation but lower (6% less negative) with the full equation, compared 

to during unconstrained. 

4.2.2.2. Comparison of Metabolic Equations 

 To compare predictive error between the three metabolic equations, results were 

first averaged across all trials and walking conditions. The resulting overall predictive 

error values were consistently the lowest for the simple cadence-based metabolic 

equation (Table 8), with 0.6-1.9 mL/kg/min and 5-14% greater unscaled and scaled 

measures for the ACSM Metabolic Equation but only marginally (0.1 mL/kg/min and 

≤1%) higher predictive error for the full equation. The ACSM Metabolic Equation 

therefore also had greater overall unscaled and scaled predictive error measures than the 

full equation (differences of 0.6-1.9 mL/kg/min and 4-14%). The greater bias of the 

ACSM Metabolic Equation is visually apparent in its fit to the data (Figure 2B; further 

discussed in section 4.2.2.4). 

 The three metabolic equations were also compared when results were averaged 

across trials within each walking condition. During unconstrained and cadence-

constrained walking, unscaled and scaled measures of predictive error remained 0.3-2.6 

mL/kg/min and 3-18% higher for the ACSM Metabolic Equation than either cadence-

based metabolic equation. When converted to kcals/hr for the average US man and 

woman, during both unconstrained and cadence-constrained walking, the ACSM 

Metabolic Equation had 11-25 kcal/hr greater RMSE, 7-19 kcal/hr greater MAE, and 26-

84 kcal/hr greater magnitudes of bias than the simple and full equations (Appendix B). 

The simple and full equations had similar scaled and unscaled predictive accuracy 

measures during both of these walking conditions (differences ≤0.2 mL/kg/min and 
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≤1%). Differences in bias (and percent bias) between the cadence-based metabolic 

equations were slightly larger, with that of the simple equation lower by 0.7 mL/kg/min 

(6%) during unconstrained walking but that of the full equation lower 0.7 mL/kg/min 

(5%) during cadence-constrained walking. 

4.2.2.3. Trends by Self-Selected Pace and Music Tempo 

 During the unconstrained walking condition, increases in self-selected walking 

pace were accompanied by increases in RMSE and MAE values, with maximum 

differences (i.e., differences between equation- and walking condition-specific lowest and 

highest trial values [slow- versus fast-paced trials in this instance]) ranging from 1.1-2.8 

mL/kg/min for all three metabolic equation (Table 9). The magnitude of bias also 

increased with increasing self-selected walking pace for the simple equation and ACSM 

Metabolic Equation (maximum differences of 0.9 and 2.7 mL/kg/min, respectively), 

whereas the full equation’s magnitude of bias was the greatest during self-selected 

normal-paced walking with a maximum difference (slow- versus normal-paced trials) of 

1.0 mL/kg/min. Scaled measures of predictive error (RMSPE, MAPE, and percent bias 

magnitude) for the simple equation and ACSM Metabolic Equation also increased with 

increasing self-selected walking pace, with maximum differences of 4-5% and 9-13%, 

respectively (Table 9). For the full equation, however, these scaled measures of 

predictive error were highest during normal-paced walking (maximum differences of 3-

9%). 

When metabolic equations were applied to cadence-constrained walking trials, 

only the ACSM Metabolic Equation demonstrated a consistent increase in RMSE, MAE, 

and bias unscaled measures of predictive error with increasing music tempo (maximum 
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differences [80 versus 125 BPM trials] of 2.3-2.5 mL/kg/min for each measure). 

Conversely, there was a consistent negative relationship between music tempo and bias  

magnitude for the simple equation, with a maximum difference of 1.7 mL/kg/min. The 

only other notable trend in unscaled predictive error measures among cadence-

constrained trials was the consistently lower RMSE, MAE, and bias magnitude for both 

the simple and full cadence-based metabolic equations at 100 BPM (maximum 

differences 1.0-1.4 mL/kg/min for each measure and equation). When scaled measures of 

predictive error were evaluated, there were no consistent trends (positive or negative) 

with increasing music tempo of cadence-constrained trials (Table 9). However, with the 

singular exception of the percent bias magnitude for the simple equation, each metabolic 

equation’s RMSPE, MAPE, and percent bias magnitudes were the lowest during the 100 

BPM trial. These maximum differences in scaled measures between cadence-constrained 

Table 9: Predictive Error of Metabolic Equations in Each Overground 

Unconstrained and Cadence-Constrained Walking Trial. 

Trial 

RMSE (mL/kg/min)  MAE (mL/kg/min)  Bias (mL/kg/min) 

RMSPE (%) MAPE (%) Percent Bias (%) 

Simple Full ACSM Simple Full ACSM Simple Full ACSM 

Slow 
1.3±1.6 1.7±2.3 1.4±1.4 1±0.9 1.2±1.1 1.2±0.8 0.0±1.4 -0.7±1.6 0.9±1.1 

13±16 17±23 14±14 10±9 12±11 12±8 0±14 -7±16 9±11 

Nor 

-mal 

2.0±2.1 2.5±2.6 2.1±2.7 1.6±1.1 2.0±1.5 1.7±1.4 -0.5±1.9 -1.5±2 1.3±1.7 

16±17 20±21 17±22 13±9 16±12 14±11 -4±16 -12±16 11±14 

Fast 
2.9±3.2 2.8±2.9 4.2±4.8 2.5±1.6 2.4±1.5 3.6±2.2 0.9±2.9 -0.4±2.8 3.6±2.2 

17±19 17±17 25±28 15±9 14±9 22±13 5±17 -3±17 22±13 

80 
BPM 

2.2±2.5 2.1±2.3 2.1±2.2 1.9±1.3 1.7±1.2 1.8±1.1 1.8±1.3 1.3±1.6 1.8±1.2 

21±22 19±21 20±20 17±12 15±11 17±10 17±12 12±15 16±11 

100 
BPM 

1.8±2 1.9±1.9 2.4±2.4 1.5±1.1 1.7±0.9 2.1±1.3 0.8±1.7 -0.2±1.9 1.9±1.5 

14±15 14±14 18±19 11±8 13±7 16±10 6±13 -2±15 15±11 

125 
BPM 

2.9±2.6 3.2±3.3 4.8±4.1 2.6±1.1 2.7±1.8 4.4±1.8 -0.1±2.9 -1.6±2.9 4.4±1.8 

16±15 18±19 27±23 15±6 15±10 25±10 -1±16 -9±16 25±10 

All values are presented as mean±SD 
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trials ranged from 3-10% for the cadence based metabolic equations and 8-10% for the 

ACSM Metabolic Equation, which also consistently had the highest values in the 125 

BPM trial. In summary, while predictive error tended to increase with increasing self-

selected walking pace in the unconstrained walking condition the simple and full 

cadence-based metabolic equations tended to have the lowest predictive error in the 100 

BPM (as opposed to 80 BPM) trial.  

4.2.2.4. Bland-Altman Analysis 

Shapiro-Wilk tests verified that the participant-level average differences between 

measured and predicted VO2 were normally distributed with each metabolic equation. 

The Bland-Altman plots subsequently created to show the bias (measured - predicted 

VO2) of each metabolic equation are presented in Figures 4A-C. Each equation’s mean 

bias, 95% confidence interval for mean bias, and 95% limits of agreement are also 

provided in Table 10. Appendix C includes Bland-Altman plots for each equation 

stratified by walking condition, although there did not appear to be any differences in 

systematic bias between overground unconstrained and cadence-constrained walking 

conditions. The simple cadence-based metabolic equation tended to slightly underpredict 

walking intensity while the full equation tended to slightly overpredict walking intensity 

(mean biases of 0.5 and -0.5 mL/kg/min, 

respectively). Still, neither of these 

cadence-and there were no apparent trends 

in bias with increasing walking intensity 

(Figures 4B and 4C). Conversely, the 

ACSM Metabolic Equation significantly  

Table 10: Results of the Bland-Altman 

Analysis for Each Metabolic Equation. 

Equation 
Mean Bias 

[95% CI] 
95% LoA 

Simple 0.5 [-0.3 to 1.3] -3.9 to 4.9 

Full -0.5 [-1.3 to 0.3] -5.2 to 4.2 

ACSM 2.3 [1.8 to 2.9] -1.7 to 6.4 

Note: analysis included all data collected during 

unconstrained and cadence-constrained walking 

All units are mL/kg/min 

LoA = limits of agreement; CI = confidence 

interval 
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underpredicted metabolic intensity(mean bias [95% confidence interval] of 2.3 [1.8-2.9] 

mL/kg/min) and there was a clear increase in its bias as metabolic intensity increased 

(Figure 4A). This observation was confirmed by a modified Bland-Altman plot where 

bias was plotted against measured VO2 (Appendix D). 

  

Figure 4: Bland-Altman Plots for the 

ACSM Metabolic Equation (4A), 

Simple Equation (4B), and Full 

Equation (4C) With the Overground 

Walking Data. 

Note: figures include all data collected during 

unconstrained and cadence-constrained walking; 

Measured = VO2 measured with indirect 

calorimetry; Predicted = VO2 predicted by 

metabolic equation 

Figure 4A Figure 4B 

Figure 4C 
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CHAPTER 5 

DISCUSSION 

Although metabolic intensity is an important component of PA to consider in 

exercise programming and measurement, it can be difficult to quantify and convey to the 

general public. Therefore, the purpose of this thesis was to develop metabolic equations 

that predict metabolic intensity (oxygen consumption; mL/kg/min) from cadence using a 

large treadmill walking dataset (Study One) and cross-validate these equations during 

overground unconstrained and cadence-constrained walking conditions (Study Two). The 

metabolic equation that is currently most well-known is the speed-based equation 

published in the ACSM Guidelines for Exercise Testing and Prescription since 1980 

(Eq.1).17 Because cadence can be easily measured and prescribed during overground 

walking, the metabolic equations developed herein (Eq. 2 and 3) are more practical for 

researchers, health professionals, and members of the general public to use. In addition, 

given the aforementioned limitations of the study from which the ACSM Metabolic 

Equation’s speed component was originally derived,19 the cadence-based metabolic 

equations developed herein are based on a larger, age- and sex-balanced sample of adults 

across the lifespan. The use of this sample for calibrating a metabolic equation suggests a 

greater potential to produce accurate and generalizable results. This conclusion is further 

supported by the simple and full equations’ ~50% lower RMSE and MAE and ~200% 

lower bias than the ACSM Metabolic Equation in this large, heterogeneous sample. 
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5.1. The Cadence-Intensity Relationship During Treadmill Walking 

5.1.1. The Simple Cadence-Based Metabolic Equation 

 As hypothesized in Study One, a quadratic model describing the cadence-intensity 

relationship provided a significantly better fit than a linear model. The marginal R2 value 

of this quadratic mixed regression model (0.81) indicated that there was a strong 

relationship between cadence and metabolic intensity of treadmill walking. Moreover, the 

simple cadence-based metabolic equation achieved the hypothesized level of predictive 

accuracy, with RMSE and MAE values that were ≤1 MET during treadmill walking (0.7 

and 0.5 METs, respectively). As MAE is a better indicator of average error,166 the simple 

equation therefore predicted treadmill walking intensity within 0.5 METs, on average. 

This is equivalent to an error of 45 kcals/hr for the average American man and 38 

kcals/hr for the average American women (Appendix B). This equation also 

demonstrated almost no bias (magnitude <0.01 METs). The strength of the cadence-

intensity relationship observed with these data is somewhat similar to that observed by 

Abel et al.27 (R2 = 0.79), Beets et al.31 (R2 = 0.68), and Tudor-Locke et al.40 (R2 = 0.80-

0.83). Comparatively weaker relationships were reported by Peacock et al.35 (R2 = 0.50), 

Marshall et al.33 (R2 = 0.23-0.35), and Rowe et al.36 (R2 = 0.34). The lower R2 values 

reported in each of these latter three studies may be due to their use of a linear regression 

model, whereas Abel et al.27 and Beets et al.31 used curvilinear models. Although a linear 

regression model was used by Tudor-Locke et al.,40 it may not have affected the observed 

R2 values because participants completed only two walking bouts. 

 It should be noted that Study One’s sample included fewer older adults (37 adults 

in Cohort 3), relative to young and middle-aged adults (76 and 80 adults for Cohorts 1 
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and 2, respectively). If there was a substantial effect of age on the cadence-intensity 

relationship, including fewer older adults in the calibration sample may have produced a 

simple equation that is more accurate in younger/middle-aged adults but less accurate in 

older adults. Still, the data used to develop and evaluate the simple equation in Study One 

were collected from a large sample of adults 21-81 years of age who varied in height by a 

factor of 1.3, body mass by a factor of 2.7, and BMI by a factor of 2.0. The utilization of 

this large, heterogeneous sample suggests that the simple equation (and its predictive 

error reported in Study One) will be generalizable to the vast majority of ostensibly 

healthy adults. This generalizability, along with its inclusion of cadence as the only input, 

make the simple equation a practical and valid tool for use in public health. However, 

while these features are advantageous for public health applications, they may also limit 

the simple equation’s ability to provide precise, individualized predictions and 

prescriptions of walking intensity for a specific sub-population or individual. 

5.1.2. The Full Cadence-Based Metabolic Equation 

 The rationale for developing both a simple and a full cadence-based metabolic 

equation was to provide two complementary tools for predicting walking intensity; one 

would be easier and more accessible to use (the simple equation), while the other (the full 

equation) required users to measure and/or input anthropometric and demographic 

variables but would theoretically produce individualized and therefore more accurate 

results. With these two options, researchers, health professionals, and members of the 

general public could choose the cadence-based metabolic equation that best aligns with 

their specific application, resources, and level of knowledge. 
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Using best subsets regression analysis, a full cadence-based metabolic equation 

was created that included leg length, age, BMI, and sex as additional predictors of 

walking intensity. This indicates that the model including these variables had the lowest 

cross-validated measure of residual sum of squares (i.e., PRESS statistic) for metabolic 

intensity predictions. As hypothesized, the full cadence-based metabolic equation had a 

lower RMSE and MAE than the simple equation during treadmill walking (Table 5). 

However, this <0.1 MET (0.2 mL/kg/min) difference in predictive accuracy between 

simple and full cadence-based metabolic equations has negligible practical significance. 

For example, most people would have a metabolic intensity of 8.7-12.3 mL/kg/min when 

walking at the 3 METs (10.5 mL/kg/min) cadence threshold determined by the simple 

equation, and of 8.9-12.1 mL/kg/min when walking at that provided by the full equation 

(according to their MAE values). These ranges are both equivalent to ~2.5-3.5 METs. 

Additionally, the observed differences in treadmill walking RMSE and MAE values 

between the simple and full equation equate to differences of only 3-5 kcal/hr for the 

average American man and woman. Furthermore, the simple cadence-based metabolic 

equation had several lower measures of predictive error than the full equation during the 

overground walking conditions (further discussed in section 5.2.1). Therefore, while the 

full cadence-based metabolic equation has additional barriers to its application and a 

higher user burden, it conveys little added benefit compared to using the simple equation. 

Although including these additional predictor variables did not enable the full 

equation to predict walking intensity appreciably better on average than the simple 

equation (<0.1 MET differences in predictive accuracy), it did result in more substantial 

differences in predictions of metabolic intensity at a given cadence between individual  
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participants. To quantify these differences, Table 11 presents each metabolic intensity 

predicted by the full equation when an individual has the minimum or maximum age, leg 

length, or BMI value of the Study One sample (or sex is set to male or female). Only one 

characteristic is set to such values while the remaining characteristics are controlled for 

by inputting the respective mean value for the Study One sample (Table 3) and male for 

sex. For example, the effect of age was examined by using the full equation to predict 

walking intensity for two individuals: one with the youngest and the other with the oldest 

age of Study One’s sample, while both had a sex of male and a leg length and BMI equal 

to the Study One sample means. These predictions are provided for cadences of 80, 100, 

and 120 steps/min to represent the range of cadences measured during self-selected slow 

to fast walking trials (Table 7) and also includes the self-selected cadences of older 

adults, even during dual-task walking (i.e., spelling words backwards while walking).145 

In this analysis and at this range of cadences, the full equation predicted metabolic 

intensities that differed by 0.4-0.9 METs between the shortest and longest-legged 

individual, 0.1-0.8 METs between the oldest and youngest individual, 0.5-0.8 METs 

between the individuals with the lowest and highest BMI, and 0.1-0.3 METs between a 

man and woman. The full equation may therefore be advantageous for predicting walking 

Table 11: Metabolic Intensity Predictions with the Simple and Full Cadence-

Based Metabolic Equations.  

Cadence 
Simple 

Equation 

Full Equation 

Sex Age Leg Length BMI 

M F Min Max Min Max Min Max 

80 steps/min 8.3 8.4 8.1 8.5 8.2 7.7 9.1 9.1 7.2 

100 steps/min 11.3 11.5 10.9 12.2 10.6 10.4 12.7 12.4 10 

120 steps/min 16.2 16.6 15.6 17.8 14.8 15.0 18.2 17.6 14.8 

Note: full equation predictions with one characteristic input as indicated and all others defaulted to 

male and Study One sample mean values 

All units are mL/kg/min 

M = Male; F = Female; Min = Study One sample minimum; Max = Study One sample maximum 
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intensity when an individual has more extreme anthropometric and/or demographic 

characteristics (i.e., older adults and very tall and/or obese individuals). Each of these 

variables’ effect on the cadence-intensity relationship and the potential underlying 

mechanisms are discussed in the following sections. 

5.1.2.1. Leg Length 

 Leg length and height have a positive relationship with step length at a given 

speed.65,75,79,80 The longer step length of taller individuals results in lower cadences and 

rates of internal work (i.e., work for swinging limbs) at a given speed, and has been cited 

in several studies63,65,79 to explain the inverse relationship between height and walking 

intensity (see section 2.2.2.2). In addition, seven studies28-31,35,36,38 have reported a 

positive effect of height or leg length on the cadence-intensity relationship (i.e., 

increasing intensity are a given cadence with increasing height/leg length; see section 

2.4.3.2). Similarly, leg length was included in the full cadence-based metabolic equation 

with a positive effect on predicted metabolic intensity that was greater at higher cadences 

due to a cadence-leg length interaction. This resulted in a difference between predictions 

for the shortest- and longest-legged individuals that was 0.4 MET (1.4 mL/kg/min) at 80 

steps/min and 0.9 METs (3.3 mL/kg/min) at 125 steps/min (Table 11). The positive 

effects of leg length and height on the cadence-intensity relationship observed in previous 

studies28-31,35,36,38 and herein may also be explained by increases in step length with 

increasing stature, as a greater step length would enable taller individuals to walk faster 

and perform more external work (i.e., work for accelerating the body’s center of mass) at 

a given cadence, resulting in a greater metabolic intensity. 



110 

 

To further explore whether this mechanism may have caused the effect of leg 

length on the cadence-intensity relationship observed herein, the correlations between 

cadence at each treadmill walking speed and participant leg length and height were 

evaluated. Table 12 includes the correlation coefficients and p-values for these cadence-

leg length relationships at each speed. Values were similar when height was considered 

as an alternative to leg length. At each speed ≥26.8 m/min (1.0 mph), there was a 

significant inverse correlation (p <0.05) between cadence and the leg length/height of 

each participant. These correlations generally strengthened as speed increased, with 

moderate-to-strong negative correlations (r ≤-0.50) at speeds ≥67.1 m/min (2.5 mph) and 

strong negative correlations (r ≤-0.70) at 107.3 and 134.1 m/min (4.0 and 5.0 mph). The 

correlations between cadence at a given speed and participant leg length and height at 

speeds ≥67.1 m/min (2.5 mph) were also comparable to those reported in previous studies 

(-0.66 to -0.77).65,75,79,80 These findings provide confirmatory evidence that taller 

individuals had longer step lengths (and lower cadences) than shorter individuals at 

several of the same speeds. These taller individuals therefore tended to walk at a faster 

speed with the same cadence, which likely resulted in the positive effect of leg length on 

walking intensity in the full cadence-based metabolic equation. Furthermore, the 

increasing strength of this correlation with increasing walking speed indicates that taller 

individuals’ step length was increasingly longer than that of shorter individuals at 

Table 12: Correlations Between Participant Leg Length and Cadence at Each 

Speed of Treadmill Walking. 

Outcome 

Variable & 

Value 

13.4 
m/min 

26.8 
m/min 

40.2 
m/min 

53.6 
m/min 

67.1 
m/min 

80.5 
m/min 

93.9 
m/min 

107.3 
m/min 

120.7 
m/min 

134.1 
m/min 

Cadence 
r -0.04 -0.15 -0.31 -0.46 -0.55 -0.61 -0.64 -0.71 -0.64 -0.91 

p 0.55 0.04 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.03 

r = correlation coefficient; p = p-value 
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increasingly faster speeds. This is consistent with the full equation including a cadence-

leg length interaction that resulted in a greater effect of leg length at higher cadences and 

provides additional evidence that step length mediated the influence of leg length on the 

cadence-intensity relationship. 

5.1.2.2. Age 

 Several previous studies54,83-86 have reported that older adults walk with a greater 

metabolic intensity than young and middle-aged adults walking at the same speed. This 

has been attributed to age-related declines in coordination and the motor strategies 

employed by older adults for preserving balance and stability (see section 2.2.2.3). In the 

only study that has examined the relationship between cadence and absolutely-defined 

intensity in older adults, Peacock et al.35 similarly reported a positive effect of age on 

metabolic intensity (i.e., increasing age resulting in an increased walking intensity) at a 

given cadence. Studies67,75,79,87,88 comparing only young and middle-aged adults, 

however, have not found such age-related differences in metabolic intensity of walking. 

Therefore, to further examine age’s influence on walking intensity, 

 a post hoc analysis of the treadmill walking dataset was conducted with participants 

stratified by age cohort (Cohort 1 [21-40 years], Cohort 2 [41-60 years], Cohort 3 [61-85 

years]). Specifically, a quadratic least 

squares regression was fit to the cadence-

intensity relationship for each cohort and 

are shown in Figure 5. These 

cohort-specific regressions were also 

used to derive cadences associated with  

Table 13: Cadences Associated with 

Metabolic Intensities of Walking from 

Cohort-Specific Quadratic Regressions 

of the Cadence-Intensity Relationship. 

Age 

Cohort 

3 

METs 

4 

METs 

5 

METs 

6 

METs 

Cohort 1 95 110 122 131 

Cohort 2 95 112 125 136 

Cohort 3 100 119 133 145 

All units are steps/min 
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walking at various metabolic intensities, which are presented in Table 13. The cadence-

intensity relationship appeared to be similar between Cohorts 1 and 2 (0-5 step/min 

differences in cadences for attaining 3-6 MET). Conversely, Cohort 3 required cadences 

that were 5-14 steps/min higher than Cohorts 1 and 2 to walk at the same intensity from 

3-6 METs (Table 13). These findings align with the 0.3-3.0 mL/kg/min lower metabolic 

intensity at a given cadence (from 80-120 steps/min) predicted for the youngest (21 years 

of age) versus oldest (81 years of age) participant in Study One when also controlling for 

leg length, BMI, and sex (Table 11). These age-related differences were the greatest at 

the highest metabolic intensities and cadences examined, with a 9 steps/min greater 

difference between Cohort 1 and Cohort 3 cadence thresholds for 6 METs versus 3 METs 

(Table 13) and a 2.7 mL/kg/min greater difference between VO2 predictions with the 

minimum and maximum age at 80 versus 120 steps/min (Table 11). 

Figure 5: Cadence-Intensity Relationships During Treadmill Walking Stratified 

by Age Cohort. 
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The negative effect of age on metabolic intensity at a given cadence demonstrated 

in this post hoc analysis and included in the full cadence-based metabolic equation 

appears to conflict with previous evidence of a positive effect of age on the speed-

intensity relationship.54,83-86 However, this positive effect of age has partially been 

attributed to older adults walking with a significantly shorter step length and greater 

cadence at a given speed than young adults, in order to reduce single-limb support time 

and increase stability.86 As shown in Figure 6, the average step lengths of older adults 

(Cohort 3) in this study were also lower (by 1-9 cm) at each speed than those of younger 

and middle-aged adults (Cohorts 1 and 2). The relatively shorter step lengths of Cohort 3 

were especially pronounced at slower walking speeds, with differences of 4-9 cm at 

speeds <40.2 m/min (1.5 mph) when compared to Cohorts 1 and 2. This shorter step 

length indicates that older adults had a higher cadence and performed more internal work 

Figure 6: Average Step Length of Participants at Each Speed of Treadmill 

Walking Stratified by Age Cohort. 

Note: error bars represent SD 
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at a given speed, which aligns with the previously reported positive effect of age on the 

speed-intensity relationship.54,83-86 The shorter step lengths of Cohort 3 participants also 

reconciles the negative effect of age on the cadence-intensity relationship observed 

herein; older adults tended to attain a given cadence at a slower speed and therefore while 

performing less external work than young or middle-aged adults. For example, the 

treadmill walking speed where at least half of participants reached cadences ≥100 

steps/min was 53.6 m/min (2.0 mph) for Cohort 3 but 67.1 m/min (2.5 mph) for Cohorts 

1 and 2. Although the data collection and analysis is not yet complete for that last age 

group (and outside the purposes of this thesis), we can anticipate that the average 

metabolic intensity associated with 100 steps/min will be lower when compared to 

younger participants in Cohorts 1 and 2. The article by Peacock et al.35 that reported a 

positive effect of age on the cadence-intensity relationship in older adults did not provide 

any information pertaining to participants’ step lengths or cadences at a given speed. As 

their sample was smaller (n = 29) and consisted exclusively of older adults that self-

reported being physically-active, it is possible that they did not exhibit age-related 

differences in step length. Therefore, the present study provides the first evidence 

suggesting that older adults may require a greater cadence to obtain a given walking 

intensity. Because the full equation accounts for this potential effect of age on the 

cadence-intensity relationship, it may provide more accurate predictions of walking 

intensity in older adults, compared to the simple equation.  

5.1.2.3. BMI 

 Prior studies61,70.have reported that class II obese participants (BMI 35.0-39.9 

kg/m2) walked with greater metabolic intensities at a given speed than participants with 
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lower BMIs. This was attributed to obesity-related mechanical inefficiencies in gait and 

changes in body mass distribution (see section 2.2.2.1). However, the full equation 

developed herein predicted greater walking intensities at a given cadence with lower 

BMIs, with an increasing magnitude of effect with increasing cadence (Table 11). This 

suggested influence of BMI is based on the Study One’s sample which included 96 

normal weight, 75 overweight, and 22 obese participants. Therefore, a positive BMI-

intensity relationship due to obesity-related mechanical inefficiencies may not have been 

observed in this sample because a majority (89%) of participants were not obese. 

Additionally, there is evidence that walking intensity at a given speed may increase with 

decreasing body fat percentage due to fat-free mass having a greater metabolic demand 

than fat mass during PA.76,78 This mechanism may have also caused the negative effect of 

BMI on metabolic intensity in the full equation. The full equation having accounted for 

this inter-individual variability in the cadence-intensity relationship by including BMI 

instead of percent body fat may reflect the inaccuracy of bioelectrical impedance for 

measuring body composition.167 

A significant effect of BMI on the cadence-intensity relationship was also 

reported by Nielson el.34 and Beets et al.31 Contrary to the results of the current study, 

Nielson el.34 reported that this effect of BMI was positive and greater at higher cadences 

but no potential mechanism for this effect was proposed. Although Beets et al.31 indicated 

that BMI had a positive effect on walking intensity at lower intensities (e.g., 3 METs), 

similar to the full equation, they reported a negative cadence-BMI interaction that 

resulted in a negative effect of BMI at higher intensities (e.g., 6 METs). 
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In the current study, average step lengths did not differ between BMI categories 

by more than 3 cm at each treadmill walking speed. Compared to the 4-9 cm differences 

in step length observed between age cohorts (see section 5.1.1.2), the smaller magnitude 

of these differences indicate there were not BMI-related differences in gait parameters at 

a given speed. Therefore, the effect BMI exhibited on walking intensity at a given 

cadence, indicated by the full equation, was likely related to non-kinematic factors such 

as differences in the proportion of metabolically active tissue that comprised individuals’ 

body mass. 

5.1.2.4. Biological Sex 

 There is conflicting evidence regarding the influence of sex on the speed-intensity 

relationship (see section 2.2.2.1). When men and women were walking at the same speed, 

several studies78,87,95,96 have reported that metabolic intensity was higher in men while 

others70,97,98 have reported metabolic intensity to be higher in women. These differences 

may be attenuated when sex-related differences in percentage body fat and height are 

controlled statistically and/or by study design.23,36,75,78 Studies27,33,36,40,43 comparing the 

cadence-intensity relationships of men and women have consistently reported that men 

require lower cadences than women to reach 3 and 6 METs (by 3-13 steps/min and 10-11 

steps/min, respectively). However, there is strong evidence that accounting for men’s 

greater average height, relative to women, also eliminates their higher metabolic intensity 

at a given cadence.28,29,36 

In the full cadence-based metabolic equation, the inclusion of sex as a predictor 

resulted in men having a higher predicted metabolic intensity at a given cadence 

compared with women. Although the direction of this effect was consistent with the 
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results of other studies,27,33,36,40,43 the full equation controls for leg length by including it 

as another predictor variable. This indicates that the observed effect of sex herein was 

independent from differences in stature between men and women. To further explore this 

unexpected finding, likelihood-ratio tests were used to compare quadratic mixed 

regression models of the cadence-intensity with and without sex as a predictor. When the 

original (null) model only included cadence, the addition of sex resulted in significantly 

better model fit (p <0.001). However, when the null model included cadence and leg 

length (i.e., when the model controlled for leg length), it was not further improved by 

including sex as a predictor (p = 0.28). In addition, the full equation’s predictions of 

metabolic intensity at a given cadence differed only marginally between men and women 

(0.1-0.3 MET differences at 80 -120 steps/min [Table 11]). These findings suggest that 

there was not a significant independent effect of sex on the cadence-intensity 

relationship. Therefore, although selecting the model with the lowest PRESS statistic was 

a rational approach for developing the full equation, a more parsimonious model that did 

not include sex may have exhibited a similar predictive capacity. 

5.2. Overground Unconstrained and Cadence-Constrained Walking 

5.2.1. Effects on Equation Predictive Error and Metabolic Intensity 

 The cadence-based metabolic equations were developed using the data collected 

during treadmill walking to attempt to maximize their accuracy and generalizability, as 

this dataset included a larger and more heterogenous sample than the overground walking 

dataset. However, there is evidence that treadmill walking ground reaction forces,107,108 

muscle activity,107,109 and gait timing77,100-106 may differ from those observed during 

overground walking (see section 2.2.3). Still, as was hypothesized, the simple and full 
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cadence-based metabolic equations remained valid when applied to data collected during 

overground unconstrained walking, with RMSE and MAE values <1 MET (≤0.7 METs). 

These values also equated to 37-60 kcals/hr for the average American man and women. 

Moreover, both cadence-based metabolic equations had a predictive accuracy during 

overground unconstrained walking that was similar (RMSE and MAE values 0.1 MET 

higher to 0.1 MET lower) to that observed during treadmill walking (differences ≤8 

kcals/hr [Appendix B]). This suggests that the cadence-intensity relationship of treadmill 

walking did not differ appreciably from that of overground unconstrained walking and 

supports the cadence-based metabolic equations’ generalizability to this more commonly 

performed walking condition. 

 Previous studies have shown that constraining cadence during overground 

walking may result in different gait parameters45-47 and an elevated metabolic 

intensity47,48 compared to unconstrained walking (see section 2.2.3). This evidence led to 

the hypothesis that the cadence-based metabolic equations would underpredict the 

metabolic intensity of cadence-constrained walking. However, both equations maintained 

their predictive accuracies during the cadence-constrained walking condition, with RMSE 

and MAE values that remained ≤1 MET (44-62 kcals/hr for the average American man 

and women) and similar (0.1 MET higher to 0.1 MET lower) to those observed during 

treadmill walking (differences ≤10 kcals/hr [Appendix B]). The simple and full cadence-

based metabolic equations therefore appear to remain valid for determining metronome 

or music tempos to use when making cadence-based prescriptions of walking intensity. 

 Although the small differences in predictive accuracy between walking conditions 

are unlikely to be practically significant, there was a consistent trend for the simple and 
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full equations to be less accurate during cadence-constrained versus unconstrained 

walking (RMSE and MAE values greater by <0.1-0.2 MET). There was also an 

interesting trend in bias between the two overground walking conditions; during cadence-

constrained walking, the simple equation and ACSM Metabolic Equation were more 

likely to underpredict walking intensity (0.2 MET more positive bias) while the full 

equation was less likely to overpredict walking intensity (0.2 MET less negative bias). 

Both of these results could be explained by a slight (0.2 MET) elevation in walking 

intensity at any given cadence during cadence-constrained walking. This is similar to 

what was originally hypothesized. However, the small magnitude of this elevation in 

walking intensity did not result in practically significant effects on the simple equation’s 

predictive accuracy and, because the full equation already tended to overpredict 

metabolic intensity (during unconstrained walking), these higher metabolic intensities 

actually reduced its magnitude of bias. 

 These findings align with the results reported by Wezenberg et al.,48 who 

compared the metabolic intensity of normal treadmill walking (i.e., walking with only 

speed constrained by the treadmill) to that when additional constraints were 

simultaneously placed on cadence and step length (see section 2.2.3). While all trials 

were conducted at the same walking speed and with the same average cadences and step 

lengths, the authors reported that VO2 was elevated by 8% when cadence and step length 

were constrained to be constant, and by 13% when they were constrained to be a real-

time mimicry of their normal treadmill walking trial (i.e., exhibiting the same variability). 

The researchers concluded that these constraints on walking resulted in motor control-

related demands (i.e., a modified ankle stabilization strategy and greater preparatory and 
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antagonistic muscle activation) that increased metabolic intensity, even without 

differences in gait parameters. In the present study, a constraint was placed only on 

cadence (and not step length or speed) using an auditory signal from a popular 

commercial song to better represent a real-world application of this research. This may 

explain why the percent bias of the cadence-based metabolic equations differed only by 

~5% between unconstrained and cadence-constrained walking conditions (Table 8), as 

opposed to the 8-13% increase in metabolic intensity observed by Wezenberg et al.48 

Still, the tendency of the metabolic equations to underpredict VO2 by more (or 

overpredict VO2 by less) during cadence-constrained walking suggests that entraining 

cadence to music tempos similarly resulted in motor control-related demands that slightly 

increased walking intensity at a given cadence. 

 The motor control-related demands of cadence-constrained walking may also 

underly the different trend in predictive error values observed among trials of overground 

unconstrained versus overground cadence-constrained walking. As the self-selected pace 

of unconstrained walking trials increased, predictive error of the simple and full cadence-

based metabolic equations consistently increased. However, an analogous increase in 

predictive error with increases in music tempo was not observed in the cadence-

constrained condition; predictive error was generally the lowest in the 100 BPM rather 

than the 80 BPM trial. This unexpected finding may be related to the prescribed cadence 

of 100 steps/min being closest to participants’ preferred walking cadence (average 

cadence of 107 steps/min during the self-selected normal-paced trial; Table 7). Entraining 

cadence to the music tempos that represented greater deviations from participants’ 

preferred cadence (i.e., to music tempos of 80 and 125 BPM) may have required more 
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metabolically costly motor control-related demands (per step), resulting in greater 

differences between cadence-constrained and unconstrained walking intensities at these 

cadences. 

 As was found during treadmill walking, the predictive accuracies of the simple 

and full cadence-based metabolic equations were similar during both overground walking 

conditions (differences in RMSE and MAE <0.1 MET [≤0.2 mL/kg/min]). Compared to 

the full equation, the simple equation had actually exhibited slightly (≤0.2 mL/kg/min) 

lower RMSE and MAE values during overground unconstrained and cadence-constrained 

walking. This provides further evidence that use of the full equation does not have the 

intended benefit of producing more accurate predictions of walking intensity, despite 

requiring the additional input of individualized anthropometric and demographic 

predictor variables. 

5.2.2. Effects on Walk Ratio 

 In addition to having independent effects on walking intensity, constraining a gait 

parameter may influence the other gait parameters that are unconstrained and self-

selected. Specifically, studies45,46 have reported that there are no to small increases in step 

length with increases in speed and cadence during cadence-constrained walking (see 

section 2.2.3). For example, Laurent & Pailhous46 demonstrated that a 27% increase in 

cadence over four different RAC tempos was accompanied by only an 8% increase in 

cadence. This results in a decreasing walk ratio over a speed/cadence range of cadence-

constrained walking, whereas there is strong evidence that the walk ratio remains 

constant during treadmill and unconstrained overground walking due to simultaneous and 

proportionally equivalent increases in cadence and step length.49,53,54 To examine if such 
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trends were present in the data collected herein, a post hoc repeated-measures analysis of 

variance (ANOVA) was used to test whether the walk ratio differed  

 between trials in the unconstrained walking condition and the cadence-constrained 

walking condition. After applying Greenhouse-Geisser corrections to adjust for non-

sphericity, there was a significant change in walk ratio during cadence-constrained 

walking (p <0.001), but not during unconstrained walking (p >0.05). As shown in Figure 

7B, the average walk ratio of participants during cadence-constrained walking decreased 

as music tempo (and therefore walking speed [Table 7]) increased. These findings 

indicate that there were proportionally smaller increases in step length than in cadence 

during the cadence-constrained walking condition. The walk ratio also did not appear to 

change across the speeds of treadmill walking where the walk ratio has previously been 

shown to remain constant (60-120 m/min; Figures 5A),53,54 although a repeated measures 

ANOVA could not be conducted because all participants did not complete the same 

Figure 7: Average Walk Ratio for Each Treadmill (7A) and Overground (7B) 

Walking Trial. 

Note: error bars represent SD 

Figure 7A Figure 7B 
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number of treadmill walking trials. Nonetheless, the differences between minimum and 

maximum walk ratios observed during treadmill walking (0.5 mm/step/min) and 

overground unconstrained walking (0.3 mm/step/min) were similar and comparatively 

smaller than that observed during the cadence-constrained walking condition (1.2 

mm/step/min). This finding demonstrates an influence of constraining cadence on gait 

parameters. While previous studies45-47,122 have observed a decreasing walk ratio when 

entraining cadence to incrementally faster metronome tempos, the results reported herein 

demonstrate that this effect also exists when entraining cadence to a popular commercial 

song, as may be used to prescribe cadence-based recommendations for walking intensity. 

However, the proportionally smaller increases in step length during cadence-constrained 

walking suggests that participants were walking at slower speeds at a given cadence than 

during treadmill or overground unconstrained walking. While this implies there would be 

a reduction in metabolic intensity, the evidence discussed above indicates that this 

reduction in speed was compensated for by the additional metabolic cost of the motor-

control related demands for entraining cadence to the tempo of music. 

5.2.3. Age Discrepancy Between Study One and Study Two Participants 

While the cadence-based metabolic equations were calibrated in participants 

representing ages across the adult lifespan (Study One), the data collected during 

Table 14 Predictive Error of Simple and Full Equations After Re-Calibrated with 

Only Study One Cohort 1 Participant Data. 

Walking 

Condition 

RMSE (mL/kg/min) MAE (mL/kg/min) Bias (mL/kg/min) 

Simple Full Simple Full Simple Full 

All OG 2.3 ± 2.6 2.4 ± 2.8 1.9 ± 1.4 2.0 ± 1.5 0.0 ± 2.3 -0.2 ± 2.4 

UNCON 2.2 ± 2.5 2.3 ± 2.6 1.8 ± 1.3 1.8 ± 1.4 -0.3 ± 2.2 -0.6 ± 2.2 

CAD-CON 2.5 ± 2.7 2.6 ± 2.9 2.0 ± 1.4 2.1 ± 1.5 0.4 ± 2.4 0.1 ± 2.6 

All values are presented as mean ± SD 

All OG = all overground; UNCONS = overground unconstrained; CAD-CON = overground cadence-

constrained; TM = treadmill 
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overground unconstrained and cadence-constrained walking (Study Two) was limited to a 

sample of adults <30 years of age. These latter data were sufficient for accomplishing 

Study Two’s aim of cross-validating the cadence based metabolic equations across 

walking conditions. Nonetheless, the results of Study Two would be strengthened by 

providing evidence that the reported predictive error values were not affected by the 

discrepancy in age between calibration and cross-validation samples. 

 Based on the aforementioned age-discrepancy, a post-hoc analysis was conducted 

to determine whether eliminating this age discrepancy changed the results of Study Two. 

Specifically, the simple and full cadence-based metabolic equations were re-calibrated 

(i.e., least squares regression models were fit) using only the treadmill walking data from 

Cohort 1 (adults 21-40 years of age). These re-calibrated cadence-based metabolic 

equations were then applied to the data collected during overground unconstrained and 

cadence-constrained walking in the same manner as in Study Two. The resulting 

predictive error values are provided in Table 14. When re-calibrated in this younger 

subsample and applied to the overground walking conditions, the simple and full 

equations had RMSE, MAE, and bias values that were similar to those originally reported 

in Study Two (all differences ≤0.1 MET; Table 8 and Table 14). Therefore, re-calibrating 

the cadence-based metabolic equations in participants with ages similar to those included 

in the cross-validation dataset did not affect the results. This post hoc analysis uses the 

data available to provide some evidence that the wider age range of the Study One 

sample did not have a notable influence on metabolic equation predictive error during the 

overground walking conditions in young adults (Study Two).  
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This discrepancy in age may still have implications for the interpretation of the 

results reported herein. As discussed previously (see section 5.1.1.), the cadence-based 

metabolic equations were developed in a sample that included proportionally fewer older 

adults(n = 37 for Cohort 3), compared to young and middle-aged adults (n = 76 for 

Cohort 1 and n = 80 for Cohort 2). This may have resulted in Study Two’s predictive 

error values being lower and more similar to those reported in this post hoc analyses, 

compared to if the cadence-based metabolic equations were calibrated in a sample 

including more older adults. Additionally, overground unconstrained and/or cadence-

constrained walking may have differences effects on the cadence-intensity relationship in 

older adults (i.e., an age-walking condition interaction). If so, Study Two’s results may 

not be generalizable to older adults. 

5.3. The ACSM Metabolic Equation 

The ACSM has promoted the use of the ACSM Metabolic Equation since the 

second edition of the ACSM Guidelines for Exercise Testing and Prescription was 

published in 1980.17 The ongoing dissemination of this equation is surprising given the 

erroneous predictions of metabolic intensity it has demonstrated previously21,22 and 

herein, with RMSE and MAE values of ~1 MET or greater (Table 5) and 66-106 kcal/hr 

for the average American man and women (Appendix B) during treadmill walking. The 

ACSM Metabolic Equation also underpredicted walking intensity with a mean bias that 

was ~1 MET during treadmill walking and significantly different than zero during the 

overground walking conditions (Table 11). This systematic underprediction of walking 

intensity is visually apparent in the ACSM Metabolic Equation’s fits to the treadmill 

walking and overground walking data (Figures 1B and 2B, respectively) and aligns with 
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the results of previous validation studies.21,22 For example, when applied to data from 409 

participants aggregated from 10 studies, the ACSM Metabolic Equation underpredicted 

VO2 with an SEE of 1.3 METs.21 Another study22 similarly reported that the ACSM 

Metabolic Equation underpredicted the intensity of treadmill walking at 81 m/min (3.0 

mph) with SEE values of 1.2-1.7 METs. Although the direction of error was the same, 

these previous two studies appear to have reported a greater magnitude of 

underprediction potentially due to differences in sample characteristics and treadmill 

walking protocols, or their use of SEE instead of k-fold cross-validated RMSE, MAE, 

and bias. 

The Bland-Altman plot presented in Figure 4A demonstrates that the bias of the 

ACSM Metabolic Equation increased in a seemingly linear pattern with increasing 

metabolic intensity of overground unconstrained and cadence-constrained walking. As 

shown in Appendix D, the ACSM Metabolic Equation’s predictive bias also increased 

with increasing walking intensity during treadmill walking. The use of a linear model is a 

likely reason for this apparent trend, as several previous studies have reported that the 

speed-intensity relationship is curvilinear.21,64,80,124,125 Similarly, in the data collected 

herein, including a quadratic term in a mixed regression model representing the 

relationship between treadmill speed and walking intensity significantly improved model 

fit (p <0.0001), as evaluated by a likelihood-ratio test. The ACSM Metabolic Equation 

may also be inaccurate because it includes a speed component that was developed with 

data from only three trained men.19 The use of such a small, homogeneous calibration 

sample suggests that the ACSM Metabolic Equation may not be generalizable to women, 

adults of various ages, and populations with wider ranges in stature and BMI. This 
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limited generalizability could also explain why the ACSM Metabolic Equation’s 

predictive accuracy in Study One (with the more heterogenous sample) was consistently 

and noticeably lower than in Study Two, with 0.3-1.3 mL/kg/min differences in RMSE 

and MAE (Figure 3). 

The results of the current study provide additional evidence that the ACSM 

Metabolic Equation underpredicts walking intensity by ~1 MET or more. In addition to 

demonstrating the limitations of this well-known equation in a large, heterogenous 

sample, the current study provides alternative metabolic equations that demonstrated 

≥50% (≥1.4 mL/kg/min; 28-47 kcal/hr for the average American adult) lower RMSE and 

MAE values, and ~200% (3.0 mL/kg/min; 64-75 kcal/hr for the average American adult) 

lower magnitudes of bias than the ACSM Metabolic Equation during treadmill walking. 

Accordingly, adoption of these cadence-based metabolic equations would enable more 

accurate quantification and prescription of walking intensity, which may ultimately result 

in better adherence to walking programs7-10 while ensuring that the health benefits of PA 

are accrued as anticipated.2-6 Furthermore, walking speed is difficult to prescribe without 

a treadmill. For example, determining walking speed can require expensive and 

potentially problematic GPS technology24 or walking a measured distance in a measured 

amount of time. Alternatively, cadence can be prescribed in almost any setting using a 

metronome or music and easily monitored by counting steps (with direct observation or a 

wearable device) and dividing by time. Therefore, in addition to demonstrating greater 

predictive accuracy, these cadence-based metabolic equations are simpler and more 

accessible for researchers, health professionals, and members of the general public to use. 
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5.4. Strengths and Limitations 

 A primary strength of this thesis was the use of a large, age- and sex-balanced 

sample of 21-81-year-old adults for the development of the cadence-based metabolic 

equations. The use of such a sample suggests that these equations, and their predictive 

accuracies reported in Study One, will be generalizable to healthy men and women of all 

ages. In comparison, several speed-based metabolic equations have been previously 

developed with considerably smaller and more homogeneous samples (section 

2.3).19,21,64,80,124,125 Additionally, previous studies28-31,35,36,38 have highlighted the 

importance of accounting for anthropometric and demographic characteristics when using 

cadence to predict walking intensity. Not only were these variables considered herein, but 

the large and heterogeneous sample used for Study One included sufficient variability in 

participant characteristics to identify any existing effects. Additionally, multiple 

approaches were taken to evaluate potential influences of participant anthropometric and 

demographic characteristics on the cadence-intensity relationship. For example, the 

primary analysis examined whether including individual characteristics reduced 

metabolic equation predictive error for participants on average and an additional post hoc 

analysis was conducted to quantify the practical influence of each characteristic on 

metabolic intensity predictions (Table 11). Another strength of the methodology applied 

in Study One was the use of k-fold cross-validation for testing the cadence-based 

metabolic equations and the PRESS statistic to develop the full equation. These cross-

validated measures of predictive error reflect the capacity of metabolic equations to 

predict walking intensity in data not included in the calibration sample (i.e., independent 

data), as directly relevant to research and health applications. The generalizability of the 



129 

 

cadence-based metabolic equations was further strengthened by evaluating their 

predictive accuracies during overground unconstrained and cadence-constrained walking. 

This analysis provided explicit evidence for the validity of the cadence-based metabolic 

equations during potential real-world applications. 

 A limitation of this thesis was that the data available at the time of these analyses 

were incomplete for Cohort 3. Whereas 20 adults were included from each 5-year age 

group from 21-60 years of age (excluding the 3 participants with invalid data), data were 

only available for 10-13 adults per 5-year age group from 61-75 years of age, 2 adults 76-

80 years of age, and 1 adult 81-85 years of age. This may have reduced the influence of 

age in the full equation and the results reported in Study One. Additionally, a post hoc 

analysis conducted herein (section 5.1.1.2) suggested that an effect of age on the cadence-

intensity relationship existed in older but not young or middle-aged adults (Table 13). 

The inclusion of age in the full cadence-based metabolic equation may therefore reduce 

its accuracy in young and middle-aged adults, in whom age did not appear to have an 

effect. Nonetheless, this inclusion of age is unlikely to have an appreciable effect (e.g., a 

0.1 MET difference in full equation predictions for a 30- versus 50-year-old adult at 100 

steps/min) except when predicting walking intensity in older adults, as intended. The 

discrepancy in age between the sample in Study One and Study Two sample is a 

limitation that was partially addressed by showing that the results of the latter study did 

not differ when both samples were comprised of young adults (see section 5.2.3). Still, it 

is possible that walking condition (i.e., treadmill versus overground unconstrained versus 

overground cadence-constrained) has a greater influence on the cadence-intensity 

relationship in older adults. If such an age-walking condition interaction exists, the 



130 

 

cadence-based metabolic equations could have a lower predictive accuracy during 

overground unconstrained and/or cadence constrained walking in older adult than was 

apparent in Study Two. Lastly, based on previous studies21,22 reporting the ACSM 

Metabolic Equation to have a predictive error of >1 MET, we hypothesized that the 

cadence-based metabolic equations would be accurate relative to an RMSE and MAE 

threshold of 1 MET. However, the practical significance (e.g., health implications, effects 

on adherence to prescribed PA programs) of exhibiting predictive error above versus 

below this (or any) threshold is difficult to determine. For this reason, the accuracy of 

each cadence-based metabolic equation was compared to that of the ACSM Metabolic 

Equation in the same datasets. The cadence-based metabolic equations developed herein 

demonstrated greater accuracy than the ACSM Metabolic Equation, therefore advancing 

the methods available for quantifying and prescribing walking intensity. 

5.5. Conclusion and Future Directions 

 Metabolic intensity is an important consideration for ensuring that PA programs 

elicit the desired health benefits2-6 while still remaining enjoyable7 and maintaining 

adherence.10 Although measuring metabolic intensity is often problematic, cadence can 

be easily assessed using a timer and the direct observation of steps. Using only these 

cadence values, the simple cadence-based metabolic equation (Eq. 2) can predict walking 

intensity with reasonable accuracy (within 0.5 METs, on average; within 45 kcals/hr for 

the average American man and 38 kcals/hr for the average American women). Contrary 

to what was hypothesized, this predictive accuracy was not improved by including leg 

length, age, BMI, and sex as additional predictors in the full cadence-based metabolic 

equation (Eq. 3). Using the simple equation is therefore not only easier and more 
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practical for public health applications, but it also predicts walking intensity with 

comparable accuracy to the full equation, on average. The full equation may have utility, 

however, in adults with exceptionally short or tall statures, high levels of obesity, or an 

older age (>60 years of age). The predictive accuracies of the cadence-based metabolic 

equations also did not change when cross-validated across walking conditions. This 

provides explicit evidence that these equations are valid for predicting treadmill and 

overground unconstrained walking intensity and can be used when developing cadence-

based walking prescriptions that are implemented using metronome or music tempos. 

Furthermore, when averaged across treadmill walking bouts, the simple and full cadence-

based metabolic equations predicted walking intensity with ≥50% greater accuracy and 

~200% less bias than the ACSM Metabolic Equation. Therefore, these cadence-based 

metabolic equations enable more accurate quantification and prescription of walking 

intensity while employing a metric that is accessible to researchers, health professionals, 

and members of the general public. 

 Given that the sample included in Study One included a limited number of older 

adults (3 adults >75 years of age), further research is needed to examine and quantify the 

effect of age on the cadence-intensity relationship. This older age group may also 

particularly benefit from cadence-based walking prescriptions that are developed using 

relative measures of metabolic intensity (e.g., percent VO2Reserve or heart rate maximum). 

These knowledge gaps may be addressed following the completion of the CADENCE-

Adults Study.146 Additionally, after conducting the first known comparison of the 

cadence-intensity relationship across walking conditions, Study Two provided 

preliminary evidence that walking intensity is slightly elevated during cadence-
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constrained walking (section 5.2.1). Future studies examining the effect of constraining 

cadence on the cadence-intensity relationship are needed to 1) confirm these findings, 2) 

examine this effect in middle-aged and older adults (and its practical significance), and 3) 

evaluate the persistence of this potential elevation in metabolic intensity during longer 

(>5 min) walking bouts. Finally, future walking interventions and PA surveillance studies 

are needed to implement these cadence-based metabolic equations and determine whether 

they actualize their potential to be acceptable and efficacious tools for conveying, 

prescribing, and quantifying walking intensity. 
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APPENDIX A 

A. BLAND-ALTMAN PLOT FOR EACH METABOLIC EQUATION 

DURING TREADMILL WALKING 
 

 

Note: 95% limits of agreement not calculated because of unequal number of bouts completed by each participant 

Measured = VO2 measured with indirect calorimetry; Predicted = VO2 predicted by ACSM metabolic equation 
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APPENDIX B 

B. PREDICTED ERROR VALUES FOR EACH METABOLIC EQUATION 

WHEN CONVERTED TO KCAL/HR 

 

 

  

Measure 
Walking 

Condition 
Men* Women* 

Simple Full ACSM Simple Full ACSM 

RMSE 

TM 64 ± 7 59 ± 7 106 ± 8 55 ± 6 50 ± 6 91 ± 7 

UNCON 55 ± 68 60 ± 67 73 ± 99 48 ± 58 51 ± 58 63 ± 86 

CAD-CON 60 ± 62 62 ± 71 84 ± 93 51 ± 53 54 ± 61 73 ± 80 

MAE 

TM 45 ± 4 41 ± 4 77 ± 5 38 ± 4 35 ± 4 66 ± 5 

UNCON 44 ± 34 47 ± 37 55 ± 48 37 ± 30 41 ± 32 48 ± 41 

CAD-CON 51 ± 32 51 ± 36 70 ± 47 44 ± 27 44 ± 31 60 ± 40 

Bias 

TM 0 ± 9 0 ± 7 75 ± 6 0 ± 8 0 ± 6 64 ± 5 

UNCON 3 ± 56 -22 ± 56 50 ± 54 3 ± 48 -19 ± 48 43 ± 46 

CAD-CON 21 ± 57 -4 ± 63 69 ± 49 18 ± 49 -4 ± 54 59 ± 42 

All units are kcals/hr  

Values are presented as mean ± SD 

TM = treadmill; UNCONS = overground unconstrained; CAD-CON = overground cadence-constrained 

*calculated using sex-specific US average body mass values (88.8 kg for men and 76.4 kg for women)94 
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APPENDIX C 

C. BLAND ALTMAN PLOTS FOR EACH METABOLIC EQUATION 

DURING EACH OVERGROUND WALKING CONDITION. 

 

Measured = VO2 measured with indirect calorimetry; Predicted = VO2 predicted by metabolic equation 
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APPENDIX D 

D. MODIFIED BLAND-ALTMAN PLOT FOR EACH METABOLIC 

EQUATION DURING OVERGROUND WALKING 

 

 
Note: modified because criterion-measured VO2 of each bout is plotted on the x-axis (instead of the average 

of measured and predicted VO2) 

Measured = VO2 measured with indirect calorimetry; Predicted = VO2 predicted by ACSM metabolic equation 
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