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ABSTRACT 

AN INVESTIGATION OF THE EFFECTS OF CONDITIONING ON 

TWO ABILITY ESTIMATES IN DIF ANALYSES 

WHEN THE DATA ARE TWO-DIMENSIONAL 

SEPTEMBER 1993 

KATHLEEN M. MAZOR, B.A., UNIVERSITY OF MASSACHUSETTS 

M.S., EASTERN WASHINGTON UNIVERSITY 

Ed.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Ronald K. Hambleton 

Differential item functioning is present when examinees of the 

same ability, but belonging to different groups, have differing 

probabilities of success on an item. Traditionally, DIF detection 

procedures have been implemented conditioning on total test score. 

However, if there are group differences on the abilities underlying test 

performance, and total score is used as the matching criterion, 

multidimensional item impact may be incorrectly identified as DIF. 

This study sought to confirm earlier research which demonstrated 

that multidimensional item impact may be identified as DIF, and then to 

determine whether conditioning on multiple ability estimates would 

improve item classification accuracy. 

Data were generated to simulate responses for 1000 reference group 

members and 1000 focal group members to two-dimensional tests. The 

focal group mean on the second ability was one standard deviation less 

than the reference group mean. The dimensional structure of the tests, 

the discrimination of the items, and the correlation between the two 
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abilities were varied. Logistic regression and Mantel-Haenszel DIF 

analyses were conducted using total score as the matching criterion. As 

anticipated, substantial numbers of items were identified as DIF. 

Items were then selected into subtests based on item measurement 

direction. The logistic regression procedure was re-implemented, with 

subtest scores substituted for total score. In the majority of the 

conditions simulated, this change in criterion resulted in substantial 

reductions in Type I errors. The magnitude of the reductions were 

related to the dimensional structure of the test, and the discrimination 

of the items. 

Finally, DIF analyses of two real data sets were conducted, using 

the same procedures. For one of the two tests, substituting subtest 

scores for total score resulted in a reduction in number of items 

identified as DIF. 

These results suggest that multidimensionality in a data set may 

have a significant impact on the results of DIF analyses. If total 

score is used as the matching criterion very high Type I error rates may 

be expected under some conditions. By conditioning on subtest scores in 

lieu of total score in logistic regression analyses it may be possible 

to substantially reduce the number of Type I errors, at least in some 

circumstances. 
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CHAPTER I 

INTRODUCTION 

Tests have become an integral part of modern society. In the . 

United States test results are used to inform educational decisions 

regarding placement and advancement from kindergarten through graduate 

school. Outside of the realm of education, test results are used for 

selection, advancement, and competency assessment in industry, the 

military, and in a variety of professions. In addition, test results 

are often used in program evaluations to help assess the effectiveness 

of preventative, remedial and other social programs. 

Because of the pervasive use of tests, and the importance of the 

decisions which are made using test results, both tests and the ways in 

which test results are utilized have come under careful scrutiny. One 

of the most important and frequently raised questions is whether tests 

are fair to all examinees. This is a question which has serious social 

and political ramifications, and which has been the focus of much 

litigation. Under the general issue of test fairness is the more 

specific issue of item bias. 

The term "bias" has many connotations. In the field of 

measurement it does not necessarily have the same meaning which a layman 

might attach to it, and this has sometimes lead to confusion. For 

instance, one connotation which has drawn considerable attention is 

apparently biased item content. Minority group advocates and others 

have found instances of items which portray certain group members in 

ways that may be considered racist, sexist, stereotypical or demeaning. 
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While this is certainly undesirable, and such offensive content is best 

removed, as Scheuneman (1982) notes, such content may not in fact 

produce differences in performance. 

A second apparent unfairness which is sometimes termed "bias" by 

those unfamiliar with the technical definition of the term is the 

observation that often there are considerable differences between groups 

as to how difficult a test or a test item is. Thus, one group may 

consistently score higher or lower than another on a particular type of 

test or item. This has been the focus of considerable controversy as 

some authors have sought to use this as evidence of inherent genetic 

differences. Such inferences are unfounded. Test scores alone do not 

provide sufficient information to validate such inferences, especially 

when there are so many factors known to impact on test performance and 

which are known to be inequitably distributed in our society. 

It is now generally accepted that there may in fact be group 

differences in performance both at the item and the test level, and that 

these differences do not necessarily mean that the test is biased or 

unfair. Instead, such differences may accurately reflect real 

differences in the skill or ability the test is seeking to measure. 

Such differences in performance which are due to differences in the 

underlying ability distributions are typically referred to as "impact" 

(Holland & Thayer, 1988). 

Differential item functioning, in contrast to item impact, refers 

to differences in performance which are observed after differences in 

ability are controlled for. Mellenbergh (1989) offers the following 

definition: "An item is considered to be biased when it differs in 

difficulty between subjects of identical ability from different groups." 
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(p. 128) Thus one group has a relative advantage even when differences 

in underlying ability distributions are controlled for. By definition 

any remaining differences in performance are due not to item impact, but 

to something idiosyncratic about that item, and the interaction between 

that item and the groups under study. There are a number of statistical 

techniques used for identifying DIF. The techniques which are currently 

most preferred are those which are conditional procedures (Mellenbergh, 

1989; Hills, 1989; Scheuneman & Bleistein, 1989). Conditional 

procedures are consistent with the definition of item bias (DIF) which 

is presented above, as they allow for statistical control of differences 

in the underlying ability distributions when comparing examinees from 

different groups. 

If an item functions differentially for two groups, it poses a 

threat to the validity of inferences which are made from the test, as 

one could argue that that item is measuring something other than what 

the test purports to measure, or at least something different from what 

the other items are measuring. As Shepard, (1982) writes, "Item bias 

methods detect items that are anomalous. Whatever the rest of the items 

measure, the biased item behaves differently." (p. 24) The question 

then arises as to what is causing these items to behave differently? 

Thus the second, and to some authors the more important question (Kok, 

1988), becomes one of explanation. Some researchers (e.g. Scheuneman) 

have sought explanations through careful post hoc analyses of identified 

items. For the most part, these efforts have not been successful. 

Shepard et al. (1984) noted that "even minority experts could not 

predict with greater than chance success what types of items would be 

difficult for members of a particular group" (p. 95). Nor could such 
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experts explain why certain items were flagged as DIF, while others were 

not. 

The use of expert and/or minority judges for the purpose of 

identifying biased items is referred to as the judgmental approach. 

Studies which have compared the results of judgmental with statistical 

approaches have generally found little convergence between the two 

methods (Plake, 1980; Engelhard, Hansche, & Rutledge, 1990). What would 

seem on the surface to be a relatively simple task - looking at items 

which have been identified using statistical procedures as DIF, and 

through careful item review determine why those particular items were 

flagged so that such items could be avoided in the future - has turned 

out to be a far more difficult task than originally thought. 

While the fact that there has been little convergence between the 

two approaches has been documented in the literature, the question of 

why this is the case has yet to be answered. Some authors have sought 

to answer this question by looking even more closely at the 

characteristics of items flagged statistically (e.g. Scheuneman, 1982, 

1987) , while others have looked more closely at the statistical 

procedures which are being used (Shepard, Camilli, & Williams, 1984) to 

determine whether statistical artifacts may account for the discrepancy. 

While their research found support for the efficacy of the statistical 

methods, the use of actual test results means that it is not possible to 

truly evaluate the power and accuracy of the statistical procedures. 

Thus, the question remains whether statistical techniques are 

consistently and correctly identifying true item bias. 
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Statement of the Problem 

The lack of convergence of statistical and judgmental methods for 

identifying DIF has lead psychometricians to take a closer look at each 

approach. A careful evaluation of the statistical procedures requires 

examining whether these procedures are accurate in their 

classifications. That is, do these procedures consistently identify all 

of the items which are in fact DIF, without falsely identifying any non- 

DIF items? 

One of the most popular and widely researched statistical 

procedures for identifying item bias is the Mantel-Haenszel (MH) 

procedure. This procedure has become known as a kind of industry 

standard. There are several reasons for the popularity of the MH. One 

of the most often cited is its theoretical basis, which is consistent 

with the definition of DIF which stresses that differences in ability 

distributions should be controlled for. The MH controls for differences 

in the ability by blocking examinees according to ability. In practice, 

total test score is most often used, as this is usually assumed to 

provide the best available estimate of ability. Typically, there is one 

block for each possible score, resulting in n+1 score categories, where 

n is the number of test items. If, after the examinees are matched, 

there is still a significant difference between the two groups in 

likelihood of success on a given item, the item is considered DIF. 

From this brief description it can be seen that central to this 

procedure is the assumption that the measure which is used as the 

blocking criterion is a valid estimate of the ability which the test 

intends to measure. When total test score is used, the assumption is 

therefore that total test score provides such an estimate. In the case 
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where the test is unidimensional this is a reasonable assumption. Most 

of the simulation studies which have looked at the performance of the MH 

have used a unidimensional model to generate the data. These studies 

have consistently found that the MH accurately identifies most items 

which are constructed to simulate DIF (Mazor, Clauser & Hambleton, 1992; 

Clauser, Mazor & Hambleton, 1991; Rogers, 1989). These studies have 

also found low false positive rates. 

While the results of these studies are quite positive, two 

questions remain. First, are the simulation results generalizable to 

"real" data sets? Not surprisingly, research using the MH procedure 

with real data sets has yielded results which are much more difficult to 

evaluate. The obvious problem is that with real data sets it is not 

possible to know which items are in fact DIF, so that it is impossible 

to truly assess the accuracy of classifications. One concern is the 

instability of the statistic across samples. For example, Hambleton and 

Rogers (1989) found that when they replicated the MH analyses on two 

randomly constructed samples (both comparing Anglo-Americans to Native 

Americans) that the MH was 80% consistent overall, that is 80% of the 

decisions made on the first analysis were replicated on the cross- 

validation sample. 

The question of whether total test score provides a valid estimate 

of ability becomes even more difficult with real data sets. There is 

some research which suggests that changing the criterion will 

substantially change the classifications of items (e.g. Mazor, Kanjee, & 

Clauser 1993; Clauser, Mazor, & Hambleton 1991; Ryan, 1991). The 

question which has yet to be answered is which criterion is the 

appropriate one, yielding the most accurate item classifications? 



Again, with real data sets this question is virtually impossible to 

answer with certainty. 

Another finding which has practitioners concerned is the finding 

that analyses of the same test items but with different samples may 

affect the stability of the statistics (Ryan, 1991; Kubiak & Cowell, 

1990). Thus, while simulation studies have provided substantial 

evidence in support of the MH procedure, it is important to remember 

that these studies have generally used data which was generated by, and 

therefore fit, a unidimensional model. The results of analyses of real 

data suggest that in the "real world" the situation may be more complex. 

One question which simulation studies have not addressed to date 

is the question of explanation - that is what makes an item more 

difficult for one group than another (after conditioning on ability). 

In general, looking at the characteristics of the items which were 

flagged has not proven fruitful thus far. However, the answer to this 

question may lie more in the definition of DIF, than in any particular 

item characteristics. Typically in simulation studies, DIF items are 

generated so that there are actual differences in the difficulty 

parameters between the two groups. This results in differences in the 

p-values (even after controlling for ability) and the item is flagged as 

DIF. Thus, simulations build in differences in item difficulties, but 

generally have not addressed what factors are responsible for such 

differences. 

The question of what factors cause differences between groups in 

item difficulty (or in other item parameters) is central to an 

understanding of DIF. To address this question one must return to the 

definition of DIF. To briefly restate the definition, an item is 
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considered non-DIF if examinees of the same ability have equal 

probabilities of getting an the item correct, regardless of group 

membership. However, by this definition, it would seem that if two 

examinees were indeed of the same ability, and that is the only ability 

which determines performance on that item, it would be logically 

impossible for there to be differences in performance (except those due 

to chance). Therefore, this definition implies that DIF is due to 

multidimensionality. If the item and the total test score were 

measuring the same unidimensional ability, or exactly the same weighted 

composite of abilities, then it would be impossible for differences in 

performance to exist except due to chance. Thus, if there are 

significant differences in performance, it must be the case that 

something other than that estimated by total test score (or whatever 

matching criterion is used) is influencing performance on that item. 

Therefore, the test must be multidimensional, and it is this 

multidimensionality coupled with differences in the underlying 

multidimensional ability distributions, which explains why an item 

appears DIF. 

This conceptualization of DIF is not in fact new, but has been 

recognized for some time. The work of Kok (1988), Shealy and Stout 

(1993) and Ackerman (1992) may be seen as making more explicit the 

relationship between multidimensionality and DIF, and providing a 

framework for further work in this area. 

An example of how multidimensionality may result in DIF may be 

useful here. Consider a hypothetical math test, composed of 45 two 

digit addition and subtraction items, and five problems which also 

require addition or subtraction of two-digit numbers, but in order to 
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determine which operation to perform the examinee must read three or 

four sentences which set forth the problem. If the total test score is 

used as the criterion (and assuming all items are equally 

discriminating) and the Mantel-Haenszel procedure is run, examinees will 

be matched on a criterion which is primarily a function of what might be 

called for simplicity "math ability". (If second run results are used, 

the total test score is likely to be a purer measure of "math ability" 

as it is likely that at least some of the word problems would be flagged 

and therefore eliminated from the criterion.) Thus, matching examinees 

on total test score will have the effect of matching on math ability. 

However, five of the items require the second ability, call it reading 

ability, to be solved. The MH procedure as it is typically implemented 

(and most other DIF procedures currently in use) match examinees only on 

the primary ability (or on a weighted composite dependent on the number 

and type of the items in the test, and the discrimination values of 

these items). In any case (except when the test and the items are 

unidimensional) the result is that examinees are matched on some but not 

all of the relevant abilities, and differences in the underlying 

conditional ability distributions of the ancillary trait(s) may result 

in items being flagged as differentially functioning, when in fact 

differences in performance are due to actual differences in ability. 

There are a number of studies which provide evidence that this is in 

fact the case, and these are discussed in the next chapter (see for 

example, Oshima & Miller, 1990; Ackerman, 1992). 

Shepard (1982) notes that the context in which an item is analyzed 

is extremely important. If a verbal item is embedded in a test 

comprised otherwise of math problems, then that verbal item is likely to 
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appear biased. If the test is intended to measure only math ability, 

then the reading ability may in fact be a "nuisance" ability, and it 

would be desirable to remove items contaminated by that ability. 

However, it is possible to find examples of tests where it is not 

desirable to have either the tests or the items be unidimensional. In 

many situations it is considered preferable to have items be as 

"realistic" as possible, and in most cases realism means moving away 

from purely unidimensional items. In some contexts word problems may be 

considered more "realistic" than pure math problems. If the test is in 

fact intended to measure this second ability, then flagging such items 

as DIF is not desirable. But if there are differences in the ability 

distributions on this second ability, these items may be flagged. In 

this case test developers would probably not want to remove these items, 

and such differences would be more correctly labelled item impact than 

item bias. (Note: Ackerman and others consistently refer to the two 

abilities as theta and the nuisance ability. But the so-called nuisance 

ability may be an important ability which the test intends to measure. 

Therefore, the more neutral terms, first and second ability, or ability 

A and ability B seem preferable and will be used in this study.) 

Thus, this line of reasoning leads to one answer to the question 

of what causes the differences in performance which are identified as 

DIF. Namely, that multidimensional items (or combinations of different 

types of unidimensional items within a single test) are prerequisite to 

items being identified as DIF. However, it is not just multidimensional 

items per se which cause the apparent DIF, it is the presence of items 

sensitive to more than one ability, coupled with between group 

differences in the multidimensional ability distributions, that results 
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in the potential for bias (Kok, 1988; Shealy & Stout, 1993; Ackerman, 

1992) . This is because the examinees who are being compared are not in 

fact comparable. Holland and Thayer (1988) define comparability as 

"identity in those measured characteristics in which examinees may 

differ and that are strongly related to performance on the studied 

item." (p.130) Ackerman (1991) has done some preliminary research which 

suggests that this is the case. 

One solution which has been proposed by some authors (e.g. Shealy 

& Stout 1993, Ackerman, 1992) is that rather than condition on total 

test score, one should select a valid subtest of items, and that the 

score on this valid subtest be used as the conditioning criterion. The 

reasoning here is that if an item is analyzed with the correct 

criterion, the criterion which accurately estimates the ability (or 

abilities) which one intends to measure, then the analysis will 

correctly identify those items which are not measuring this ability or 

abilities. The decision as to which items to use to construct such a 

subtest will depend on the intent of the test. Clauser, Mazor, and 

Hambleton (1991) using a judgmental method of constructing valid 

subtests found that item classifications did change as a function of the 

criterion which was used. Ryan (1991) found greater stability across 

different criteria, but this may be because the criteria used likely did 

not differ substantially in dimensionality. While the use of valid 

subtest scores appears to be a reasonable approach, it has yet to be 

thoroughly investigated. 

Swaminathan and Rogers (1990) demonstrated that the MH procedure 

may be conceptualized as a special case of the logistic regression 

model. The logistic regression (LR) procedure, like the MH, controls 
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for differences in ability distributions between groups. The LR 

procedure does this by incorporating an ability estimate (usually, but 

not necessarily, total test score) into the regression equation. Like 

the MH, the LR procedure provides a statistical test of whether group 

membership is significant. Unlike the MH, LR also allows for a test of 

whether there is an interaction between group membership and ability, 

which is a test for the presence of non-uniform bias. 

Because the LR procedure has been introduced only recently as a 

procedure for detecting DIF, there is currently much less research 

available on it than on the MH. However, the research which is 

available suggests that it performs as well as the MH at identifying 

uniform DIF, and better at identifying non-uniform DIF. False positive 

rates were only slighter higher than those associated with the MH, and 

still quite low (Swaminathan & Rogers, 1990). 

The LR model is relevant here not only because it is a promising 

new technique, but because the regression model lends itself readily to 

expansion. With respect to the issue of multidimensionality, an 

estimate of a second ability can easily be incorporated into the LR 

model. Thus, if much of what is currently being labelled as DIF is due 

to multidimensionality, then the LR procedure may provide the best model 

for taking this into account, and thereby could improve item 

classification accuracy. 

If it is possible to model the process which results in items 

being identified as DIF using currently accepted detection procedures, 

and then to demonstrate how this apparent DIF essentially "goes away" if 

the analysis is modified to take into account a second ability, then our 

understanding of the relationship between DIF detection procedures and 
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■ultidiaensionality will be greatly enhanced. This would have important 

implications for how multidimensional tests are analyzed. In addition, 

this could lead to a rethinking of both the judgmental and statistical 

procedures currently in use, and could well lead to a greater 

convergence between the two. 

Purpose of the Study 

The first purpose of the present study was to investigate the 

conditions which influence whether multidimensional items are identified 

as DIF. It was demonstrated that multidimensional tests resulted in 

high false positive error rates when there were between group 

differences in the underlying multidimensional ability distributions, 

and examinees were matched on total test score. 

The second purpose was to determine whether these high false 

positive error rates would be reduced by selecting items into relatively 

more unidimensional subtests, and then conditioning on both subtest 

scores simultaneously. 

Finally, analyses of two real data sets were conducted following 

the procedures used in the analysis of the simulated data. The purpose 

of this phase of the study was to assess whether the results obtained in 

the first part provide a realistic model of what might be encountered 

*in the real world," and therefore whether the findings from this 

simulation study were generalizable to real test data. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Studies of DIF may be generally conceptualized as studies of 

whether different groups show differing responses to test items 

(Mellenbergh, 1982). In early DIF studies if a particular item was more 

or less difficult for examinees depending on group membership, the item 

would be considered DIF. Group differences in ability were not taken 

into account, which is why approaches using this definition are referred 

to as unconditional approaches. 

While the simplicity of this approach may make it appealing to lay 

readers, it has lost credibility in the measurement community. It is 

now widely agreed that differences in performance associated with group 

membership, while possibly due to DIF, may also be attributable to real 

differences in ability between the groups under study. For a test to be 

valid it is desirable that items be sensitive to these differences. 

When apparent differences in performance can be attributed to 

differences in the underlying ability, the difference is more 

appropriately labeled impact rather than DIF (Holland & Thayer, 1988). 

Because of this, virtually all of the currently accepted definitions of 

DIF make explicit reference to the need to ensure that underlying 

differences in ability are taken into account. As Holland and Thayer 

(1988) write, "Basic to all modern approaches to the study of 

differential item functioning is the notion of comparing only comparable 

members of the reference and focal groups." Approaches to DIF which 
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control for underlying between group differences are called conditional 

approaches. 

Shepard et al. (1984) define DIF (item bias) as follows: "For an 

individual item, bias is defined as the difference in the probability of 

answering correctly, given equal ability" (p. 101). There are other 

definitions of DIF in the literature with slight variations in wording, 

but there is wide if not unanimous agreement as to the two crucial 

components to this definition: first that there is a difference in 

performance, and second, that this difference remains after controlling 

for between group differences in ability. 

It would seem a relatively straightforward matter to work from 

this definition of DIF to develop procedures for identifying and 

eliminating DIF. As Scheuneman wrote in 1987, 

At one time an orderly progression was envisioned as 
follows: a) Devise procedures for reliably detecting those 
items that are performing differently for the groups of 
interest; b) examine the items and identify causes for the 
differential performance; c) develop procedures for 
modifying the items so that the differential performance is 
reduced or eliminated; and d) develop guidelines for item 
writers so that future items are free from such biases" (p. 
97). 

Scheuneman, in retrospect, concluded that the expectation of a 

straightforward, orderly progression was naive. 

The four steps which Scheuneman outlined might be reconceptualized 

as three: identification, explanation, and elimination. The remainder 

of this literature review is organized consistent with this framework. 

First, the most widely accepted procedures for identifying biased items 

will be presented and discussed. Next, research relevant to the 

explanation of DIF will be reviewed, with an emphasis on the 

conceptualization of DIF as multidimensionality. Finally, the 
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implications of a multidimensional explanation of DIF for the third 

area, the reduction or elimination of DIF will be discussed. 

Procedures for Detecting Differential Item Functioning 

The definition of DIF presented above is readily translated into 

item response theory (IRT) terms. In IRT, examinee performance on a 

test item is modeled as a function of an underlying ability or trait. 

(Our discussion at this point will focus only on unidimensional IRT 

models, although multidimensional models are also used, and will be 

discussed later.) There are several different IRT models currently in 

use. Logistic models are probably the most popular currently, and may 

include one, two or three item parameters. One-parameter models model 

performance as a function of ability and a single item parameter, 

usually referred to as item difficulty, or b. When there is no guessing 

(as in the one- or two-parameter models) b is the point where the 

probability of getting the item correct is 50%. One parameter models 

are based on the assumptions that items differ only in difficulty, that 

guessing is minimal, and that all items are equally discriminating. The 

two parameter model, in addition to the item difficulty parameter, also 

includes a parameter for item discrimination, referred to as a. The a 

parameter is proportional to the slope of P|(0) at the inflection point 

of the curve. The three parameter model includes a third parameter, 

often referred to as the pseudo-guessing or c parameter, which 

represents the probability of examinees of extremely low ability 

answering the item correctly. 

Each of the IRT models allows for estimation of an item 

characteristic curve (ICC). The ICC is a curve which is determined by 
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the specific model chosen, and the item parameters estimated from the 

data. The ICC specifies the relationship between the probability of 

success on the item, and the underlying ability or trait. 

One of the assumptions of IRT is that the estimates of the item 

parameters are invariant. This means that these estimates do not depend 

on idiosyncracies of the sample on which they are estimated, but rather 

should remain stable across samples. Thus, if a particular item is 

administered to one group, and the item parameters are estimated, and 

then the same item is administered to another group, and the item 

parameters are also estimated, the parameters should be the same (once 

they have been set to the same scale). If there are differences in the 

parameters it means that examinees from the two groups are responding 

differently to the item, which is one way of defining DIF. 

This is best illustrated graphically by superimposing the ICC for 

the second group over that of the first. Then, for any level of 

ability, it is possible to determine what the probability of success on 

that item is. If the ICCs are the same, the probability of success will 

be the same, regardless of group membership. However, if the ICCs 

differ, the probability of success will also differ for examinees in the 

range of ability where the curves are divergent. Thus, to define DIF in 

IRT terms is to say that an item is differentially functioning if the 

ICCs for that item differ significantly across groups (Hambleton & 

Swaminathan, 1985). 

There have been a number of IRT-based procedures proposed for 

identifying bias. One of the best known is commonly referred to as 

Lord's chi-square method (Lord, 1980). In this method, the a and b 

parameters are estimated separately for both groups, are transformed 
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onto a common scale, and are then compared simultaneously. The equality 

of the item parameters is evaluated using a chi-square test. 

Another group of IRT based procedures focus on the area between 

the ICCs. For these procedures the problem is to calculate the area 

between the curves, and then to determine whether the area reflects a 

significant difference. Shepard, Camilli and Williams (1984) present 

formulas for evaluating the area between two curves. However, since 

that time Raju (1988) has presented formulas for computing the exact 

area between two ICCs (both signed and unsigned). When these were 

first presented, no associated test for significance was available. 

Since that time Raju (1990) has presented procedures for testing the 

significance of both signed and unsigned areas. If the ICCs do not 

cross (uniform DIF) the signed and unsigned indices will be the same. 

However, if they do cross (non-uniform DIF), DIF in one direction in one 

region may be offset by bias in the other direction in another region, 

and thus the signed indices may be low. 

A third group of IRT-based procedures involves calculating the 

difference in probabilities of success, and then squaring and summing 

these. These are aptly referred as the sum of squares (SOS) methods. 

Shepard, Camilli, and Williams (1984) present formulas for both signed 

and unsigned SOS indices. They found that of the indices they evaluated 

(Lord's chi-square, SA, UA, SOS, and USOS) that the sum-of-squares 

statistics (weighted by the inverse of the variance errors) appeared to 

be the best. 

There is a very clear and direct connection between the generally 

accepted definition of DIF, and IRT. IRT allows for evaluation of 

response differences after controlling for or conditioning on ability. 
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Mellenbergh (1982) argues the reason that IRT methods are to be 

preferred to other conditional methods, is that IRT methods allow for 

conditioning on true ability, versus observed score which stands as a 

proxy for true ability in most other procedures. 

While assessing DIF from an IRT perspective has considerable 

theoretical appeal, there are a number of practical issues which must be 

considered. One of the most frequently cited is the need for large 

sample sizes. For procedures which require the use of LOGIST to 

estimate item parameters (for the three parameter model), a minimum of 

1000 examinees per group is recommended. Depending on the testing 

program, this may or may not be feasible. A second concern is that 

even if a sufficient number of examinees are available, LOGIST is a 

difficult and expensive program to run. A third concern is that IRT 

methods may be conceptually difficult to explain to a naive audience. 

Fourth, some of the IRT methods do not have associated tests of 

significance (for instance SOS methods), or the significance test 

depends on a series of decisions regarding the ability range which is to 

be considered (i.e. Raju's area method)! Fifth, parameters cannot 

always be equally well estimated for both groups, differences in the 

ability distributions may be problematic. Sixth, some of the procedures 

require the practitioner to make decisions which may require some 

expertise or experience, such as over what range of ability should DIF 

be evaluated. Finally, the utility of all of the IRT methods is 

predicated on the fact that the model used must fit the data. Thus, 

while many authors agree on the theoretical merits of an IRT approach to 

identifying DIF, (Scheuneman & Bleistein, 1989; Mellenbergh, 1982; 
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Hills, 1990) these same authors generally acknowledge that practical 

constraints may preclude the use of such methods in some circumstances. 

The practical drawbacks to IRT methods have led practitioners to 

consider alternate methods. There are procedures which might be 

considered approximations to IRT techniques, but which overcome some of 

these practical problems. One of the most popular of these is the 

Mantel-Haenszel procedure (MH). 

The Mantel-Haenszel Procedure 

The MH procedure was originally introduced in 1959 by Mantel and 

Haenszel, who proposed it for use in the retrospective study of disease. 

Holland and Thayer (1988) introduced the MH procedure to the testing 

community for the purpose of identifying DIF. They argued that the MH 

procedure was a natural extension of the chi-square procedures which had 

been advocated until that time. However, the MH procedure improved on 

previous approaches by substantially improving the conditioning (going 

from 5-10 score groups to n+1 score groups where n=number of items). 

The MH procedure tests whether the odds of success on a given item 

are proportional for both groups across all levels of the matching 

criterion. This is done as follows. First, examinees are sorted into 

score categories according to their score on the matching criterion. 

When the total test score is used as criterion, there is one category 

for each possible score, including zero. It is possible to collapse the 

data to form fewer score categories if desired. The data are then 

arranged in a series of 2 X 2 tables, with one table for each score 

category. The arrangement for the jth matched set of examinees would be 

as follows: 
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Score on the Studied Item 

Group 

1 0 Total 

Reference 
aj B! "rJ 

Focal ci Dl “tj 

Total DLjj “Oj Ti 

Where Tj is the total number of focal and reference group members in the 

jth matched set, n^ is the number of those who are in the Reference 

group; and, of these, Aj answered the studied item correctly. The other 

cell frequencies are similarly defined. The null hypothesis of no DIF 

is that the proportion of examinees passing the item in the reference 

group equals the proportion for the reference group, for all score group 

levels. 

The Mantel-Haenszel chi-square statistic (MHCHI-SQ) is used to 

test this hypothesis. This statistic is written as follows: 

MH Chi-square - 
SjVarCAj) 

This form includes a continuity correction. The var(Aj) is given by 

var(Aj) - W*. 
Tj2 ( Tj -1) 

Under the null hypothesis the MH-CHISQ has an approximate chi-square 

distribution with one degree of freedom. 

Holland and Thayer recommend implementing the MH procedure in a 

two-step process. In the first step a preliminary analysis is conducted 

to identify suspect. Next, any items identified as DIF are removed 

(with the exception of the studied item) and a "purified" total score is 

21 



calculated, and the MH analysis is repeated with the "purified" total 

score as the matching criterion. This is so the matching criterion is 

as "clean" an estimate of ability as possible. 

Since it's introduction in 1988, the MH procedure has gained 

steadily in popularity. In fact, it is has become a kind of industry 

standard. Both Scheuneman and Bleistein (1989) and Hills (1989) cite 

the MH as a procedure which is both theoretically sound, practical to 

implement, and supported by current research findings. There are a 

number of advantages of the MH which probably contribute to its 

popularity. First, it allows for matching of examinees at a relatively 

fine level - that is at every possible score group. While this is not 

necessarily equivalent to conditioning on true score or true ability, it 

comes closer than the earlier chi-square approaches and generally 

satisfies the requirement of ensuring that only comparable members of 

the reference and focal groups be compared. By conditioning in this way 

the procedure approximates IRT procedures in one sense, without the need 

for the often costly and complex computer runs necessary for some of the 

IRT-based procedures. Writing and running programs to calculate the MH 

statistics is relatively simple and inexpensive, again as compared to 

many of the IRT based procedures. In addition, the MH can be used with 

smaller sample sizes than many of the IRT approaches, although claims 

that 100 examinees per group are sufficient (Hills, 1990) are probably 

not warranted (Mazor, Clauser, & Hambleton, 1992). 

Another reason for the popularity of the MH which has frequently 

been cited is that it is conceptually simpler, and therefore more easily 

explained to many audiences. Finally, and perhaps most importantly, 

there is considerable research which suggests that MH procedure yields 
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results similar to those obtained with IRT procedures, has very good 

detection rates, and low false positive rates. 

The most frequently cited disadvantage to the MH procedure is that 

it is relatively insensitive to non-uniform DIF. That is, if an item 

favors one group at one end of the ability range, and the other group at 

the other end of the range, that the DIF will essentially cancel itself 

out, and the item will not be identified. In terms of ICCs, non-uniform 

bias refers to the case where the difference between the curves is not 

equal across all ability levels. This reflects an interaction between 

group and ability level. If the curves cross only at the outer ranges 

of ability the MH may correctly identify the item as DIF. On the other 

hand, if the ICCs cross close to the middle of the ability distribution, 

the MH is not likely to flag the item as the bias will essentially 

cancel itself out. This can be predicted from a theoretical analysis of 

the procedure, which does not allow for an interaction of group with 

ability. This shortcoming of the MH was one of the factors which led to 

Swaminathan and Rogers (1990) developing a logistic regression procedure 

as a DIF detection method. While there is some indication that a 

modification of the MH procedure would increase detection rates for non- 

uniform DIF (Mazor, Clauser, & Hambleton, 1992) the LR procedure is more 

statistically sound and can easily be extended to handle multiple 

conditioning variables. 

The Logistic Regression Procedure 

The logistic regression model proposed by Swaminathan and Rogers 

may be written as follows: 

P (Uy-1) -exp (Eoj+^jXjj) / [ 1+exp (£0j+E1 ) ] 
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where is the response of person i in group j to the item, Egj is the 

intercept parameter, and is the slope parameter for group j, and 

is the "ability" of examinee i in group j. 

As Swaminathan and Rogers point out, the MH can be conceptualized 

as a special case of the LR procedure (although it was developed through 

a different line of reasoning). In addition to allowing for detection 

of interaction between group and ability, the LR model differs in how 

the ability variable is treated. The MH procedure treats ability as a 

discrete variable, and ignores the ordinal nature of the ability scale. 

In contrast, the LR model makes use of this information. Another 

advantage of the LR procedure with respect to the current research is 

that additional variables are readily accommodated by the regression 

equation, and therefore it can be expanded to allow conditioning on two 

(or more) variables simultaneously. 

Research on the Effectiveness of the MH and LR Procedures 

Hambleton and Rogers (1989) conducted a study which compared the 

results of the MH procedure to an IRT based area method. Given that IRT 

methods are considered theoretically optimal, correspondence between the 

IRT methods and the MH would provide evidence of the efficacy of the MH 

approach. Using data from a statewide high school proficiency exam, 

Hambleton and Rogers found substantial agreement between the two 

methods. The items flagged by the MH method were essentially a subset 

of items flagged by the area method. A close examination of the items 

consistently missed by the MH but flagged by the area method revealed 

that the DIF present in four out of the five such items was non-uniform, 

that is the ICC for the two groups crossed. It was not surprising that 
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the MH did not identify these items, as the MH does not allow for an 

interaction between group and ability. In fact, as noted above, it is 

this fact which is often cited as the primary criticism of the MH 

procedure (e.g., Scheuneman & Bleistein, 1989). 

While the Hambleton and Rogers study provides one line of support 

for the MH procedure, DIF research based on real data is always 

susceptible to the criticism that one cannot know for certain which 

items are in fact differentially functioning, and thus detection rates 

cannot be fairly evaluated. Recent studies using simulated data suggest 

that the MH has very good detection rates when substantial DIF is 

present. Mazor, Clauser and Hambleton (1992) simulated several tests 

using a unidimensional three-parameter logistic model. They introduced 

DIF items by changing the item parameters for the focal group so that a 

number of items (approximately 15 percent) were more difficult for the 

focal group (that is the b's for this group were higher than those for 

the reference group). They then analyzed these tests with the MH 

procedure in an effort to identify those items which had been 

constructed to exhibit DIF. They found very good detection rates with 

samples of 500, 1000 or 2000 per group. For instance, when comparing 

groups of equal ability and with 2000 examinees per group, the items 

which the MH did not flag were those with p-differences of .03, a 

difference of little, if any practical significance. With 200 examinees 

per group, items with p-differences of .17 were missed, and with sample 

sizes of 100 p-differences as large as .23 were missed. The pattern of 

results for groups of unequal ability (where the mean of the focal group 

was set to be one standard deviation less than that of the reference 

group) was similar, but detection rates dropped somewhat. For instance, 
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I>- differences of .15, .17 and .23 were missed at sample sizes of 1000, 

500 and 200, respectively. When the ability distributions were equal, 

the percentage of DIF items correctly identified was three to ten 

percent more than with unequal distributions, depending on the sample 

size. An examination of the item parameters of the items which were 

most likely to be flagged revealed these were moderately difficult 

items, with large b differences. The items most likely to be missed 

were the most difficult items, items with very small b-differences, and 

poorly discriminating items. This pattern of results was consistent 

across all sample sizes. This study also found very low false positive 

rates for the MH, with only one of the 59 non-biased items being 

consistently identified at sample sizes of 1000 and 2000. 

Rogers (1989) conducted a simulation study which looked at the 

power of both the MH procedure and the LR procedure. Her results 

provide support for the viability of both procedures. 

Rogers varied model-data fit, sample size, test length, shape of 

the test score distribution, proportion of DIF items, and type and 

amount of DIF. In this study, the amount of DIF present was 

operationally defined in terms of the area between the ICCs. Four 

levels of DIF were simulated, so that the area between the ICCs for the 

two groups was .2, .4, .6 or .8. Both uniform and non-uniform DIF were 

simulated. For the items constructed to show uniform DIF, the 

difference in the b values between the two groups for the four areas 

were .22, .42, .62 and .82 for the smallest to largest areas, 

respectively. Each condition was replicated 20 times. Rogers found 

very good detection rates for both procedures when uniform DIF was 

present. The performance of the two procedures was very similar in this 

26 



circumstance, with the MH being slightly better in most conditions. 

When the ICCs for the two groups differed by more than .2, detection 

rates were between 65 and 80% across all conditions for both procedures. 

Detection rates were substantially lower (25-30%) with areas of .2. 

Rogers noted that detection rates for both procedures improved as sample 

sizes increased, percent of DIF items decreased, and size of the DIF 

increased. Overall, Rogers concluded that both the LR and MH procedures 

were effective in detecting uniform DIF, with MH being slightly better 

under most conditions. 

While the LR and the MH procedure showed very similar performance 

when the type of DIF was uniform, there were substantial differences 

between the two procedures when non-uniform DIF was simulated, with the 

LR procedure producing markedly higher detection rates. While the LR 

was as effective in identifying non-uniform DIF as it was in identifying 

uniform DIF, the MH procedure was only about half as effective. The 

detection rates for the LR procedure with non-uniform DIF were found to 

be up to 90% higher than the rates for the MH. 

In addition to evaluating the performance of these two procedures 

with respect to identification of DIF items, Rogers also conducted a 

separate simulation study which evaluated whether the statistics for the 

procedures met their distributional assumptions. The logistic 

regression procedure was found to have the expected distributional 

properties in most conditions. The MH procedure was not distributed as 

expected in some cases, but there did not appear to be a consistent 

bias. Rogers concluded that both procedures adequately fulfilled their 

underlying assumptions. Rogers also looked at the Type 1 error rates 

for both procedures, and found false positive rates in the expected 
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range. In fact, false positive rates were slightly lower for the MH 

than for the LR. In conclusion, Rogers recommends the LR procedure over 

the MH procedure, arguing that LR is a simple, unified, and powerful 

procedure which enables the detection of both uniform and non-uniform 

bias. She cites as advantages the fact that it is theoretically 

defensible, has an associated test of significance, can be used in small 

samples, and is relatively inexpensive to implement. She notes that LR 

is more accurate than the MH in detecting non-uniform DIF, and therefore 

is to be preferred over the MH. 

Thus, these simulation studies have provided evidence that the MH 

procedure is very effective at identifying items in which DIF is known 

to be present. Such studies have also confirmed that the false positive 

rates are well within the expected range, and in some cases better than 

expected. The Hambleton and Rogers study found substantial convergence 

between the MH and IRT-based area methods with a real data set, further 

evidence that the results of the MH are valid and accurate. 

Thus far we have seen that it is possible to conduct statistical 

analyses which are consistent with the definition of DIF which we 

started with, and that it is possible to recover simulated DIF with 

these techniques. We have argued that the MH procedure provides a good 

approximation to IRT approaches, as long as the ICCs for the two groups 

do not cross. If this is the case, that is if non-uniform DIF is 

present, the LR procedure is more effective in identifying DIF. Thus, 

in terms of the original tasks as outlined by Scheuneman, either the MH 

or the LR procedure will provide a reasonably good means of identifying 

DIF items. 
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Explaining DIF: Examining Item Characteristics 

The next step in the progression outlined by Scheuneman is to 

determine why certain items are identified as DIF. A number of 

researchers have approached this problem by examining the items, and 

looking for item characteristics which would cause members of one group 

to respond differently than members of the other. While many studies 

have been reported in this area, perhaps the most consistent finding is 

that there has been no consistent finding. 

Scheuneman has been one of the most prominent researchers in this 

area. In 1984, she noted that one of the most common hypotheses as to 

why DIF occurred was that these items had content that was 

differentially familiar to certain groups. However, as Scheuneman 

notes, this hypothesis has not been supported. While occasionally such 

items are identified, Scheuneman notes that "a more common result is 

that the researcher is unable to interpret his/her results." 

(Scheuneman, 1984, p. 221). Because of this, Scheuneman argued that the 

causes of DIF must be pervasive rather than idiosyncratic. That is, 

while differential familiarity with certain content might affect 

performance on that particular item, Scheuneman argued that researchers 

would do better to look for more pervasive sources of DIF, sources that 

would be likely to influence performance on several items and gave as 

examples of such influences the adequacy of instructions, reading load 

and cues to the testwise. 

Scheuneman (1987) sought to experimentally induce DIF into a test. 

Based on previous research and experience, she generated a list of seven 

general characteristics of test items which she hypothesized could 

differentially influence performance. These included such things as 
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format, wording, vocabulary, and test-wiseness. Scheuneman then 

constructed pairs of items so that the target characteristic was present 

in one item of the pair and absent in the other. These items were then 

administered as part of a GRE administration, and differences in 

performance for blacks versus whites were analyzed. While Scheuneman 

found that manipulating the items in this manner did appear to have 

differential effects on performance for several of the characteristics 

investigated, the effects were not always straightforward. The effects 

of the various item characteristics interacted with other 

characteristics of the items, suggesting that the manipulated 

characteristics were not the only characteristics to affect performance. 

Surprisingly, in some cases the differences between whites on different 

versions of the questions were greater than the differences between 

blacks and whites. In conclusion, Scheuneman wrote "What emerges most 

clearly from this study is how little we know about the mechanisms that 

produce differential performance between black and white examinees." (p. 

117). 

Schmitt (1988) looked at items which were identified (using the 

standardization method) as exhibiting DIF in comparisons between white 

and Hispanic examinees on the SAT verbal test. She found some evidence 

that true cognates (words whose stem mean the same in English and 

Spanish) were somewhat easier for Hispanics as opposed to whites. She 

also found that items with content of special interest to Hispanics 

seemed to be a factor in some items (with Hispanics doing better on 

these items than whites). However, one of the problems with this study, 

which is in fact common to many studies of this type, is that while a 

review of the items flagged by the statistical technique may suggest 
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certain hypotheses, these really cannot be confirmed until and unless it 

is possible to make predictions about the entire set of items - that is 

if a review of the statistically identified DIF items reveals that these 

items all contain true cognates, is it also true that the items which 

were not flagged did not contain true cognates? If the entire set of 

items is examined (rather than only those items which were flagged) is 

the presence or true cognates a good predictor of whether a given item 

will be flagged statistically? Schmitt did conduct a correlational 

analyses to look at the relationship between DIF statistic values and 

item characteristics. She reports that the results of this analysis 

were not conclusive. 

Schmitt and Dorans (1990) looked at the characteristics of items 

found to function differentially for Blacks and Hispanics. They 

reported some evidence that special interest items and items containing 

homographs were differentially difficult for certain groups. However, 

they also noted that there were instances of DIF for which they could 

find no apparent reason. They concluded by remarking that while their 

results suggest some of the causes of DIF have been identified, there 

appear to be other causes which have yet to be identified. 

McLarty, Noble, and Huntley (1989) examined the effects of gender 

related content on DIF. They constructed what they labeled neuter, male 

and female versions of mathematics and English items. The versions 

differed in references to male or female names, pronouns, possessives 

and occupations. The items were then administered to samples of high 

school students, so that each item was completed by approximately 300 

examinees. The data were analyzed using loglinear methods. McLarty et 

al. tested for two significant interaction effects - first, an 
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interaction between response, item gender, and examinee sex, which would 

support an hypothesis of differential item difficulty on the basis of 

sex, and second, an interaction between response, item gender, examinee 

sex, and examinee ability, which would correspond to a finding of 

differential discrimination on the basis of sex. In fact, neither of 

these interactions were significant. McLarty et al. concluded that 

there was no evidence that there manipulations resulted in sex bias. 

Ellis (1989) examined differential item functioning in the context 

of translated tests. Using an extended process of translations and back 

translations, she had an American group intelligence test translated 

into German, and a German group intelligence test translated into 

English. She then administered both tests (for a total of 251 items) to 

both American and German examinees. Approximately 200 examinees were in 

each group. Thus, each group took both tests, but all items were in the 

examinees' native language. Using Lord's chi-square test, Ellis tested 

the difference between the item parameters for the two groups. She 

found ten of the 251 items were identified as differentially functioning 

using a significance level of .01. She then conducted a content 

analysis of the items, and found plausible translational or cultural 

explanations for nine of the ten items identified. For some items the 

difference in performance appeared attributable to an error or flaw in 

the translation. For others, differing cultural experiences appeared 

responsible. 

Scheuneman and Gerritz (1990) investigated the relationship 

between the MH delta statistic and a variety of item characteristics. 

They classified reading items from the SAT and GRE with respect to 

content, demand level, propositional analysis, passage structure, and 
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option structure. They then conducted a series of regression analyses 

with the MH delta statistic as the dependent variable. They found that 

for the male/female comparisons, the predictor variables they had 

identified accounted for 25.5% of the variance in the MH delta in the 

SAT data set, and 44.5% in the GRE data set. For the Black/White 

comparisons, the percentage of the variance accounted for was 28.4 and 

39.7 for the SAT and GRE, respectively. They noted that the effects for 

passage content were the most marked. In conclusion, Scheuneman and 

Gerritz remarked that their results suggest that while researchers have 

often sought a single, identifiable cause of DIF, such a cause may not 

in fact be present. They suggest that instead DIF may be attributable 

to an "unfortunate combination" of item features, or the cumulative 

effect of several small, and singly undetectable, effects. They suggest 

that this may be the reason that most post hoc analyses of items with 

extreme DIF values have not generally found explanations. 

Thus, from this sample of studies which have looked at the 

characteristics of items, and sought to explain DIF from this 

standpoint, it can be seen that the results are inconclusive at best. 

While a number of studies have identified certain characteristics as 

associated with differential performance in the context of that study, 

researchers have consistently found apparent DIF for which they cannot 

find an explanation. Attempts to predict DIF based on item 

characteristics have met with limited success. Attempts to elicit DIF 

based on manipulations of item characteristics have not produced 

straightforward results. Thus this line of research, focusing on 

primarily on specific item characteristics has not yet satisfactorily 

answered the question of why certain items are flagged as DIF. 
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While the statistical procedures discussed earlier have been 

demonstrated to be accurate, judgmental procedures for identifying DIF 

have been much less successful, and generally have much less credibility 

in the measurement community. This should not be surprising if we 

return to Scheuneman's sequence of tasks. In this conceptualization, 

the task of identifying those item characteristics (or other variables) 

which are responsible for the differences in performance is a necessary 

first step. Only after the causes of DIF are understood would one 

approach the task of training judges to identify such items a priori. 

If we do not know what the judges are to look for, how can they be 

trained, and how can they be expected to predict which items will be 

flagged? Plake (1980) argued that demands of the statistical procedures 

for detecting DIF in terms of requirements of professional expertise, 

and computer costs and accessibility, made these (statistical 

procedures) unattractive. It is not entirely clear which statistical 

techniques Plake is referring to as being prohibitively complex and 

expensive, but she uses an analysis of variance procedure in her paper. 

Given recent advances in computer technology, and the widespread 

acceptance of procedures such as the MH, this argument might not be 

accepted today. However, at that time she argued that the ready 

availability of "experts" (with respect to the specific test content), 

and the fact that expensive computer and statistical consultants could 

be avoided, made the use of judgmental reviews attractive. Plake 

acknowledged that any judgmental review was by definition subjective, 

and thus some assessment of the correspondence between judgmental 

reviews and the statistical procedures was warranted. Plake conducted 

such a comparison, and found little relationship between the two 
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procedures. The judges identified twice as many items as did the 

statistical procedure. It should be noted that the statistical 

procedure she used (ANOVA) has since been demonstrated to be a less than 

optimal technique for identifying DIF. However, Plake also noted that 

the judges often did not agree with each other, and some of their 

ratings appeared to be determined more by the characteristics of the 

raters than by characteristics of the items. 

More recently, Engelhard, Hansche, & Rutledge (1990) also looked 

at the convergence of judgmental and statistical procedures. In this 

study they asked 42 judges to predict which items would function 

differently for Black and White examinees. They also found very poor 

convergence between the two techniques, with agreement being in the 

range which would have been expected by chance. Engelhard et al. did 

find however that there were some judges whose ratings did show greater 

convergence. 

Shepard, Camilli and Williams (1984) noted the lack of convergence 

between judgmental and statistical techniques for detecting bias, and 

wondered whether the statistical techniques might be falsely identifying 

some items as DIF - that is whether some of the results obtained as a 

result of statistical analyses might be attributable to statistical 

artifacts, rather than real DIF. Using responses from thousands of high 

school students (in the High School and Beyond testing program) they 

used several IRT-based procedures to look for DIF. These were signed 

and unsigned area methods, four variations on the SOS methods, and 

Lord's chi-square. Overall, they looked at pseudo-ethnic comparisons 

(e.g., white/white comparisons) and contrasted these with true group 

comparisons. In the pseudo-ethnic comparisons there were few large DIF 
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indices, in contrast to the true ethnic comparisons, where several items 

were identified. Shepard et al. interpreted this as evidence that the 

IRT-based procedures were identifying "true" DIF, and not artifacts. 

They found the weighted SOS statistics to be the best indices for 

quantifying differences between the ICCs. 

Shepard et al. went on to examine the items which were 

consistently identified as DIF. They found that for the math test 

results there appeared to be a pattern which suggested a plausible 

explanation - items which were identified as DIF against Blacks appeared 

to have a significant verbal component. However, for the math items 

which were more difficult for whites no explanation was apparent. This 

was also the case for the vocabulary test, where a review of the items 

did not suggest any pattern or apparent reason for the difference in 

performance. 

Scheuneman (1982) notes that what item reviewers are most likely 

to flag as biased are items which are stereotypical or offensive, and 

while it is important to correct these kinds of items, it is not 

necessarily these items which produce performance differences. Hills 

(1989) argues that subjective item reviews (occurring before or instead 

of statistical analyses) may result in the removal of items which are 

not actually DIF. Hills implies that this may be detrimental in that 

"good" items could be removed unnecessarily. Finally it may also be the 

case that subjective reviews narrow the field in another way - by 

removing items which are in fact differentially functioning. However, 

if these items are removed at an initial review stage, it is unlikely 

they will be administered to examinees, and hence will not be available 
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for statistical analyses. This would thus impact on the degree of 

apparent convergence. 

Thus, neither expert judges nor researchers who conduct extensive 

post hoc analyses of identified items have been able to satisfactorily 

predict or explain DIF. This suggests that perhaps a different approach 

to the problem of explanation is needed. All of the statistical methods 

discussed above assume unidimensionality. A number of authors have 

argued that apparent DIF is in fact due to multidimensionality in the 

data set. The argument and evidence to support this view are presented 

next. 

A Multidimensional Conceptualization of DIF 

The argument that differential item functioning is a manifestation 

of multidimensionality is not a new one. In fact, the definition of DIF 

directly implies that if DIF is apparent, multidimensionality must be 

present. Earlier DIF was defined as present if examinees of equal 

ability, but belonging to different groups, have unequal probabilities 

of success on an item. One of the most important features of this 

definition is the concept of comparing only comparable members of the 

two groups. If one conditions on one ability, the intended to be 

measured ability, and there are still differences in performance, it 

therefore follows that the test must therefore be measuring something 

other than this single ability for at least one of the two groups. 

Therefore, the test must be multidimensional, with respect to at least 

one of the two groups. Thus, the apparent DIF must be attributable to 

this multidimensionality. 
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Kok (1988) was among the first to explicitly develop this 

argument. He argued that if it is established that the ICCs for two 

groups on a given item do in fact differ, that this does not necessarily 

indicate that the item is unfair. He suggests that "judgments about the 

possible unfairness of an item requires knowledge of the mechanisms 

underlying the occurrence of non-coinciding ICCs." (p. 264) To 

illustrate his point he gives the example of test designed to measure 

verbal ability, but contains some items which also require some special 

knowledge, that may not have been covered in all school districts. If 

examinees from these disadvantaged school districts score lower on these 

items, and it is because they are actually less able on this special 

knowledge dimension, "it remains a point of discussion whether the item 

is unfair" (p. 264). That is, the item or test may be multidimensional. 

Kok proposes a mathematical model to make explicit the relationship 

between test multidimensionality and DIF. 

Kok (1988) begins by operationalizing the concept of 

dimensionality. He cites Lord and Novick (1986) who write that "an 

individual's performance depends on a single underlying trait 

if, given his value on this trait, nothing further can be learned from 

him that can contribute to explanation of his performance" (p. 538). In 

IRT, this is expressed by the concept of local stochastic independence. 

A test is considered n dimensional in a psychometric sense if stochastic 

independence between the items is observed only after conditioning on n 

latent traits. Judgments about the dimensionality of an item are 

meaningful only with respect to a specific population - a test may be n 

dimensional in one population, and n + 1 dimensional in another. Thus 

38 



the dimensionality of a given data set is really a function of both the 

examinee sample, and the item parameters. 

Kok describes three ways that a data set may be unidimensional for 

a given subpopulation: (1) a single ability is relevant (Kok defines 

relevance as covariance with the probability of success on an item); (2) 

other abilities may be relevant in the full population, but in the 

subpopulation in question these abilities do not covary with the 

probability of success. This could occur for example if all examinees 

had the same level of some secondary ability, say reading; 

(3) A test may be unidimensional for a given subpopulation even if 

abilities other than theta are relevant if those abilities affect 

performance on one item only, analogous to unique factors in factor 

analysis. Further, Kok writes that "In general, if n abilities are 

relevant, the test administered in a specific group can still be k 

dimensional with k<n." (p. 267). 

Kok proposes a model which includes a primary ability (theta), and 

three other abilities to be referred to as n1f n2, and n3. The first of 

these (n1), may be conceptualized as a compensatory ability. Kok 

provides an example of how a compensatory ability might influence test 

performance as if a test of knowledge of French, and the examinee has no 

knowledge of French, but with a sufficient knowledge of Spanish could 

conceivably use his knowledge of Spanish to compensate, at least in 

part, for his deficit in French. The second of these (r^) Kok suggests 

could have to do with the ability of the examinee to understand the test 

questions. For instance, if a test is written in English, clearly an 

examinee's ability to understand written English will affect his 

performance. Finally, Kok postulates that n3 indicates an examinee's 
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ability to use contextual cues to solve an item, or the testwiseness. 

Kok proposes that the probability of success on a given item is a 

function of not just the primary ability, theta, but also, at least 

potentially, of the three other abilities. Thus, he expresses the item 

response success probability for item i in group j as: 

PjCXj"*!. | £ > n^, 1I2, n3)“^3j (n3) + [ 1- ^3i(n3) ] ^2i(n2) ^ii(£'*'a2ini) 

where are latent traits, and ^(C.iv,), ^(nj), ^(n3) are 

functions which describe the relationship between the separate latent 

traits, and the response success probability on item j. 

Kok develops this model further, and demonstrates that the a 

necessary condition for the occurrence of DIF is 

h, (n,, r^, n3|0 + h2 (n,, il,, n3|f) 

Thus, Kok proposes that DIF is a possible consequence of between 

group differences in the conditional distributions of the additional 

abilities. This could occur for example, if one group were more 

testwise than another. However, Kok also notes that an item may be 

multidimensional and not manifest DIF, if the conditional distributions 

for the two groups are equal. It is also possible that a unidimensional 

test may be DIF in the case where the test is unidimensional in that 

while individual items may require more than one ability for solutions, 

each ancillary ability influences performance on only one item. 

Thus Kok's argument is that DIF is a possible consequence of 

unequal conditional ability distributions. Such differences could 

result in differences in item parameters if the test data are 

erroneously assumed to be unidimensional. Thus, items may appear to be 

differentially functioning (i.e. may exhibit different ICCs) if test 
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developers assume that test results are unidimensional, when this is not 

the case. 

Kok closes stating that this model of DIF has utility in that it 

posits a common mechanism which can explain DIF in a wide variety of 

testing situations. He stress however that the model has important 

implications for DIF research as well. He suggests that rather than 

simply generating items to have differing unidimensional item 

parameters, researchers could use multidimensional models and simulate 

DIF by simulating differences in the underlying ability distributions. 

Shealy and Stout (1993), working independently, developed a very 

similar formulation of DIF. Like Kok, they assert that DIF (and test 

bias, which can result from the cumulative effects of DIF) can be 

explained by multidimensionality in the data set. 

While Kok posits a primary trait, and three additional traits 

which are psychologically meaningful, Shealy and Stout refer to a target 

ability (6), which is the ability the test is intended to measure, and 

one or more nuisance determinants, which the test is not intending to 

measure. Conceivably Kok's testwiseness (n3) could be considered a 

nuisance determinant, as could reading ability on a test of American 

history for example. Shealy and Stout's use of the term "nuisance" 

implies that one would always wish to measure one and only one trait (in 

any one given test), and that measurement of any other traits 

simultaneously is undesirable, and hence a nuisance. Kok's formulation 

is more neutral with respect to traits other than theta, allowing for 

the possibility that there may be occasions where measurement of these 

traits may be desirable. 
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Like Kok, Shealy and Stout postulate that the manifestation of 

bias may be explained by between group differences in ability on the 

nuisance determinants, coupled with items sensitive to such abilities. 

They go on to discuss the implications of this explanation for DIF 

detection. Their position is that it is impossible to statistically 

detect bias unless one uses either an external criterion (which must be 

a valid measure of the target ability), or an internal measure which 

measures only the target ability. They argue that if the criterion 

score is influenced by abilities other than the intended to be measured 

ability, it does not provide an appropriate matching criterion, and may 

lead to incorrect classifications of items. In response to this 

dilemma, Shealy and Stout put forward the notion of a valid subtest, 

which they define as a set of unidimensional items - that is the 

probability of a correct response to each item in the set depends only 

on the ability of interest. They note that if every item on a test is 

contaminated by nuisance determinants that it is not possible to 

identify a valid subtest, and thus it will be impossible to identify 

bias (unless a valid external measure is available). They maintain that 

by matching examinees using this valid subtest score, rather than total 

test score, (unless the test is unidimensional, in which case they will 

be the same), group differences in the target ability are appropriately 

controlled for, and differences due to nuisance determinants can be 

isolated, and eliminated. 

The problem of circularity in using a possibly biased criterion to 

identify DIF has been noted by other authors as well, and is admittedly 

a problem with many bias detection procedures. Shepard (1982) noted 

that DIF procedures which depend on total score for matching, cannot 
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detect pervasive bias in a test. Kok, Mellenbergh and Van Der Flier 

(1985) also note that using all items (including the DIF one) for 

computing the total score for estimating the latent trait is a "severe 

weakness" of the procedures which use this approach. This is the 

reasoning behind the two-stage implementation of MH procedure, wherein 

in the first stage potentially biased items are identified, and then the 

statistic is calculated again, this time conditioning examinees on a 

total score which does not include the items identified in the first run 

(with the exception that the biased item is always included). 

Ackerman (1992) sought to extend the work of Kok, and of Shealy 

and Stout, by further elucidating the relationship between 

multidimensionality and DIF. However, before discussing Ackerman's 

work, it is necessary to first discuss the multidimensional IRT model 

which a number of Ackerman's concepts are based on. This model, which 

is a compensatory multidimensional two-parameter logistic model (M2PL) 

was developed by Reckase (1985, 1986, 1989). In multidimensional IRT, 

both compensatory and non-compensatory models are possible. With 

compensatory models it is possible for high levels of one ability to 

compensate for low levels of another. Thus, as in Kok's (1988) example 

above, on a test of French an examinee with a superior knowledge of 

Spanish could potentially compensate for his lack of knowledge of 

French. In contrast, noncompensatory models do not allow for such 

compensation. Thus, in a mathematics test where items depend both on 

ability to understand written English, and ability to perform certain 

mathematical operations, an examinee with a superior knowledge of the 

English language would not be able to use this knowledge to compensate 

for a lack of knowledge of the mathematical operations required. There 
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is currently some controversy as to which model is more realistic, or 

better describes actual test performance. At this time there appears to 

be no definitive answer. It is likely that the answer as to which model 

is most appropriate depends on the specific testing situation. 

In addition to providing necessary background for an understanding 

of Ackerman's work, Reckase's model is also important in the context of 

this research as it will provide the model used to generate simulated 

data. It was chosen because there has already been a significant amount 

of work done using this model (e.g., Reckase 1985, 1986, 1989; Oshima & 

Miller, 1990, 1991; Ackerman, 1992), and thus use of this model here 

will allow for comparisons of results with these studies (which will be 

discussed below). 

Reckase's model may be written as follows: 

aflj+d. 
P(ii “ llVi’ di> 

1 + 

where u, is the item response 

0j is a vector of abilities 

a, is a vector of discrimination parameters 

and dj is a scalar related to item difficulty. 

Reckase sought to find a means of describing multidimensional 

items in terms which were analogous to the parameters used in 

unidimensional IRT (UIRT). Thus he developed the concepts of 

multidimensional item difficulty (MDIFF), multidimensional 

discrimination (MDISC), and multidimensional information function 

(MINF) . 
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The concept of item difficulty in a multidimensional space is more 

complex than in an unidimensional space. In UIRT item difficulty is 

defined as that point on the ability scale where an item is most 

discriminating. However, in multidimensional IRT (MIRT) there may be 

many points where an item is most discriminating. Therefore, Reckase 

proposed defining MDIFF in terms of both the distance from the origin of 

the space to the point of maximum change (D) and in terms of the 

direction specified by the vector of angles, alpha, between the 

coordinate axes and the line connecting the origin and the point of 

maximum slope (Reckase, 1989, p. 11). MDISC is defined as the slope of 

the proportion correct surface at the point of maximum rate of change in 

the direction, alpha, from the origin. MINF is defined in a manner very 

similar to the information function in UIRT, but in the MIRT case 

Reckase notes that the information is indexed by a particular direction. 

Thus a given item may provide significant information in one direction 

and not in another. The equations for each of these item features are 

as follows: 

MDISCj - (Sij*5 

MDISC, 

a,. 
cosa* - —* 

MDISCj 

and 

MINFaW _ P(« )Q,(J XSa* cos a*)2 
k 

where P,(0j) “ a,, d.) 

and Q,(0j) - 1 - P^). 
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With this brief presentation of Reckase's model, it is now possible to 

return to a discussion of Ackerman's work. 

Central to much of Ackerman's argument is the concept of a 

reference composite. The reference composite is the score which results 

when multidimensional items are treated as if they are unidimensional, 

and a single test score is used to summarize performance. Thus, this 

score is actually a weighted composite of the underlying multiple 

dimensions. Ackerman notes that the direction of the reference 

composite in the latent space is influenced by the characteristics of 

the underlying multidimensional ability distributions, and the 

discrimination parameters of the multidimensional items. Because of 

this, it is possible for the direction of the reference composite to 

differ for different groups. In this case, the total score would mean 

different things for the different groups. Thus conditioning on this 

score in DIF studies is not appropriate, and could yield invalid 

results. 

In order to overcome this problem Ackerman suggests selecting a 

valid subtest of items, and using this as a criterion score. He notes 

however that it is probably not realistic to restrict a valid subtest to 

only those items which measure exactly and only the target ability - in 

reality most or potentially all items on a test may be influenced to 

some extent by nuisance determinants. Therefore, Ackerman proposes 

identifying a validity sector - a group of items which share a similar 

measurement direction. A validity sector as "a narrow sector (and its 

mirror image projecting through the origin) constituting the valid 

subtest items." (1992, p.73) The width of the validity sector is 

determined by the breadth of the cognitive area being measured (1991). 
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Items which lie outside the validity sector are considered invalid items 

- that is they are too heavily influenced by nuisance determinants. 

Ackerman suggests that these are the items which should be considered 

biased, and should be deleted from the test. If these items are 

deleted the total test score is now a valid measure for both groups. 

Ackerman (1992) provides didactic examples of how DIF can result 

from multidimensional items when there are differences in the underlying 

multidimensional distributions, and the DIF analyses are conducted as if 

the test were unidimensional. Ackerman notes there are several ways the 

potential for DIF can occur, and lists four: between group differences 

in target ability means, between group differences in nuisance ability 

means, differences in the ratio of the nuisance variance to the target 

variance, and the correlations between the target and nuisance abilities 

may differ for the two groups. He then demonstrates how each of these 

conditions could result in bias. 

Ackerman then goes on to provide an empirical example, using 

simulated data. Using Reckase's model (M2PL), and MIRT parameters 

estimated from a 25 item math usage test, Ackerman identified a valid 

subtest of items (items falling within a constructed validity sector). 

Ackerman then simulated responses for two groups of 1000 examinees, 

varying both the target and nuisance ability distributions so that there 

were between group differences in means and standard deviations. He 

then calculated the reference composites for both groups, and found the 

direction of the composites to differ substantially. He then analyzed 

the test using the MH procedure (using MH delta as the test statistic), 

Stout's simultaneous DIF (SIB) procedure, and an IRT area measure. The 

SIB procedure identified 6 of the 7 items Ackerman had identified as 
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invalid using the validity sector approach. The MH procedure, using the 

valid subtest score as the matching criterion, identified 5 of the 7 

items. Ackerman re-ran the MH procedure, this time using all the test 

items, and this time the MH procedure identified 10 additional items - 

items which Ackerman considered valid. Ackerman suggests this latter 

result provides an example of how the MH procedure can be misused if it 

is erroneously assumed that a data set is unidimensional when it is not. 

The analyses using the IRT area index parallelled the MH results - that 

is several valid items were identified. 

Ackerman's results demonstrate that even if there are no between 

group differences in the MIRT item parameters, between group differences 

in the underlying multidimensional ability distributions can result in 

apparent DIF if the data are analyzed using DIF detection methods that 

assume unidimensional data. Thus, the multidimensional 

conceptualization of DIF put forward by Kok and Shealy and Stout is 

supported. There are also several studies which provide additional 

direct and indirect support for this viewpoint, and these are discussed 

below. 

Support for the Multidimensionalitv Explanation of DIF 

Oshima and Miller (1991) showed that multidimensional items were 

identified as DIF when the means of the reference and focal groups on 

the secondary trait differed. In this study they varied the between 

group difference on the primary trait means (no difference versus a 

difference of .5 standard deviations), the between group difference on 

the secondary trait means (again, no difference versus a difference of 

.5 standard deviations) and the percentage of items influenced by the 

48 



secondary trait (5, 10, or 20 percent of the items). Thus they examined 

12 conditions, with 10 replications of each condition. The correlation 

between the two traits was set at zero. 

Using Reckase's M2PL model to generate the data, Oshima and Miller 

simulated responses for two groups of 1000 examinees each to a forty 

item test. The item parameters for the two groups were the same. The 

data were analyzed using PCBILOG to obtain unidimensional IRT parameter 

estimates. The ICCs for the two groups were then compared using signed 

and unsigned area measures (SA and UA) and signed and unsigned sum of 

squares (SOS and USOS). Because these measures have no associated 

significance tests, Oshima and Miller first obtained baseline values and 

established the criterion that the difference between the ICCs would be 

considered significant if the value differed from the baseline mean by 

two or more standard deviations. This is equivalent to identifying an 

item as biased. 

Oshima and Miller found that if there were no differences in the 

distributions of the secondary traits, multidimensional items were no 

more likely to be identified as DIF than unidimensional items. This was 

true regardless of whether or not there were between group differences 

on the primary trait. If there were differences on the secondary trait, 

multidimensional items were much more likely to be identified as DIF. 

Higher detection rates were associated with smaller proportions of 

multidimensional items. All four indices (SA, UA, SOS and USOS) yielded 

comparable results. Detection rates (across all indices) ranged from 

80-100% in the case where only five percent of the items were 

multidimensional, from 43-68% where ten percent of the items were 
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multidimensional, and from 24-39% where twenty percent of the items 

were DIF. 

In an earlier study, Oshima and Miller (1990) varied the trait 

correlations between the reference and focal groups, and again examined 

the effect this had on the ICCs of the two groups. Using the same M2PL 

model, they simulated a 40 item test, with two groups of 1000 examinees 

each for each condition. The correlations between the primary and 

secondary traits differed for the two groups (except in the baseline 

condition). In group one the trait correlations were set to be either 0 

or .5, while for group two the correlation varied from 0 to 1. A total 

of nine separate conditions were generated. Oshima and Miller suggest 

that two of these conditions can be seen as simulating bias. In these 

two "bias" conditions there is a perfect correlation between the two 

traits for one group, and of correlation of 0 or .5 for the other. 

Thus, for one group the test is essentially unidimensional, while for 

the second group the test is two dimensional. 

As in the 1991 study, UIRT estimates were obtained, and the 

difference between the ICCs for the two groups was evaluated. Again, 

SA, US, SOS and USOS were used, and again the criteria for significance 

was that the value exceed the baseline mean by at least two standard 

deviations. They found that the unsigned indexes (UA and USOS) resulted 

in a number of items meeting this criterion. For instance, with the 

correlation between the traits set to 0 for one group and 1.0 for the 

other, 33 out of the 40 items exceeded the criterion (that is the ICCs 

were judged to be different) using the unsigned area method. When the 

trait correlations were set to 0 and .8, 25 items were so identified. 

The USOS method yielded very similar results. Analyses with the signed 
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indexes yielded results much closer to the baseline results, except in 

the most extreme conditions. 

Oshima and Miller's findings indicate that if a test is 

unidinensional for one group (the correlation between the two traits 

equals 1) but not for the other (for instance, the correlation between 

the two traits equals .5) then it is likely that a number of items will 

be identified as differentially functioning with the unsigned methods. 

While the comparison of correlations of 0 versus 1 may be viewed as an 

extreme case, less extreme between group differences also resulted in a 

number of items being flagged, even when the correlation was less than 

one for both groups. Thus, these findings provide further support for 

the premise that multidimensionality can in fact result in differential 

item functioning as defined by a lack of invariance across ICCs. 

Further, it appears that differences in trait correlations between 

groups did affect the number of items being flagged as such, possibly by 

influencing the unidimensional a estimates. Oshima and Miller noted the 

need for further research to examine when and under what conditions such 

differences in correlations occur in practice, and the practical effects 

of such differences on test scores. 

Birenbaum and Tatsuoka (1982) assert that there is always more 

than one major factor underlying any set of achievement test data. They 

believe that the dimensionality of such data is related to the number of 

algorithms which students use to solve test items. They argue that 

students formulate algorithms (or rules) which they apply, correctly or 

incorrectly, when responding to test items. Different students use 

different algorithms, and thus have different response patterns. 

Birenbaum and Tatsuoka assert that this "adds systematic sources of 
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variation in the data resulting in an increase in the underlying 

factorial structure of the test" (p. 261). The goal of instruction is 

to provide students with the correct algorithms. If instruction is 

successful, this should result in students using fever algorithms (as 

they are now using the correct ones) and thus these authors argue that 

the effect of instruction should be to reduce the dimensionality of the 

test. 

Birenbaum and Tatsuoka simulated data sets wherein they 

systematically increased the number of algorithms used to generate 

response patterns. They then conducted a principal components analysis 

and found that the percentage of the variance explained by the first 

factor was greater when fever algorithms were used. As the number of 

algorithms decreased, coefficient alpha also increased. 

Birenbaum and Tatsuoka also examined a real data set. They 

collected data on 81 seventh grade students prior to and again following 

instruction in subtraction of signed numbers. Again, they conducted a 

principal components analysis and calculated coefficient alpha. They 

report that their results were consistent with their hypothesis that 

students use fewer algorithms following instruction, and that the 

analysis revealed increased homogeneity. 

These results must be considered weak support at best for their 

assertion that they were able to reduce the dimensionality of the test, 

as their measures of dimensionality/homogeneity (terms which they use 

interchangeably) have not been found to be appropriate measures (Hattie, 

1984). However, their hypothesis regarding students use of algorithms 

in responding to test problems, and the proposition that instruction may 

serve to reduce the number of algorithms are both worth consideration. 
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Lautenschlager and Park (1988) also provide evidence that 

multidimensionality may be evidenced as DIF. While the focus of their 

study was on the relative merits of two methods of parameter linking, in 

order to assess the various linking procedures they generated data under 

several different conditions. Each dataset consisted of items generated 

using a 3-parameter logistic UIRT model, with identical, normally 

distributed ability scores for each group. These are the non-DIF items. 

In addition, a number of DIF items were generated using a two 

dimensional noncompensatory IRT model. One thousand examinees per group 

were simulated, with identical normal distributions on the first 

ability. The number of DIF items were varied so that of the total 54 

items either 18, 28 or 46 were DIF. The mean of the distributions of 

the secondary trait was varied (set at either -.5 or 0), and the 

correlation between the two traits was also varied. Using Lord's chi- 

square test (at the .005 level) for the significance of the difference 

between the unidimensional parameter estimates they found that without 

parameter linking (the baseline condition) virtually all the non-DIF 

items were identified as such. In addition, a high percentage of the 

items constructed to be DIF were identified as such. They note that 

those items which were missed were those which were only weakly DIF but 

do not provide further details as to the characteristics of these items. 

When linking procedures were used the results were less accurate, that 

is there were a greater number of misclassifications. 

The studies discussed above have depended primarily on simulated 

data to reach their conclusions, and while there are a number of 

advantages to simulation studies, such studies are often criticized on 

the grounds that they lack realism - the question often arises as to how 
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generalizable the results of such studies are. However, studies using 

actual test results can be criticized on the grounds that it is 

impossible to know absolutely which items are DIF and hence any results 

must be interpreted with caution. There have been a snail number of 

studies however in which the authors have constructed items with the 

intent of creating DIF. While one night still question whether it is 

possible to truly evaluate whether they succeeded, the following two 

studies are very convincing, and are offered as evidence that it is 

possible for researchers to construct DIF, that they do so by 

introducing a items which are sensitive to a second ability, and by 

using groups who differ in their distributions on that second ability. 

The first very clear example of this is presented by Kek, 

Mellenbergh and Van Der Flier (1985). These authors sought to 

deliberately construct biased items by writing math items which used 

Dutch, Spanish or Roman numerals. The examinees (whose native language 

was Dutch) were randomly assigned to two groups. Doth groups got seme 

instruction in Spanish numerals. Then, one group (the Reman group) 

received instruction in Roman numerals, while the other group 'the 

Spanish group) received additional instruction in Spanish numerals. All 

286 examinees were then administered a mathematics test which contained 

math problems written in Dutch numerals, Spanish numerals, and Roman 

numerals. Examinees were required to first translate the problem (and 

write down this translation) and then to write down the correct answer. 

Thus, there were clearly two abilities required for a correct solution 

to the problems - first understanding the problem, which for seme items 

required translating the numerals, and then performing the appropriate 

mathematical operations. In addition, the groups presumably dirrered 
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substantially in the first ability, as a result of instruction (or lack 

thereof). Kok et al. checked accuracy of translations to see whether 

the groups did in fact differ as a function of instruction, and not 

surprisingly, it was found that Spanish group members were more adept at 

Spanish numeral translations, and Roman group members were more adept at 

Roman numeral translations. Kok et al. then analyzed the test results 

using an iterative logit procedure. Their results suggested that their 

manipulations did in fact create differentially functioning items, and 

that the logit procedure did identify many of the items which they had 

predicted to be differentially difficult for the two groups. 

Subkoviak, Mack, Ironson, and Craig (1984) constructed a 50 item 

vocabulary test consisting of 40 items from a college aptitude test, and 

10 items which used black slang vocabulary. They then administered the 

test to college students, and look for differences in performance 

between Blacks and Whites (they had over 1000 examinees in each group). 

Not surprisingly, they found high correlations between the items they 

had constructed to be differentially functioning (the items requiring 

knowledge of Black slang) and the items which the DIF detection 

procedures they were evaluating identified as DIF. In this study 

knowledge of standard English and knowledge of Black English can be 

thought of the dimensions or abilities underlying performance. It is 

also reasonable to presume that there were substantial differences 

between the two groups in their knowledge of Black slang, and quite 

possibly in their knowledge of standard English as well. 

Thus, both the Kok et al. study and the Subkoviak et al. study 

provide clear evidence that it is possible to produce items which appear 

biased by including items which require some skill or knowledge other 

55 



than what might be considered the primary skill of knowledge, and then 

administering these items to examinees from groups who have between 

group differences on this secondary ability. 

Mazor, Kanjee, and Clauser (1993) conducted a study with real data 

which also provides support for a multidimensional conceptualization of 

DIF. They conducted a series of DIF analyses on responses to two 

achievement tests. For both tests they made two reference/focal group 

comparisons. They first compared males and females, and second, they 

compared examinees who reported English as their best language (EBL) to 

examinees who reported some other language as their best language(OBL). 

They began by analyzing the data with both LR and the MH procedure, 

using total score as the matching criterion. They then repeated the LR 

analyses, this time expanding the LR equation to include either SAT-V or 

SAT-M scores in addition to total score. Finally, the MH analyses were 

repeated, with either the SAT-V or the SAT-M scores substituted for 

total score as the matching criterion. They found that for the EBL/OBL 

comparisons including the SAT-V score in the logistic regression 

equation substantially reduced the number of items identified as DIF. 

Mazor et al. argued that the SAT-V score provided information on an 

ability related to facility with written English, an ability which the 

EBL/OBL groups would be expect to differ on. By including the SAT-V 

score in the analysis, matching was improved, and thus items which 

appeared DIF because of this difference in verbal ability (i.e. 

multidimensionality in the data set) were no longer flagged as DIF. 

Including the SAT-V scores allowed differences in verbal abilities to be 

taken into account, with the result that items multidimensional with 

respect to verbal ability were no longer identified as DIF. Mazor et 
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al. note that external measures such as the SAT-V scores are not always 

available, and that in some cases internally derived ability estimates 

may be useful. 

Sugary 

Research on differential item functioning can be seen as facing 

three major challenges - identification, explanation, and elimination of 

DIF items. There are currently a number of widely accepted procedures 

which are used to identify DIF. IRT-based techniques are generally 

accepted as theoretically preferred, but not always feasible in applied 

settings. Because of this, techniques such as the MH procedure have 

been accepted as reasonable approximations. The MH procedure has been 

shown to be powerful and to have low false positive rates, and therefore 

it's current popularity and acceptance appear to be well founded. The 

primary shortcoming of the MH procedure is it's relative insensitivity 

to non-uniform DIF. The logistic regression procedure presented by 

Swaminathan and Rogers (1990) is sensitive to non-uniform DIF, and thus 

may gain in popularity as more researchers become familiar with this 

procedure, and more results using LR are published. A second advantage 

of the LR procedure is that the regression equation is easily elaborated 

to include more terms, and thus in addition to allowing for interactions 

between group and ability (the term which allows for the assessment of 

non-uniform bias) it is possible to include a second measure of ability. 

This becomes especially desirable if DIF is conceptualized in terms of 

multidimensionality. 

The second challenge facing DIF researchers is the challenge of 

explanation. A number of researchers have attempted to look at the 
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characteristics of specific items identified as DIF, and to find 

commonalities which suggest possible explanations. The findings of such 

studies have generally been mixed. In a number of studies positive 

results have been found, but in many cases the results are not 

consistent, and generally researchers have not been able to predict 

which items will be identified as DIF. 

A second, more generalized explanation of DIF is that DIF is 

manifested as a result of multidimensionality in the data set. This 

approach does not contradict the first approach, but might be view as a 

more general conceptualization. If two groups differ in their 

performance on a given item it must be because they are not matched on 

all the relevant abilities. Thus, items which depend on more than one 

ability, and where the two groups differ in their distributions on this 

ability, have the potential to display bias. This explanation of DIF 

has implications for DIF detection procedures. Some researchers 

conceptualize abilities other than the primary or target ability as 

"nuisance" abilities, and imply that items too heavily influenced by 

such abilities should be removed. These researchers advocate changing 

the criterion which is used to match examinees by selecting only valid 

items. The result is presumably a more pure measure of the target 

ability. However, it may be the case that such items are tapping an 

important ability, one that test users wish to assess. In this case it 

may not be desirable to delete items which are multidimensional. 

However, standard DIF analyses may well identify such items as DIF, as 

would analyses with a "pure" matching criterion. Thus, there is a need 

to evaluate procedures which would allow for simultaneous conditioning 

on more than one ability. 
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chapter ::: 

METHODOLOGY 

The purpose of this study vas to investigate how tvo-dimensional 

tests and iters iapact on the results of the XH and LR DU detection 

procedures. It vas anticipated that rultidinensicnality in a data set 

would lead to high false positive error rates and poor accuracy in 

identifying true DIF iters if only one anility vas taker, into account. 

If this vas found to be true, the second part cf the stud;.* would focus 

on whether improving the catching criterion by taking into account the 

second dimension would decrease false positive errcrs without increasing 

false negative errors. 

In order to investigate the conditions under which iters in a two 

dimensional test would be falsely classified as DIF using the standard 

MH and LR procedures a sirulation study vas conducted. A simulation 

study vas necessary because only by using simulated data vas it possible 

to know whether or not there were between group differences in the iter 

parameters. 

Because high false positive error rates were in fact obtained 

under most of the conditions sirulated. part II investigated whether 

these rates could be reduced. One modification which had been suggested 

for improving the accuracy of the XH procedure is to select a valid 

subtest of iters, and to use the score on that subtest (rather than 

total test score) as the catching criterion for the XH. Therefore. in 

the second part of this study iters were selected into subtests, and the 

subtests were used as the matching criterion. It was expected that it 
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it were possible to correctly identify valid or pure subtests, that many 

false positive errors would be eliminated. It was further anticipated 

that this procedure would yield more accurate results with respect to 

relatively pure or unidimensional items in a multidimensional test, but 

would not increase the accuracy of classification of items which were 

multidimensional. Therefore a breakdown of false positive rates by item 

characteristics was conducted. 

Also in this second part of the study the LR procedure developed 

by Swaminathan and Rogers (1990) was evaluated. Valid subtest scores 

were included in the logistic regression equation in lieu of total 

score. In the case where performance on an item depends on two 

abilities, and the regression model includes only one ability estimate 

as a predictor, the model is in fact underspecified, and it was 

anticipated that incorrect classifications would result. That is, group 

membership may be significant, when in fact it is not, but is 

functioning as a proxy variable for a secondary ability which is 

unequally distributed for the groups of interest. It was expected that 

by taking both abilities into account (by including both subtest scores 

in a single equation) that false positive error rates would decrease. 

All of the above analyses were conducted using simulated data. In 

order to begin to assess the generalizability of the findings of Parts I 

and II Part III of this study applied the above procedures to two real 

data sets. Two achievement tests were first analyzed with both the MH 

and LR procedures using total score as the matching criterion. Valid 

subtests of items were selected, subtest scores for each examinee were 

calculated, and then both the MH and LR procedures were repeated, this 
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tine with valid subtest scores as the matching criteria. The results of 

the total score analyses were compared with the subtest score analyses. 

Part I 

The purpose of this phase of the study was to assess whether a 

second dimension influencing a data set would result in 

misclassification of items as DIF. Prior research had suggested that if 

the items of a test are sensitive to more than one ability, and if there 

are between group distributional differences on one of the abilities, 

multidimensional item impact should be identified as DIF when total 

score is used as the matching criterion. If these results were 

confirmed, this would provide further support for a multidimensional 

explanation of DIF. In addition, by examining how false positive rates 

vary according to item measurement direction, item discrimination, trait 

correlations, and the dimensional structure of the test, our 

understanding of the relationship between multidimensionality and 

apparent DIF was furthered. 

All of the simulated data used in this study was generated using 

Reckase's two dimensional compensatory model, M2PL (Reckase, 1985, 

1986) . The computer program MULTISIM (Narayanan, 1992) was used to 

generate the data. 

The degree of relationship between the two (or more) dimensions 

measured by the test will be likely to impact the identification of 

items as biased even when the correlations are the same for both groups. 

In the extreme case, that is when for both groups there is a perfect 

correlation between the traits, the presence of a second trait will make 

no difference, as it is redundant with the first, and thus there is only 
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one trait. However, when there is a less than perfect correlation 

between the two traits, the validity of the total test score as an 

estimate of examinee ability will become increasingly questionable, and 

become an increasingly poor conditioning variable as the correlation 

decreases. Thus the magnitude of the correlation, and any between group 

differences in correlations, can be expected to impact on the validity 

of a DIF analysis (Oshima & Miller, 1990). 

Another important variable is the extent to which the items and 

the test are multidimensional. This will be referred to as the 

dimensional structure of a test. A test can be multidimensional in one 

of two ways. First, all of the test items may be "pure" items. In this 

case the items themselves may be unidimensional, but the test may be 

composed of more than one type of item. Thus, while performance on any 

given item may depend only on one underlying ability, the test as a 

whole may have a number of items measuring ability A, and a number of 

other items measuring ability B. That is, the items themselves are 

unidimensional, but the test is not. In this case, if there are 

differences in the underlying ability distributions, the total test 

score will not provide a valid matching criterion. 

The second, and perhaps more realistic way for a test to be 

multidimensional is that it may be composed in part or entirely of 

multidimensional items. That is, performance on at least some of the 

individual items is influenced by more than one underlying ability. For 

instance, a math item which requires only reading several numerals and 

an operand may well be unidimensional. However, an item which requires 

the examinee to read a complex item stem, set up the problem and then 

decide on and perform a mathematical operation is probably requiring 
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several abilities. There appears to be a move currently away from the 

former, more "pure" test item, towards the latter, more "realistic" item 

type, based on the argument that this is the type of problem one is more 

likely to encounter in the real world. This may be true, but it is also 

true that the latter type of item is not strictly unidimensional, which 

will clearly effect any analyses which requires the assumption of 

unidimensionality. 

Finally, the actual parameters of the items are likely to impact 

on whether or not an item is identified as DIF. Mazor, Clauser and 

Hambleton (1992) found that in unidimensional data sets the difficulty 

of the item, the size of the difference in difficulty parameters between 

the two groups, and the discrimination parameter of the item all 

influenced whether a biased item was correctly identified. 

Design of the Study 

Sample size and test length were held constant in all phases of 

this study. Between group ability distribution differences were also 

held constant, except for one series of supplemental analyses described 

below. Trait correlations and the dimensional structure of the tests 

including item measurement direction (the relative influence of the 

dimensions on the items) and item discrimination were varied 

systematically to investigate the influence of each of these variables. 

Sample Size. Sample sizes of 1000 examinees per group were used. 

This may be considered a "best case" scenario, as samples of this size 

are not routinely available in practice. However, because the focus of 

the study was not on the impact of sample size per se, it was necessary 

to chose a sample size that would be adequate to provide a "fair test" 

of the procedures of interest. Research using data generated using 
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unidimensional IRT models suggests that samples of this size are 

sufficient to detect most DIF, and items which are missed are those with 

small differences between groups, differences which would be expected to 

have virtually no practical impact (Mazor, Clauser, & Hambleton, 1992). 

This research also suggests that a sample of this size would be expected 

to yield few false positive errors, yet would be expected to correctly 

flag virtually all items which were DIF to any meaningful degree. While 

larger sample sizes may yield even greater accuracy, in practice it is 

unlikely that practitioners will have access to such large groups for 

analyses, as the usual group size is generally estimated to be between 

200 and 500. 

Test Length. A test length of 66 was used. This was considered 

realistic as most achievement tests range between 35 and 85 items. This 

number also allowed for 75 percent of the items to be simulated to be 

predominantly sensitive to ability A, and 25 percent to be predominantly 

sensitive to ability B, while allowing for six levels of item 

discrimination to be crossed with eight levels of item difficulty. 

Ability Distributions. Ackerman (1992) described four conditions 

which may result in multidimensional item impact appearing as DIF. 

First, the groups may differ in their means on the primary ability. 

Second, the groups may differ in their means on the second ability. 

Third, the ratio of the variances of the two abilities may differ. 

Fourth, the correlations between the first and second abilities differ 

for the groups. The present study focused on the second condition, 

between group differences in means on the second ability. 

For all of the simulated data sets used here there were no between 

group differences on the first ability (A). A difference in the means 
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of the two groups on the secondary ability was simulated, so that the 

focal group mean was one standard deviation lower than the reference 

group mean. After reviewing the results it was decided that two 

additional supplementary simulations would be conducted for one subset 

of conditions. In both of these supplementary simulations, the groups 

differed on the second ability (B) as described above. However, for the 

first supplementary set of simulations, the reference group mean was set 

to be one half of a standard deviation greater than the focal group mean 

on the first ability (consistent distributional differences). For the 

second supplementary set of simulations, the reference group mean was 

set to be one half of one standard deviation less than the focal group 

mean on the first ability (crossed distributional differences). 

Trait Correlations. Two different conditions were simulated to 

investigate the impact of the correlations between the two abilities. 

In the first condition a correlation of .3 for both groups was 

simulated. In the second, the correlations were .7 in both groups. 

Dimensional Structure of the Tests and Item Parameters. The 

dimensional structure the item sets was varied to result in three 

dimensionally different tests. This was done by varying the relative 

sensitivity of the items to each ability. This is most succinctly 

expressed as the item measurement direction. The number of items at 

each measurement direction for each test is presented in Table 1. 

Test 1 consisted of 48 items which measured only ability A (items 

with a measurement direction of 0 degrees), and 16 items which measured 

only ability B (items with a measurement direction of 90 degrees). 
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Table 1 

Test Dimensional Structure 

Number of Items at Each Measurement Direction (In Degrees) 

Test 0 15 30 45 60 75 90 

1 48 16 

2 24 24 88 

3 12 12 12 12 8 8 

Test 2 consisted entirely of multidimensional items. There were 

no "pure” A or "pure" B items. Of the 48 items which were more 

sensitive to dimension A than dimension B, 24 items had a measurement 

direction of 15 degrees, and 24 had a measurement direction of 30 

degrees. Of the 16 items which were more sensitive to dimension B, 8 

had a measurement direction of 60 degrees, and the final 8 had a 

measurement direction of 75 degrees. 

Test 3 consisted of 48 predominantly A items (12 items each at 45, 

30, 15 and 0 degrees) and 16 predominantly B items (8 items at 75 

degrees and 8 at 60 degrees). Thus test 3 had some pure A items, like 

test 1, but also had some items which were equally sensitive to ability 

A and B. 

From the above it can be seen that the items were essentially 

grouped into two blocks - the 48 items which were most sensitive to 

ability A (for simplicity the 12 items in test 3 which are at 45 degrees 

are referred to as A items, even though they are in fact equally 

sensitive to both abilities), and the 16 predominantly B items. 
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Item difficulty was systematically varied across all 64 

non-DIF items. Eight levels of difficulty were simulated, with the 

difficulty parameters set at -1.75, -1.25, -.75, -.25, .25, .75, 1.25, 

or 1.75. Thus for the 48 A items, there were 6 items at -1.75, 6 items 

at -1.25, etc. For the 16 B items, there were 2 items at each 

difficulty level (see Table 2). 

For the A items item difficulty was completely crossed with 

multidimensional item discrimination (MDISC). The discrimination 

parameters were set to be .2, .4, .6, .8, 1.0 or 1.2. 

For the 16 B items the discrimination parameters were not 

completely crossed within each simulation. Rather, the 16 B items were 

either low discrimination (.2 or .4) medium discrimination (.6 or .8) or 

high discrimination (1.0 or 1.2). Thus, while for each simulation the 

entire range of discrimination values was covered in the A items, the B 

items had a restricted set of discrimination values, which allowed the 

impact of discrimination on the B items to be studied separately. Thus, 

for each test (Test 1, Test 2, and Test 3) and each level of trait 

correlation (.3 or .7) there were three simulations. The discrimination 

parameters were always the same for the A items. The discrimination 

parameters for the B items were either low, medium or high, as described 

above. These are referred to as the Low, Medium and High discrimination 

sets below. 

Each test had two additional items at 0 degrees, which were true- 

DIF items. For these two items there was a between group difference in 

the difficulty parameter of .5. No differences in discrimination 
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non-DIF items. Eight levels of difficulty were simulated, with the 

difficulty parameters set at -1.75, -1.25, -.75, -.25, .25, .75, 1.25, 

or 1.75. Thus for the 48 A items, there were 6 items at -1.75, 6 items 

at -1.25, etc. For the 16 B items, there were 2 items at each 

difficulty level (see Table 2). 

For the A items item difficulty was completely crossed with 

multidimensional item discrimination (MDISC). The discrimination 

parameters were set to be .2, .4, .6, .8, 1.0 or 1.2. 

For the 16 B items the discrimination parameters were not 

completely crossed within each simulation. Rather, the 16 B items were 

either low discrimination (.2 or .4) medium discrimination (.6 or .8) or 

high discrimination (1.0 or 1.2). Thus, while for each simulation the 

entire range of discrimination values was covered in the A items, the B 

items had a restricted set of discrimination values, which allowed the 

impact of discrimination on the B items to be studied separately. Thus, 

for each test (Test 1, Test 2, and Test 3) and each level of trait 

correlation (.3 or .7) there were three simulations. The discrimination 

parameters were always the same for the A items. The discrimination 

parameters for the B items were either low, medium or high, as described 

above. These are referred to as the Low, Medium and High discrimination 

sets below. 

Each test had two additional items at 0 degrees, which were true- 

DIF items. For these two items there was a between group difference in 
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parameters for the two groups was simulated, so that the simulated true- 

DIF was uniform. The discrimination parameters for these items were the 

same as the discrimination parameters of the B items for the set. 

Thus, altogether 18 conditions were investigated, as there were 

three test structures, two levels of inter-trait correlations, and three 

levels of discrimination for the B items. Each condition was replicated 

ten times. 

Data Analysis 

For this first phase of the study all tests were analyzed using 

the MH and LR procedures. The MH analysis was be done using the program 

written by Rogers and Hambleton (in press), using total score as the 

matching criterion (MH-T). The logistic regression analyses were 

conducted using SPSS-X. The logistic regression analysis using total 

score as criterion is referred to as the LR-T analysis. 

The .01 level of significance was used in all analyses. False 

positive error rates were calculated for analysis for each condition. 

In addition, false negative error rates were also calculated. 

In order to fully understand what types of items were most likely 

to be incorrectly identified as DIF, and under what conditions, the 

number of times each item was identified (out of 10 replications) was 

calculated, items were grouped according to item characteristics and 

false positive error rates for each group of items were calculated. 

Part II 

The second part of the study investigated whether changing the 

conditioning variables used in the Mantel-Haenszel and logistic 
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regression procedures would result in decreased false positive error 

rates. 

Subtest Selection 

The use of valid subtest scores was investigated. Valid subtests 

were constructed in two ways. First, subtest items were selected based 

on the specifications which were used to generate the data. Items with 

a measurement direction of 0 to 25 degrees were selected into subtest 

one. Items with a measurement direction of 65 to 90 degrees were 

selected into subtest 2. These subtests are referred to as a priori 

subtests 1 and 2. Thus, this first method of subtest selection allowed 

assessment of the subtest as criterion analysis under the most favorable 

conditions possible, that is when it is known, a priori, which items 

form unidimensional scales. 

The second way valid subtests were constructed was based on the 

results of the NOHARM (Fraser, 1981) procedure. NOHARM was used to 

perform a nonlinear factor analysis, and items were assigned to subtests 

based upon these empirical results. Item measurement direction was 

calculated, and items were selected into subtests in the same way as 

described for the a priori subtests. These subtests are referred to as 

NOHARM subtests 1 and 2. The results obtained using the NOHARM subtests 

procedure were compared to those obtained using the a priori subtests 

described above to determine to what extent the factor analysis 

recovered the structure of the tests. 

Preliminary NOHARM Investigations. A preliminary question was 

what set of NOHARM estimates to use to estimate the discrimination 

parameters, and subsequently the item directions. Discussions with 

researchers at ACT and Professor Terry Ackerman at the University of 
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Illinois revealed that they used the latent trait estimates. Pre¬ 

preliminary work suggested that of the factor analytic solutions the 

Promax rotation would be the most appropriate. Therefore a systematic 

comparison of the latent trait solution and the Promax solution was 

conducted. Two tests were simulated - much like tests 1 and 2 described 

above. Test 1 consisted of 50 pure A items and 16 pure B items. Test 2 

consisted of 25 items at 15 degrees, 25 items at 30 degrees, eight items 

at 60 degrees, and eight items at 75 degrees. Responses for 3000 

examinees were simulated to provide 2000 reference group examinees and 

1000 focal group examinees. Three levels of correlation between the 

abilities were used: 0, .3 and .7. Each data set was analyzed using 

NOHARM four separate times - once using 1000 reference group examinees, 

once using 1000 focal group examinees, once using 2000 reference group 

examinees, and a final time using 1000 reference group and 1000 focal 

group examinees. 

Latent trait and Promax results were used to calculate item 

directions (cosines) and items were selected into subtests. 

Correlations between true cosines and the two estimated cosines were 

calculated for each sample. 

The Promax rotation yielded better results than the LT 

parametrization in terms of both the correlations between the cosines 

and in terms of the number of items correctly classified with some 

exceptions. Therefore, it was decided that the loadings obtained with 

the Promax rotation would be used in the investigation. 

The analyses using 1000 reference group examinees and 1000 focal 

group examinees had results that were generally as good or very close to 

as good as the analyses using 2000 reference group examinees and 
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generally better than either of the 1000 examinee analyses. Therefore, 

the combined reference and focal groups were used with the NOHARM 

procedure. 

Data Analysis 

The MH and LR procedures were repeated, this time conditioning on 

subtest scores rather than total scores. First, the MH analysis was 

implemented using a purified total score as criterion. The purified 

total score was based only on those items which were not identified on 

the first MH analyses (but always including the studied item). This is 

referred to as the MH-P analysis. 

All items were reanalyzed with the LR procedure, expanded to 

include subtest scores in the regression equation. First both a priori 

subtest scores were substituted for total score (LR-A), then both NOHARM 

subtest scores were substituted for total score (LR-N). Because the LR 

model allowed both subtest scores to be incorporated into the model 

simultaneously, it was hypothesized that substantial reductions in false 

positive error rates would be obtained in this condition. The 

characteristics of the false positive items were also investigated as 

described under Part I. 

The correspondence between the results obtained using the a priori 

subtests and the NOHARM subtests was examined, both by a comparison of 

false positive error rates for the LR-A and LR-N analyses, and by 

examining the item classifications and correlations among the scores. 

It was expected that the MH-T and LR-T analyses would both result 

in relatively high false positive error rates. Incorporating the two 

subtest scores into the LR equation was expected to improve matching and 

thus reduce false positive errors. It was further expected that the a 
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priori subtests would result in more accurate matching than the NOHARM 

subtests, and thus the LR-A analyses would yield lower false positive 

error rates than the LR-N analyses. 

Part III 

Data from the College Board achievement tests for Chemistry and 

History were analyzed to determine whether real test data would yield 

results at all similar to those obtained in the simulated conditions 

described above. 

Each test was first shortened to 66 items (using random item 

selection) to make test length equal to that used in the simulations. 

For the Chemistry test, one thousand white and one thousand Asian 

American examinees were randomly selected from the item response data 

which were available for use in the study. For the History test, one 

thousand male and one thousand female examinees were randomly selected. 

First, the MH and LR procedures were implemented as described in 

Part I, conditioning was on total test score only. Next, a nonlinear 

factor analysis was conducted using NOHARM, to assess whether the data 

were multidimensional and whether meaningful valid subtests could be 

constructed. The NOHARM results suggested that the History test data 

were adequately fit by two dimensions, while the Chemistry test data 

were better fit by three dimensions. 

Subtests for the History test were constructed following the same 

procedure as was used for the simulated data. The MH procedure was then 

repeated, using purified total score as criterion. The logistic 

regression procedure was also repeated, with both subtest scores 

included in the equation in lieu of total score. 
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Because three dimensions were identified for the Chemistry test, 

the NOHARM estimates were submitted to a cluster analysis (using SPSS- 

X). The cosine distance was used. Based on a three cluster solution, 

items were sorted into three subtests. The MH and LR procedures were 

repeated as described for the History test, expect that for the 

Chemistry test, three rather than two subtest scores were used. As in 

Part II, the results of the successive analyses were compared, with 

respect to the different criterion scores used, and with respect to 

differences in the MH and LR results. 
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CHAPTER IV 

RESULTS 

Six conditions were simulated for each of three different test 

structures. The dimensionality of the tests was varied by varying the 

measurement direction of the items. Test 1 consisted of 48 pure A items 

(with a measurement direction of 0 degrees) and 16 pure B items (with a 

measurement direction of 90 degrees). Thus no item was multi¬ 

dimensional, but the two types of items, taken together, resulted in a 

multidimensional test. Test 2 consisted of 48 items which were more 

sensitive to dimension A, and 16 items which were more sensitive to 

dimension B, but all items were influenced to some extent by both 

dimensions. Finally, test 3 consisted of 12 pure A items, 24 items 

which were more sensitive to A than B, 16 items which were more 

sensitive to B than A, and 12 items which were equally sensitive to both 

conditions. Thus, the difference between tests 2 and 3 was that for 

test 2 the first 48 items had measurement directions of 15 or 30 

degrees, while the measurement directions for the first 48 items in test 

3 ranged from 0 to 45 (at 15 degree intervals). However, the parameters 

for the last 16 items were the same for tests 2 and 3. All three tests 

contained two DIF items, which were pure A or predominantly A items. 

For all of the above simulations there was no difference in the 

underlying ability distributions for the two groups on ability A, while 

the reference group mean was one standard deviation greater than the 

focal group mean on ability B. 
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For each test, two levels of correlation between the two 

underlying abilities were simulated, with this correlation specified as 

either .3 or .7. 

Item difficulty was systematically varied from -1.75 to 1.75 at 

intervals of .5 for all items. For the first 48 items MDISC was 

systematically varied from .2 to 1.2, at intervals of .2. The 

discrimination of the last 16 items (and the 2 DIF items) was varied to 

create three different discrimination conditions for each test (and each 

level of correlation). Thus, in the low discrimination condition the 

discrimination of these items was either .2 or .4, in the medium 

discrimination condition the discrimination of these items was either .6 

or .8 and in the high discrimination condition the discrimination of 

these items was either 1.0 or 1.2. Thus the discrimination of the first 

48 items (generally the pure A or predominantly A items) did not change 

across discrimination conditions, but the discrimination of the last 16 

and the two DIF items did change. 

Descriptive information for the three tests under the six studied 

conditions is presented in Table 3. For all tests, as the 

discrimination of the B items increased, the standard deviation of the 

samples increased, as did the between group difference in means. 

DIF Analyses with Total Score as Matching Criterion 

DIF analyses using total score as the matching criterion were the 

first analyses to be carried out. Both logistic regression (LR-T) and 

Mantel-Haenszel (MH-T) procedures were implemented for all data sets. 

The results of these analyses are presented in Table 4. The LR-T and 
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Table 3 

Total Score Descriptive Statistics1 

Test Statistic Low 
r«. 3 

MDISC 
r-.7 

Medium 
r-.3 

MDISC 
r«.7 

High 
r-.3 

MDISC 
r-.7 

1 X 32.7 32.6 32.1 32.1 31.6 31.7 

SD 7.3 7.7 7.9 8.5 8.4 9.3 

Xr - XF .6 .7 1.4 1.9 2.4 3.2 

2 X 31.5 31.5 31.1 31.1 30.6 30.7 

SD 8.3 9.0 9.4 10.3 10.4 11.3 

Xr - XF 2.8 2.9 1.7 2.8 5.0 4.7 

3 X 31.6 31.6 30.9 31.1 30.6 30.6 

SD 8.0 8.7 9.2 10.1 10.2 11.2 

Xr - XF 3.0 2.7 3.8 3.8 4.7 4.3 

Statistics represent averages across ten replications. 

MH-T procedures yielded very similar results, with the MH-T being 

slightly more conservative in most conditions. 

From Table 4, it can be seen that substantial numbers of false 

positives were obtained in several analyses. The highest numbers of 

false positives were obtained in the high discrimination conditions for 

all three tests. For test 1 close to fifty percent of the items were 

identified as DIF in the high discrimination conditions. Fewer items 

were identified as DIF in the medium discrimination conditions for all 

tests, although rates were still high, ranging from 19 to 41 percent 

depending on the test and condition. The fewest number of false 
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Table 4 

Number of False Positive Errors with Total Score As Matching Criterion* 

Condition Test 1 Test 2 Test 3 

MDISC Correlation 

MDISC Correlation 

LR-T MH-T LR-T MH-T LR-T MH-T 

Low .3 8.2 8.2 4.9 3.7 11.6 10.8 

.7 8.9 8.5 4.1 3.9 9.8 9.5 

Medium .3 25.7 24.6 14.1 13.3 19.4 18.6 

.7 24.1 23.5 11.9 11.9 20.1 18.6 

High .3 32.8 32.3 20.1 19.7 24.2 23.1 

.7 33.2 31.0 19.1 18.6 23.3 22.4 

Averaged across ten replications. 

positives were obtained in the low discrimination conditions, with 6 to 

18 percent of the items being identified as DIF. 

There were considerable differences in false positive rates across 

the three test structures. Test 1 showed the most marked increase in 

rates of false positives across the three discrimination conditions. 

While test 3 had similar rates at the lowest discrimination comtion, 

rates in the medium and high discrimination conditions were not as higr.. 

Test 2 had the lowest false positive rates of all three tests in a^l 

conditions. There were minimal differences in the number or raise 

positives across trait correlation levels. The size of the correlation 

between the traits appeared to have little influence on the DIF results 
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from the three tests. Rates for failures to identify the two DIF items 

were extremely low for both the LR-T and MH-T analyses. False negative 

error rates ranged from 0 to .8 percent across all conditions. 

Change in Matching Criteria 

Three additional DIF analyses were conducted to determine whether 

a change in the matching criteria would result in improved accuracy, 

i.e. lower false positive rates. First the MH procedure was re¬ 

implemented, this time using a purified total score as the matching 

criterion (MH-P). The purified total score was calculated by removing 

all the items which were identified as DIF in the MH-T analysis (except 

the studied item) and using that score as the matching criterion. 

The logistic regression procedure was then implemented two 

additional times, this time with subtest scores substituted for total 

score In the logistic regression equation. Subtest scores were 

calculated by selecting the "most pure" items and using only those items 

to calculate subtest scores. Thus, items which measured primarily 

dimension A (that is, had a measurement direction of 25 degrees or less) 

were selected into subtest 1, and those which measured dimension B (that 

is, had a measurement direction of 65 degrees or more) were selected 

into subtest 2. Two sets of subtests were formed, referred to as the a 

priori subtests and the NOHARM subtests. The a priori subtests were 

selected based on the true item cosines (those used to generate the 

data) and the NOHARM subtests were selected based on the cosines 

calculated from the NOHARM estimates of the item discriminations. 

Descriptive information for the a priori subtests is presented in Table 

5. 
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Table 5 

A Priori Selected Subtests Descriptive Statistics 

Test 
Sub- Stat- 
test istics 

Low HDISC 
r-.3 r-.7 

Medium 
r«.3 

MDISC 
r-.7 

High 
r*. 3 

MDISC 
r-.7 

1 1 X 25.1 25.1 25.1 25.1 25.1 25.1 

SD 6.8 6.9 7.0 6.9 7.0 7.0 

Xr - XF .3 .2 -.6 .1 .2 .1 

1 2 X 7.5 7.5 7.0 7.0 6.5 6.5 

SD 2.0 2.0 2.8 2.8 3.6 3.6 

XR - XF .9 .9 1.9 2.1 2.8 2.9 

2 1 X 12.1 12.1 12.1 12.1 12.0 12.0 

SD 3.9 4.0 3.9 4.1 4.0 4.2 

Xr - XF .6 .7 .6 .7 .7 .7 

2 2 X 3.4 3.4 3.2 3.2 3.0 3.0 

SD 1.3 1.3 1.6 1.7 2.0 2.0 

Xr - X; .4 .4 .9 .9 1.4 1.4 

3 1 X 12.0 12.0 11.9 11.9 11.9 11.9 

SD 3.7 3.9 3.8 3.9 3.9 4.0 

Xr - XF .3 .3 .3 .3 .4 .2 

3 2 X 3.4 3.4 3.2 3.2 3.0 3.0 

SD 1.3 1.3 1.6 1.7 2.0 2.0 

Xr - XF .4 .4 .9 .9 1.3 1.2 
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The results of these three additional DIF analyses are presented 

in Table 6. Figure 1 allows for comparison across all analyses. The 

MH-P analyses resulted in minimal or no changes as compared to the MH-T 

analyses for false positive rates for all the low discrimination 

conditions of all three tests, and for the medium and high 

discrimination conditions of tests 2 and 3. The greatest changes in 

false positive rates for the MH-T analyses to the MH-P analyses were 

obtained in the medium and high discrimination conditions of test 1. In 

these conditions a substantial decrease in false positive rates was 

obtained when the purified total score was used in lieu of total score. 

The logistic regression analyses resulted in dramatic reductions 

in false positive rates in several conditions. The most marked change 

was on test 1, where both the LR-A and the LR-N analyses resulted in 

substantial reductions in all conditions. These analyses resulted in 

false positive rates 50 percent to 98 percent lower than the rates 

obtained when total score was used as criterion. 

For tests 2 and 3 substantial reductions were obtained in the 

medium and high discrimination conditions, but not in the low 

discrimination conditions. In the low discrimination conditions of 

tests 2 and 3 the LR-A and LR-N procedures resulted in increases rather 

than decreases in false positive rates, with one exception (the LR-N 

analysis for the low MDISC, r-.3 condition). 

The pattern of results for the LR-A and LR-N analyses were 

similar, but the actual numbers of false positives obtained differed in 

the various conditions. On test 1 the LR-A analyses tended to flag 

fewer false positives than the LR-N analyses. However, on tests 2 and 3 
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■ LB-T DmH-T DmH-P SSlB-A 0LB-N 

Test 1 

Test 2 

Test 3 

Lew MOISC Medium MDISC High MDISC 

Low MOISC Medium MDISC High MDISC 

Lew MOISC Medium MDISC High MDISC 

Figure 1. A Comparison of False Positive Error Rates 

83 



the LR-N analyses yielded the lowest false positive rates. This is an 

unexpected result, and will be discussed in some detail later. 

When total score was used as the matching criterion, the number of 

false positives increased as the discrimination of the B item set 

increased. This trend was reversed for the LR-A and LR-N analyses, 

where there was a tendency for false positive rates to be lower (or 

unchanged) in the higher discrimination conditions. 

The correlation between the underlying traits had virtually no 

impact on false positive rates in the LR-A analyses. However, in the 

LR-N analyses a lower false positive rates were associated with the 

lower correlation conditions. 

False negative error rates associated with all analyses are 

reported in Table 7. Reported percentages are based on two items 

occurring in six conditions and ten replications for each test. Thus, 

for each test there were 120 opportunities for false negative errors. 

False negative error rates for the MH-P, LR-A, and LR-T analyses were 

higher than false negative error rates for the MH-T and LR-T analyses. 

Table 7 

Summary of False Negative Errors 

Test LR-T MH-T 

Analysis 

MH-P LR-A LR-N 

1 0 0 0 2.5 2.5 

2 .8 .8 4.2 4.2 3.0 

3 0 .8 1.7 10.0 8.0 

NOTE: Error rates were calculated as the percentage of times DIF items 
were missed of a possible 120 opportunities: 2 DIF items, in six 
conditions per test, and ten replications for each condition. 
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Supplemental Analyses 

Because of the unexpected results obtained for the low 

discrimination conditions of tests 2 and 3, namely that more false 

positives rather than fewer were observed when subtest scores were used 

as criteria, two further conditions were investigated. These were 

variations on the low discrimination condition of test 2. In both 

conditions the item parameters were the same as those described above 

for the low discrimination condition of test 2, but the ability 

distributions were changed. In both cases the reference group mean on 

ability B was one standard deviation higher than the focal group mean on 

ability B, as it was in all other simulations. The changes were in the 

distributions on ability A. In the first case, the reference group mean 

on ability A was set to be .5 greater than the focal group mean on 

ability A, thus the reference group was more able than the focal group 

on both dimensions (consistent difference). In the second case the 

reference group mean was set to be .5 less than the focal group mean on 

ability A, thus the reference group was less able than the focal group 

on one dimension, but more able on the second (crossed difference). 

This was done to assess whether the direction of the ability 

distribution differences influenced false positive error rates. Both 

correlation levels were simulated. 

Descriptive statistics for the supplemental test and subtests are 

presented in Table 8. The same sequence of DIF analyses were performed 

for these conditions as was performed for the previous conditions. 

Results of these analyses are presented in Table 9. The consistent 

distributional difference conditions resulted in relatively few false 

positives when total score was used as the matching criterion. In 
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Table 8 

Descriptive Statistics for Test 2 
Supplemental Conditions 

Conditioning 
Variable 

Descriptive 
Statistic 

Consistent 
Distributional 

Differences 

Crossed 
Distributional 

Differences 

r«.3 r-.7 r=. 3 r-.7 

Total Score 

X 33.0 33.0 30.2 30.2 

SD 8.6 9.6 8.0 8.7 

Xr 1 X
I 

5.9 5.6 .1 .2 

A Priori 

Subtestl X 12.8 12.8 11.4 11.4 

SD 4.0 4.1 U
) 

• oo
 

4.0 

Xr - Xf 2.2 2.0 .7 .8 

Subtest2 X 3.4 3.4 3.4 3.4 

SD 1.3 1.4 1.3 1.3 

Xr - 

1 
f*< 

X
 .5 .5 .4 .4 

contrast, in the crossed distributional difference condition a 

substantial number of false positive errors were made in both the LR-T 

and MH-T analyses. There were no false negative errors associated with 

the LR-T or MH-T analyses for either condition. 
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Table 9 

DIF Results for Test 2 Supplemental Conditions1 

Distributional 
Difference LR-T MH-T 

Analysis 

MH-P LR-A LR-N • 

Consistent 

r-.3 2.7 2.3 2.2 13.7 22.5 

r-.7 1.0 1.0 .7 11.3 13.2 

Crossed 

r-. 3 11.9 10.3 10.9 5.1 4.9 

r-.7 10.3 9.6 10.2 6.4 8.1 

1Number of false positives per test (of a possible 64) 
averaged across ten replications. 

When the purified total score was used as the matching criterion 

there were minimal changes in false positive rates for both conditions. 

Again, no false negative errors were observed. 

Use of subtest scores in the LR analyses resulted in substantial 

changes. In the consistent distributional difference condition false 

positive rates increased dramatically in both the LR-A and LR-N 

analyses. Changes in the crossed difference condition were in the 

opposite direction, with the LR-A and LR-N analyses yielding fewer false 

positives than the LR-T and MH-T analyses. The LR-A analyses missed 2 

(of 40) DIF items in the consistent difference condition, and 1 (of 40) 

in the crossed difference condition. The LR-N missed 4 (of 40) and 2 

(of 40) in the consistent and crossed difference conditions. 
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Characteristics of False Positive Items 

In order to further understand the results of the series of DIF 

analyses, and the changes in classification with the changes in 

criterion, additional descriptive analyses were conducted. Item false 

positive identification rates were broken down by item measurement 

direction, item discrimination, and item difficulty. Item false 

positive identification rates were calculated by grouping items 

according to the variable of interest (e.g., item discrimination), 

calculating the number of replications on which each item was identified 

as DIF, and then averaging across the items in the group. There were 10 

replications, so that an identification rate of 10 would mean that all 

items of that type were identified on all replications. The two DIF 

items were not included in this series of descriptive analyses, as the 

goal was to identify what item characteristics were associated with 

false positive identifications. 

False positive rates broken down by item measurement direction are 

presented in Table 10. The numbers in the table reflect the average 

number of times items of a given measurement direction were incorrectly 

identified as DIF, out of a possible ten replication. The rates for the 

various analyses of test 1 reveal that when total score is used as the 

matching criterion, it is the items at 90 degrees (the pure B items) 

which are likely to be identified. The pure B items are in the 

minority, and clearly the items at 0 degrees (pure A items) have a 

greater influence on total score. In the MH analyses, when items 

identified as DIF are removed and total score recalculated for the MH-P 

analysis, the purified score is now influenced even more by pure A items 

and rates for items at 0 degrees approach 0, while rates for the pure B 

88 



Table 10 

Average Number of False Positive Errors 
Broken Down by Item Measurement Direction 

Test Analysis Item Measurement Direction in Degrees 

• 0 15 30 45 60 75 90 

1 LR-T 1.9 - - - - - 8.2 

MH-T 1.8 - - - - - 8.1 

MH-P .1 - - - - - 8.2 

LR-A .1 - - - - - .2 

LR-N .2 - - - - - .5 

2 LR-T - 1.4 .2 - 4.7 6.4 - 

MH-T - 1.3 .1 - 4.2 6.2 - 

MH-P - .8 .1 - 5.3 6.3 - 

LR-A - .1 1.2 - 5.3 .4 - 

LR-N - .4 .8 - 1.7 1.4 - 

3 LR-T 4.0 1.7 .3 2.0 4.5 6.1 - 

MH-T 3.9 1.6 .2 2.0 4.1 5.9 - 

MH-P 3.7 1.1 .2 2.3 4.6 6.0 - 

LR-A .2 .5 1.4 4.5 5.5 .3 - 

LR-N .6 .7 1.3 2.4 .9 1.1 - 

items remain high. In contrast, when the two subtest scores are 

incorporated into the LR equations, rates for both the pure A and pure B 

items drop to almost 0. 
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Tests 2 and 3 differ from test 1 in that most of the items are not 

pure with respect to either dimension, and there is greater variability 

in the measurement directions of the items. Rather than two levels of 

measurement direction as on test 1, test 2 has 4 levels, and test 3 has 

6. There are corresponding differences in false positive identification 

rates as a result. 

When total score is used as the matching criterion for test 2, it 

is the items at 60 and 75 degrees which are most likely to be 

identified. This is also true for test 3, and in fact the actual rates 

for items at these directions are very similar. However, for test 3, 

the next highest false positive rates are found for the items at 0 

degrees. The lowest rates for both tests are for the items at 30 

degrees. 

Changing the criterion from total score to purified total score 

for the MH resulted in slight reductions in false positive rates for 

items at 15 degrees, and no change for items at 30 degrees for both 

tests. Small increases in rates for items at 45, 60 and 75 degrees were 

noted. 

When the subtest scores were substituted for total score in the LR 

analyses, the pattern of results changed. While the LR-T analyses 

tended to identify the most discrepant items (items at 75 or 60 degrees, 

and then those at 0 degrees) the LR-A was more likely to identify items 

at 60 or 45 degrees. In contrast, the item false positive rates for LR- 

N analyses tended to show much less variability across item measurement 

direction levels. 
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False positive identification rates broken down by item 

discrimination are presented in Table 11. This table reveals that for 

the LR-T, MH-T and MH-P analyses false positive rates increased as item 

discrimination increased, without exception. This trend was not as 

clear for the LR-A and LR-T analyses. For test 1, the highest false 

positive rates were associated with the lower item discriminations. The 

LR-A analyses tended to identify the higher discrimination items at 

higher rates, but there were some exceptions to this for test 3. The 

LR-N analyses tended to have low rates overall, but there was not a 

clear relationship between false positive rates and item discrimination 

for tests 2 and 3. 

False positive rates for items broken down by item difficulty are 

presented in Table 12. From this it can be seen that there was a 

tendency for items of moderately difficulty to have higher false 

positive rates as compared to the relatively more easy or more difficult 

items. This tendency was consistent across tests and across analyses. 

Correspondence Between A Priori Results and NOHARM Results 

It was apparent from several of the results presented above that 

the results obtained with the LR-A analyses often differed from the 

results obtained with the LR-N analyses. Therefore, a more detailed 

assessment of the correspondence between the a priori selected subtests 

and the NOHARM selected subtests was conducted. 

Correlations between the true cosines and the cosines calculated 

using NOHARM estimates are presented in Table 13. The relationship 

between the true and NOHARM estimated cosines is important as items were 
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Table 11 

Average Number of False Positive Errors 
Broken Down by Item Discrimination 

Test Analysis 

.2 

Item 

.4 

Discrimination 

.6 .8 1.0 1.2 

1 LR-T .7 2.3 3.3 4.0 4.7 5.5 

MH-T .6 2.3 3.3 3.8 4.6 5.4 

MH-P .6 1.9 2.5 2.6 2.6 2.7 

LR-A .3 .3 .1 .1 .1 .1 

LR-N .5 .6 .2 .1 .1 .1 

2 LR-T .3 1.0 1.7 2.6 2.8 3.6 

MH-T .3 .8 1.5 2.5 2.7 3.4 

MH-P .2 .7 1.6 2.4 2.8 3.1 

LR-A .3 .9 1.0 1.5 1.6 2.0 

LR-N .8 1.0 .4 .9 .6 1.2 

3 LR-T .4 .8 2.8 3.2 4.9 5.0 

MH-T .3 .7 2.5 3.0 4.7 4.8 

MH-P .3 .7 2.6 3.0 4.8 4.8 

LR-A .3 1.4 1.3 3.1 2.0 3.8 

LR-N .8 1.0 .4 .9 .6 1.2 
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Table 12 

Average Number of False Positive Errors 
Broken Down by Item Difficulty 

Test Analysis 

Item 

-1.75 to 
-1.25 

Difficulty 

-.75 to 
-.25 

.25 to 
.75 

1.25 to 
1.75 

1 LR-T 3.2 3.7 3.8 3.1 

MH-T 3.1 3.6 3.7 3.0 

MH-P 2.1 2.2 2.3 2.3 

LR-A .1 .1 .2 .1 

LR-N .3 .3 .3 .2 

2 LR-T 1.7 2.1 2.3 1.8 

MH-T 1.6 2.0 2.2 1.7 

MH-P 1.6 1.9 2.0 1.7 

LR-A 1.1 1.3 1.3 1.1 

LR-N .8 .9 .9 .7 

3 LR-T 2.1 3.1 3.3 2.8 

MH-T 2.1 2.9 3.1 2.7 

MH-P 2.1 3.0 2.9 2.9 

LR-A 1.4 2.1 2.3 1.9 

LR-N .7 1.0 1.0 .9 
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Table 13 

Correlations Between True Cosines and Cosines 
NOHARM Analyses1 

Based on 

Condition Test 1 Test 2 Test 3 

low MDISC 

r-.3 

t 

.91 .48 .72 

r-.7 .68 .25 

C
M

 
in • 

medium MDISC 

r-.3 

<30 
o\ • .86 .87 

• l u
 .95 .67 .75 

high MDISC 

r-. 3 .99 .91 .89 

• 1 u .97 .84 .81 

Correlations were calculated for each replication separately, and then 
averaged. 

selected into subtests based on cosines. Differences in cosines could 

lead to different items being selected into subtests. In general, the 

cosine correlations were higher when the correlation between the 

underlying traits was .3 than when it was .7. Cosine correlations also 

tended to be higher as the discrimination of the B items increased. 

Finally, cosine correlations were higher for test 1 (where all items 

were sensitive to only one dimension) as compared to tests 2 and 3 where 

most items were sensitive to both dimensions. 
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Correlations between the a priori selected subtests and NOHARM 

selected subtests are presented in Table 14. While the pattern of 

relationship among the subtest scores are not as clear as for the 

cosines, the same general trends are present. That is, higher a 

priori/NOHARM subtest correlations are associated with the lower 

correlation between the underlying traits, more highly discriminating B 

items, and with test 1 as opposed to tests 2 and 3. In addition it is 

noteworthy that for most of the conditions (13 of 18) the correlations 

between the two NOHARM subtests was within .1 of the correlations of the 

two a priori subtests with each other. 

Information on item classification accuracy is presented in Table 

15. In this table the percentage of items missed refers to the 

percentage of test items whose true cosines were within the specified 

limits for one of the subtests, but which were not assigned to that 

subtest. Thus these items should have been included but were not. 

Items which were cross-classified were items which should have been 

included on one subtest, but were incorrectly included on the other 

subtest. Items which were correctly classified were those which 

included in the correct subtest. Again, higher correct classification 

rates are associated with the lower trait correlation, higher 

discrimination of the B items, and with test one as compared to tests 2 

and 3. Cross-classifications and missed classifications also tend 

follow this pattern. 

In addition to the relatively infrequent cross-classifications 

which were noted in the NOHARM subtests, the NOHARM assignements tended 

to include items which were not included in either of the a priori 

subtests - that is items with a true measurement direction greater than 
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Table 15 

Item Classification Accuracy 

Test Condition Missed 

Mean Percentage of 

Cross-Classified 

Items1 

Correctly 
Classified 

1 

low MDISC 

r-. 3 14 1 86 

r-.7 36 9 56 

medium MDISC 

r-. 3 3 0 97 

r-.7 6 0 94 

high MDISC 

r-.3 3 0 97 
r-" •

 

H U
 4 1 95 

2 

low MDISC 

r-.3 36 12 52 

r-.7 50 19 31 

medium MDISC 

r-.3 9 1 90 

r-. 7 30 6 64 

high MDISC 

r-.3 3 1 96 

r-.7 9 3 88 

Continued on the next page. 
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Table 15, continued: 

Test Condition Missed 

Mean Percentage of 

Cross-Classified 

Items1 

Correctly 
Classified 

3 

low MDISC 

r-.3 24 3 73 

r-.7 41 
t 

15 45 

medium MDISC 

r-. 3 6 0 94 

r-.7 31 0 69 

high MDISC 

r-.3 3 1 96 

• 

1 u 16 1 83 

"'All cell percentage are averages across ten replications. 

25 and less than 65 degrees. This means that the items which were 

included on the NOHARM subtests are more varied with respect to 

measurement direction than those included on the a priori subtests. 

Table 16 presents the percentage of NOHARM subtest items which fall into 

this category. For tests 2 and 3 a substantial number of items with 

measurement directions within this range were included in a NOHARM 

subtest. This is consistent with all of the above. In summary, the 

primary finding of the comparisons between the NOHARM and the a priori 

subtests was that the NOHARM results were generally consistent with the 

a priori results. There were some differences, as not unexpectedly the 
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Table 16 

Percentage of NOHARM Subtest Items with Measurement 
Direction Between 25 and 65 Degrees 

Condition Test 2 Test 3 

low MDISC 

r-.3 43 41 

r-.7 47 41 

medium MDISC 

r-. 3 38 36 

r-.7 40 44 

high MDISC 

r-.3 44 35 

r-.7 38 36 

NOTE: Percentages are averaged across replications. 

Percentages are not reported for Test 1 as there were no items at 
these measurement directions for Test 1. 

correspondence between the two was not perfect. Differences were 

greatest when the items were less discriminating, and when the 

correlation between the underlying abilities was greater. 

Interestingly, the fact that the NOHARM classifications resulted in 

subtests that were more varied than the a priori subtests in terms of 

item measurement direction appeared to improve (reduce) false positive 

error rates when subtest scores were used as criterion. 
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Real Data Results 

In the final phase of this investigation the procedures discussed 

above were applied to two real data sets. These tests were both 

achievement tests, one in the area of history, the other in the area of 

chemistry. Both tests were shortened to 66 items (using random item 

deletion). The reference group for the history test was males, and the 

focal group was females. The reference group for the chemistry test was 

whites, and the focal group was Asian Americans. Descriptive statistics 

for these two data sets are presented in Table 17. 

Table 17 

Descriptive Statistics for the History and Chemistry Tests 

History 

Total Subtest 1 Subtest 2 

Group X SD X SD X SD 

Males 40.4 10.6 12.3 3.2 13.0 4.6 

Females 37.5 10.6 11.5 3.4 11.5 4.4 

Combined 38.9 10.7 11.9 3.3 12.3 4.5 

Chemistry 

Total Subtest 1 Subtest 2 Subtest 3 

Group X SD X SD X SD X SD 

Whites 32.8 12.5 16.6 6.0 9.9 4.9 6.0 2.9 

Asian 
Americans 32.8 11.1 17.4 5.3 9.3 4.4 5.8 2.9 

Combined 32.8 11.8 17.0 5.6 9.6 4.6 5.9 2.9 
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History Test Results 

The results of the NOHARM analysis of the history data set suggest 

that the two-dimensional model (with c-0) provided an adequate fit to 

the data. The root mean square of the residual matrix was .004499 well 

below .08944, which is suggested by the author of NOHARM as a rough 

guideline for assessing goodness of fit. Recent research has suggested 

that converting the residuals to z-scores and then evaluating the 

percentage of z-scores greater than 1.96 provides additional information 

as to the goodness of fit. In this case the percent of z-scores less 

than -1.96 and greater than 1.96 was 4.4289, again, further evidence of 

an adequate fit. 

Based on the NOHARM results, two subsets of items were formed, and 

two subtest scores were calculated based on these items. Then the same 

series of DIF analyses were conducted as were conducted for the 

simulated data sets. The results of the DIF analyses of the history 

data set are presented in Table 18. The LR-T and the MH-T analyses 

yielded very similar results, with the LR-T procedure identifying one 

more item. Changing to the purified total score for the MH procedure 

did not result in any changes in item classifications. Similarly, 

substituting the subtest scores for total score in the LR procedure also 

did not result in any changes in classifications. 

Chemistry Test Results 

The two-dimensional NOHARM solution (with c=0) was determined not 

to provide an adequate fit to the data. While the root mean square was 

.00562, still well below the recommended .08944, the percent of z-scores 

less than -1.96 or greater than 1.96 was 8.4, higher than desirable. 
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Table 18 

Number of Items Identified as DIF 

Test LR-T 

Analysis 

MH-T MH-P LR-N 

History 16 15 15 16 

Chemistry 16 13 14 8 

Therefore, a second NOHARM analysis was conducted, this time with a 

three-dimensional solution requested. The root mean square reduced 

slightly to .00507, and the percent of z-scores outside the acceptable 

range reduced to 5.4 . Thus, it was judged that the three-dimensional 

model provided an adequate fit to the data, and that therefore it would 

be appropriate to form three subtests. Cluster analysis was used to 

sort the items into subtests. The items were clustered based on cosine 

distances between the NOHARM-estimated discrimination parameters. A 

three-cluster solution was used. Three subtest scores were then 

calculated for each examinee. 

The results of the DIF analyses for the chemistry data set are 

also presented in Table 18. For this data set the LR-T analysis 

identified 3 more items than the MH-T analysis, and the MH-P analysis 

identified one item more than the MH-T analysis. However, the LR-N 

procedure (where all three subtest scores were included in the LR 

equation) resulted in the fewest number of DIF items being identified of 

any of the analyses. In fact, the LR-N procedure resulted in fifty 
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percent fewer items being flagged as DIF as compared to the LR-T 

procedure. 
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CHAPTER V 

DISCUSSION AND CONCLUSIONS 

Discussion 

The results presented in Chapter IV confirm earlier research that 

multidimensional item impact may be identified as DIF when there are 

underlying distributional differences between the two groups, and total 

test score is used as the matching criterion. This investigation found 

relatively high false positive error rates when total test score was 

used as the matching criterion when in fact there were no between group 

differences in the multidimensional item parameters. This was true for 

both the Mantel-Haenszel and the logistic regression procedures which 

produced very similar results. The extent to which this was true was 

influenced by the dimensionality of the test, and the discrimination 

parameters of the items in the test. Both of these factors influenced 

the relative impact each dimension has on total score. When total test 

score was more influenced by items of one dimension, using total score 

as the matching criterion was more likely to identify items which were 

most heavily influenced by another dimension. As total score is more 

evenly influenced by both dimensions, it is the more extreme items (of 

both dimensions) that are more likely to be identified. 

At the same time, items which were most discriminating were most 

likely to be identified as DIF. While such items would be expected to 

have a greater influence on total score, and thus pull the score more 

towards the direction of these items, highly discriminating items are 

also more readily identified by DIF procedures, and are more likely to 
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be identified. When the discrimination parameter was increased for 

items sensitive to the minor dimension (B), it was more likely that 

items most sensitive to either dimension would be identified. 

For the low discrimination sets the average number of false 

positive errors ranged from approximately 4 to 11. For the medium 

discrimination sets this range was approximately 12 to 24, and for the 

high discrimination sets it was approximately 18 to 32. Thus, in a test 

with 64 non-DIF items, 6 to 50 percent of the items were identified as 

DIF depending on the condition. While the conditions simulated here 

were chosen for illustrative purposes, and may be more extreme in terms 

of dimensionality and discrimination than those found in practice, the 

very high false positive error rates found in some conditions suggest 

that multidimensionality in a data set cannot be ignored, and may have a 

major impact on the results of DIF analyses. 

Part II of this study addressed whether using ability estimates 

(based on subsets of relatively pure items) in lieu of total score would 

impact the results of the matching criterion. The answer is clearly 

yes. In almost all cases changing the criterion resulted in changes in 

the number of false positive errors. In most of the conditions the 

changes were dramatic, and were in the desired and predicted direction. 

However, the impact of change of criterion must be evaluated in terms of 

the analysis (LR versus MH), the dimensionality of the test, item 

discrimination and item difficulty. 

The logistic regression procedure might be considered the 

procedure of choice when multiple ability estimates are used, as the 

logistic regression equation readily accommodates multiple ability 

estimates and thus allows for simultaneous conditioning on all relevant 
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abilities. The most dramatic difference in identification rates in the 

LR analyses were observed on test 1, where 75 percent of the items were 

sensitive to one ability, and 25 percent were sensitive to the second 

ability. When a priori knowledge of item parameters was used to 

construct subtests, and both subtest scores were included in the 

logistic regression equation instead of the single total score, 

substantial reductions in false positive rates were obtained. In fact, 

in one condition (high MDISC, r«.7) the change in the percentage of 

items identified dropped from 50 percent, to only 2 percent. The most 

extreme reductions were for medium and high discrimination sets, as 

these were the sets with the highest false positive error rates when 

total test score was used. 

When all or almost all of the items were multidimensional (as in 

tests 2 and 3), the changes in rates were not as dramatic. For test 2 

fewer false positive errors were obtained when the total score was used 

as criterion, and thus there was relatively less room for improvement. 

For both tests 2 and 3 the lowest identification rates were still higher 

than the lowest rates obtained for test 1. However, for the medium and 

high discrimination sets, substituting the subtest scores for total 

score did result in a substantial reduction in the number of items 

identified. For instance, for the high MDISC, r-.7 condition of test 2, 

30 percent of the items were identified as DIF when total score was used 

as criterion, which was reduced to only 9 percent of the items when 

subtest scores were used. For the same conditions of test 3 the 

reduction was from 36 percent to 13 percent. 

For the low discrimination conditions of tests 2 and 3, 

substituting subtest scores for total score in the logistic regression 
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equation actually resulted in an increase in the number of items 

identified. The results of the two further simulations of the low 

discrimination condition of test 2, highlight the importance of the 

direction of the differences in the underlying multidimensional ability 

distributions. When there were differences between the two groups on 

both abilities, and the differences were in the same direction, even 

fewer items were flagged as DIF with total score as criterion than in 

the same condition, but with the groups differing only on one ability. 

In this case matching on the subtest scores resulted in an increase in 

the number of false positive errors. This suggests that, in this 

circumstance, matching on total score provides more accurate matching 

than matching on subtest scores. However when the distributional 

differences crossed, so that the focal group mean was greater than the 

reference group mean on the first dimension, but the reverse was true on 

the second dimension, matching on total score alone resulted in a more 

items flagged as DIF. In this case, matching on both subtest scores 

resulted in a substantial reduction in false positive error rates. 

The analysis of item identification rates by item direction for 

the three tests suggests that the effect of incorporating both subtest 

scores in the LR analysis of test one is to reduce false positive error 

rates for items with a dimensionality or measurement direction similar 

to the items used to construct the subtests. This is the most likely 

explanation for the differences between the analyses which used the a 

priori subtests and those which used the NOHARM subtests. The NOHARM 

subtests contained more items covering a greater range of measurement 

directions. This resulted in fewer false positive errors for the LR-N 
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analyses of tests 2 and 3, which had items spread across a wider range 

of measurement directions. 

The correspondence between the results obtained using NOHARM and 

those obtained using the a priori selected subtests suggest that it is 

possible to use NOHARM to group items into subtests in the way that was 

done here with reasonable accuracy. As noted above, in many conditions 

the analyses using the NOHARM selected subtests resulted in lower false 

positive rates than were obtained in the corresponding analyses using a 

priori subtests. In other conditions there was very little difference 

in rates. 

The correspondence between the NOHARM selected subtests and the a 

priori selected subtests was best when items were more discriminating, 

and when there was less of a correlation between the underlying 

abilities. In addition, correspondence was also better when the test 

was composed of items which measure one or the other trait (test 1), 

rather than each item being multidimensional (as on tests 2 and 3). 

One finding that was not expected was the relatively small impact 

of the size of the correlation of the underlying abilities. A 

substantial change in the magnitude of this correlation (from .3 to .7) 

resulted in relatively minor changes in item classifications. The 

impact of the two levels of correlation was probably most apparent in 

the NOHARM analyses, and those based on the NOHARM subtests. In 

general, the higher correlation between the underlying abilities was 

associated with less accurate NOHARM results. 

Because there were only two true DIF items included in each test, 

results regarding false negative errors must be considered suggestive 

and not conclusive. However, both the LR-T and the MH-T missed only a 
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single item on a single replication, of the 360 possible identifi¬ 

cations. The LR-A and LR-N analyses did have higher false negative 

error rates, with the LR-N having the lower rate of the two. 

The results of the real data analyses are encouraging, 

particularly the results of the analyses of the Chemistry test. For this 

test, the substantial reductions in the number of items identified as 

DIF in the LR-N analysis as compared to the LR-T analysis were similar 

to the reductions obtained in test 1 and in the higher discrimination 

conditions of tests 2 and 3. The fact that no such reduction in rates 

was obtained with the History test suggests that the impact of changing 

the matching criteria depends on the specific test and sample used. 

This is consistent with the results obtained with the simulated data 

sets. 

Because these two tests are real, the true or correct item 

classifications are not known. However, it can be argued that the lower 

number of DIF items is more accurate. This would be expected both on 

logical grounds, and based on the relatively low false positive error 

rates obtained in the simulated data analyses. 

Implications 

This study has several implications for practice. First, 

practitioners should be aware that multidimensionality in a data set can 

result in apparent DIF when there are underlying distributional 

differences and total test score is used as the matching criterion. 

Further, the number of false positive errors may be alarmingly high. 

For instance, in one condition simulated here, a full 50 percent of the 

items were flagged as DIF. While the decision as to whether 
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multidimensional items should be removed from a test is a judgmental 

one, and must be made in the context of the purpose of testing, 

practitioners should be aware that the results of DIF analyses where 

total score is used as the matching criterion depend on the 

dimensionality of the test as a whole, and the discrimination of the 

items. It is noteworthy that it is not always the most discrepant items 

which are identified as DIF. In some circumstances use of total test 

score may result in the most multidimensional items being the ones which 

are least likely to be flagged. The discrimination of items may be 

expected to influence false positive rates both by impacting total test 

score, and because more discriminating items are more likely to be 

identified. The results presented above also suggest that items of 

medium difficulty are most likely to be flagged (at least when the 

underlying ability distributions are similar to those simulated here). 

This research demonstrates that by conditioning on more than one 

ability estimate it is possible to substantially reduce the number of 

false positive errors obtained in a multidimensional data set. Further, 

the NOHARM program yielded discrimination parameter estimates which 

could be used to select subtests with a reasonably high correspondence 

to the a priori selected subtests. In fact, in a number of conditions 

the analyses based on the NOHARM selected subtests yielded lower false 

positive rates than the corresponding a priori analyses. 

While using the subtest scores in lieu of total scores resulted in 

substantial improvement in the accuracy of the DIF analyses in almost 

all of the conditions simulated here, the reduction in false positive 

errors was well above the expected levels of 1 or 5%. Thus, 

practitioners need to be aware that they may be eliminating items which 

112 



show differential functioning as a result of multidimensional impact 

rather than DIF. 

One finding which may be of concern to practitioners is the 

increase in false negative errors associated with the change in criteria 

to subtest scores. As noted above, it is difficult to evaluate this 

change due to the small number of DIF items included in this study. 

However, even if increases are close to the magnitude found here, the 

cost of these errors must be weighed against the very high false 

positive error rates associated with the total score as criterion. In 

some circumstances false positive error rates were close to fifty 

percent, and clearly practitioners cannot afford to remove fifty percent 

of the items on a test. 

While the focus of this study was not to investigate the 

correspondence of the M-H and LR procedures, the results do provide 

evidence that when total test score is used as the matching criterion 

these two procedure yield very similar results. This is important, as 

the LR regression procedure has only recently been applied to DIF 

analyses, and thus there is not an abundance of research on this 

procedure. 

Summary 

There were two primary purposes of this study. First, to confirm 

earlier research which demonstrated that multidimensional item impact 

may be identified as DIF. The second purpose was to determine whether 

conditioning on multiple internal ability estimates would reduce the 

number of false positive errors. 
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In order to address these two purposes a simulation study was 

conducted first. Examinee responses were simulated to three different 

tests. Each data set was two-dimensional, but the dimensional structure 

was varied across tests. Each test contained 66 items. The first 48 

items were most sensitive to the first ability, the next 16 to the 

second ability, and the last two were true DIF items, with a between 

group difference of .5 in the difficulty parameter. The MDISC values 

for the first 48 items were systematically varied between .2 and 1.2 in 

each test. However, the MDISC values for the 16 items which were more 

sensitive to the second dimension were either low (.2 or .4) medium (.6 

or .8) or high (1.0 or 1.2) in each test. A sample size of 1000 was 

used for each reference and focal group. The ability distributions were 

simulated so that the reference group mean on the second dimension was 

one standard deviation greater than the focal group mean. Correlations 

between the two dimensions were the same for both groups, set to be 

either .3 or .7. Ten replications were conducted for each condition. 

The first sets of analyses used total score as the matching 

criterion. As anticipated, high numbers of non-DIF items were flagged 

as DIF in several of the conditions with both the LR and MH procedures. 

The factors which seem to contribute most to high false positive rates 

were the dimensional structure of the test and the measurement direction 

and discrimination of the items. Items most likely to be identified 

were high discrimination, moderate difficulty items with measurement 

directions most discrepant from the direction of the majority of items 

on the test. The correlation between the underlying abilities had 

little impact on false positive error rates. 
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The second part of this study investigated whether a change in 

matching criterion resulted in a change in false positive error rates. 

Subtests were selected in two ways - first based on the parameters used 

to generate the data (a priori subtests) with only the items which had a 

measurement direction within 25 degrees of a given factor being selected 

into the subtest for that factor. Thus the most multidimensional items 

were not included in either subtest. Each data set was also analyzed 

using NOHARM, and the same subtest item selection procedure was carried 

out using the NOHARM a-parameter estimates rather than the generating 

parameters. 

The results of this phase of the study provided evidence that the 

change in criterion from total score to subtest score(s) resulted in 

substantial changes in false positive rates. First each data set was 

analyzed again using LR, this time with subtest scores used in lieu of 

total score. In most (but not all) conditions this change in criteria 

resulted in substantial reductions in false positive rates. The 

magnitude of the reductions appeared to be strongly related to the 

dimensional structure of the test, and the discrimination of the items. 

The correspondence between the a priori selected subtests and the 

NOHARM selected subtests varied as a function of the dimensional 

structure of the test, the correlation between the two underlying 

abilities, and the discrimination of the items. In several conditions 

the NOHARM selected subtests resulted in even greater reductions in 

false positive errors than the a priori selected subtests, without an 

increase in false negative errors. Thus it appears that the NOHARM 

procedure does provide estimates of discrimination parameters which are 
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adequate for selecting items into subtests, at least under conditions 

similar to those studied here. 

In general, as the discrimination of the items loading primarily 

on the second factor increased, the number of false positive errors 

obtained using total score increased. At the same time, the number of 

false positive errors obtained using subtest scores decreased. 

In Part III of this study the procedures described above were 

applied to two real data sets. The results of the real data analyses 

were consistent with the simulated data analyses, and suggest that the 

procedures investigated here are feasible for application to real test 

data. For the Chemistry test substituting subtest scores for total 

score as the matching criterion resulted in substantial reductions in 

the number of items identified as DIF. 

Delimitations of the Study 

While the results presented above are very encouraging, there are 

several limitations which must be noted. First, it was not possible to 

investigate fully all of the variables which might be expected to 

influence how a change from total score to subtest score might influence 

the results of DIF analyses. For instance, sample size has been shown 

to influence detection rates in studies of DIF using unidimensional data 

sets, and thus would be expected to have an impact in multidimensional 

data sets as well. In fact, sample size may be even more important with 

multidimensional data, as sample size could well influence the stability 

of the parameter estimates obtained with programs such as NOHARM. Test 

length, and in this case subtest length as well, are variables which 

would also be expected to influence DIF analysis results. The subtests 
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used in the present study were sometimes very short, and thus matching 

on the second dimension was sometimes done with a score of modest 

reliability. Longer subtests might have yielded even greater reductions 

in false positive errors in some conditions. 

A second set of limitations has to do with the fact that while 

several important variables were investigated, it was not possible to 

investigate each variable exhaustively. For instance, the dimensional 

structure of the test as a whole appears to be an important factor in 

multidimensional DIF studies. The present investigation looked at three 

different tests, chosen to represent two extreme cases, and one mixed 

case. However, there are limitless other combinations of item 

parameters which could be used to generate two-dimensional data sets, 

and other combinations may yield other results. 

As with any simulation study, the question of generalizability of 

results is an important one. The item parameters used in the simulation 

part of this study were chosen to be within the boundaries of what might 

be expected to be found in practice, but it is not argued that they are 

typical or representative. Also, the simulated tests were limited to 

two-dimensions, which may not be typical of what may be found in 

practice. The analyses of the real data sets suggests that some tests 

may have dimensionality greater than two. The simulation phase of the 

study also assumed that the dimensionality of the data set was known 

(that is a two-dimensional solution was requested with NOHARM), rather 

than checking the fit of successive solutions, which would be necessary 

with real data sets. 

In the present study only two DIF items were included in each 

test, because the primary research questions had to do with false 
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positive rather than false negative error rates. Because there were so 

few DIF items, comparisons between the various analyses with respect to 

false negative error rates must be considered tentative. In addition, 

the between group difference in item difficulty on these items was 

substantial, and thus the relative sensitivity of the various procedures 

to different amounts of DIF is not known. 

Items were selected into subtests based on only one decision rule, 

with an arbitrary cutoff. Different decision rules would be expected to 

result in different items being selected, and thus would be likely to 

impact on false positive rates. 

Directions for Future Research 

Several of the limitations noted above suggest directions for 

future research. First, studies similar to this but which investigate 

other test lengths, other sample sizes, different item parameter 

combinations, and different dimensional structures, including tests with 

three and four dimensions, would be valuable. There are several 

potentially fruitful areas of research related to determining the 

dimensionality of both tests and items. Further research is needed to 

provide guidelines to practitioners on how to determine the number of 

dimensions required to fit a given data set. In addition, further 

research on the factors which influence the accuracy of the NOHARM 

parameter estimates is needed, as the correspondence between the NOHARM 

estimates and the true parameters is not perfect, and seems to be 

related to several variables. 

Alternatives to NOHARM analyses could also be investigated. It 

may be that simpler, widely available factor analysis techniques would 
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provide factor loadings which would allow the items to be sorted into 

subtests as accurately as the NOHARM procedure allows. 

Given that IRT-based procedures are generally considered 

theoretically preferable to procedures such as the MH and LR with 

unidimensional data, one might argue that IRT-based procedures are the 

procedures of choice in multidimensional DIF analyses as well. 

Multidimensional DIF analyses using an IRT model would involve 

estimating item parameters for the reference and focal groups 

separately, and then comparing the estimates. Future research might 

compare the results of such a DIF analysis with the type of subtest- 

based analyses investigated here. 

Conclusions 

This study confirmed that multidimensional item impact may be 

identified as DIF when there are between group differences in the 

underlying ability distributions, and total score is used as the 

matching criterion in LR or MH analyses. Under some circumstances the 

false positive error rates were alarmingly high. When subtests composed 

of items selected to be relatively more "pure" with respect to each 

dimension were used in lieu of total score and the logistic regression 

procedure was repeated, the number of false positive errors was reduced 

substantially in most conditions studied. This was also found to be 

true with one of the two real data sets studied. 

This study is important because it is one of the first to 

investigate possible solutions to the problem of differentiating 

multidimensional item impact from DIF. While simulated data were used 

extensively, considerable care was taken to evaluate the procedures 
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under conditions where the true item parameters were not known. This, 

in concert with the results of the real data set analyses suggest that 

not only does LR offer a potential solution to this dilemma, but that 

implementation of this procedure is feasible for the practitioner. 
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